20.08.2013 Views

Improvement of the tilted wick solar still by using a flat plate reflector

Improvement of the tilted wick solar still by using a flat plate reflector

Improvement of the tilted wick solar still by using a flat plate reflector

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

Desalination 216 (2007) 139–146<br />

<strong>Improvement</strong> <strong>of</strong> <strong>the</strong> <strong>tilted</strong> <strong>wick</strong> <strong>solar</strong> <strong>still</strong> <strong>by</strong> <strong>using</strong><br />

a <strong>flat</strong> <strong>plate</strong> <strong>reflector</strong><br />

Hiroshi Tanaka*, Yasuhito Nakatake<br />

Mechanical Engineering Department, Kurume National College <strong>of</strong> Technology, Komorino,<br />

Kurume, Fukuoka 830-8555, Japan<br />

Tel. +81 (942) 35-9359; Fax: +81 (942) 35-9321; email: tanakad@kurume-nct.ac.jp<br />

Received 12 April 2006; Accepted 25 December 2006<br />

This paper presents a numerical analysis to investigate <strong>the</strong> effect <strong>of</strong> <strong>the</strong> vertical <strong>flat</strong> <strong>plate</strong> external <strong>reflector</strong> on <strong>the</strong><br />

di<strong>still</strong>ate productivity <strong>of</strong> <strong>the</strong> <strong>tilted</strong> <strong>wick</strong> <strong>solar</strong> <strong>still</strong>. We propose a geometrical method to calculate <strong>the</strong> <strong>solar</strong> radiation<br />

reflected <strong>by</strong> <strong>the</strong> external <strong>reflector</strong> and absorbed on <strong>the</strong> evaporating <strong>wick</strong>, and also performed numerical analysis <strong>of</strong><br />

heat and mass transfer in <strong>the</strong> <strong>still</strong> to predict <strong>the</strong> di<strong>still</strong>ate productivity on four days (spring and autumn equinox and<br />

summer and winter solstice days) at 30EN latitude. We found that <strong>the</strong> external <strong>reflector</strong> can increase <strong>the</strong> di<strong>still</strong>ate<br />

productivity in all but <strong>the</strong> summer seasons, and <strong>the</strong> increase in <strong>the</strong> daily amount <strong>of</strong> di<strong>still</strong>ate averaged over <strong>the</strong> four<br />

days is predicted to be about 9%.<br />

Keywords: Solar desalination; Solar di<strong>still</strong>ation; Solar <strong>still</strong>; Tilted <strong>wick</strong>; Reflector<br />

1. Introduction<br />

Many attempts have been made to increase <strong>the</strong><br />

di<strong>still</strong>ate productivity <strong>of</strong> <strong>the</strong> <strong>tilted</strong> <strong>wick</strong> <strong>solar</strong> <strong>still</strong><br />

[1–7]. Among <strong>the</strong> modifications, an external<br />

<strong>reflector</strong> can be a useful one to increase <strong>the</strong> di<strong>still</strong>ate<br />

productivity for <strong>the</strong> <strong>tilted</strong> <strong>wick</strong> <strong>still</strong> as<br />

indicated <strong>by</strong> Malik et al. [8], Tsumura et al. [9]<br />

and Al-Karaghouli and Minasian [10], but a<br />

detailed and quantitative analysis <strong>of</strong> <strong>the</strong> effect <strong>of</strong><br />

*Corresponding author.<br />

0011-9164/07/$– See front matter © 2007 Published <strong>by</strong> Elsevier B.V.<br />

doi:10.1016/j.desal.2006.12.010<br />

<strong>the</strong> external <strong>reflector</strong> has not been presented. For<br />

<strong>the</strong> basin <strong>still</strong>, El-Swify and Metias [11] presented<br />

a useful geometrical method to calculate<br />

<strong>the</strong> <strong>solar</strong> radiation reflected <strong>by</strong> <strong>the</strong> internal<br />

<strong>reflector</strong> and <strong>the</strong>n absorbed on <strong>the</strong> basin liner, and<br />

Tripathi and Tiwari [12] proposed a new concept<br />

<strong>of</strong> <strong>solar</strong> fraction to evaluate <strong>the</strong> effectiveness <strong>of</strong><br />

an internal <strong>reflector</strong> in absorbing <strong>solar</strong> radiation<br />

on <strong>the</strong> basin liner. We also presented [13,14] a<br />

geometrical method for evaluating <strong>the</strong> effect <strong>of</strong> an<br />

external <strong>reflector</strong> in addition to an internal


140<br />

<strong>reflector</strong> on <strong>the</strong> <strong>solar</strong> radiation absorbed on <strong>the</strong><br />

basin liner <strong>of</strong> <strong>the</strong> basin <strong>still</strong>.<br />

