23.08.2013 Views

History of Geophysical Research in The Netherlands ... - DWC - KNAW

History of Geophysical Research in The Netherlands ... - DWC - KNAW

History of Geophysical Research in The Netherlands ... - DWC - KNAW

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>History</strong> <strong>of</strong> <strong>Geophysical</strong> <strong>Research</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong><br />

and its former Overseas Territories


Verhandel<strong>in</strong>gen der Kon<strong>in</strong>klijke Nederlandse Akademie van Wetenschappen,<br />

Afdel<strong>in</strong>g Natuurkunde, Eerste Reeks, Deel 32<br />

<strong>History</strong> <strong>of</strong> <strong>Geophysical</strong> <strong>Research</strong><br />

<strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> and its<br />

former Overseas Territories<br />

J. Veldkamp<br />

North-Holland Publish<strong>in</strong>g Company, Amsterdam/Oxford/New York, 1984


ISBN 0-4448-5615-3<br />

Author's address: Pr<strong>of</strong>. Dr. J. Veldkamp, Bosuillaan 8,<br />

3722 XN Bilthoven, <strong>The</strong> <strong>Netherlands</strong>


Contents<br />

Preface 8<br />

Acknowledgements 9<br />

Chapter I<br />

Section 1.1<br />

Section 1.2<br />

Section 1.3<br />

<strong>Research</strong> <strong>in</strong> Geomagnetism 11<br />

Introduction 11<br />

Geomagnetism <strong>in</strong> the <strong>Netherlands</strong> 12<br />

Disturbances <strong>in</strong> the earth's magnetic field caused by the<br />

sun 17<br />

Section 1.4 Geomagnetism and the ionosphere 22<br />

Section 1.5 Geomagnetism and cosmic rays 27<br />

Section 1.6 Geomagnetic research <strong>in</strong> the former <strong>Netherlands</strong> East<br />

Indies 29<br />

Section 1.7 Geomagnetic research by Dutch scientists outside the<br />

<strong>Netherlands</strong> and the <strong>Netherlands</strong> East Indies 31<br />

Section 1.8 Geomagnetic research at sea 32<br />

Section 1.8.1 Sur<strong>in</strong>ame: cont<strong>in</strong>ental shelf (OCPS) 32<br />

Section 1.8.2 Atlantic Ocean: NA V ADO Project 32<br />

Section I. 8. 3 Atlantic Ocean: Kroonvlag Project 34<br />

Section I. 8. 4 Atlantic Ocean: Vaarplan Projects 34<br />

Section 1.8.5 Atlantic Ocean: other subjects 37<br />

Section 1.9 Palaeomagnetic research 37<br />

Section 1.9.1 Palaeomagnetism at the State University <strong>of</strong> Utrecht 40<br />

Section 1.9.2 Palaeomagnetism at the Municipal University <strong>of</strong> Amsterdam<br />

46<br />

References to Chapter I 46<br />

Chapter 11<br />

Section 11. 1<br />

Section 11.2<br />

Section 11. 2. 1<br />

Section 11. 2. 2<br />

Section 11. 3<br />

Section 11. 3. 1<br />

Section 11. 3. 2<br />

Section 11. 3. 3<br />

Seismological <strong>Research</strong><br />

Seismological <strong>in</strong>strumentation<br />

Seismological research <strong>in</strong> the <strong>Netherlands</strong><br />

Work <strong>of</strong> J. G. J . Scholte<br />

<strong>Research</strong> by N.J. Vlaar and co-workers<br />

Earthquake mechanisms<br />

<strong>Research</strong> by A. R. Ritsema and others<br />

Work <strong>of</strong> J .A. Steketee<br />

Results <strong>of</strong> research <strong>in</strong> earthquake mechanisms<br />

5<br />

55<br />

55<br />

57<br />

59<br />

59<br />

61<br />

62<br />

63<br />

63


Section 11.3.3.1 Southeast Asia and H<strong>in</strong>du Kush 63<br />

Section 11.3.3.2 Europe 64<br />

Section 11.4. 1 Seismicity <strong>of</strong>· the Mediterranean region 67<br />

Section 11.4.2 Seismicity <strong>of</strong> the <strong>Netherlands</strong> 67<br />

Section 11.5 Nuclear explosions 67<br />

Section 11.6 Seismological research <strong>in</strong> the former <strong>Netherlands</strong> East<br />

Indies 67<br />

Section 11.6.1 Instrumentation at the KMMO 69<br />

Section 11.6.2 <strong>Research</strong> results 69<br />

Section 11.7. Seismological research at sea 71<br />

Section 11.7.1 North Sea 71<br />

Section 11.7.2 NAVADO Project - 1964 and 1965 71<br />

Section 11.7.3 Sur<strong>in</strong>ame 72<br />

Section 11.7.4 Kroonvlag Project: 1967 -1980 72<br />

Section 11.7.5 Vaarplan Projects: 1974-1978 and 1978-1982 75<br />

Section 11.7.6 Disposal <strong>of</strong> radioactive waste 75<br />

References to Chapter 11 76<br />

Chapter 111 <strong>Research</strong> <strong>in</strong> gravity 83<br />

Section 111.1 <strong>The</strong> life work <strong>of</strong> F. A. Ven<strong>in</strong>g Me<strong>in</strong>esz - Gravity Surveys 83<br />

Section 111.2 Downbuckl<strong>in</strong>g theory <strong>of</strong> Ven<strong>in</strong>g Me<strong>in</strong>esz 86<br />

Section 111.3 Ven<strong>in</strong>g Me<strong>in</strong>esz and the theory <strong>of</strong> Wegener 88<br />

Section 111.4 Importance <strong>of</strong> Ven<strong>in</strong>g Me<strong>in</strong>esz 88<br />

Section 111.5 Gravity research by others 89<br />

Refererences to Chapter 111 93<br />

Chapter IV <strong>Geophysical</strong> activity <strong>in</strong> <strong>in</strong>ternational relations 97<br />

Section IV.1 Polar Years 97<br />

Section IV. 2 <strong>Geophysical</strong> Years 99<br />

Section IV. 3 Belgian-<strong>Netherlands</strong> Antarctic Expeditions 103<br />

Section IV.4 <strong>The</strong> Upper Mantle Project (UMP) 106<br />

Section IV. 5 <strong>The</strong> Geodynamics Project (GP) 106<br />

Section IV. 6 W<strong>in</strong>d measurements <strong>in</strong> the ionosphere above Sur<strong>in</strong>ame<br />

(September 1965) 109<br />

References to Chapter IV 110<br />

Chapter V<br />

Section V.1<br />

Section V. 2<br />

Section V. 3<br />

Section V. 4<br />

Section V. 4.1<br />

Section V. 4. 2<br />

Section V. 4. 3<br />

Section V. 5.<br />

Section V. 5. 1<br />

Section V. 5.2<br />

Exploration Geophysics 112<br />

Introduction 112<br />

<strong>Geophysical</strong> <strong>in</strong>vestigations <strong>in</strong> the former <strong>Netherlands</strong> East<br />

Indies 113<br />

<strong>Geophysical</strong> exploration <strong>in</strong> Sur<strong>in</strong>ame 113<br />

<strong>Geophysical</strong> surveys <strong>in</strong> the <strong>Netherlands</strong> 114<br />

Gravity research <strong>in</strong> the southeast <strong>Netherlands</strong> by<br />

Government Agencies 114<br />

M<strong>in</strong><strong>in</strong>g possibilities <strong>in</strong> the Peel Field (North Brabant) 114<br />

<strong>Geophysical</strong> survey <strong>in</strong> the prov<strong>in</strong>ce <strong>of</strong> Limburg 115<br />

<strong>Geophysical</strong> exploration <strong>in</strong> the <strong>Netherlands</strong> by Oil Companies<br />

- 115<br />

Discovery <strong>of</strong> the Schoonebeek oil field 115<br />

Discovery <strong>of</strong> the Gron<strong>in</strong>gen gas field 118<br />

6


Section V. 5.3 <strong>Geophysical</strong> research at the KSEPL (Rijswijk. South<br />

Holland) 118<br />

Section V. 5.4 Exploration <strong>of</strong> the North Sea cont<strong>in</strong>ental shelf 119<br />

Section V . 6. Hydrogeological research <strong>in</strong> the <strong>Netherlands</strong> 119<br />

Section V. 6.1 Water supplies 119<br />

Section V. 6. 2 Geothermal energy 120<br />

Section V. 7. Exploration geophysics at the University <strong>of</strong> Technology<br />

(TH) at Delft 121<br />

Section V. 7.1 Geoelectrical research by o. Koefoed and co-workers 121<br />

Section V. 7.2 Electromagnetic sound<strong>in</strong>g research by o. Koefoed and coworkers<br />

122<br />

Section V. 8.1 Seismological research at the TH <strong>of</strong> Delft by o. Koefoed<br />

and co-workers 123<br />

Section V. 8. 2 Seismological research by A. T. de Hoop and co-workers 123<br />

Section V . 8.3 <strong>Research</strong> <strong>in</strong>to seismic data process<strong>in</strong>g by A. J. Berkhout<br />

and co-workers 126<br />

Section V. 8. 4 Process<strong>in</strong>g <strong>of</strong> gravity data at the TH. Delft 127<br />

Section V. 9 Exploration geophysics <strong>in</strong> the State University <strong>of</strong> Leiden 127<br />

Section V. 10 Exploration geophysics at Utrecht 128<br />

References to Chapter V 128<br />

Chapter VI<br />

Section V I . 1<br />

Section V I. 2<br />

Section V I . 3<br />

Section V I . 4<br />

Section V I . 5<br />

Section V I . 6<br />

<strong>The</strong> Teach<strong>in</strong>g <strong>of</strong> Solid Earth Geophysics<br />

Teach<strong>in</strong>g geophysics at the State University <strong>of</strong> Utrecht<br />

Teach<strong>in</strong>g geophysics at the Municipal University <strong>of</strong><br />

Amsterdam<br />

Teach<strong>in</strong>g geophysics at the State University <strong>of</strong> Leiden<br />

Teach<strong>in</strong>g geophysics at the University <strong>of</strong> Technology at<br />

Delft<br />

University Teachers <strong>of</strong> solid earth geophysics<br />

Conclusion<br />

7<br />

135<br />

135<br />

136<br />

136<br />

136<br />

137<br />

138


Preface<br />

Dur<strong>in</strong>g the Congress <strong>of</strong> the International Union <strong>of</strong> Geological Sciences, held <strong>in</strong><br />

1964 at New Delhi, a resolution was adopted <strong>in</strong> which the national committees were<br />

asked to take steps to draw up the history <strong>of</strong> the geosciences <strong>in</strong> each participat<strong>in</strong>g<br />

country.<br />

<strong>The</strong> Royal <strong>Netherlands</strong> Academy <strong>of</strong> Arts and Sciences, which <strong>in</strong>corporates<br />

the <strong>Netherlands</strong> Committee <strong>of</strong> Geological Sciences, <strong>in</strong>vited its Geosciences Section<br />

to set up a committee to write the historical development <strong>of</strong> the geosciences<br />

<strong>in</strong> the <strong>Netherlands</strong> and its former Overseas Territories. This committee began<br />

its work <strong>in</strong> 1974. <strong>The</strong> present author was asked to write the history <strong>of</strong> geophysics,<br />

<strong>in</strong> which <strong>of</strong> course the relations with geology would be taken <strong>in</strong>to account.<br />

In this book the word "geophysics" means, <strong>in</strong> particular, the physics <strong>of</strong> the<br />

solid earth, exclud<strong>in</strong>g the atmosphere and the oceans. This restriction is appropriate,<br />

notwithstand<strong>in</strong>g the fact that the atmosphere and the oceans play<br />

their role <strong>in</strong> geological processes. But the history <strong>of</strong> geophysics, <strong>in</strong> the limitcd<br />

sense <strong>of</strong> the word, has more to do with geology than meteorology and oceanography.<br />

However, the division between the solid and the gaseous-liquid earth<br />

cannot always be ma<strong>in</strong>ta<strong>in</strong>ed. For example, certa<strong>in</strong> variations <strong>in</strong> thc geomagnetic<br />

field are caused by movements <strong>in</strong> the upper layers <strong>of</strong> the atmosphere. <strong>The</strong>refore<br />

the history <strong>of</strong> ionospheric research had also to be dealt with.<br />

<strong>The</strong> order chosen for the subjects (geomagnetism, seismology, gravity, exploration)<br />

was made accord<strong>in</strong>g to the sequence <strong>in</strong> which these chapters appear<br />

<strong>in</strong> the <strong>Netherlands</strong> geophysical research.<br />

<strong>The</strong> author has decided to limit quotations from the very great number <strong>of</strong><br />

publications concern<strong>in</strong>g <strong>Netherlands</strong> geophysics. For this reason the list <strong>of</strong><br />

literature is <strong>in</strong>complete; nevertheless he has attempted to mention all important<br />

publications and to discuss them very briefly.<br />

<strong>The</strong> historica I account does not go beyond the year 1980. Publications that<br />

appeared after 1980 are not <strong>in</strong>cluded <strong>in</strong> the text (apart from a few exceptions) .<br />

<strong>The</strong> illustrations have been selected from the publications discussed or have<br />

been chosen <strong>in</strong> connection with them. In cases where they are not easily understandabie<br />

, the fundamental mean<strong>in</strong>g is <strong>in</strong>dicated <strong>in</strong> the caption.<br />

8


Acknowledgements<br />

A prepr<strong>in</strong>t <strong>of</strong> this book (<strong>in</strong> Outch) has been issued by the Royal <strong>Netherlands</strong><br />

Meteorological Institute (KNMI; publication number 162).<br />

I am very grateful to Or. and Mrs. Schregard us (Bilt hoven) and to Or. A. E .<br />

Stevens (Canada) for carefully read<strong>in</strong>g and correct<strong>in</strong>g the English version <strong>of</strong><br />

the manuscript. Or. Stevens has not only improved the style <strong>of</strong> this book but<br />

also its composition by the rearrangement <strong>of</strong> some chapters. Anne. thank you<br />

very much!<br />

I am also <strong>in</strong>debted to others. among whom Or. Visser (Nootdorp). who drew<br />

my attention to omissions <strong>in</strong> the orig<strong>in</strong>al version <strong>of</strong> the manuscript. I have tried<br />

to comply with their wishes and remarks .<br />

9<br />

J. Veldkamp


CHAPTER I<br />

<strong>Research</strong> <strong>in</strong> Geomagnetism<br />

1.1. INTRODUCTION<br />

Long ago and over many centuries science was dom<strong>in</strong>ated by the philosophy<br />

<strong>of</strong> Aristoteles. For most scholastic scientists Aristoteles was the overwhelm<strong>in</strong>g<br />

authority who had given the solution to many secrets <strong>of</strong> nature. However, <strong>in</strong><br />

the 16th century a new method <strong>of</strong> scientific research came <strong>in</strong>to be<strong>in</strong>g. <strong>The</strong><br />

scientists no longer followed exclusively the great Greek philosopher, but acknowledged<br />

the value <strong>of</strong> experiments and measurements. This new method <strong>of</strong><br />

scientific work began with astronomy, but was soon extented to other branches<br />

<strong>of</strong> science, among others to the physics <strong>of</strong> the earth.<br />

<strong>The</strong> first great step forward <strong>in</strong> geophysics was made by the Portugese navigator,<br />

J. de Castro (1500-1548). Dur<strong>in</strong>g his voyages between Lisbon and Goa<br />

he regularly read the deviation <strong>of</strong> his compasses with respect to the true North.<br />

In this practical work he had <strong>in</strong> m<strong>in</strong>d some hypotheses (Hooykaas, 1980) that<br />

he hoped to confirm by his measurements, viz. that there exists an agonic meridian<br />

(with deviation zero), and that this deviation (or decl<strong>in</strong>ation ) <strong>in</strong>creases<br />

<strong>in</strong> relation to the distance from the agonic meridian, similarly to the east and<br />

west, by an equal amount for an equal distance. If these hypotheses were<br />

true, the important problem <strong>of</strong> determ<strong>in</strong><strong>in</strong>g geographic longitude at sea would<br />

<strong>in</strong> pr<strong>in</strong>ciple be solved. However, the second hypothesis appeared to be false.<br />

Whereas the geographic latitude at sea could be found by observations <strong>of</strong> the<br />

sun, the geographic longitude presented more difficuities. It could not be calculated<br />

from the decl<strong>in</strong>ation <strong>of</strong> the compass; other methods were req uired.<br />