Fur<strong>the</strong>rmore, we proposed a newly designed<br />

<strong>solar</strong> <strong>still</strong> [15], which consists <strong>of</strong> a vertical<br />

multiple-effect diffusion <strong>still</strong> and a <strong>flat</strong> <strong>plate</strong><br />

<strong>reflector</strong>, and we presented a geometrical method<br />

for calculating <strong>the</strong> direct and diffuse <strong>solar</strong> radiation<br />

directly absorbed on <strong>the</strong> vertical surface as<br />

well as <strong>the</strong> radiation reflected <strong>by</strong> <strong>the</strong> <strong>flat</strong> <strong>plate</strong><br />

<strong>reflector</strong> and absorbed on <strong>the</strong> vertical surface. We<br />

performed outdoor experiments [16] under <strong>solar</strong><br />

isolation in Kurume (33EN latitude), Japan, to<br />

validate <strong>the</strong> geometrical method, and <strong>the</strong> results<br />

show that direct, diffuse and reflected radiation<br />

absorbed on <strong>the</strong> vertical surface can be adequately<br />

calculated with <strong>the</strong> geometrical method<br />

we presented.<br />

The geometrical method for calculating <strong>the</strong><br />

effect <strong>of</strong> external <strong>reflector</strong> for <strong>the</strong> basin <strong>still</strong> as<br />

well as <strong>the</strong> vertical <strong>still</strong> can be easily modified to<br />

<strong>the</strong> <strong>tilted</strong> <strong>wick</strong> <strong>still</strong>. Therefore, in this paper, <strong>the</strong><br />

objective <strong>of</strong> <strong>the</strong> study is to <strong>the</strong>oretically find <strong>the</strong><br />

effect <strong>of</strong> <strong>the</strong> vertical <strong>flat</strong> <strong>plate</strong> external <strong>reflector</strong><br />

on <strong>the</strong> amount <strong>of</strong> <strong>solar</strong> radiation absorbed on <strong>the</strong><br />

evaporating <strong>wick</strong> as well as <strong>the</strong> di<strong>still</strong>ate productivity<br />

<strong>of</strong> a single slope <strong>tilted</strong> <strong>wick</strong> <strong>still</strong> at 30EN<br />

latitude. Finally, we give <strong>the</strong> optimum inclination<br />

<strong>of</strong> <strong>the</strong> <strong>tilted</strong> <strong>wick</strong> <strong>still</strong> with and without an external<br />

<strong>reflector</strong>.<br />

2. Solar radiation absorbed on <strong>the</strong> evaporating<br />

<strong>wick</strong> <strong>of</strong> a single slope <strong>tilted</strong> <strong>wick</strong> <strong>still</strong> with a<br />

vertical <strong>flat</strong> <strong>plate</strong> external <strong>reflector</strong><br />

The proposed <strong>still</strong> is shown in Fig. 1. The <strong>still</strong><br />

consists <strong>of</strong> a glass cover, evaporating <strong>wick</strong> and a<br />

vertical <strong>flat</strong> <strong>plate</strong> external <strong>reflector</strong> <strong>of</strong> highly<br />

reflective materials such as a mirror finished<br />

metal <strong>plate</strong>. Saline water is fed to <strong>the</strong> <strong>wick</strong> constantly.<br />

The direct and diffuse <strong>solar</strong> radiation and<br />

also <strong>the</strong> reflected <strong>solar</strong> radiation from external<br />

<strong>reflector</strong> are transmitted through <strong>the</strong> glass cover<br />

and absorbed onto <strong>the</strong> <strong>wick</strong>.<br />

H. Tanaka, Y. Nakatake / Desalination 216 (2007) 139–146<br />

Fig. 1. Schematic diagram <strong>of</strong> <strong>tilted</strong> <strong>wick</strong> <strong>still</strong> with vertical<br />

<strong>flat</strong> <strong>plate</strong> external <strong>reflector</strong>.<br />

To simplify <strong>the</strong> following calculation to determine<br />

<strong>the</strong> absorption <strong>of</strong> <strong>solar</strong> radiation on <strong>the</strong><br />

<strong>wick</strong>, <strong>the</strong> walls <strong>of</strong> <strong>the</strong> <strong>still</strong> are disregarded, since<br />

<strong>the</strong> height <strong>of</strong> <strong>the</strong> walls (10 mm) is negligible in<br />

relation to <strong>the</strong> <strong>still</strong>’s length (1 m) and width<br />

(1 m).<br />

Fig. 2 shows a schematic diagram <strong>of</strong> <strong>the</strong><br />

shadows <strong>of</strong> <strong>the</strong> glass cover (as well as <strong>the</strong> evaporating<br />

<strong>wick</strong>) and <strong>the</strong> external <strong>reflector</strong> on a<br />

horizontal surface caused <strong>by</strong> direct <strong>solar</strong> radiation.<br />

Since <strong>the</strong> walls disregarded as mentioned<br />

above, <strong>the</strong> shadows <strong>of</strong> <strong>the</strong> glass cover and <strong>the</strong><br />

evaporating <strong>wick</strong> would be exactly <strong>the</strong> same. l s is<br />

<strong>the</strong> length <strong>of</strong> <strong>the</strong> <strong>still</strong> (ABCD), l m is <strong>the</strong> height <strong>of</strong><br />

<strong>the</strong> external <strong>reflector</strong> (ADEF), w is <strong>the</strong> width <strong>of</strong><br />

both <strong>the</strong> <strong>still</strong> and <strong>reflector</strong> and θ is <strong>the</strong> angle <strong>of</strong><br />

<strong>the</strong> <strong>still</strong> from horizontal. γ is <strong>the</strong> azimuth angle <strong>of</strong><br />

<strong>the</strong> <strong>still</strong> and is always set as 0 o (<strong>still</strong> is oriented<br />

due south) in this paper, and ϕ and φ are <strong>the</strong><br />

azimuth and altitude angle <strong>of</strong> <strong>the</strong> sun.<br />

The direct <strong>solar</strong> radiation absorbed on <strong>the</strong><br />

evaporating <strong>wick</strong>, Q sun,dr, can be determined as <strong>the</strong><br />

product <strong>of</strong> <strong>the</strong> direct <strong>solar</strong> radiation on a horizontal<br />

surface, G dr, <strong>the</strong> shadow area <strong>of</strong> <strong>the</strong> <strong>still</strong> on


H. Tanaka, Y. Nakatake / Desalination 216 (2007) 139–146 141<br />

Fig. 2. Shadows <strong>of</strong> <strong>the</strong> <strong>still</strong> and <strong>reflector</strong> on a horizontal surface.<br />

a horizontal surface (shown as ANBCDN), transmissivity<br />

<strong>of</strong> <strong>the</strong> glass cover, τ g(β), and absorptivity<br />

<strong>of</strong> <strong>the</strong> <strong>wick</strong>, α w, and this may be expressed<br />

as<br />

Qsun, dr = Gdrτg(<br />

β) αw<br />

⎛ cos( ϕ −γ<br />

) ⎞<br />

× wls<br />

⎜cosθ + sinθ<br />

⎟<br />

⎝ tanφ<br />

⎠<br />

(1)<br />

The shadow <strong>of</strong> <strong>the</strong> external <strong>reflector</strong> (ADEF) on<br />

a horizontal surface is shown as ANDNENFN, and<br />

plane ADGH is <strong>the</strong> mirror symmetric plane <strong>of</strong> <strong>the</strong><br />

glass cover to <strong>the</strong> <strong>reflector</strong>, and its shadow is<br />

shown as ANDNGH. The <strong>solar</strong> radiation reflected<br />

from <strong>the</strong> external <strong>reflector</strong> and absorbed on <strong>the</strong><br />

<strong>wick</strong>, Q sun,re, can be determined as <strong>the</strong> product <strong>of</strong><br />

<strong>the</strong> direct <strong>solar</strong> radiation on a horizontal surface,<br />

<strong>the</strong> overlapping area <strong>of</strong> shadows <strong>of</strong> <strong>the</strong> mirror<br />

symmetric glass cover plane (ANDNGH) and <strong>the</strong><br />

external <strong>reflector</strong> (ANDNENFN) shown as ANDNIFN,<br />

reflectivity <strong>of</strong> <strong>the</strong> external <strong>reflector</strong>, ρ re, transmissivity<br />

<strong>of</strong> <strong>the</strong> glass cover and absorptivity <strong>of</strong><br />

<strong>the</strong> <strong>wick</strong>, and this may be expressed as<br />

Q = G τ ( β) ρ α × l<br />

sun, re dr g re w m<br />

⎛ 1 sin| ϕ −γ<br />

| ⎞<br />

× ⎜w− lm<br />

⎟<br />

⎝ 2 tanφ⎠<br />

cos( ϕ −γ<br />

)<br />

tanφ<br />

(2)<br />

In Eqs. (1) and (2), β is <strong>the</strong> incident angle <strong>of</strong><br />

sunrays to <strong>the</strong> glass cover, and can be expressed<br />

as [19]:


142<br />

C For Eq. (1)<br />

cos β = sinφcosθ + cosφsinθcos( ϕ −γ)<br />

C For Eq. (2)<br />

cos β = sinφcosθ −cosφsinθcos( ϕ −γ)<br />

H. Tanaka, Y. Nakatake / Desalination 216 (2007) 139–146<br />

(3)<br />

(4)<br />

Diffuse <strong>solar</strong> radiation absorbed on <strong>the</strong> <strong>wick</strong>,<br />