An important study related to the magnetic properties <strong>of</strong> the earth was made<br />

by the English physician, W. Gilbert (1540-1603) who published a book entitied:<br />

"De Magnete et de magno magnete Telluro" (1600). Gilbert conducted experiments<br />

with a sphericallodestone (terelIa) as a model <strong>of</strong> the magnetic earth and<br />

applied iron needies to <strong>in</strong>vestigate the magnetic properties <strong>of</strong> this terelIa . <strong>The</strong><br />

needies showed the characteristics <strong>of</strong> the geomagnetic <strong>in</strong>cl<strong>in</strong>ation , rang<strong>in</strong>g from<br />

90° at the poles <strong>of</strong> the terelIa to 0° at the equator. Gilbert concluded from these<br />

experiments: magnus magnes ipse est globus terrestris (the Earth behaves<br />

like a great magnet) . This was probably the first time that conclusions about<br />

the earth's magnetism were drawn from experiments. Another English scientist.<br />

F. Bacon (1561-1626). stressed the importance <strong>of</strong> collect<strong>in</strong>g data on geomagnetism<br />

all over the world, as weil as conduct<strong>in</strong>g experiments (Hooykaas, 1976).<br />

Also <strong>in</strong> the <strong>Netherlands</strong> the <strong>in</strong>terest <strong>in</strong> geophysics was directed to the magnetism<br />

<strong>of</strong> the earth and to the compass and its properties as a most useful <strong>in</strong>strument<br />

11


for navigation. <strong>The</strong> clergyman and geographer, P. Plancius (1552-1622), hoped<br />

just as De Castro that the magnetism <strong>of</strong> the earth would provide a solution to<br />

the problem <strong>of</strong> determ<strong>in</strong><strong>in</strong>g geographic longitude at sea.<br />

<strong>Netherlands</strong> physicists like S. Stev<strong>in</strong> (1548-1620) and Chr. Huygens (1629-<br />

1695) showed <strong>in</strong>terest <strong>in</strong> the practical nature <strong>of</strong> geophysical problems. In his<br />

book "Havenv<strong>in</strong>d<strong>in</strong>g" (f<strong>in</strong>d<strong>in</strong>g the harbour) Stev<strong>in</strong> agreed with Plancius concern<strong>in</strong>g<br />

the theory <strong>of</strong> longitude determ<strong>in</strong>ation. Huygens contributed to the true<br />

solution <strong>of</strong> this problem by develop<strong>in</strong>g the theory <strong>of</strong> the pendulum as weil as by<br />

<strong>in</strong>vent<strong>in</strong>g a clockwork suitable for use on ships. By do<strong>in</strong>g so he furthered the<br />

accuracy <strong>of</strong> the measurement <strong>of</strong> time and therefore <strong>of</strong> the determ<strong>in</strong>ation <strong>of</strong> longitude<br />

at sea.<br />

In the centuries after the Golden Age (the 17th century) the <strong>in</strong>terest <strong>in</strong> geomagnetism<br />

was no longer focused ma<strong>in</strong>ly on the values <strong>of</strong> the field components<br />

all over the world, but more on the temporary variations . For years some scientists<br />

determ<strong>in</strong>ed daily the direction <strong>of</strong> the geomagnetic field. However, a<br />

cont<strong>in</strong>uous study <strong>of</strong> the earth's magnetism based on measurements at regular<br />

times, began not earlier than the middle <strong>of</strong> the 19th century.<br />

I. 2. GEOMAGNETISM IN THE NETHERLANDS<br />

In the <strong>Netherlands</strong> <strong>in</strong> the 19th century research <strong>in</strong>to geophysics <strong>of</strong> the solid<br />

earth was closely connected with meteorology and oceanography. When <strong>in</strong> 1854<br />

the Royal <strong>Netherlands</strong> Meteorological Institute (KNMI) was founded at Utrecht,<br />

meteorological research was put on a firm foot<strong>in</strong>g. <strong>The</strong> Institute was housed <strong>in</strong><br />

the Sonnenborgh, an old castle <strong>in</strong> the town <strong>of</strong> Utrecht (now the Astronomical<br />

Observatory <strong>of</strong> the State University at Utrecht). In this build<strong>in</strong>g also ob servations.<br />

<strong>of</strong> the earth's magnetic field were <strong>in</strong>cluded <strong>in</strong> the rout<strong>in</strong>e <strong>of</strong> daily observations.<br />

Three times a day the position <strong>of</strong> a magnetic needie on a scale was<br />

re ad through a telescope <strong>in</strong> the cellar <strong>of</strong> the Sonnenborgh. <strong>The</strong>se daily observations<br />

<strong>of</strong> the decl<strong>in</strong>ations <strong>of</strong> the compass had started <strong>in</strong> 1849 (see: KNMI,<br />

Gedenkboek, 1954).<br />

<strong>The</strong> special <strong>in</strong>terest <strong>in</strong> geomagnetism was coupled <strong>in</strong> the <strong>Netherlands</strong> (and <strong>in</strong><br />

other countries) with a general <strong>in</strong>terest <strong>in</strong> the unknown and mysterious polar<br />

regions , which <strong>in</strong> the last century were the aim <strong>of</strong> many expeditions (see: section<br />

IV.l. Polar Years). Arelation bet ween geomagnetic storms and aurora was<br />

known, but geomagnetism as weU as the aurora were not weU understood natural<br />

phenomena. <strong>The</strong> connection between them and the relation with the polar<br />

regions and with the activity <strong>of</strong> the sun were very puzzl<strong>in</strong>g. <strong>The</strong>refore, regular<br />

observations <strong>of</strong> the magnetic field <strong>of</strong> the earth we re considered to be worthwhile.<br />

Several times a day two components <strong>of</strong> the geomagnetic field, the decl<strong>in</strong>ation<br />

and the horizontal force, were determ<strong>in</strong>ed. In that way some knowledge<br />

was ga<strong>in</strong>ed about the regular variations <strong>of</strong> these quantities; and also <strong>of</strong> the<br />

variations , later called magnetic storms, which are related to the appearance<br />

<strong>of</strong> spots on the sun.<br />

Photographic record<strong>in</strong>g <strong>of</strong> geomagnetic variations began <strong>in</strong> 1868 <strong>in</strong> the cellar<br />

<strong>of</strong> the Sonnenborgh, and s<strong>in</strong>ce that time absolute measurements <strong>of</strong> the field<br />

strength were also carried out, <strong>in</strong> conformity with <strong>in</strong>ternational methods. In<br />

the Yearbook <strong>of</strong> the KNMI <strong>of</strong> 1894 we f<strong>in</strong>d for the first time tables <strong>of</strong> hourly<br />

values <strong>of</strong> the decl<strong>in</strong>ation and <strong>of</strong> the horizontal <strong>in</strong>tensity <strong>of</strong> the earth 's magtletic<br />

field (KNMI, 1894).<br />

<strong>The</strong> <strong>in</strong>creased research activity <strong>in</strong> the field <strong>of</strong> geomagnetism. as appears from<br />

the extensive KNMI publication <strong>of</strong> 1894, was due to the work <strong>of</strong> E. van Rijckevorsel,<br />

who carried out measurements <strong>of</strong> decl<strong>in</strong>ation , <strong>in</strong>cl<strong>in</strong>ation and horizont al<br />

12


<strong>in</strong>tensity at more than 300 places <strong>in</strong> the <strong>Netherlands</strong> <strong>in</strong> the years 1889 to 1892<br />

(Van Rijckevorsel, 1895). <strong>The</strong> geomagnetic field <strong>in</strong> the <strong>Netherlands</strong> appeared<br />

to be somewhat disturbed. <strong>The</strong> local disturbances suggested arelation with<br />

geological structures beneath the earth 's surface .<br />

It had been known for many years that the decl<strong>in</strong>ation <strong>of</strong> the compass varied<br />

from place to place. As noted above, sailors had even hoped to use this deviation<br />

to determ<strong>in</strong>e geographic longitude at sea, but this appeared to be impossible.<br />

In this connection W. van Bemmelen must be mentioned. He devoted his<br />

Ph.D. thesis to the isogones <strong>of</strong> the decl<strong>in</strong>ation <strong>in</strong> the 16th and 17th century,<br />

mak<strong>in</strong>g use <strong>of</strong> ship's journals <strong>of</strong> the East Indian Company (Van Bemmelen, 1893).<br />

<strong>The</strong> journals describe 38 voyages bet ween the <strong>Netherlands</strong> and the East Indies,<br />

dur<strong>in</strong>g which about 1000 measurements <strong>of</strong> the decl<strong>in</strong>ation were carried out by<br />

ship 's <strong>of</strong>ficers who did not fail to determ<strong>in</strong>e the deviation <strong>of</strong> their compass,<br />

whenever and wherever possible. In cont<strong>in</strong>uation <strong>of</strong> this thesis he wrote a<br />

treatise on the secular changes <strong>in</strong> the geomagnetic field <strong>in</strong> the years 1500 to<br />

1850 (Van Bemmelen, 1897). <strong>The</strong> outcome <strong>of</strong> the measurements was presented<br />

by Van Bemmelen <strong>in</strong> world maps with isogones for the years 1540, 1580, 1610,<br />

1640, 1665 and 1680. He edited observations <strong>of</strong> the geomagnetic decl<strong>in</strong>ation made<br />

<strong>in</strong> the 18th century by P. van Musschenbroek (1729 to 1758) and by J. H. van<br />

Sw<strong>in</strong>den (1770 to 1780), (Van Bemmelen, 1892). He carried out measurements<br />

<strong>in</strong> 1896 and 1897 <strong>in</strong> Switzerland together with Van Rijckevorsel, to see how the<br />

earth's magnetic field depended on elevation , however, without suçcess (Van<br />

Rijckevorsel and Van Bemmelen, 1899).<br />

Figure 2. <strong>The</strong> Sonnenborgh <strong>in</strong> Utrecht, from 1854 to 1898 the site <strong>of</strong> the KNMI and<br />

for the present the Astronomical Observatory <strong>of</strong> the State University at Utrecht.<br />

13


In the course <strong>of</strong> time geomagnetic record<strong>in</strong>gs <strong>in</strong> the Sonnenborgh became more<br />

and more disturbed. Especially perambulators, which were pushed through the<br />

park, were a nuisance. At first they could be kept at a safe distance by means<br />

<strong>of</strong> a thorn hedge, but near the end <strong>of</strong> the century a quieter place had to be<br />

found. <strong>The</strong>refore, geomagnetic record<strong>in</strong>g was moved <strong>in</strong> 1898 from the Sonnenborgh<br />

<strong>in</strong> Utrecht to the manor Koelenberg at De Bilt (<strong>in</strong> the grounds <strong>of</strong> the<br />

present KNMI). A description <strong>of</strong> the geomagnetic <strong>in</strong>struments and build<strong>in</strong>gs <strong>in</strong><br />

these new grounds can be found <strong>in</strong> the publication "Mededel<strong>in</strong>gen en Verhandel<strong>in</strong>gen<br />

van het KNMI" lA, and also <strong>in</strong> Yearbook-B, 1915.<br />

Only for a decade the record<strong>in</strong>gs were there free from artificial disturbances .<br />

<strong>The</strong>n electrification <strong>of</strong> the former horse-drawn tramway, Utrecht-De Bilt-Zeist,<br />

which was completed <strong>in</strong> 1909, caused problems. <strong>The</strong> tramway used direct current;<br />

as a consequence magnetic disturbances were caused by the currents<br />

flow<strong>in</strong>g through the overhead wire and the rails, as weIl as by stray currents<br />

that expanded from the rails over great distances and disturbed the natural<br />

geomagnetic field. A great but temporary improvement was achieved by the<br />

use <strong>of</strong> a second overhead wire (<strong>in</strong> 1911), which carried the return current <strong>in</strong>stead<br />

<strong>of</strong> the rails.<br />

However, the situation aga<strong>in</strong> worsened. In 1938 the greater part <strong>of</strong> the network<br />

<strong>of</strong> the <strong>Netherlands</strong> Railways was electrified. Direct current was used,<br />

just as for the tramway, but <strong>of</strong> much greater strength . <strong>The</strong> only solution was<br />

to move the geomagnetic observatory. A suitable site was found <strong>in</strong> the hamiet<br />

<strong>of</strong> Witteveen (between Westerbork, Emmen and Hoogeveen <strong>in</strong> the prov<strong>in</strong>ce <strong>of</strong><br />

Drenthe). In the middle <strong>of</strong> 1938 a new observatory was put <strong>in</strong>to use. A description<br />

<strong>of</strong> the <strong>in</strong>struments with pictures <strong>of</strong> the build<strong>in</strong>gs is given <strong>in</strong> KNMI-Yearbook<br />

Geomagnetism, 1939. Until 1952 record<strong>in</strong>gs <strong>of</strong> the geomagnetic variations<br />

<strong>in</strong> the Magnetic Observatory at Witteveen were ideal. In May 1952 the Zwolle­<br />

Gron<strong>in</strong>gen railway was electrified and this ended the period at Witteveen <strong>in</strong><br />

which no artificial disturbances occurred. S<strong>in</strong>ce 1952 <strong>in</strong>struments <strong>in</strong> the Magnetic<br />

Observatory at Witteveen can no longer record <strong>in</strong> the f<strong>in</strong>est details the<br />

natural variations <strong>of</strong> the geomagnetic field.<br />

<strong>The</strong> results <strong>of</strong> the record<strong>in</strong>gs made by the KNMI have been published s<strong>in</strong>ce<br />

1903. From 1903 to 1938 the hourly values <strong>of</strong> the geomagnetic components were<br />

derived from the records at De Bilt, and s<strong>in</strong>ce 1938 the hourly means <strong>of</strong> the<br />

components recorded at Witteveen . <strong>The</strong>y have been published <strong>in</strong> the Yearbooks<br />

<strong>of</strong> the KNMI (KNMI, 1903 to the present).<br />

<strong>The</strong> possibility <strong>of</strong> carry<strong>in</strong>g out field measurements with improved <strong>in</strong>struments<br />

made a repetition <strong>of</strong> the magnetic survey <strong>of</strong> 1891 attractive. In the years 1942<br />

to 1948 the geomagnetic field <strong>of</strong> the <strong>Netherlands</strong> was measured at about 400<br />

places. <strong>The</strong> results have been published by J. Veldkamp <strong>in</strong> a KNMI publication<br />

(Veldkamp , 1951). <strong>The</strong> anomalies <strong>of</strong> the geomagnetic field are related to the<br />

subsurface structure <strong>in</strong> this country. This fact was established also by Ph.e.p.<br />

Hartmann <strong>in</strong> his doctor's thesis (Hm'tmann. 1945), which was based on the geomagnetic<br />

survey <strong>of</strong> 1942-1948, and on the geological knowledge at that time.<br />

J.A. As analyzed secular variations (the slow variations that occurred <strong>in</strong> the<br />

geomagnetic field dur<strong>in</strong>g the last decades) and drew conciusions with respect<br />

to future variations (As, 1967). <strong>The</strong> secular variations appear to be strongest<br />

<strong>in</strong> some beits around the world that co<strong>in</strong>cide more or less with the global tectonic<br />

belts. J. A. As surmised that <strong>in</strong> these belts processes <strong>in</strong> the earth 's core<br />

are l<strong>in</strong>ked with those <strong>in</strong> the mantIe <strong>of</strong> the earth (As, 1975).<br />

In the period from 1960 to the present modern <strong>in</strong>struments have been devised<br />

and constructed at the KNMI for measur<strong>in</strong>g the earth 's magnetic field and its<br />

components, such as proton magnetometers (also for use at sea) and a proton<br />

vectormagnetometer as an observatory <strong>in</strong>strument. J.A. As also developed <strong>in</strong>-<br />

15


....<br />

Ol<br />

Figure 4. <strong>The</strong> KNMI dur<strong>in</strong>g the expansion <strong>in</strong> 1952. Arrows <strong>in</strong>dicate. from left to right.<br />

the seismograph pavilion. the build<strong>in</strong>g for geomagnetic measurements and the pavilion<br />

for the variometers (Photo KLM Aerocarto).