Q sun,df, can be determined with <strong>the</strong> assumption that<br />

diffuse radiation comes uniformly from all<br />

directions in <strong>the</strong> sky dome, and may be expressed<br />

as<br />

Q , = G ( τ ) α × wl<br />

sun df df g df w s<br />

(5)<br />

where G df is <strong>the</strong> diffuse <strong>solar</strong> radiation on a<br />

horizontal surface, and (τ g) df is a function <strong>of</strong> <strong>the</strong><br />

angle <strong>of</strong> <strong>the</strong> <strong>still</strong>, θ, and is calculated <strong>by</strong> integrating<br />

<strong>the</strong> transmissivity <strong>of</strong> <strong>the</strong> glass cover for<br />

diffuse radiation from all directions in <strong>the</strong> sky<br />

dome. This may be expressed as<br />

−3<br />

−5<br />

2<br />

( τ ) =− 2.03× 10 × θ<br />

g df<br />

− 2.05× 10 × θ + 0.667 θ [ ]<br />

<br />

(6)<br />

During <strong>the</strong> months <strong>of</strong> April to August, <strong>the</strong> sun<br />

moves north in <strong>the</strong> morning and evening, and <strong>the</strong><br />

external <strong>reflector</strong> would obstruct <strong>the</strong> sunrays and<br />

shade <strong>the</strong> <strong>wick</strong>. This causes a decrease in <strong>the</strong><br />

direct <strong>solar</strong> radiation absorbed on <strong>the</strong> <strong>wick</strong>, Q sun,dr.<br />

In <strong>the</strong> calculation, <strong>the</strong> effect <strong>of</strong> <strong>the</strong> shadow is<br />

taken into account, and <strong>the</strong> <strong>solar</strong> radiation<br />

absorbed on <strong>the</strong> <strong>wick</strong> Q sun,dr and Q sun,re when <strong>the</strong><br />

sun moves north may be expressed as:<br />

Q = G τ ( β) α ×<br />

sun, dr dr g w<br />

2<br />

+ lm<br />

2 ⎥<br />

2 tan φ ⎦<br />

(7)<br />

⎡ ⎧ ⎛ cos( ϕ −γ) ⎞ cos( ϕ −γ)<br />

⎫<br />

⎢w⎨ls⎜cosθ −sinθ ⎟−lm<br />

⎬<br />

⎢⎣ ⎩ ⎝ tanφ ⎠ tanφ<br />

⎭<br />

1 cos( ϕ −γ)sin| ϕ −γ<br />

| ⎤<br />

Q = 0<br />

sun, re<br />

3. Heat and mass transfer in <strong>the</strong> <strong>still</strong><br />

(8)<br />

Heat and mass transfer in <strong>the</strong> <strong>still</strong> are shown in<br />

Fig. 3. The energy balance for <strong>the</strong> glass cover and<br />

<strong>the</strong> evaporating <strong>wick</strong> may be expressed as<br />

Q + Q + Q + Q = Q<br />

sun, g r, w−g d, w−g e, w−g r, g−a + Q + ( mc )<br />

cg , −a<br />

p g<br />

dT<br />

d t<br />

Q = Q + Q + Q<br />

sun, w r, w−g d, w−g e, w−g g<br />

(9)<br />

dT<br />

(10)<br />

w<br />

+ Qdw , −a<br />

+ Qf+ ( mcp)<br />

d t<br />

where Qsun,g and Qsun,w are <strong>the</strong> <strong>solar</strong> radiation<br />

absorbed on <strong>the</strong> glass cover and <strong>the</strong> evaporating<br />

<strong>wick</strong>, and Qr, Qd, Qc and Qe are <strong>the</strong> heat transfer<br />

rates <strong>by</strong> radiation, conduction, convection, and<br />

evaporation and condensation. Qf is <strong>the</strong> increase<br />

in <strong>the</strong> enthalpy <strong>of</strong> <strong>the</strong> saline water fed to <strong>the</strong> <strong>wick</strong>.<br />

mcp is heat capacity, T is temperature and t is<br />

time.<br />

The <strong>solar</strong> radiation absorbed on <strong>the</strong> glass<br />

cover (Qsun,g) and <strong>the</strong> evaporating <strong>wick</strong> (Qsun,w) can be determined as follows:<br />

C For a <strong>still</strong> with an external <strong>reflector</strong>:<br />

αg<br />

Qsun, g = ⎡(<br />

Qsun, dr Qsun,<br />

re ) / τ g ( β )<br />

α ⎣<br />

+<br />

w<br />

(11)<br />

+ Qsun,<br />

df /( τ g ) df ⎤<br />

⎦<br />

Q = Q + Q + Q<br />

sun, w sun, dr sun, re sun, df<br />

C For a <strong>still</strong> without <strong>the</strong> external <strong>reflector</strong>:<br />

α<br />

Q Q Q<br />

(12)<br />

( / τ ( β) /( τ ) )<br />

g<br />

sun, g = sun, dr g + sun, df g df<br />

αw<br />

(13)


Table 1<br />

Design, wea<strong>the</strong>r conditions, physical properties and<br />

constants<br />

w = 1 m, ls = 1 m, lm = 0.5 m, θ = 30 o ,<br />

γ = 0 o (<strong>still</strong> is orienting due south)<br />

Diffusion gap between <strong>wick</strong> and glass cover<br />

= 10 mm, (mcp) g = 6.4 kJ/K<br />

αw = 0.9, αg = 0.08, ρre = 0.85<br />

τg(β) = 2.642cosβ ! 2.163cos 2 β ! 0.320cos 3 β<br />

+ 0.719cos 4 β [18]<br />

T a = 25 o C, 33 o C, 30 o C and 20 o C in spring,<br />

summer, autumn and winter<br />

G dr: Bouguer’s Eq. (19) with transmissivity <strong>of</strong><br />

atmosphere is 0.7 and 30EN latitude<br />

G df: Berlage’s Eq. (19) with <strong>the</strong> <strong>solar</strong> radiation incident<br />

on <strong>the</strong> atmosphere <strong>of</strong> 1370 W/m 2 at 30EN latitude<br />

Thermal conductivity and thickness <strong>of</strong> bottom insulation<br />

= 0.04 W/mK and 50 mm.<br />

Q = Q + Q<br />

sun, w sun, dr sun, df<br />

H. Tanaka, Y. Nakatake / Desalination 216 (2007) 139–146 143<br />

(14)<br />

Heat and mass transfer (Q c, Q d, Q e, Q f and Q r)<br />

in Eqs. (9) and (10) are basically <strong>the</strong> same in<br />

Fig. 3. Heat and mass transfer in <strong>the</strong> <strong>still</strong>.<br />

content as <strong>the</strong> one <strong>by</strong> Elsayed [17] and Tanaka et<br />

al. [18]. Eqs. (1)–(14) were solved toge<strong>the</strong>r to<br />

find <strong>the</strong> <strong>solar</strong> radiation absorbed on <strong>the</strong> evaporating<br />

<strong>wick</strong>, temperatures in <strong>the</strong> <strong>still</strong> and <strong>the</strong> di<strong>still</strong>ate<br />

production rate at time t+Δt. Temperatures<br />

<strong>of</strong> <strong>the</strong> evaporating <strong>wick</strong> and <strong>the</strong> glass cover were<br />

set to be equal to T a at t = 0, just before sunrise as<br />

<strong>the</strong> initial conditions. The wea<strong>the</strong>r and design<br />

conditions and physical properties and constants<br />

employed in <strong>the</strong> calculations are listed in Table 1.<br />

4. Results<br />

Fig. 4 shows <strong>the</strong> <strong>the</strong>oretical predictions <strong>of</strong><br />

hourly variations <strong>of</strong> (a) <strong>the</strong> global <strong>solar</strong> radiation<br />

on a horizontal surface (global) and <strong>the</strong> di<strong>still</strong>ate<br />

production rates <strong>of</strong> <strong>the</strong> <strong>tilted</strong> <strong>wick</strong> <strong>still</strong> with an<br />

external <strong>flat</strong> <strong>plate</strong> <strong>reflector</strong> (called RS) and one<br />

without a <strong>reflector</strong> (called NS), (b) <strong>the</strong> <strong>solar</strong><br />

radiation absorbed on <strong>the</strong> evaporating <strong>wick</strong> <strong>of</strong> RS<br />

and NS and (c) <strong>the</strong> absorption <strong>of</strong> direct and diffuse<br />

<strong>solar</strong> radiation and reflected <strong>solar</strong> radiation


144<br />

Fig. 4. Time variation <strong>of</strong> (a) di<strong>still</strong>ate production rate,<br />

(b) <strong>solar</strong> radiation absorbed on <strong>the</strong> <strong>wick</strong> and (c) absorption<br />

<strong>of</strong> direct, diffuse and reflected <strong>solar</strong> radiation on a<br />

spring equinox day at θ = 30E.<br />

H. Tanaka, Y. Nakatake / Desalination 216 (2007) 139–146<br />

from <strong>the</strong> <strong>reflector</strong> on <strong>the</strong> <strong>wick</strong> on a spring equinox<br />

day at θ = 30E latitude. Di<strong>still</strong>ate production<br />

rate as well as <strong>the</strong> <strong>solar</strong> radiation absorbed on <strong>the</strong><br />