struments for digitiz<strong>in</strong>g the components <strong>of</strong> the geomagnetic field. by us<strong>in</strong>g<br />

proton magnetometers and fluxgate <strong>in</strong>struments (As. 1973). <strong>The</strong>se modern <strong>in</strong>struments<br />

are now <strong>in</strong> operation <strong>in</strong> the Magnetic Observatory at Witteveen . <strong>The</strong>y<br />

make it possible to calculate and to publish the geomagnetic values almost automatically.<br />

I. 3. DISTURBANCES IN THE EARTH'S MAGNETIC FIELD CAUSED<br />

BY THE SUN<br />

S<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g the <strong>Netherlands</strong> have played an important role <strong>in</strong>ternationally<br />

<strong>in</strong> characteriz<strong>in</strong>g the days from a geomagnetic viewpo<strong>in</strong>t . <strong>The</strong> earth 's<br />

magnetic field is quiet on some days and disturbed on others. <strong>The</strong> occurrence<br />

<strong>of</strong> disturbances is related to the phenomenon <strong>of</strong> sunspots. <strong>The</strong>se disturbances<br />

are much stronger at higher than at lower latitudes; agiobal collection <strong>of</strong> data<br />

is necessary to study them. M. Snellen. a member <strong>of</strong> the scientific staff <strong>of</strong> the<br />

KNMI. was the first to collect. by request <strong>of</strong> the International Commission <strong>of</strong><br />

Terrestrial Magnetism. a commission <strong>of</strong> the International Union <strong>of</strong> Geodesy and<br />

Geophysics (IUGG). geomagnetic character figures (0 = undisturbed day. 1 =<br />

Figure 5. <strong>The</strong> Geomagnetic Observatory <strong>of</strong> the KNMI at Witteveen • a house without<br />

w<strong>in</strong>dows (Photo J . B. van der Kolk. Naarden).<br />

17


Geomagnetic Observatories and Surveys - Nether/ands . 1849 to 1980<br />

Year Location Remarks<br />

1849 Utrecht First geomagnetic observatory. measurements<br />

several times daily<br />

1868 Utrecht Cont<strong>in</strong>uous record<strong>in</strong>g began<br />

1889 to 1892 More than 300 places First geomagnetic survey <strong>of</strong> country<br />

1898 De Bilt Geomagnetic observatory moved from<br />

Utrecht<br />

1938 Witteveen Geomagnetic observatory moved from<br />

De Bilt<br />

1942 to 1948 More than 400 places Second geomagnetic survey <strong>of</strong> country<br />

moderately disturbed,2 = strongly disturbed day) from about 40 geomagnetic<br />

observatories all over the world. He determ<strong>in</strong>ed an <strong>in</strong>ternational disturbance<strong>in</strong>dex<br />

C from these data. Af ter his death <strong>in</strong> 1907 his work was cont<strong>in</strong>ued by<br />

G. van Dijk, who succeeded <strong>in</strong> extend<strong>in</strong>g the series <strong>of</strong> C-figures, which orig<strong>in</strong>ally<br />

began <strong>in</strong> 1906, back to 1890.<br />

As the disturbance-<strong>in</strong>dex C had no quantitative value, the International Association<br />

<strong>of</strong> Geomagnetism and Aeronomy (IAGA) <strong>of</strong> the IUGG decided to <strong>in</strong>troduce<br />

<strong>in</strong> 1939 a 3-hourly amplitude <strong>in</strong>dex, <strong>in</strong> order to express the degree <strong>of</strong><br />

disturbance <strong>in</strong> a quantitative manner. This quantification is necessary if one<br />

wishes to study the relations between phenomena on the sun and <strong>in</strong> the high<br />

atmosphere on the one hand and the transient disturbances <strong>in</strong> the earth's magnetic<br />

field on the other. It is now possible to survey these relations over a<br />

long series <strong>of</strong> years.<br />

In the first IUGG conference af ter the war, <strong>in</strong> 1948, the KNMI was designated<br />

anew as the <strong>in</strong>ternational centre for the characterization <strong>of</strong> geomagnetic disturbances.<br />

Compilation <strong>of</strong> character figures and special geomagnetic disturbances<br />

(sudden commencements <strong>of</strong> magnetic storms and solar flare effects) was<br />

consigned to J. Veldkamp . <strong>The</strong>se geomagnetic data have been compiled and<br />

published by the KNMI <strong>in</strong> an un<strong>in</strong>terrupted series <strong>of</strong> yearly IAGA-Bullet<strong>in</strong>s,<br />

from 1947 up to the present (IA GA , 1949-present). S<strong>in</strong>ce 1969 compilation and<br />

edit<strong>in</strong>g <strong>of</strong> "Geomagnetic Data" has been done by D. van Sabben.<br />

J. Ve/dkamp (1960) and J. G. J . Sc holte (1960) studied special disturbances <strong>of</strong><br />

the geomagnetic field, such as "giant pulsations"; these are harmonic vibrations<br />

<strong>of</strong> the earth 's magnetic field ascribed to magneto-ionic disturbances that flow<br />

back and forth along the l<strong>in</strong>es <strong>of</strong> magnetic force between the northern and<br />

southern hemispheres. <strong>The</strong>y also wrote some papers on "solar flare effects" ,<br />

geomagnetic disturbances caused by outbursts <strong>of</strong> ultraviolet light on the sun<br />

(Ve/dkamp and Scho/te, 1954). <strong>The</strong> electric potentials and currents <strong>in</strong> the earth<br />

that arecoupled to the magnetic variations by <strong>in</strong>duction were <strong>in</strong>vestigated by<br />

means <strong>of</strong> records obta<strong>in</strong>ed <strong>in</strong> the Magnetic Observatory at Witteveen . In view<br />

<strong>of</strong> the very long wavelength <strong>of</strong> the geomagnetic disturbances a theory was developed<br />

for the <strong>in</strong>duction <strong>of</strong> geomagnetic and geoelectric fields <strong>in</strong> a spherical<br />

earth (Scho/te and Ve/dkamp, 1955).<br />

Veldkamp <strong>in</strong>vestigated with D. van Sabben (1959) the geomagnetic records <strong>of</strong><br />

some solar flare effects (s.f.e.) and reached the conclusion that the electric<br />

currents that cause these magnetic disturbances (the s.f.e.) must flow <strong>in</strong> the<br />

D-layer <strong>of</strong> the ionosphere (Le., at a height <strong>of</strong> 80 to 100 km).<br />

19


Figure 7. Vector proton magnetometer (design J . A. As, 1973) <strong>in</strong> the Geomagnetic Observatory<br />

at Witteveen. Courtesy <strong>of</strong> KNMI.<br />

20


Figure 8. Geomagnetic anomalies <strong>in</strong> the <strong>Netherlands</strong> . Grey are positive regions (too<br />

large values <strong>of</strong> the vertical component). white are negative regions (too sm all values).<br />

<strong>The</strong> vectors <strong>in</strong>dicate direction and magnitude <strong>of</strong> the horizontal deviations (Veldkamp •<br />

1951). Courtesy <strong>of</strong> Bureau "Atlas <strong>of</strong> the <strong>Netherlands</strong>. 1963-1977".<br />

21


Van Sabben has applied himself to the <strong>in</strong>vestigation <strong>of</strong> the electric current<br />

systems <strong>in</strong> the ionosphere that are responsible for the diurnal variation <strong>of</strong> the<br />

earth 's magnetic field. He proved that not only the tidal ionospheric w<strong>in</strong>ds but<br />

also non- periodic ionospheric w<strong>in</strong>ds can produce these current systems (Van<br />

Sabben, 1962) . Analysis <strong>of</strong> a great number <strong>of</strong> s.f.e. 's and <strong>of</strong> the diurnal variation<br />

demonstrated that the patterns <strong>of</strong> variations <strong>in</strong> the northern and southern<br />

hemispheres show a systematic displacement bet ween them (Van Sabben, 1961,<br />

1964, 1968). This asymmetry po<strong>in</strong>ts to the existence <strong>of</strong> currents along the magnetic<br />

field l<strong>in</strong>es connect<strong>in</strong>g the northern with the southern ionosphere via the<br />

magnetosphere. Even dur<strong>in</strong>g the equ<strong>in</strong>ox the currents through the magnetosphere<br />

can be comparable with the ionospheric currents (Van Sabben, 1966,<br />

1969, 1970).<br />

1. 4. GEOMAGNETISM AND THE IONOSPHERE<br />

<strong>The</strong> transient geomagnetic variations , the regular as weU as the irregular,<br />

are caused by electric currents <strong>in</strong> the ionosphere. <strong>The</strong>refore, research <strong>in</strong>to<br />

the earth's magnetic field cannot be separated from a study <strong>of</strong> the high atmos-<br />

Figure 9. Electric currents <strong>in</strong> the ionosphere, which cause the diurnal variation <strong>of</strong><br />

the geomagnetic field. <strong>The</strong> current pattern is due to daily tidal movements <strong>in</strong> the<br />

ionosphere. <strong>The</strong> region bet ween the hatch<strong>in</strong>gs is the sunlit part <strong>of</strong> the ionosphere.<br />

<strong>The</strong> dotted l<strong>in</strong>e denotes the geomagnetic equator. Current values must be multiplied<br />

by 10.000 A. Situation on 21 September 1958 at 1.30 p.m. (Van Sabben, 1964).<br />

22


phere. On the other hand, properties <strong>of</strong> the ionosphere are determ<strong>in</strong>ed <strong>in</strong> great<br />

part by the existence <strong>of</strong> the geomagnetic field <strong>in</strong> the ionospheric layers.<br />

About 1920 some Dutch scientists, among whom the astronomer A. Pannekoek<br />

(1926) and the physicist G. J. Elias (1923), made calculations on the formation<br />

<strong>of</strong> ionization <strong>in</strong> the up per atmosphere, caused by the ultraviolet light <strong>of</strong> the<br />

sun. Elias especiaUy studied the propagation <strong>of</strong> electromagnetic waves <strong>in</strong> a<br />

partly ionized layer. Interest <strong>in</strong> the ionosphere was stimulated by the desirability<br />

<strong>of</strong> hav<strong>in</strong>g radio contact bet ween the <strong>Netherlands</strong> and its Colonies . Already<br />

<strong>in</strong> 1923 a telegraphic connection had been made possible between Kootwijk<br />

(<strong>Netherlands</strong> ) and Malabar (Java) us<strong>in</strong>g very long radio waves. Later on it<br />

was shown that radio waves <strong>of</strong> relatively short wavelength were more suitable<br />

for cover<strong>in</strong>g great distances, by means <strong>of</strong> reflections from the ionosphere.<br />

Two scientists played a very important role <strong>in</strong> this field, viz. Balth. van der<br />

Pol (University <strong>of</strong> Technology at Delft) and H. Bremmer (University <strong>of</strong> Technology<br />

at E<strong>in</strong>dhoven). Both also worked with the Philips <strong>Research</strong> Laboratories<br />

at E<strong>in</strong>dhoven.<br />

Van der Pol carried out measurements <strong>of</strong> the electrical conductivity and the<br />

dielectric constant <strong>of</strong> an ionized gas, as a model <strong>of</strong> the ionosphere. <strong>The</strong> <strong>in</strong>fluence<br />

<strong>of</strong> a plasma on the propagation <strong>of</strong> radio waves was discussed <strong>in</strong> his doctor's<br />

thesis (Van der Pol, 1920). His early work was devoted especially to the<br />

mathematical aspects <strong>of</strong> radio science. However, upon his request, the program<br />

<strong>of</strong> the <strong>Netherlands</strong> expedition at Angmagssalik (see: section IV.l. International<br />

Polar Year, 1932-1933) also <strong>in</strong>cluded sound<strong>in</strong>gs <strong>of</strong> the ionosphere at regular<br />

times.<br />

Bremmer , who jo<strong>in</strong>ed Van der Pol's group, wrote many papers on tropospheric<br />

and ionospheric propagation <strong>of</strong> radio waves. He also dealt with phenomena such<br />

Figure 11. Sound<strong>in</strong>g the ionosphere by reflection <strong>of</strong> radio waves <strong>of</strong> vary<strong>in</strong>g freq uency.<br />

<strong>The</strong> time delay bet ween transmitted and reflected pulses determ<strong>in</strong>es the height <strong>of</strong> the<br />

reflect<strong>in</strong>g layer. By day three layers are present: the E-Iayer or Heaviside-Iayer,<br />

and above it the Fl-1ayer and the F2-layer (or Appleton-Iayer). <strong>The</strong> frequency <strong>of</strong><br />

the reflected radio signa Is is a measure <strong>of</strong> the ionization at the height <strong>of</strong> reflection.<br />

<strong>The</strong> magnetic double refraction <strong>of</strong> radio waves <strong>in</strong> the ionosphere is shown by repetition<br />

<strong>of</strong> the Fl- and F2-reflections at higher frequencies (ionogram <strong>of</strong> KNMI, af ter Veldkamp,<br />

1974; see also: Veldkamp and Scholte, 1954a).<br />

24


as whistlers, ionospheric w<strong>in</strong>ds, tidal movements <strong>in</strong> the ionosphere and double<br />

refraction <strong>of</strong> radio waves. Summaries <strong>of</strong> his work are given <strong>in</strong> his book "Terrestrial<br />

Radio Waves: <strong>The</strong>ory <strong>of</strong> propagation" (Bremmer, 1949), and <strong>in</strong> the Encyclopaedia<br />

<strong>of</strong> Physics: "Propagation <strong>of</strong> electromagnetic waves" (Bremmer, 1958).<br />

Veldkamp , who had become director <strong>of</strong> the geophysical department <strong>of</strong> the<br />

KNMI <strong>in</strong> 1945, believed that study <strong>of</strong> the highest atmospheric layers should be<br />

<strong>in</strong>cluded <strong>in</strong> the task <strong>of</strong> this Meteorological Institute, as weIl as cont<strong>in</strong>uous monitor<strong>in</strong>g<br />

<strong>of</strong> the troposphere and the stratosphere. Together with H.J. Groenewold<br />

he commenced a regular study <strong>of</strong> the ionosphere <strong>in</strong> 1949 by means <strong>of</strong> a transmitter<br />

and receiver made <strong>in</strong> the "Institut für Ionensphärenforschung" at L<strong>in</strong>dau<br />

(Germany). After some years a new apparatus (with less mechanically mov<strong>in</strong>g<br />

parts and therefore greater reliability) was constructed by H. J. A. Vesseur<br />

(1977). Day and night the structure and the ionization <strong>of</strong> the ionosphere was<br />

and still is recorded every half hour by means <strong>of</strong> this "ionosonde". <strong>The</strong> ionosp<br />

here behaves like a mirror reflect<strong>in</strong>g radio waves. Generally three layers<br />

(E, Fl and F2) are present <strong>in</strong> the ionosphere above the <strong>Netherlands</strong>, at heights<br />

<strong>of</strong> 110 km, 200 km and 300 km respectively. <strong>The</strong>se layers are subject to regular<br />

variations between day and night, and also to irregular variations due to the<br />

activity <strong>of</strong> the sun.<br />

<strong>The</strong> aim <strong>of</strong> the sound<strong>in</strong>gs is to monitor cont<strong>in</strong>uously the highest layers <strong>of</strong><br />

the atmosphere . <strong>The</strong> data acquired from the ionosphere are partly <strong>of</strong> purely<br />

scientific and partly <strong>of</strong> practical importance. Groenewold (1948) wrote a paper<br />

JANUARY 1970<br />

Figure 12. Vector diagram <strong>of</strong> the w<strong>in</strong>d <strong>in</strong> the E-layer <strong>of</strong> the ionosphere above De Bilt<br />

(average diurnal variation <strong>in</strong> January 1970). A l<strong>in</strong>e from the orig<strong>in</strong> to the po<strong>in</strong>t mark<strong>in</strong>g<br />

a certa<strong>in</strong> hour gives the average w<strong>in</strong>d vector for that hour. <strong>The</strong> diagram shows<br />

that the w<strong>in</strong>d vector <strong>in</strong> the E-layer rotates twice per day. In addition the prevail<strong>in</strong>g<br />

w<strong>in</strong>d is southwesterly dur<strong>in</strong>g the whole day (Vesseur, 1977).<br />

25<br />

N


Ftgure 13. <strong>The</strong> chang<strong>in</strong>g ionosphere above De Bilt, over 24 hours. <strong>The</strong> E-, Fl and F2-layers<br />

are formed by radiation from the sun af ter sunrise (6.00 a.m.). In the early afternoon<br />

the ionization reaches a maximum; this is shown by the long echo traces. Dur<strong>in</strong>g the night<br />