<strong>wick</strong> is greater for RS (<strong>the</strong> <strong>still</strong> with a <strong>reflector</strong>)<br />

than for NS (<strong>the</strong> <strong>still</strong> without a <strong>reflector</strong>) from<br />

8 am to 4 pm since <strong>the</strong> evaporating <strong>wick</strong> could<br />

receive <strong>the</strong> reflected radiation from <strong>the</strong> <strong>reflector</strong><br />

during <strong>the</strong> period. The daily global <strong>solar</strong> radiation<br />

on a horizontal surface is about 23.3 MJ/m 2 day,<br />

and <strong>the</strong> daily amount <strong>of</strong> di<strong>still</strong>ate <strong>of</strong> RS<br />

(6.5 kg/m 2 day) is about 14% greater than that <strong>of</strong><br />

NS (5.7 kg/m 2 day).<br />

The daily amounts <strong>of</strong> di<strong>still</strong>ate varying with<br />

<strong>the</strong> angle <strong>of</strong> <strong>the</strong> <strong>still</strong> from horizontal, θ, on <strong>the</strong><br />

spring equinox and summer and winter solstice<br />

days are shown in Fig. 5. Here, <strong>the</strong> results for <strong>the</strong><br />

autumn equinox are not shown in Fig. 5, but <strong>the</strong><br />

results for <strong>the</strong> autumn equinox are almost <strong>the</strong><br />

same as those for <strong>the</strong> spring equinox since <strong>the</strong><br />

loci <strong>of</strong> <strong>the</strong> sun on <strong>the</strong>se days would be almost <strong>the</strong><br />

same. On <strong>the</strong> spring equinox, <strong>the</strong> daily amounts<br />

<strong>of</strong> di<strong>still</strong>ate <strong>of</strong> RS and NS have gentle peaks<br />

around θ = 30 o , since <strong>the</strong> <strong>tilted</strong> surface in which<br />

<strong>the</strong> inclination is equal to <strong>the</strong> latitude (30EN)<br />

would maximize <strong>the</strong> <strong>solar</strong> radiation on <strong>the</strong> <strong>tilted</strong><br />

surface on <strong>the</strong> day. On <strong>the</strong> summer solstice, <strong>the</strong><br />

daily amounts <strong>of</strong> di<strong>still</strong>ate <strong>of</strong> RS and NS decrease<br />

inversely with an increase in <strong>the</strong> angle θ since <strong>the</strong><br />

<strong>solar</strong> altitude angle becomes nearly vertical<br />

around noon and this causes a smaller projecting<br />

area on a horizontal surface for <strong>the</strong> <strong>still</strong> with a<br />

larger angle θ. Fur<strong>the</strong>r, <strong>the</strong> daily amount <strong>of</strong> di<strong>still</strong>ate<br />

is smaller for RS than for NS. This is<br />

because <strong>the</strong> external <strong>reflector</strong> would obstruct <strong>the</strong><br />

sunrays and shade <strong>the</strong> <strong>wick</strong> during <strong>the</strong> early<br />

morning (until about 9 am) and <strong>the</strong> late afternoon<br />

(after about 3 pm), and <strong>the</strong> reflected radiation<br />

absorbed on <strong>the</strong> <strong>wick</strong> would be very small even<br />

around noon. On <strong>the</strong> winter solstice, <strong>the</strong> daily<br />

amount <strong>of</strong> di<strong>still</strong>ate <strong>of</strong> NS increases directly with<br />

an increase in <strong>the</strong> angle θ, while an RS <strong>still</strong> has a<br />

gentle peak around θ = 20E, and <strong>the</strong> daily<br />

amounts <strong>of</strong> di<strong>still</strong>ate <strong>of</strong> RS and NS would be<br />

approximately <strong>the</strong> same when <strong>the</strong> angle θ is


Fig. 5. Variation <strong>of</strong> daily amount <strong>of</strong> di<strong>still</strong>ate with angle<br />

<strong>of</strong> <strong>still</strong> on <strong>the</strong> spring equinox and <strong>the</strong> summer and winter<br />

solstices.<br />

Fig. 6. Variation <strong>of</strong> average daily amount <strong>of</strong> di<strong>still</strong>ate for<br />

four days (spring and autumn equinox and summer and<br />

winter solstice days) with angle <strong>of</strong> <strong>still</strong>.<br />

larger than 35E. The reason is that <strong>the</strong> reflected<br />

radiation from <strong>the</strong> <strong>reflector</strong> which can be absorbed<br />

on <strong>the</strong> <strong>wick</strong> decreases with an increase in<br />