(7.00 p.m. to 5.00 a.m.) little ionization rema<strong>in</strong>s (lonograms <strong>of</strong> KNMI, Veldkamp, 1974).


on the formation <strong>of</strong> the ionized layers, on the propagation <strong>of</strong> radio waves <strong>in</strong><br />

the ionosphere, and on prediction and selection <strong>of</strong> the most suitable frequencies<br />

for cover<strong>in</strong>g a certa<strong>in</strong> distance by radio. In a further paper (Groenewold,<br />

1949) he discussed temporary variations <strong>in</strong> the ionization and the <strong>in</strong>fluence on<br />

the ionosphere <strong>of</strong> outbursts on the sun. He published also a theoretical study<br />

on the triple magnetic splitt<strong>in</strong>g <strong>of</strong> radio waves reflected <strong>in</strong> the F2-1ayer (Groenewold,1950).<br />

Veldkamp and Scholte (1954a) also studied the magnetic double refraction <strong>of</strong><br />

electromagnetic waves <strong>in</strong> the ionosphere. <strong>The</strong>y <strong>in</strong>vestigated the equatorial<br />

electrojet <strong>in</strong> the ionosphere, as revealed by the analysis <strong>of</strong> solar flare effects ,<br />

and expla<strong>in</strong>ed some properties <strong>of</strong> the electrojet by the non-co<strong>in</strong>cidence <strong>of</strong> the<br />

geomagnetic and geographic equators (Veldkamp and Scholte, 1954). H.J.A.<br />

Vesseur (1970) succeeded <strong>in</strong> <strong>in</strong>ferr<strong>in</strong>g from the fad<strong>in</strong>g pattern <strong>of</strong> radio waves<br />

reflected <strong>in</strong> the ionosphere the rhythmic tidal movements <strong>of</strong> air <strong>in</strong> the ionosphere,<br />

which are responsible for the diurnal geomagnetic variation. <strong>The</strong> w<strong>in</strong>d<br />

movements <strong>in</strong> the E-layer are recorded almost cont<strong>in</strong>uously by an automatic<br />

apparatus developed by Vesseur. He could determ<strong>in</strong>e the diurnal and the semidiurnal<br />

period <strong>of</strong> the tidal movements <strong>in</strong> the E-layer above the <strong>Netherlands</strong><br />

over a period <strong>of</strong> years (Vesseur, 1972). A similar apparatus was set up near<br />

Paramaribo (Sur<strong>in</strong>ame); it was <strong>in</strong> operation from January 1971 until September<br />

1972.<br />

H. Kelder (1975) <strong>in</strong>vestigated the <strong>in</strong>fluence <strong>of</strong> acoustic gravity waves on ion<br />

density <strong>in</strong> the E-layer. <strong>The</strong> tidal movements are <strong>in</strong> fact strongly disturbed by<br />

acoustic waves with a very long wavelength , which travel through the ionosphere<br />

and the thermosphere (Kelder, 1976).<br />

Temporary disturbances <strong>in</strong> the geomagnetic field, which are caused by "disturbed"<br />

solar radiation - corpuscular as weIl as electromagnetic - penetrat<strong>in</strong>g<br />

the outer layers <strong>of</strong> the atmosphere, are important for chang<strong>in</strong>g the reflect<strong>in</strong>g<br />

power <strong>of</strong> the ionosphere. For this reason study <strong>of</strong> the ionosphere is <strong>of</strong> practical<br />

importance for radio propagation through the ionosphere (Vesseur, 1974).<br />

<strong>The</strong> results <strong>of</strong> this research are published each month by the KNMI <strong>in</strong> an "Ionospheric<br />

Bullet<strong>in</strong>". In this monthly publication are given, not only heights and<br />

plasma freq uencies <strong>of</strong> the ionospheric layers, but also factors for calculat<strong>in</strong>g the<br />

radio frequencies for cover<strong>in</strong>g a certa<strong>in</strong> distance and further the ionospheric<br />

and geomagnetic disturbance-<strong>in</strong>dices, disturbances <strong>in</strong> the <strong>in</strong>tensity <strong>of</strong> cosmic<br />

radiation , <strong>in</strong>tensity <strong>of</strong> radio radiation from the sun and summaries <strong>of</strong> special<br />

phenomena <strong>of</strong> the solar radiation (KNMI, 1949 up to the present).<br />

<strong>The</strong> monthly publication <strong>of</strong> the "Ionospheric Bullet<strong>in</strong>" by the KNMI gives<br />

evidence <strong>of</strong> the close relation exist<strong>in</strong>g between the ionosphere, the earth's<br />

magnetic field, cosmic radiation and phenomena on the sun.<br />

1.5. GEOMAGNETISM AND COSMIC RAYS<br />

About 1930 J. Clay (pr<strong>of</strong>essor at the Technical University <strong>of</strong> Bandoeng from<br />

1920 to 1929, and pr<strong>of</strong>essor at the Municipal University <strong>of</strong> Amsterdam from 1929<br />

to 1952) discovered that the geomagnetic field exerts an <strong>in</strong>fluence on cosmic<br />

rays. Dur<strong>in</strong>g his voyages bet ween the <strong>Netherlands</strong> and the <strong>Netherlands</strong> East<br />

Indies, Clay studied the <strong>in</strong>tensity <strong>of</strong> cosmic radiation (at that time called ultraradiation)<br />

. lt appeared that this very penetrat<strong>in</strong>g radiation depended on the<br />

geomagnetic latitude. <strong>The</strong> <strong>in</strong>tensity was m<strong>in</strong>imal <strong>in</strong> the Gulf <strong>of</strong> Aden, which is<br />

<strong>in</strong> the neighbourhood <strong>of</strong> the geomagnetic equator (Clay, 1932). From this the<br />

corpuscular character <strong>of</strong> cosmic rays became evident; only electrically charged<br />

particles can be <strong>in</strong>fluenced by the magnetic field <strong>of</strong> the earth. <strong>The</strong> latitude<br />

27


effect discovered by Clay was confirmed among others by Pr<strong>in</strong>s (1933) dur<strong>in</strong>g<br />

a voyage from Amsterdam to Cape Town.<br />

After be<strong>in</strong>g appo<strong>in</strong>ted to the Municipal University <strong>of</strong> Amsterdam, Clay and<br />

co-wor kers cont<strong>in</strong>ued the <strong>in</strong>vestigation <strong>of</strong> cosmic radiation . Whereas measurements<br />

<strong>in</strong> the years 1927 to 1930 could be <strong>in</strong>terpreted by the model <strong>of</strong> a geomagnetic<br />

dipole, situated somewhat eccentrically with respect to the centre <strong>of</strong> the<br />

earth, it appeared, dur<strong>in</strong>g a voyage <strong>in</strong> 1935 through the Panama Canal to Chile,<br />

that the quadrupole terms <strong>of</strong> the geomagnetic potential also affected the cosmic<br />

radiation perceptibly. If these second-order terms are taken <strong>in</strong>to account, the<br />

geomagnetic effects are no longer symmetric with respect to the geomagnetic<br />

eq uator. Also an east-west asymmetry was discovered <strong>in</strong> cosmic radiation; this<br />

proved that the primary radiation was largely or wholly composed <strong>of</strong> positively<br />

charged particles .<br />

E. M. Bru<strong>in</strong>s devoted his thesis (1938) to calculations <strong>of</strong> the <strong>in</strong>tensity <strong>of</strong> cosmic<br />

radiation <strong>in</strong> the geomagnetic field, assumed to be due to a dipole plus a<br />

quadrupole. In this thesis attention is paid also to the <strong>in</strong>fluence <strong>of</strong> temporary<br />

disturbances <strong>in</strong> the earth's magnetic field, especially to magnetic storms. <strong>The</strong><br />

r<strong>in</strong>g current around the earth, which is formed dur<strong>in</strong>g a magnetic storm accord<strong>in</strong>g<br />

to the theory <strong>of</strong> Störmer, must <strong>in</strong>fluence the cosmic radiation. From<br />

variations <strong>in</strong> the <strong>in</strong>tensity <strong>of</strong> cosmic rays Bru<strong>in</strong>s drew the conclusion that the<br />

r<strong>in</strong>g current should be present at some earth's radii distance from the centre<br />

<strong>of</strong> the earth.<br />

<strong>The</strong> relation between geomagnetic disturbances and changes <strong>in</strong> cosmic radiation<br />

was also the subject <strong>of</strong> the doctor's thesis <strong>of</strong> H. F. Jongen (1952). He<br />

found strong evidence for asolar orig<strong>in</strong> <strong>of</strong> at least part <strong>of</strong> the cosmic radiation .<br />

After Clay's death Jongen cont<strong>in</strong>ued record<strong>in</strong>g the transient variations <strong>in</strong> cosmic<br />

radiation. In 1979 these record<strong>in</strong>gs came to an end.<br />

<strong>The</strong> research <strong>of</strong> Clay and his co-workers was published <strong>in</strong> many articles and<br />

<strong>in</strong> four doctor's theses. <strong>The</strong> results obta<strong>in</strong>ed up to 1948 have been summarized<br />

<strong>in</strong> a booklet entitled: Cosmic Rays (Clay, 1948).<br />

I. 6. GEOMAGNETIC RESEARCH IN THE FORMER NETHERLANDS EAST INDIES<br />

When the famous naturalist, Alexander von Humboldt, discovered dur<strong>in</strong>g his<br />

journey through North and South America that the strength <strong>of</strong> the earth 's<br />

magnetic field is variabie and strongly dependent on geographic latitude, he<br />

tried everywhere to arouse <strong>in</strong>terest for magnetic observations. He considered<br />

the latitude dependence <strong>of</strong> the geomagnetic force as the most important result<br />

<strong>of</strong> his journey through North and South America. On the occasion <strong>of</strong> a chance<br />

meet<strong>in</strong>g <strong>in</strong> Berl<strong>in</strong> <strong>in</strong> 1856 with the then Governor-General <strong>of</strong> the <strong>Netherlands</strong><br />

Indies, he succeeded <strong>in</strong> conv<strong>in</strong>c<strong>in</strong>g him <strong>of</strong> the importance <strong>of</strong> magnetic and meteorological<br />

observations. <strong>The</strong> consequence <strong>of</strong> this talk was that the then M<strong>in</strong>ister<br />

<strong>of</strong> Colonies asked advice <strong>of</strong> the Director-<strong>in</strong>-Chief <strong>of</strong> the KNMI (Ch.H.D.<br />

Buys Ballot) who recommended found<strong>in</strong>g an observatory at Batavia. He also<br />

suggested a .capable observer, P.A. Bergsma, who left for Batavia <strong>in</strong> 1862 and<br />

who became the first director <strong>of</strong> the Royal Magnetic and Meteorological Observatory<br />

(KMMO) at Batavia (see : Van der Lith and Snelleman, 1919). In the sequence<br />

Magnetic/Meteorological probably the <strong>in</strong>fluence <strong>of</strong> Von Humboldt can be<br />

traced!<br />

In 1866 Bergsma's observatory was <strong>in</strong> full operation <strong>in</strong> a rented villa, south<br />

<strong>of</strong> Batavia. A long series <strong>of</strong> bulky Yearbooks bears witness to an <strong>in</strong>tensive and<br />

wide-rang<strong>in</strong>gresearch, especially <strong>in</strong> the doma<strong>in</strong> <strong>of</strong> meteorology (see f. i. KMMO,<br />

1871). As for geomagnetism the decl<strong>in</strong>ation <strong>of</strong> the magnetic needie was observed<br />

29


netic survey <strong>in</strong> the East Indian Archipelago. He measured the decl<strong>in</strong>ation , <strong>in</strong>cl<strong>in</strong>ation<br />

and horizontal <strong>in</strong>tensity <strong>of</strong> the geomagnetic field at about 150 places<br />

on the various islands. This work with maps <strong>of</strong> the magnetic components, reduced<br />

to 1-1-1876, was published by the Royal <strong>Netherlands</strong> Academy <strong>of</strong> Arts<br />

and Sciences (Van Rijckevorsel, 1879).<br />

W. van Bemmelen (1909) repeated the magnetic survey <strong>of</strong> the East Indies <strong>in</strong><br />

the years 1903 to 1907. He studied the secular variation <strong>of</strong> the earth 's magnetic<br />

field <strong>in</strong> the western part <strong>of</strong> the East Indian Archipelago, based on measurements<br />

from the years 1900 to 1918 (Van Bemmelen, 1920). <strong>The</strong> phenomenon <strong>of</strong><br />

secular variation aroused special <strong>in</strong>terest. <strong>The</strong> speed <strong>of</strong> the variations is so<br />

great that it is difficult to ascribe them to tectonic movements <strong>in</strong> the earth 's<br />

crust.<br />

Repeat<strong>in</strong>g the geomagnetic measurements with <strong>in</strong>tervals <strong>of</strong> some years became<br />

therefore a matter <strong>of</strong> rout<strong>in</strong>e. In the years 1917 and thereafter members <strong>of</strong> the<br />

staff <strong>of</strong> the KMMO made regular field trips to repeat the magnetic surveys at<br />

many places on the islands . <strong>The</strong> <strong>in</strong>struments were not very different from those<br />

used by Van Rijckevorsel, viz. a magnetometer-theodolite for measurements <strong>of</strong><br />

decl<strong>in</strong>ation and horizontal <strong>in</strong>tensity, and a dip circle or <strong>in</strong>cl<strong>in</strong>atorium for measurements<br />

<strong>of</strong> <strong>in</strong>cl<strong>in</strong>ation. Co-workers <strong>of</strong> the KMMO who took part <strong>in</strong> the measur<strong>in</strong>g<br />

program were C. Braak, W. van Bemmelen, J. Voûte and S. W . Visser, and<br />

later H.P. Berlage and M;W.F. Schregardus. Visser (1925) published new isomagnetic<br />

maps <strong>of</strong> the whole Archipelago based on the measurements <strong>of</strong> Braak,<br />

Van Bemmelen, Voûte and himself.<br />

Dur<strong>in</strong>g the <strong>Geophysical</strong> Year 1957 -1958 a geomagnetic observatory was operated<br />

at Hollandia (former <strong>Netherlands</strong> New Gu<strong>in</strong>ea). see Chapter IV, section 2.<br />

Geomagnetic Observatories and Surveys - <strong>Netherlands</strong> East lndies, 1866 to 1949<br />

Year Location<br />

1866 Batavia<br />

1874 to 1877 About 150 places<br />

1883 Batavia<br />

1899 Buitenzorg<br />

1903 to 1907 Throughout the islands<br />

1917 to 1942 Ditto<br />

1925 Kuyper Island<br />

1942 to 1945 Kuyper Island<br />

1945 to 1949 Kuyper Island<br />

Remarks<br />

First geomagnetic observatory, measurements<br />

several times daily<br />

First geomagnetic survey<br />

Cont<strong>in</strong>uous photographic record<strong>in</strong>g<br />

began<br />

Geomagnetic observatory moved from<br />

Batavia<br />

Second geomagneticsurvey<br />

Third geomagnetic survey<br />

Geomagnetic observatory moved from<br />

Buitenzorg<br />

Record<strong>in</strong>gs <strong>in</strong>terrupted by war<br />

Observatory closed <strong>in</strong> 1949<br />

1.7. GEOMAGNETIC RESEARCH BY DUTCH SCIENTISTS OUTSIDE THE<br />

NETHERLANDS AND THE NETHERLANDS EAST INDIES<br />

Some years af ter his East Indian expedition (see section 1.6) Van Rijckevorsel<br />

left for South America with his <strong>in</strong>struments. He measured the geomagnetic<br />

31


Figure 16. <strong>The</strong> oceanographic research vessel H.Nl.M.S. Snellius (photo courtesy<strong>of</strong><br />

the Maritime <strong>History</strong> section <strong>of</strong> the Staff <strong>of</strong> the <strong>Netherlands</strong> Navy).


the North Sea and <strong>in</strong> the Atlantic Ocean. In the beg<strong>in</strong>n<strong>in</strong>g especially the bathymetry<br />

<strong>of</strong> the sea bottom was determ<strong>in</strong>ed, but later on also the structure <strong>of</strong> the<br />

sedimentary layers and the geomagnetic field. Sound<strong>in</strong>gs <strong>of</strong> the ocean bottom<br />

by the Mar<strong>in</strong>e Geophysics Group are discussed <strong>in</strong> the chapter on seismic research,<br />

and the gravimetric measurements <strong>in</strong> the chapter on gravity. Below a<br />

summary <strong>of</strong> the geomagnetic research is given; the results were presented <strong>in</strong><br />

a series <strong>of</strong> publications and a number <strong>of</strong> doctor's theses.<br />

In the years 1964 and 1965 the Royal Navies <strong>of</strong> Great Brita<strong>in</strong> and the <strong>Netherlands</strong><br />

, <strong>in</strong> cooperation with the U. S. Naval <strong>Research</strong> Laboratory , carried out<br />

extensive oceanographic research <strong>of</strong> the Atlantic Ocean under the name <strong>of</strong><br />

NAVADO Project (North Atlantic Vidal and Dalrymple Oceanography). At the<br />

request <strong>of</strong> the organiz<strong>in</strong>g committee the <strong>Netherlands</strong> took part <strong>in</strong> the third<br />

phase <strong>of</strong> this project by mak<strong>in</strong>g available H. NI. M. S. Snellius. <strong>The</strong> Snellius<br />

crossed the North Atlantic ten times, and made possible measurements <strong>in</strong> a<br />

region between 22°N. and 49°N. latitude. Collette and his co-workers (R.A.<br />

Lagaay, A.P. van Lennep, K.W. Rutten, J.A. Schouten, R.D. Schuil<strong>in</strong>g, F.W.<br />

Warnaars and C. H. van der Weijden) were responsible for the geomagnetic measurements,<br />

mak<strong>in</strong>g use <strong>of</strong> the proton magnetometer <strong>of</strong> the KNMI. Gravity measurements<br />

were carried out by G. L. Strang van Hees and T. J . Poelstra (TH at<br />

Delft). Record<strong>in</strong>gs <strong>of</strong> the bathymetry, the geomagnetic field and the gravity<br />

field have been published by the Hydrographer <strong>of</strong> the Royal <strong>Netherlands</strong> Navy<br />

(Anonymous, 1967). <strong>The</strong> <strong>Netherlands</strong> Organization for the Advancement <strong>of</strong> Pure<br />

<strong>Research</strong> (ZWO) gave ample f<strong>in</strong>ancial aid.<br />

Dur<strong>in</strong>g these voyages between Europe and America, Collette and his colleagues<br />

tried to measure the heat flow at some places at the bottom <strong>of</strong> the Atlantic Ocean,<br />

but these measurements were not completely successful (Collette et al., 1968).<br />

I. 8. 3. Atlantic Ocean: Kroonvlag Project<br />

<strong>The</strong> NAVADO Project was followed by the Kroonvlag Project (1967-1980),<br />

aga<strong>in</strong> with considerable f<strong>in</strong>ancial aid by ZWO. This project aimed to carry out<br />

geophysical measurements aboard freighters <strong>of</strong> the KNSM (Royal <strong>Netherlands</strong><br />

Steamboat Company) and the SMS (Sur<strong>in</strong>ame Shipp<strong>in</strong>g Company). <strong>The</strong> name<br />

Kroonvlag (Crown-Flag) was derived from the Company's flag to which these<br />

ships belonged. A group <strong>of</strong> mar<strong>in</strong>e geophysicists <strong>of</strong> the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory<br />

crossed the North Atlantic Ocean more than 40 times and made a dense<br />

network <strong>of</strong> geophysical measurements over the Atlantic between 6°N. and 37°<br />

N. latitude. Dur<strong>in</strong>g the cross<strong>in</strong>gs the bathymetry, the structure <strong>of</strong> the ocean<br />

floor, and also the strength <strong>of</strong> the geomagnetic field were determ<strong>in</strong>ed. <strong>The</strong> result<br />

<strong>of</strong> the magnetic measurements can be found <strong>in</strong> a publication by Collette et ...<br />

al. (1974). <strong>The</strong> follow<strong>in</strong>g scientists cooperated <strong>in</strong> this research: K. W . Rutten,<br />

J.A. Schouten, A.P. Slootweg, W. Twigt and J. Verhoef. One <strong>of</strong> the results <strong>of</strong><br />

the Kroonvlag Project was a detailed survey <strong>of</strong> the Mid-Atlantic Ridge, especially<br />

<strong>of</strong> the fracture zones and the central rift zone. Collette (1974) expla<strong>in</strong>ed<br />

the fractures <strong>in</strong> ocean ridges as shr<strong>in</strong>k<strong>in</strong>g cracks <strong>in</strong> the cool<strong>in</strong>g oceanic crust.<br />

1.8.4. Atlantic Ocean: Vaarplan Projects<br />

In 1977 a new period for oceanography <strong>in</strong> the <strong>Netherlands</strong> commenced with<br />

the commission<strong>in</strong>g <strong>of</strong> the research vessel H.NI.M . S. Tydeman. It was built to<br />

replace the hydrographic vessels H.Nl.M.S. Snellius and Luymes (see Chapter<br />

11, section 7.5).<br />

A scientific program, Vaarplan (Sail<strong>in</strong>g Scheme) 1974-1978, followed by Vaarplan<br />

1978-1982, was developed by the <strong>Netherlands</strong> Council <strong>of</strong> Oceanic <strong>Research</strong><br />

34


W<br />

0\<br />

Figure 18. <strong>The</strong> oceanographic research vessel H .Nl.M .S. Tydeman (photo courtesy <strong>of</strong><br />

the Audio-Visual Service <strong>of</strong> the Royal <strong>Netherlands</strong> Navy).


<strong>of</strong> the Royal <strong>Netherlands</strong> Academy <strong>of</strong> Arts and Sciences to serve the ocean discipl<strong>in</strong>es<br />

<strong>in</strong> the fields <strong>of</strong> physical oceanography. meteorology. chemical oceanography.<br />

mar<strong>in</strong>e biology. mar<strong>in</strong>e geology and geochemistry. and mar<strong>in</strong>e geophysics.<br />

<strong>The</strong> Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory was charged with the mar<strong>in</strong>e geophysical program.<br />

Funds became available for computer systems for on-board data handl<strong>in</strong>g.<br />

satellite navigation systems. renovation <strong>of</strong> the gravimeter and the magnetometers.<br />

and for a powerful compressor and airguns.<br />

Apart from H. Nl.M. S. Tydeman the Mar<strong>in</strong>e Geophysics Group used chartered<br />

cargo vessels. In 1975 research was carried out on the Mid-Atlantic Ridge by<br />

means <strong>of</strong> the M.S. Aegeon Express. and <strong>in</strong> 1977. 1978 and 1979 with the M.S.<br />

Tyro. aga<strong>in</strong> on the Mid-Atlantic Ridge and also <strong>in</strong> the bas<strong>in</strong>s east <strong>of</strong> the Ridge.<br />

<strong>The</strong> first results <strong>of</strong> the geophysical measurements on board <strong>of</strong> the H.Nl.M.S.<br />

Tydeman were embodied <strong>in</strong> a publication by Twigt. Collette and Slootweg (1979).<br />

1.8.5. Atlantic Ocean: other subjects<br />

J. A. Schouten developed <strong>in</strong> his thesis (1970) a fundamental method for analyz<strong>in</strong>g<br />

geomagnetic anomalies over ocean ridges. This method was applied to<br />

the geomagnetic anomalies <strong>in</strong> the Atlantic Ocean and <strong>in</strong> the Bay <strong>of</strong> Biscay (Schouten<br />

et al.. 1971). Rutten analyzed the anomalies <strong>of</strong>f Iceland <strong>in</strong> his thesis (1975).<br />

W. J. M. van der L<strong>in</strong>den (1975) presented an <strong>in</strong>terpretation <strong>of</strong> magnetic anomaly<br />

and basement trends <strong>in</strong> the Atlantic • concern<strong>in</strong>g sea floor spread<strong>in</strong>g <strong>in</strong> the Labrador<br />

Sea. He also discussed morphology. magnetic and seismic characteristics<br />

<strong>in</strong>dicat<strong>in</strong>g that the area west <strong>of</strong> Iberia and Morocco is a deformed passive cont<strong>in</strong>ental<br />

marg<strong>in</strong> (Van der L<strong>in</strong>den. 1979). He proposed (1980) that the eastern<br />

Walvis Ridge is a cont<strong>in</strong>ental fragment that was orig<strong>in</strong>ally positioned marg<strong>in</strong>al<br />

to Africa.<br />

It is the <strong>in</strong>tention <strong>of</strong> the Mar<strong>in</strong>e Geophysics Group to study <strong>in</strong> thè near future.<br />

among other subjects. sea floor spread<strong>in</strong>g by <strong>in</strong>vestigat<strong>in</strong>g geomagnetic<br />

anomalies and gravity on the Mid-Atlantic Ridge. This may result <strong>in</strong> more <strong>in</strong>formation<br />

about movements <strong>of</strong> the cont<strong>in</strong>ents on both sides <strong>of</strong> the Atlantic. In<br />

1979 a study <strong>of</strong> the problem <strong>of</strong> young volcanism at the bottom <strong>of</strong> the Atlantic<br />

Ocean was started. Measurements above the submar<strong>in</strong>e Atlantic-Meteor mounta<strong>in</strong>s<br />

were carried out.<br />

I. 9. PALAEOMAGNETIC RESEARCH<br />

Interest <strong>of</strong> <strong>Netherlands</strong> geologists and geophysicists <strong>in</strong> the magnetic properties<br />

<strong>of</strong> rocks (and especially <strong>in</strong> palaeomagnetism. which is the fossil remanent<br />

magnetization) was aroused around 1950. when a student <strong>of</strong> geology from<br />

Utrecht University. J. Hospers • discovered Tertiary basalt flows <strong>in</strong> Iceland.<br />

which showed a natural remanent magnetization whose direction was opposite<br />

to the present direction <strong>of</strong> the earth '5 magnetic field. Hospers had collected<br />

his basalt samples at the request <strong>of</strong> W. Nieuwenkamp (pr<strong>of</strong>essor <strong>of</strong> petrology<br />

at Utrecht) who assumed that the phenomenon <strong>of</strong> reversed magnetization <strong>of</strong><br />

basalt. which had been discovered by J. Brunhes <strong>in</strong> 1906 <strong>in</strong> France. perhaps<br />

would appear also <strong>in</strong> basalts from Iceland. S<strong>in</strong>ce at that time a suitable apparatus<br />

for measur<strong>in</strong>g rock magnetism was not yet available <strong>in</strong> the <strong>Netherlands</strong> •<br />

Hospers studied his rocks <strong>in</strong> the Geological Laboratory <strong>of</strong> Cambridge University.<br />

where he f<strong>in</strong>ished his doctor's thesis. His <strong>in</strong>vestigation was published <strong>in</strong><br />

the Proceed<strong>in</strong>gs <strong>of</strong> the Royal <strong>Netherlands</strong> Academy <strong>of</strong> Arts and Sciences (Hospers.<br />

1953 and 1954). Hospers concluded that the geomagnetic field must have<br />

changed its polarity repeatedly dur<strong>in</strong>g Tertiary times. that is to say that the<br />

37


geomagnetic poles have changed several times. Moreover • he found that at least<br />

dur<strong>in</strong>g the Miocene the mean geomagnetic ,pole practica11y co<strong>in</strong>cided with the<br />

geographic pole.<br />

M . G . R utten, pr<strong>of</strong>essor <strong>of</strong> geology at Utrecht, recognized an agreement between<br />

the result <strong>of</strong> <strong>in</strong>vestigations by Hospers on the polarity <strong>of</strong> lavas on Iceland<br />

and those <strong>in</strong> the Plateau Central <strong>in</strong> France, found by A. Roche . For example,<br />

both <strong>in</strong>vestigators dated the latest period <strong>of</strong> reversed polarity at the beg<strong>in</strong>n<strong>in</strong>g<br />

<strong>of</strong> Pleistocene. M. G. Rutten and J. C. den Boer (1954) realized that<br />

palaeomagnetism can be used for correlat<strong>in</strong>g lava flows over large distances.<br />

<strong>The</strong> outcome <strong>of</strong> Hospers' research was that, at the <strong>in</strong>stigation <strong>of</strong> M. G. Rutten,<br />

a beg<strong>in</strong>n<strong>in</strong>g was made <strong>in</strong> 1955 <strong>in</strong>to the <strong>in</strong>vestigation <strong>of</strong> the magnetism <strong>of</strong> rocks.<br />

This took place under the guidance <strong>of</strong> Veldkamp • pr<strong>of</strong>essor <strong>of</strong> geophysics at<br />

Utrecht from 1955 ti11 1974. Because Veldkamp was at the same time director <strong>of</strong><br />

the geophysical dep art ment <strong>of</strong> the KNMI (from 1945 till 1972) this research was<br />

conducted for the first years <strong>in</strong> the seismograph pavilion <strong>of</strong> the KNMI. <strong>The</strong><br />

<strong>in</strong>struments and measur<strong>in</strong>g methods we re developed by J. A. As (KNMI) and<br />

the first results were found there.<br />

This was the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> a very fruitful development <strong>in</strong> cooperation bet ween<br />

geophysicists and geologists at Utrecht University. On the one hand the geologist<br />

could provide rock samples whose orientation was observed and measured<br />

<strong>in</strong> situ, on the other hand the geophysicist could measure the direction and<br />

the <strong>in</strong>tensity <strong>of</strong> the magnetic components <strong>in</strong> the rock sample. This made possible<br />

<strong>in</strong> favourable cases determ<strong>in</strong>ation <strong>of</strong> the direction <strong>of</strong> the local geomagnetic<br />

field at the time <strong>of</strong> the formation <strong>of</strong> the rock. From this direction conclusions<br />

could be drawn about the former positions <strong>of</strong> cont<strong>in</strong>ents or <strong>of</strong> parts there<strong>of</strong>.<br />

This cooperation bet ween geophysicists and geologists has resulted <strong>in</strong> a series<br />

<strong>of</strong> publications and theses produced at Utrecht University. In total no less<br />

than 18 dissèrtations and a number <strong>of</strong> papers were produced under the supervision<br />

<strong>of</strong> M.G. Rutten, R.W. van Bemmelen, J. Veldkamp and J.D.A. Zijderveld.<br />

<strong>The</strong> contents <strong>of</strong> these publications were to a considerable degree based on the<br />

study <strong>of</strong> palaeomagnetism .<br />

J.A. As (1960) developed the <strong>in</strong>struments necessary for measur<strong>in</strong>g the magnetism<br />

<strong>of</strong> rocks. <strong>The</strong>se <strong>in</strong>struments (astatic magnetometers and A. C. -demagnetization<br />

coils) were constructed at the KNMI and set up <strong>in</strong> the seismograph<br />

pavilion. As and Zijderveld (1958) designed methods for analyz<strong>in</strong>g the magnetism<br />

<strong>of</strong> rocks. by means <strong>of</strong> heat<strong>in</strong>g as we11 as by demagnetization step by step<br />

<strong>in</strong> alternat<strong>in</strong>g magnetic fields. <strong>The</strong>se methods made it possible to separate the<br />

fossil magnetism <strong>in</strong> a rock sample from recent magnetizations (see also: Zijderveld<br />

, 1967. and R. O. van Everd<strong>in</strong>gen • 1960).<br />

Whereas orig<strong>in</strong>a11y demagnetization was applied only to test the stability <strong>of</strong><br />

the remanent magnetization <strong>of</strong> rocks. the step-wise demagnetization developed<br />

by As and Zijderveld became important for separat<strong>in</strong>g vectorially the magnetizations<br />

present <strong>in</strong> the rock samples. In many cases the direction <strong>of</strong> the orig<strong>in</strong>al<br />

magnetization could be derived with reasonable accuracy. This allowed<br />

calculation <strong>of</strong> the position <strong>of</strong> the geomagnetic po Ie at the time <strong>of</strong> the formation<br />

<strong>of</strong> the rock , and from this the geographic latitude <strong>of</strong> the country where the<br />

rock sample was taken. In favourable cases even the <strong>in</strong>tensity <strong>of</strong> the fossil<br />

geomagnetic force could be found.<br />

In 1963 the magnetometers and demagnetization <strong>in</strong>struments were transferred<br />

to the former Fort Ho<strong>of</strong>ddijk , which was rebuilt by Utrecht University especia11y<br />

for magnetic measurements. <strong>The</strong> research <strong>in</strong> rock magnetism has cont<strong>in</strong>ued there<br />

under the leaders hip <strong>of</strong> Zijderveld . <strong>The</strong> Palaeomagnetic Laboratory conta<strong>in</strong>s<br />

now, <strong>in</strong> addition to the astatic magnetometers and the demagnetization apparatus,<br />

a sp<strong>in</strong>ner magnetometer, a cryogenic magnetometer , a magnetometer for<br />