<strong>the</strong> angle θ and would be negligible when <strong>the</strong><br />

angle θ is larger than 35 o , since <strong>the</strong> portion <strong>of</strong><br />

sunrays that would be reflected <strong>by</strong> <strong>the</strong> <strong>reflector</strong><br />

but cannot hit <strong>the</strong> <strong>wick</strong> and would escape to <strong>the</strong><br />

ground, would increase with an increase in <strong>the</strong><br />

angle θ.<br />

Variations <strong>of</strong> <strong>the</strong> averaged daily amount <strong>of</strong><br />

di<strong>still</strong>ate for four days (spring and autumn equinox<br />

and summer and winter solstice days) with an<br />

H. Tanaka, Y. Nakatake / Desalination 216 (2007) 139–146 145<br />

angle <strong>of</strong> <strong>the</strong> <strong>still</strong>, θ, is shown in Fig. 6. The<br />

averaged daily amount <strong>of</strong> di<strong>still</strong>ate for NS has a<br />

gentle peak around θ = 30E (equal to <strong>the</strong> latitude)<br />

while <strong>the</strong> average for RS peaks at around 20E.<br />

This is mainly caused <strong>by</strong> <strong>the</strong> fact that <strong>the</strong> daily<br />

amount <strong>of</strong> di<strong>still</strong>ate <strong>of</strong> RS on <strong>the</strong> summer solstice<br />

decreases considerably with an increase in <strong>the</strong><br />

angle θ, but on <strong>the</strong> spring and autumn equinox<br />

and winter solstice days it is almost <strong>the</strong> same at<br />

θ = 20E and 30E, as shown in Fig. 5.<br />

The averaged daily amount <strong>of</strong> di<strong>still</strong>ate <strong>of</strong> RS<br />

at θ = 20E is about 9% greater than that <strong>of</strong> NS at<br />

θ = 30E. Recently, we <strong>the</strong>oretically analyzed <strong>the</strong><br />

effect <strong>of</strong> <strong>the</strong> vertical <strong>flat</strong> <strong>plate</strong> external <strong>reflector</strong><br />

on <strong>the</strong> di<strong>still</strong>ate productivity <strong>of</strong> <strong>the</strong> basin <strong>still</strong><br />

[13], and <strong>the</strong> increase in <strong>the</strong> daily amount <strong>of</strong><br />

di<strong>still</strong>ate <strong>by</strong> <strong>using</strong> external <strong>flat</strong> <strong>plate</strong> <strong>reflector</strong> was<br />

predicted to average about 26% for <strong>the</strong> entire<br />

year. Therefore, <strong>the</strong> vertical <strong>flat</strong> plat external<br />

<strong>reflector</strong> would be less effective for <strong>the</strong> <strong>tilted</strong><br />

<strong>wick</strong> <strong>still</strong> than for <strong>the</strong> basin <strong>still</strong>.<br />

5. Conclusions<br />

We <strong>the</strong>oretically predicted <strong>the</strong> effect <strong>of</strong> a<br />

vertical <strong>flat</strong> <strong>plate</strong> external <strong>reflector</strong> for <strong>the</strong> <strong>tilted</strong><br />

<strong>wick</strong> <strong>still</strong> on <strong>the</strong> <strong>solar</strong> radiation absorbed on <strong>the</strong><br />

evaporating <strong>wick</strong> as well as <strong>the</strong> di<strong>still</strong>ate productivity<br />

<strong>of</strong> <strong>the</strong> <strong>still</strong> at 30EN latitude, and <strong>the</strong><br />

results <strong>of</strong> this work are summarized as follows:<br />

1. The averaged daily amount <strong>of</strong> di<strong>still</strong>ate for<br />

four days (spring and autumn equinox and summer<br />

and winter solstice days) peaks when <strong>the</strong><br />

angle <strong>of</strong> <strong>the</strong> <strong>still</strong> θ is 20E for <strong>the</strong> <strong>still</strong> with <strong>the</strong><br />

<strong>reflector</strong>, and peaks at θ = 30E for <strong>the</strong> <strong>still</strong><br />

without <strong>the</strong> <strong>reflector</strong>.<br />

2. The average daily amount <strong>of</strong> di<strong>still</strong>ate <strong>of</strong><br />

<strong>the</strong> <strong>still</strong> with <strong>the</strong> <strong>reflector</strong> is predicted to be about<br />

9% larger than that <strong>of</strong> <strong>the</strong> <strong>still</strong> without <strong>the</strong><br />

<strong>reflector</strong>, and <strong>the</strong> vertical <strong>flat</strong> <strong>plate</strong> external<br />

<strong>reflector</strong> would be less effective for <strong>the</strong> <strong>tilted</strong><br />

<strong>wick</strong> <strong>still</strong> than for <strong>the</strong> basin <strong>still</strong>.