38


Figure 19. <strong>The</strong> Palaeomagnetic Laboratory <strong>of</strong> the State University at Utrecht. formerly<br />

Fort Ho<strong>of</strong>ddijk (Photo e.G. Langereis) .


low and high temperatures, an electromagnet for <strong>in</strong>vestigat<strong>in</strong>g the magnetic<br />

m<strong>in</strong>erals <strong>in</strong> a rock sample, and also a sensitive measur<strong>in</strong>g bridge for measur<strong>in</strong>g<br />

the magnetic susceptibility <strong>of</strong> rocks. J. A. As developed a method for determ<strong>in</strong><strong>in</strong>g<br />

the susceptibility tensor by means <strong>of</strong> the astatic magnetometer (As, 1967).<br />

1.9.1. Palaeomagnetism at the State University <strong>of</strong> Utrecht<br />

Below a summary is given <strong>of</strong> the palaeomagnetic research that was accomplished<br />

at the Utrecht University.<br />

a. Stabie Europe. Palaeomagnetic research was <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g focused on<br />

some regions <strong>in</strong> the stabie non-alp<strong>in</strong>e part <strong>of</strong> Europe, where Rutten took the<br />

Figure 20. Geomagnetic decl<strong>in</strong>ation (arrows) and <strong>in</strong>cl<strong>in</strong>ation (numbers) <strong>in</strong> Europe<br />

dur<strong>in</strong>g the Permian. <strong>The</strong> earth 's magnetic field had a southward direction , opposite<br />

to the present direction . <strong>The</strong> dotted l<strong>in</strong>e denotes the border <strong>of</strong> Stabie Europe. North<br />

<strong>of</strong> this l<strong>in</strong>e the decl<strong>in</strong>ations and <strong>in</strong>cl<strong>in</strong>ations <strong>of</strong> Permian rocks <strong>in</strong> various countries<br />

are reasonably consistent with each other. However. the decl<strong>in</strong>ations <strong>in</strong> Spa<strong>in</strong> and<br />

Portugal deviate a g>:'eat deal from those <strong>in</strong> Stabie Europe. but after a clockwise rotation<br />

<strong>of</strong> 35° the fossil geomagnetic directions <strong>in</strong> Spa<strong>in</strong> and Portugal agree weU with<br />

those <strong>in</strong> Stabie Europe. This po<strong>in</strong>ts to a counter-clockwise rotation <strong>of</strong> the Iberian<br />

Pen<strong>in</strong>suia s<strong>in</strong>ce Permian times (Van der Voo and Zijderveld • 1969; see also: Zijderveld<br />

and Van der Voo. 1973).<br />

40


k. Mediterranean. Zijderveld cont<strong>in</strong>ued with other research workers <strong>in</strong>vestigations<br />

<strong>in</strong> the Mediterranean region, <strong>in</strong> order to study tectonic movements <strong>in</strong><br />

the Tethys zone. An extensive report has been written by Van der Voo and<br />

Zijderveld (1969). In the western part <strong>of</strong> the Mediterranean the deviat<strong>in</strong>g directions<br />

<strong>of</strong> the remanent magnetization <strong>of</strong> rocks could be expla<strong>in</strong>ed either by<br />

an eastward displacement <strong>of</strong> Africa with respect to Europe (with a rotation <strong>of</strong><br />

Spa<strong>in</strong>, Sard<strong>in</strong>ia and Corsica) or by a connection to the African block. A coher-<br />

140 MA 95 MA<br />

t25MA 80 MA<br />

110 MA 65 MA<br />

Figure 22. Mesozoic reconstruction <strong>of</strong> the western part <strong>of</strong> the Mcditerranean (Van den<br />

Berg. 1979). <strong>The</strong> palaeomagnetism <strong>of</strong> rocks proves· that the Mediterranean region<br />

underwent considerable change as a consequence <strong>of</strong> the shift<strong>in</strong>g <strong>of</strong> Southern Europe<br />

<strong>in</strong> relation to Africa. Dur<strong>in</strong>g the Late Cretaceous (between 95 and 65 million years<br />

ago. see right side <strong>of</strong> diagram) the Iberian Pen<strong>in</strong>suia moved so that the Bay <strong>of</strong> Biscay<br />

opened up. Italy was jo<strong>in</strong>ed to the African cont<strong>in</strong>ent until the Early Tertiary (65<br />

million years ago, bottom right diagram). but af ter the Eocene (50 million years ago)<br />

Italy rotated away from Africa.<br />

43


ence between the Southern Alps and Africa was presumed by Zijderveld et al.<br />

(1970) <strong>in</strong> a paper on shear <strong>in</strong> the Tethy.s zone and the Permian palaeomagnetism<br />

<strong>in</strong> the Southern Alps. At that time no choice could be made. In a more complete<br />

review Zijderveld and Van der Voo (1973) concluded that the Iberian Pen<strong>in</strong>suia ,<br />

Sard<strong>in</strong>ia, Corsica and Northern Italy had rotated as a result <strong>of</strong> shift<strong>in</strong>g <strong>of</strong> Europe<br />

relative to Africa. In the Eastern Mediterranean the magnetic data proved<br />

that Turkey belonged to the African block dur<strong>in</strong>g the Cretaceous. but separated<br />

from Africa after that time.<br />

Further research by J. van den Berg, C. T. Klootwijk and A. A. H. Wonders<br />

(1978), and also by Van den Berg and Wonders (1976) led to the conclusion<br />

Figure 23. Path <strong>of</strong> the magnetic North Pole dur<strong>in</strong>g a reversal <strong>in</strong> polarity <strong>of</strong> the earth's<br />

magnetic field (Dijksman , 1977). <strong>The</strong> Pole moved from the southern hemisphere (positions<br />

10 to 15) to northern regions • while the dipole moment <strong>of</strong> the geomagnetic field<br />

became abnormally smalI. Af ter arrival <strong>in</strong> the northern hemisphere (positions 17 to<br />

20) the <strong>in</strong>tensity <strong>of</strong> the earth's magnetic field <strong>in</strong>creased gradually to the normal value.<br />

<strong>The</strong> total reversal <strong>of</strong> polarity took about 15,000 years. Dur<strong>in</strong>g the Tertiary about 100<br />

reversals <strong>in</strong> polarity <strong>of</strong> the earth's magnetic field took place.<br />

44


1. Other studies. <strong>The</strong> palaeomagnetic research <strong>in</strong> the Mediterranean region<br />

gave rise to some special doctor 's theses. A. A. Dijksman <strong>in</strong>vestigated changes<br />

<strong>in</strong> the geomagnetic polarity <strong>in</strong> a column <strong>of</strong> Miocene sediments <strong>in</strong> Spa<strong>in</strong> (1977) .<br />

He was able to describe the behaviour <strong>of</strong> the geomagnetic field dur<strong>in</strong>g some reversals<br />

. <strong>The</strong> <strong>in</strong>vestigation <strong>of</strong> sediments <strong>in</strong> Southern France by C. van den Ende<br />

(1977) gave <strong>in</strong>formation on the secular variation <strong>of</strong> the earth's magnetic field<br />

dur<strong>in</strong>g the Permian. He also studied the magnetic susceptibility <strong>of</strong> rocks <strong>in</strong> order<br />

to f<strong>in</strong>d a possible relation between the anisotropy <strong>of</strong> susceptibility and natural<br />

remanent magnetization. F<strong>in</strong>aIly, the thesis written by P. H. M. Dankers<br />

(1978) must be mentioned; it deals with the relation between the magnetic properties<br />

and the gra<strong>in</strong> size <strong>of</strong> magnetic m<strong>in</strong>erals and the <strong>in</strong>fluence <strong>of</strong> temperature<br />

on this relationship .<br />

1.9.2. Palaeomagnetism at the Municipal University <strong>of</strong> Amsterdam<br />

Under the leadership <strong>of</strong> J. Hospers , pr<strong>of</strong>essor <strong>in</strong> Amsterdam from 1965 to<br />

1975, various palaeomagnetic studies were <strong>in</strong>itiated at the Municipal University.<br />

J. Hospers and S.l. van Andel (1967 and 1968) tried to calculate from palaeomagnetic<br />

data the value <strong>of</strong> the earth's radius <strong>in</strong> several geological periods. <strong>The</strong>se<br />

data showed that a constant radius could be supposed as weIl as a slow expansion<br />

<strong>of</strong> the earth or a small contraction . At any rate the break-up <strong>of</strong> the Pangaea<br />

cont<strong>in</strong>ents cannot be expla<strong>in</strong>ed by an expand<strong>in</strong>g earth. This research led to<br />

the thesis <strong>of</strong> Van Andel (1968). H.M. van Montfrans (1971), who was also at the<br />

Municipal University <strong>of</strong> Amsterdam, <strong>in</strong>vestigated Quaternary sediments from<br />

the North Sea bas<strong>in</strong> to look for a correlation bet ween the stratigraphic levels<br />

and the time scale <strong>of</strong> the reversals <strong>in</strong> the earth 's field. It turned out to be<br />

possible to date a number <strong>of</strong> levels by means <strong>of</strong> reversals <strong>of</strong> geomagnetic polarity.<br />

<strong>The</strong> palaeomagnetic research <strong>of</strong> Hospers and his co-workers at Amsterdam<br />

ended when <strong>in</strong> 1975 geophysics <strong>in</strong> the <strong>Netherlands</strong> was concentrated at the<br />

State University <strong>of</strong> Utrecht.<br />

It is expected that the magnetic properties <strong>of</strong> rocks and especially the study<br />

<strong>of</strong> palaeomagnetism under the leadership <strong>of</strong> Zijderveld , who was appo<strong>in</strong>ted pr<strong>of</strong>essor<br />

at Utrecht <strong>in</strong> 1981, will yield important <strong>in</strong>formation about the processes<br />

and movements <strong>in</strong> the crust <strong>of</strong> the earth.<br />

REFERENCES TO CHAPTER I<br />

Andel, S.1. van (1968) - A test <strong>of</strong> earth expansion hypotheses by means <strong>of</strong><br />

paleomagnetic data. Proefschrift, Amsterdam.<br />

Anonymous (1967) - NAVADO 111. Bathymetric, magnetic and gravity <strong>in</strong>vestigations,<br />

1964-1965. Hydrographic Newsletter, Spec. Publ. Nr. 3, parts 1,<br />

2 and 3, 1967.<br />

As, J.A. and J.D.A . Zijderveld (1958) - Magnetic clean<strong>in</strong>g <strong>in</strong> paleomagnetic<br />

research . Geophys. Journ. Roy. Astr. Soc., 1,308-319.<br />

As, J. A. (1960) - Instruments and measur<strong>in</strong>g methods <strong>in</strong> paleomagnetic research.<br />

Meded. en Verh. K.N.M.I., Nr. 78.<br />

As, J.A. (1967a) - Past, present and future changes <strong>in</strong> the earth's magnetic<br />

field. Magnetism and the Cosmos , 29-44, 1967, Oliver and Boyd, Ed<strong>in</strong>burgh.<br />

As, J.A. (1967b) - Measurement <strong>of</strong> the anisotropy <strong>of</strong> the susceptibility. In:<br />

Methods <strong>in</strong> Paleomagnetic <strong>Research</strong>, 362-367, Elsevier, Amsterdam.<br />

46


As, J.A. (1973) - <strong>The</strong> compensation method for measur<strong>in</strong>g the components <strong>of</strong><br />

the earth's magnetic field. Zeitschr. für Geophysik, 39, 303-311, 1973.<br />

As, J .A. (1975) - World-wide beits <strong>in</strong> the earth's magnetic field . Progress <strong>in</strong><br />

geodynamics, Proc. nat. symp. on geodynamics held <strong>in</strong> Amsterdam, North<br />

Holland Publ. Cy . Amsterdam, 1975.<br />

Bemmelen , W. van (1892) - Historisch overzicht van de aardmagnetische waarnem<strong>in</strong>gen<br />

<strong>in</strong> Nederland. Jaarboek K. N .M . I., 1892, De Bilt.<br />

Bemmelen , W. van (1893) - De isogenen der 16e en 17e eeuw. Proefschrift,<br />

Leiden.<br />

Bemmelen, W. van (1897) - Werte der erdmagnetischen Dekl<strong>in</strong>ation 1500-1700,<br />

und ihrer Säcular-Variation 1500-1850. Kon. Ned. Akad. Wet., Amsterdam.<br />

Bemmelen, W. van (1909) - Magnetic Survey <strong>of</strong> the Dutch East-Indies made <strong>in</strong><br />

the years 1903-1907. Waarn. Kon. Magn. Met. Obs. Batavia, Vol. 30.<br />

Bemmelen, W. van (1920) - De seculaire verander<strong>in</strong>gen der aardmagnetische<br />

Decl<strong>in</strong>atie, Incl<strong>in</strong>atie en Horizontale Intensiteit <strong>in</strong> de westelijke helft van<br />

den Oost-Indischen Archipel, 1905-1916/18. Nat. Tijdschr. Ned. Indië,<br />

79, 202-204, 1920.<br />

Berg, J . van den, and A .A.H. Wonders (1976) - Paleomagnetic evidence <strong>of</strong> large<br />

fault displacements around the Po-bas<strong>in</strong> . Tectonophysics, 33, 301-320.<br />

Berg, J. van den, C.T. Klootwijk and A.A.H. Wonders (1978) - Late Mesozoic<br />

and Cenozoic movements <strong>of</strong> the Italian Pen<strong>in</strong>suia . Further paleomagnetic<br />

data from the Umbrian sequence. Geol. Soc. Amer. Bull., 89,133-150.<br />

Berg, J. van den (1979) - Paleomagnetism and the chang<strong>in</strong>g configuration <strong>of</strong><br />

the Western Mediterranean area <strong>in</strong> the Mesozoic and Cenozoic eras. Proefschrift,<br />

Utrecht .<br />

Boeckel, J. J.G.M . van (1968) - Gravitational and geomagnetic <strong>in</strong>vestigations<br />

<strong>in</strong> Sur<strong>in</strong>am and their structural implications. Proefschrift, Amsterdam.<br />

Also <strong>in</strong> : Mededel<strong>in</strong>gen Geol. Mijnb. Dienst, 1968, Paramaribo, Sur<strong>in</strong>ame.<br />

Boer, J. de (1963) - <strong>The</strong> geology <strong>of</strong> the Vicent<strong>in</strong>ian Alps (NE-Italy). Proefschrift,<br />

Utrecht.<br />

Boer, J.C. den (1957) - Etude géologique et paléomagnétique des montagnes<br />

d u Coiron (Ardèche, France). Proefschrift, Utrecht.<br />

Bremmer , H. (1949) - Terrestrial Radio Waves: <strong>The</strong>ory <strong>of</strong> Propagation . Elsevier,<br />

Amsterdam.<br />

Bremmer , H. (1958) - Propagation <strong>of</strong> electromagnetic waves. Encyclopaedia <strong>of</strong><br />

Physics, 16, 423-639. Spr<strong>in</strong>ger, New York.<br />

Bru<strong>in</strong>s , E . M. (1938) - Cosmische stralen <strong>in</strong> het aardmagnetisch veld . Dissertatie,<br />

Amsterdam.<br />

Clay , J. (1932) <strong>The</strong> Earthmagnetic effect and the Corpuscular Nature <strong>of</strong> (Cosmic)<br />

Ultra-radiation. Proc. Kon. Ned. Akad. Wet. , Amsterdam, 35, 1282.<br />

Clay, J. (1948) - Kosmische stralen. Servire, Den Haag.<br />

Collette , B.J., R.A. Lagaay, A.P . van Lennep, J . A. Schouten and R.D. Schuil<strong>in</strong>g<br />

(1968) - Some heat-flow measurements <strong>in</strong> the North AUantic Ocean.<br />

Proc. Kon . Ned. Akad. Wet., Series B, 71, 203-208, 1968.<br />

47


Collette, B.J., K.W. Rutten, J.A. Schouten and A.P. Slootweg (1974) - Cont<strong>in</strong>uous<br />

seismic and magnetic pr<strong>of</strong>iles over the Mid Atlantic Ridge between<br />

12°N. and 18°N. Mar<strong>in</strong>e Geophys. Res., 2,133-141,1974.<br />

Collette, B.J. (1974) - <strong>The</strong>rmal contract ion jo<strong>in</strong>ts <strong>in</strong> a spread<strong>in</strong>g sea-floor as<br />

orig<strong>in</strong> <strong>of</strong> fracture zones. Nature, 251, 299-300,1974.<br />

Dankers , P. H.M. (1978) - Magnetic properties <strong>of</strong> dispersed natural iron-oxides<br />

<strong>of</strong> known gra<strong>in</strong>-size. Proefschrift, Utrecht.<br />

Dietzel, G. F. L. (1960) - Geology and Permian Paleomagnetism <strong>of</strong> the Merano<br />

region (Prov<strong>in</strong>ce <strong>of</strong> Bolzano, N.-Italy). Proefschrift, Utrecht.<br />

Dijksman, A.A. (1977) - Geomagnetic reversals as recorded <strong>in</strong> the Miocene red<br />

beds <strong>of</strong> the Calatayud-Teruel bas<strong>in</strong> (Central Spa<strong>in</strong>) . Proefschrift, Utrecht.<br />

Dongen, P.G. van (1967) - <strong>The</strong> rotation <strong>of</strong> Spa<strong>in</strong>: paleomagnetic evidence from<br />

the Eastern Pyrenees. Paleogeogr., Paleoclim., Paleooecol., 3, 417-432,1967.<br />

Dongen, P.G. van, R. van der Voo and Th. Raven (1967) - Paleomagnetism and<br />

the Alp<strong>in</strong>e tectonics <strong>of</strong> Eurasia (part 3). Paleomagnetic research <strong>in</strong> the<br />

Central Lebanon mounta<strong>in</strong>s and <strong>in</strong> the Tartous area (Syria). Tectonophysics,<br />

4, 35-53,1967.<br />

Elias, G.J. (1923) - Over de voortplant<strong>in</strong>g van electromagnetische trill<strong>in</strong>gen.<br />

Tijdschrift Ned. Radio Gen., 2, 1-21.<br />

Ende, C. van den (1977) - Paleomagnetism <strong>of</strong> Permian red beds <strong>of</strong> the Dame de<br />

Barrot (Southern France). Proefschrift, Utrecht.<br />

Everd<strong>in</strong>gen , R.O. van (1960) - Paleomagnetic analysis <strong>of</strong> Permian extrusives<br />

<strong>in</strong> the Oslo region, Norway. Proefschrift, Utrecht.<br />

Gregor, C.B. and J.D.A. Zijderveld (1964) - Paleomagnetism and the Alp<strong>in</strong>e<br />

tectonics <strong>of</strong> Eurasia, part I. <strong>The</strong> magnetism <strong>of</strong> some Permian red sandstones<br />

from northwestern Turkey. Tectonophysics, 1, 289-306, 1964.<br />

Groenewold, H . J. (1948) - De betekenis van de toestand der ionosfeer voor<br />

radioverb<strong>in</strong>d<strong>in</strong>gen op lange afstand. Tijdschr. van het Ned. Radiogenootschap,<br />

13, 103-139.<br />

Groenewold, H. J. (1949) - Ionosfeeronderzoek . Ned. Tijdschrift voor Natuurkunde,<br />

15, 157-168.<br />

Groenewold, H.J. (1950) - Triple splitt<strong>in</strong>g <strong>in</strong> a regular layer. Int. Council <strong>of</strong><br />

Scient. Unions , Mixed Comm. on lonosphere, Proc. Second Meet<strong>in</strong>g, Brussels,<br />

201-205.<br />

Guicherit , R. (1964) - Gravity tectonics, gravity field, and paleomagnetism <strong>in</strong><br />

NE-Italy. Proefschrift, Utrecht.<br />

Hartmann, Ph.C.P. (1945) - Aardmagnetische anomalieën <strong>in</strong> Nederland. Proefschrift,<br />

Utrecht.<br />

Hilten, D. van (1960) - Geology and Permian Paleomagnetism <strong>of</strong> the Val-di-Non<br />

area (W. Dolomites, N. Italy). Proefschrift, Utrecht.<br />

Hilton, D. van (1962) - Presentation <strong>of</strong> paleomagnetic data, polar wander<strong>in</strong>g<br />

and cont<strong>in</strong>ental drift. Amer. Journ. Sc., Vol. 260, 401-426, 1962.<br />

Hilten, D. van (1964) - Evaluation <strong>of</strong> some geotectonic hypotheses by paleomagnetism.<br />

Tectonophysics, 1, 3-71, 1964.<br />

48


Hilten, D. van, and J.D.A. Zijderveld (1966) - <strong>The</strong> magnetism <strong>of</strong> the Permian<br />

porphyries near Lugano (Northern Italy /Switzerland). Tectonophysics, 3,<br />

429-449, 1966.<br />

Hilten, D. van (1968) - Global expansion and paleomagnetic data. Tectonophysics,<br />

5,191-210, 1968.<br />

Hooykaas, R. (1976) - Geschiedenis der natuurwetenschappen. Utrecht, 1976.<br />

Hooykaas, R. (1980) - Science <strong>in</strong> Manuel<strong>in</strong>e style. Academia Internacional da<br />

Cultura Portuguesa, Coimbra.<br />

Hospers , J. (1953 and 1954) - Reversals <strong>of</strong> the ma<strong>in</strong> geomagnetic field .. I, 11,<br />

111. Proc. Kon. Ned. Akad. Wet., 56, 467-476; 56, 477-491; 57,112-121.<br />

Hospers , J. and S. I. van Andel (1967) - Paleomagnetism and the hypothesis <strong>of</strong><br />

an expand<strong>in</strong>g earth. Tectonophysics, 5, 5-24,1967.<br />

Hospers , J. and S. I. van Andel (1968) - Paleomagnetism and the hypothesis <strong>of</strong><br />

an expand<strong>in</strong>g earth: a new calculation method and its results. Tectonophysics,<br />

5, 273-285, 1968.<br />

I.A.G.A. (1949-1968) - Bullet<strong>in</strong> on Geomagnetic Indices, Rapid Variations,<br />

Magnetic Storms. K. N .M. I. , De Bilt.<br />

I.A.G.A. (1969-now) - Bullet<strong>in</strong> on Geomagnetic Indices, Rapid Variations,<br />

Magnetic Storm. K.N.M.I., De Bilt.<br />

Jongen, H. F. (1952) - Problemen omtrent de oorsprong van de kosmische stral<strong>in</strong>g.<br />

Dissertatie, Amsterdam.<br />

Kelder, H. (1975) - Een eenvoudig model voor de bereken<strong>in</strong>g van de verander<strong>in</strong>g<br />

<strong>in</strong> de ionendichtheid van de E-Iaag veroorzaakt door een <strong>in</strong>wendige<br />

zwaartekracht golf. K.N.M.1. Wetensch. Rapport 75-12,1975.<br />

Kelder, H. (1976) - Reflection <strong>of</strong> the semi-diurnal tide <strong>in</strong> the thermosphere.<br />

E.O.S. Transactions A.G.U., 57, 668-669,1976.<br />

Klootwijk , C. T. (1974) - Paleomagnetic results on a dolerite sill <strong>of</strong> Deccan Trap<br />

age <strong>in</strong> the Sonhat coal bas<strong>in</strong>, India. Tectonophysics, 22, 335-353,1974.<br />

Klootwijk , C . T. (1974a) - Paleomagnetism <strong>of</strong> Indian rocks and implications for<br />

the drift <strong>of</strong> the Indian part <strong>of</strong> Gondwanaland. Proefschrift, Utrecht.<br />

Klootwijk, C. T. (1975) - Paleomagnetism <strong>of</strong> Upper Permian redbeds <strong>in</strong> the Wardha<br />

Valley, Central India. Tectonophysics, 23,115-137,1975.<br />

K. M.M.O. (1871) - Observations made at the Magnetic and Meteorological Observatory<br />

at Batavia, Vol. 1 (1866-1870).<br />

K.N.M.1. (1894) - Meteorologisch Jaarboek 1894. K.N.M.I., De Bilt.<br />

K.N.M.1. (1903-heden) - Jaarboeken B - Aardmagnetisme, 1903-heden. K.N.<br />

M. 1., De Bilt.<br />

K. N .M. I. (1949-heden) - Monthly Bullet<strong>in</strong> on ionospheric, geomagnetic, etc.<br />

data.<br />

K.N.M.1. (1954) - Gedenkboek van het Kon<strong>in</strong>klijk Nederlands Meteorologisch<br />

Instituut, 1854 -1954. Staatsdrukkerij, 's-Gravenhage.<br />

Kruseman, G.P. (1961) - Etude paléomagnétique et sédimentologique du Bass<strong>in</strong><br />

Permien de Lodève (Hérault, France). Proefschrift, Utrecht.<br />

49


Lagaay, R .A. (1968) - <strong>Geophysical</strong> <strong>in</strong>vestigations <strong>of</strong> the <strong>Netherlands</strong> Leeward<br />

Antilles . Proefschrift. Utrecht.<br />

L<strong>in</strong>den, W.J.M. van der (1975) - Mesozoic and Ca<strong>in</strong>ozoic open<strong>in</strong>g <strong>of</strong> the Labrador<br />

Sea, the North Atlantic and the Bay <strong>of</strong> Biscay. Nature, 253, 320-324.<br />

L<strong>in</strong>den, W.J.M. van der (1979) - <strong>The</strong> Atlantic marg<strong>in</strong> <strong>of</strong> Iberia and Morocco, a<br />

re-<strong>in</strong>terpretation. Tectonophysics, 59,185-199.<br />

L<strong>in</strong>den, W.J.M. van der (1980) - Walvis Ridge, a piece <strong>of</strong> Africa? Geology, 8,<br />

417-421.<br />

Lith, P.A. van der, en J.F. Snelleman, red. (1919) - Encyclopaedie van Nederlands<br />

Indië, deel 3, 41-50.<br />

Montfrans, H.M. van (1971) - Paleomagnetic dat<strong>in</strong>g <strong>in</strong> the North Sea Bas<strong>in</strong>.<br />

Proefschrift, Amsterdam.<br />

Mulder, F.G . (1970) - Paleomagnetic research <strong>in</strong> some parts <strong>of</strong> Central and<br />

Southern Sweden, Sver. Geol. Unders. , Ser. C 653, 1970. Proefschrift,<br />

Utrecht.<br />

Pannekoek , A. (1926) - lonisation Equilibrium <strong>in</strong> SteUar Atmospheres and <strong>in</strong><br />

the Earth's Atmosphere. Proc. Roy. Acad. Amsterdam, 29,1165-1171.<br />

Pol, Balth. van der (1920) - De <strong>in</strong>vloed van een geïoniseerd gas op het voortschrijden<br />

van electromagnetische golven, enz. Proefschrift, Utrecht.<br />

Poorter, R.P.E. (1976) - Paleomagnetism <strong>of</strong> Precambrian rocks from Norway<br />

and Sweden. Proefschrift, Utrecht.<br />

Pr<strong>in</strong>s, J .A. (1933) - Latitude effect <strong>of</strong> Cosmic Radiation. Nature, 132, 781.<br />

Rijckevorsel, E. van (1879) - Magnetische opnem<strong>in</strong>g van den Indischen Archipel,<br />

1874-1877. Kon. Ned. Akad. van Wet., Amsterdam.<br />

Rijckevorsel, E. van, and E. Engelenburg (1890) - Magnetic Survey <strong>of</strong> the eastern<br />

part <strong>of</strong> Brasil 1880-1885. Kon. Ned. Akad. van Wet., Amsterdam.<br />

Rijckevorsel, E. van (1895) - A magnetic survey <strong>of</strong> the <strong>Netherlands</strong> for the<br />

epoch January 1, 1891. Nieuwe Verhandel<strong>in</strong>gen van het Bataafse Genootschap<br />

der Proefonderv<strong>in</strong>delijke Wijsbegeerte, Rotterdam.<br />

Rijckevorsel, E. van, en W. van Bemmelen (1899) - Magnetische Beobachtungen<br />

<strong>in</strong> der Schweiz. K.N.M.I., De Bilt.<br />

Rutten, K.W. (1975) - Two-dimensionality <strong>of</strong> magnetic anomalies over Iceland<br />

and Reykjanes Ridge. Mar<strong>in</strong>e Geoph. Res., 2, 243-263,1975. Proefschrift,<br />

Utrecht.<br />

Rutten, M.G. and J.C. den Boer (1954) - Inversion de l'aimantation dans les<br />

basaltes d u Co iron (Ardèche). C. R. de la Société Géologiq ue de France,<br />

no. 5,106-107,1954.<br />

Sabben, D. van (1961) - lonospheric current systems <strong>of</strong> ten l.G. Y .-solar flare<br />

effects. Journ. Atm. Terr. Phys. 22, 32-42,1961.<br />

Sabben, D. van (1962) - lonospheric current systems caused by non-periodic<br />

w<strong>in</strong>ds. Journ. Atm. Terr. Phys. 24, 959-974,1962.<br />

Sabben, D. van (1964) - North-South asymmetry <strong>of</strong> Sq. Journ. Atm. Terr.<br />

Phys., 26, 1187-1195.<br />

50


Sabben, D. van (1966) - Magnetospheric currents, associated with the N-S<br />

asymmetry <strong>of</strong> Sq. Journ. A tm. Terr. Phys., 28, 965 - 981. See also: Errata­<br />

Journ. Atm. Terr. Phys., 30, 327-329,1968.<br />

Sabben, D. van (1968) - Solar nare effects and simultaneous magnetic daily<br />

variations, 1959-1961. Journ. Atm. Terr. Phys., 30, 1641-1648, 1968.<br />

Sabben, D. van (1969) - <strong>The</strong> computation <strong>of</strong> magnetospheric currents caused<br />

by dynamo action <strong>in</strong> the ionosphere. Journ. Atm. Terr. Phys., 31, 469-<br />

474, 1969.<br />

Sabben, D. van (1970) - Solstitia I Sq -currents through the magnetosphere.<br />

Journ. Atm. Terr. Phys., 32,1331-1336,1970.<br />

Scholte, J.G.J. and -J. Veldkamp (1955) - Geomagnetic and Geoelectric variations.<br />

Journ. Atm. Terr. Phys., 6, 33-45,1955.<br />

Scholte, J.G.J. (1960) - On the theory <strong>of</strong> giant pulsations. Journ. Atm. Terr.<br />

Phys., 17, 325-336, 1960.<br />

Schouten, J . A. (1970) - A fundamental analysis <strong>of</strong> magnetic anomalies over<br />

ocean ridges. Mar<strong>in</strong>e Geophys. Res., 1, 111-144, 1971. Proefschrift,<br />

Utrecht, 1970.<br />

Schouten, J.A., B.J. Collette, K.W. Rutten (1971) - Magnetic anomaly symmetry<br />

<strong>in</strong> the Bay <strong>of</strong> Biscay. Histoire Structurale du Golfe de Gascogne , VI. 13,<br />

Paris, 1971.<br />

Schwarz, E.J. (1963) - A paleomagnetic <strong>in</strong>vestigation <strong>of</strong> Permo-Triassic redbeds<br />

and andesites from the Spanish Pyrenees. Journ. Geophys. Res. 68,<br />

3265-3271, 1963.<br />

Twigt, W., B.J. Collette and A.P. Slootweg (1979) - Topography and magnetic<br />

analysis <strong>of</strong> an area southeast <strong>of</strong> the Azores. Mar<strong>in</strong>e Geophys. Res., 4,<br />

91-104, 1979.<br />

Veldkamp , J. (1951) - <strong>The</strong> geomagnetic field <strong>of</strong> the <strong>Netherlands</strong> , reduced to<br />

1945,0. Mededel<strong>in</strong>gen en Verhandel<strong>in</strong>gen K.N.M.I., no. 134.<br />

Veldkamp , J. and J.G.J. Scholte (1954) - Some remarks on the Equatorial<br />

Electrojet, as revealed by the analysis <strong>of</strong> solar flare effects . Indian Journ.<br />