146<br />

6. Symbols<br />

G df — Diffuse <strong>solar</strong> radiation, W/m 2<br />

G dr — Direct <strong>solar</strong> radiation, W/m 2<br />

l m — Height <strong>of</strong> <strong>reflector</strong>, m<br />

l s — Length <strong>of</strong> <strong>still</strong>, m<br />

mc p — Heat capacity, J/K<br />

m f — Feed rate <strong>of</strong> saline water, kg/m 2 s<br />

Q c — Convective heat transfer rate, W<br />

Q d — Conductive heat transfer rate, W<br />

Q e — Heat transfer rate <strong>of</strong> evaporation and<br />

condensation, W<br />

Q f — Enthalpy increase <strong>of</strong> feeding saline<br />

water, W<br />

Q r — Radiative heat transfer rate, W<br />

Q sun,df — Absorption <strong>of</strong> diffuse <strong>solar</strong> radiation,<br />

W<br />

Q sun,dr — Absorption <strong>of</strong> direct <strong>solar</strong> radiation,<br />

W<br />

Q sun,g — Absorption <strong>of</strong> <strong>solar</strong> radiation on<br />

glass cover, W<br />

Q sun,re — Absorption <strong>of</strong> reflected <strong>solar</strong> radiation,<br />

W<br />

Q sun,w — Absorption <strong>of</strong> <strong>solar</strong> radiation on<br />

<strong>wick</strong>, W<br />

T — Temperature, K<br />

t — Time, s<br />

w — Width <strong>of</strong> <strong>still</strong>, m<br />

Greek<br />

α — Absorptivity<br />

β — Incident angle<br />

φ — Solar altitude angle<br />

γ — Azimuth angle <strong>of</strong> <strong>still</strong><br />

ϕ — Solar azimuth angle<br />

θ — Angle <strong>of</strong> <strong>still</strong><br />

ρ re — Reflectivity <strong>of</strong> <strong>reflector</strong><br />

τ g — Transmissivity <strong>of</strong> glass cover<br />

Subscripts<br />

a — Ambient air<br />

H. Tanaka, Y. Nakatake / Desalination 216 (2007) 139–146<br />

g — Glass cover<br />

w — Wick<br />

References<br />

[1] K. Tanaka, A. Yamashita and K. Watanabe, Proc.<br />

Int. Solar Energy Society Congress, Brighton, 1981,<br />

p. 1087.<br />

[2] M.S. Sodha, A. Kumar, G.N. Tiwari and R.C. Tyagi,<br />

Solar Energy, 26 (1981) 127.<br />

[3] G.N. Tiwari, S.B. Sharma and M.S. Sodha, Energy<br />

Conv. Mgmt., 24(2) (1984) 155.<br />

[4] H.M. Yeh and L.C. Chen, Energy Conv. Mgmt.,<br />

26(2) (1986) 175.<br />

[5] A.N. Minasian and A.A. Al-Karaghouli, Energy<br />

Conv. Mgmt., 36(3) (1995) 213.<br />

[6] B. Janarthanan, J. Chandrasekaran and S. Kumar,<br />

Desalination, 180 (2005) 291.<br />

[7] S.K. Shukla and V.P.S. Sorayan, Renewable Energy,<br />

30 (2005) 683.<br />

[8] M.A.S. Malik, G.N. Tiwari, A. Kumar and M.S.<br />

Sodha, Solar Di<strong>still</strong>ation, Pergamon Press, UK,<br />

1982, p. 98.<br />

[9] K. Tsumura, M. Yamashita, H. Watanabe and<br />

H. Inaba, Bull. Jpn. Society Sea Water Sci., 39(3)<br />

(1985) 129.<br />

[10] A.A. Al-Karaghouli and A.N. Minasian, Renewable<br />

Energy, 6(1) (1995) 77.<br />

[11] M.E. El-Swify and M.Z. Metias, Renewable Energy,<br />

26 (2002) 531.<br />

[12] R. Tripathi and G.N. Tiwari, Desalination, 169<br />

(2004) 69.<br />

[13] H. Tanaka and Y. Nakatake, Desalination, 197<br />

(2006) 205.<br />

[14] H. Tanaka and Y. Nakatake, Solar Energy, in press.<br />

[15] H. Tanaka and Y. Nakatake, Desalination, 173<br />

(2005) 287.<br />

[16] H. Tanaka and Y. Nakatake, Desalination, 214<br />

(2007) 70–82.<br />

[17] M.M. Elsayed, J. Solar Energy Engineering, Trans.<br />

ASME, 105 (1983) 23.<br />

[18] H. Tanaka, T. Nosoko and T. Nagata, Desalination,<br />

130 (2000) 279.<br />

[19] Japan Solar Energy Soc., Solar Energy Utilization<br />

Handbook, Tokyo, 1985, pp. 2, 20.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!