<strong>of</strong> Meteor. and Geophysics, 5, 203-212,1954.<br />

Veldkamp, J. and J . G.J. Scholte (1954a) - Magnetische dubbele brek<strong>in</strong>g <strong>in</strong> de<br />

ionosfeer. Gedenkboek K.N.M.I., 430-442, 1954.<br />

Veldkamp, J. and D. van Sabben (1960) - On the current system <strong>of</strong> solar flare<br />

effects. Symposium on rapid magnetic variations, I.A.G.A., Utrecht, 1959.<br />

Journ. Atm. Terr. Phys., 18, 192-202, 1960.<br />

Veldkamp, J. (1960) - A giant geomagnetic pulsation. Journ. Atm. Terr. Physics,<br />

17, 320-324,1960.<br />

Veld kamp , J. and H.J.A. Vesseur (1967) - Geomagnetic anomalies <strong>in</strong> the western<br />

part <strong>of</strong> the cont<strong>in</strong>ental shelf <strong>of</strong> Sur<strong>in</strong>am. Hydrographic Newsletter,<br />

Spec. Publ., 5, 1967.<br />

Veld kamp , J. and H.J.A. Vesseur (1971) - Geomagnetic anomalies <strong>in</strong> the cont<strong>in</strong>ental<br />

shelf <strong>of</strong> Sur<strong>in</strong>am. Hydrographic Newsletter, Spec. Publ. 6,1971.<br />

Veld kamp , J., F.G. Mulder and J.D.A. Zijderveld (1971) - Paleomagnetism <strong>of</strong><br />

Sur<strong>in</strong>ame dolerites. Phys. Earth and Planet. Interiors, 4, 370-380, 1971.<br />

51


Veldkamp, J. (1974) - Ge<strong>of</strong>ysica. Aula Paperback 20, Het Spectrum, Utrecht.<br />

Vesseur, H.J.A. (1970) - A correlation apparatus for the measurement <strong>of</strong> the<br />

drift <strong>in</strong> the ionosphere by the spaced receiver method. Journ. A tm. Terr.<br />

Physics, 32, 829-835,1970.<br />

Vesseur, H.J.A. (1972) - Results <strong>of</strong> E-Iayer drift measurements at De Bilt.<br />

Phil. Trans. Royal Soc. London, A 271, 485-497,1972.<br />

Vesseur, H.J.A. (1974) - Radioverb<strong>in</strong>d<strong>in</strong>gen via de ionosfeer. Nautisch Technisch<br />

Tijdschrift "De Zee", juni, 1974.<br />

Vesseur, H.J.A. (1977) - Ionosfeeronderzoek op het K.N.M. I. Nederl. Tijdschrift<br />

voor Natuurkunde, A 43,128-134.1977.<br />

Visser, S. W. (1925) - Isomagnetics for the <strong>Netherlands</strong> East Indian Archipelago,<br />

Epoch 1925,0. Verh. Kon. Magn. Obs. te Batavia, Nr. 13, 1925.<br />

Voo, R. van der (1968) - Paleomagnetism and the Alp<strong>in</strong>e tectonics <strong>of</strong> Eurasia,<br />

part IV. Jurassic , Cretaceous and Eocene po Ie positions from NE Turkey.<br />

Tectonophysics, 6, 251-269, 1968.<br />

Voo, R. van der, and J.D.A. Zijderveld (1969) - Paleomagnetism <strong>in</strong> the Western<br />

Mediterranean area. Verh. Kon. Ned. Geol. Mijnb. Gen., Vol. XXVI, 121-138,<br />

1969.<br />

Voo, R. van der (1969) - Paleomagnetic evidence for the rotation <strong>of</strong> the Iberian<br />

Pen<strong>in</strong>suia . Proefschrift, Utrecht.<br />

Voo, R. van der, and C. T . Klootwijk (1972) - Paleomagnetic reconnaissance<br />

study <strong>of</strong> the Flamanville granite, with special reference to the anisotropy<br />

<strong>of</strong> its susceptibility. Geologie en Mijnbouw 51, 609-617,1972.<br />

Voo, R. van der, and A. Boessenkooi (1973) - Permian paleomagnetic result<br />

from the Western Pyrenees del<strong>in</strong>eat<strong>in</strong>g the Plate Boundary bet ween the<br />

Iberian Pen<strong>in</strong>suia and Stabie Europe. Journ. Geophys. Res., 78, 5118-<br />

5127, 1973.<br />

Wens<strong>in</strong>k, H. (1964a) - Paleomagnetic stratigraphy <strong>of</strong> younger basalts and <strong>in</strong>tercalated<br />

Plio-Pleistocene tillites <strong>in</strong> Iceland. Geol. Rundscha u, 54, 364-<br />

385, 1964.<br />

Wens<strong>in</strong>k, H. (1964b) - Secular variation <strong>of</strong> earth's magnetism <strong>in</strong> Plio-Pleistocene<br />

basalts <strong>of</strong> eastern Iceland. Geol. en Mijnb. , 43. 403-413,1964.<br />

Wens<strong>in</strong>k, H. and C. T . Klootwijk (1968) - <strong>The</strong> paleomagnetism <strong>of</strong> the Talchir<br />

series <strong>of</strong> the Lower Gondwana system, Central India. Earth and Plan. Sc.<br />

Lett., 4, 191-196.<br />

Wens<strong>in</strong>k, H. and C. T . Klootwijk (1971) - Paleomagnetism <strong>of</strong> the Deccan Traps<br />

<strong>in</strong> the Western Ghats near Poona, India. Tectonophysics, 11, 175-190, 1971.<br />

Zijderveld, J.D.A. (1967) - AC demagnetisation <strong>of</strong> rocks: analysis <strong>of</strong> results.<br />

In: Methods <strong>in</strong> Paleomagnetic <strong>Research</strong> (1967), 254-286, Elsevier, Amsterdam.<br />

Zijderveld, J.D.A. (1967) - <strong>The</strong> natural remanent magnetization <strong>of</strong> the Exeter<br />

volcanic traps (Permian, Europe). Tectonophysics, 4,121-153.1967.<br />

Zijderveld , J . D. A. (1968) - Natural remanent magnetization <strong>of</strong> some <strong>in</strong>trusive<br />

rocks from the S


Zijderveld, J.D.A. and R. van der Voo (1973) - Paleomagnetism <strong>in</strong> the Mediterranean<br />

Area. In: Implications <strong>of</strong> Cont<strong>in</strong>ental Drift to the Earth Sciences,<br />

Vol. 1, 133-161, New York, Academie Press, 1973.<br />

Zijderveld, J.D.A. (1975) - Paleomagnetism <strong>of</strong> the Esterel rocks. Proefschrift,<br />

Utrecht.<br />

Zijderveld, J .D.A., G.J.A. Hazeu, M. Nard<strong>in</strong> and R. van der Voo (1970) -<br />

Shear <strong>in</strong> the Tethys and the Permian paleomagnetism <strong>in</strong> the Southern Alps,<br />

<strong>in</strong>clud<strong>in</strong>g new results . Tectonophysics, 10, 639-661.<br />

53


Figure 25. Bosch horizontal seismographs . <strong>The</strong> seismometers are at the left. One <strong>of</strong><br />

the drums hold<strong>in</strong>g the record<strong>in</strong>g paper on the right. <strong>in</strong> front <strong>of</strong> G. van Dijk. first<br />

director <strong>of</strong> the Geomagnetism and Seismology Division <strong>of</strong> the KNMI . <strong>The</strong> horizontal<br />

component <strong>of</strong> ground motion is magnified by a factor <strong>of</strong> 20 by these seismographs .<br />

(Photo Haagsch Illustratie- en Persbureau . Amsterdam.)


CHAPTER 11<br />

Seismological <strong>Research</strong><br />

11.1. SEISMOLOGICAL INSTRUMENTATION<br />

Although the <strong>Netherlands</strong> belong to the countries with a very low seismicity,<br />

seismographs were <strong>in</strong>stalled <strong>in</strong> the cellar <strong>of</strong> the KNMI (Royal <strong>Netherlands</strong><br />

Meteorological Institute) at De Bilt af ter the establishment (<strong>in</strong> 1854) <strong>of</strong> the Institute<br />

(see: Gedenkboek, 1954). Interest <strong>in</strong> seismology was aroused by the<br />

scientific successes <strong>of</strong> German geophysicists <strong>in</strong> the <strong>in</strong>terpretation <strong>of</strong> earthquake<br />

records. Moreover the daily care <strong>of</strong> the <strong>in</strong>struments and collect<strong>in</strong>g <strong>of</strong> record<strong>in</strong>gs<br />

<strong>of</strong> ground vibrations fitted quite weil <strong>in</strong>to the regular work<strong>in</strong>g method <strong>of</strong><br />

the Meteorological Institute, namely the collection <strong>of</strong> meteorological data ona<br />

cont<strong>in</strong>uous basis.<br />

<strong>The</strong> first seismographs that were operated at the KNMI (<strong>in</strong> 1904) we re two<br />

light pendulums af ter Von Rebeur Paschwitz. <strong>The</strong>ir magnification was so small<br />

however that the records were only seldom usabie. In 1908 <strong>in</strong>struments were<br />

bought which produced a higher magnification <strong>of</strong> ground movements : two horizontal<br />

Bosch pendulums and an astatic Wiechert seismograph. <strong>The</strong>se seismographs<br />

are now among the museum pieces, which are still successfully demonstrated<br />

to visitors.<br />

In 1912 two horizontal Galitz<strong>in</strong> seismographs with galvanometric record<strong>in</strong>g<br />

were purchased. A vertical seismograph was <strong>in</strong>stalled <strong>in</strong> 1922. <strong>The</strong> purchase<br />

<strong>of</strong> this <strong>in</strong>strument was not without difficulties. <strong>The</strong> <strong>in</strong>strument maker, who<br />

used to construct seismographs for Pr<strong>in</strong>ce Galitz<strong>in</strong>, had emigrated from Petersburg<br />

to Dorpat (Estland) because <strong>of</strong> the revolution , and it took much time and<br />

effort to discover his address. <strong>The</strong> three Galitz<strong>in</strong> seismographs still make up a<br />

set <strong>of</strong> valuable <strong>in</strong>struments, especially suited for record<strong>in</strong>g earthquakes at great<br />

distances, because <strong>of</strong> their large eigenperiods.<br />

A Grenet seismograph was purchased <strong>in</strong> 1949 for record<strong>in</strong>g vibrations with<br />

shorter periods. Because <strong>of</strong> vibrations due to traffic, it turned out to be impossible<br />

to set up this very sensitive seismograph <strong>in</strong> the KNMI. <strong>The</strong> geomagnetic<br />

observatory at Witteveen proved to be a much better place, although not<br />

yet ideal. <strong>The</strong> Grenet seismograph, because <strong>of</strong> its high magnification at a period<br />

<strong>of</strong> about one second, turned out to be especially suitable for record<strong>in</strong>g seismic<br />

waves that have crossed the earth 's core.<br />

A further enlargement <strong>of</strong> the collection <strong>of</strong> seismographs came <strong>in</strong> 1966, when<br />

a set <strong>of</strong> Press-Ew<strong>in</strong>g seismographs was <strong>in</strong>stalled <strong>in</strong> the seismograph build<strong>in</strong>g<br />

at De Bilt. <strong>The</strong>se <strong>in</strong>struments have a much broader spectrum <strong>of</strong> magnification<br />

than the Galitz<strong>in</strong> seismographs; they are even able to record the very long<br />

55


Figure 26. Press-Ew<strong>in</strong>g seismometers. At the left and middle the seismometers for<br />

horizontal movements , at the right the seismometer for vertieal ground movements .<br />

Maximum magnifieation about 1000. Record<strong>in</strong>g system not shown.


11.2.1. Work <strong>of</strong> J.G.J. Sc holte<br />

J.G.J. Scholte, who worked at the KNMI as a seismologist from 1950 to 1970<br />

and who was at the same time pr<strong>of</strong>essor <strong>of</strong> general geophysics at Utrecht University<br />

from 1957 to 1970, made a number <strong>of</strong> contributions to theoretical seismology.<br />

A very important one deals with the properties <strong>of</strong> seismie waves <strong>in</strong> a<br />

spherical earth (Scho/te, 1956). Radiat<strong>in</strong>g from a po<strong>in</strong>t souree as a model <strong>of</strong> an<br />

earthquake, the waves propagate and are reflected from and refracted at the<br />

boundary between the solid mantle and the liquid co re and also are reflected<br />

from the earth 's surface . <strong>The</strong> refIected and refracted waves appear <strong>in</strong> the mathematical<br />

treatment as <strong>in</strong>f<strong>in</strong>ite series <strong>of</strong> spherical waves, which can be transformed<br />

<strong>in</strong>to <strong>in</strong>tegrals . <strong>The</strong> <strong>in</strong>tegrals are then evaluated by the saddle-po<strong>in</strong>t<br />

method.<br />

Scholte also developed a method for determ<strong>in</strong><strong>in</strong>g the propagation <strong>of</strong> a wave<br />

<strong>of</strong> arbitrary shape through an <strong>in</strong>homogeneous medium <strong>in</strong> which both density<br />

and velocity change with depth accord<strong>in</strong>g to an arbitrary cont<strong>in</strong>uous function.<br />

<strong>The</strong> solution is obta<strong>in</strong>ed by . successive approximations (Scholte , 1961). A further<br />

paper deals with the propagation <strong>of</strong> plane waves travell<strong>in</strong>g <strong>in</strong> an arbitrary<br />

direction through a medium, the elastic parameters and density <strong>of</strong> which are a<br />

function <strong>of</strong> the vertical coord<strong>in</strong>ate (Scholte , 1962).<br />

Scho/te (1958) also wrote a treatise on Rayleigh waves <strong>in</strong> elastic media. Af ter<br />

an exposition <strong>of</strong> the classical theory, it was extended to the case <strong>of</strong> a horizontally<br />

isotropie medium, followed by a discussion <strong>of</strong> the Rayleigh equation for different<br />

classes <strong>of</strong> crystals. An extension <strong>of</strong> the method used enabled Scholte to derive<br />

the Stonely wave equation for the wave travell<strong>in</strong>g along the boundary bet ween<br />

two media.<br />

<strong>The</strong> thesis <strong>of</strong> H.J. van Veen on the laser seismometer (1969) was written under<br />

supervision <strong>of</strong> Scholte , while I. Csikós <strong>in</strong> his thesis dealt with the theory<br />

<strong>of</strong> the electromagnetic seismograph (1975a).<br />

11.2.2. <strong>Research</strong> by N.J. V/aar and co-workers<br />

After Scholte's death <strong>in</strong> 1970, N.J. Vlaar was appo<strong>in</strong>ted his successor at<br />

Utrecht University <strong>in</strong> 1973. Af ter obta<strong>in</strong><strong>in</strong>g hls doctor's degree <strong>in</strong> 1963, Vlaar<br />

had studied the excitation <strong>of</strong> a seismie pulse <strong>in</strong> a semi-<strong>in</strong>f<strong>in</strong>ite medium, as weIl<br />

as <strong>in</strong> a cont<strong>in</strong>uously layered <strong>in</strong>homogeneous elastic medium (V/aar, 1964, 1966a,<br />

1966b). He also <strong>in</strong>vestigated the propagation <strong>of</strong> seismic waves <strong>in</strong> an anisotropic<br />

<strong>in</strong>homogeneous earth (V/aar, 1968 and 1969). He <strong>in</strong>troduced a development <strong>of</strong><br />

the function <strong>of</strong> Green (a solution <strong>of</strong> the wave equation) <strong>in</strong> eigenfunctions , which<br />

can be <strong>in</strong>terpreted as norm al modes <strong>of</strong> the earth (Vlaar, 1976).<br />

Meanwhile Vlaar had formed a group at the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory to<br />

study theoretical seismology and its applications . Contacts with the American­<br />

Norwegian seismograph array NORSAR (near Hamar) resulted <strong>in</strong> a number <strong>of</strong><br />

scientific papers. D. J. Doornbos and E. S. Huseby (1972) <strong>in</strong>vestigated the array<br />

analysis <strong>of</strong> PKP phases and their precursors. Array analysis <strong>of</strong> core phases<br />

was the subject <strong>of</strong> a thesis (Doornbos, 1974a) about the properties and structure<br />

<strong>of</strong> the earth and about the diffusion and damp<strong>in</strong>g <strong>of</strong> waves that pass through<br />

Figure 27. Top: three-component long-period seismograms <strong>of</strong> an earthquake <strong>in</strong> the<br />

North Anatolian fault zone as recorded at De Bilt on 3 September 1968. Bottom: radiation<br />

pattern <strong>of</strong> compressions and dilatations (shown by the short arrows) caused<br />

by dextral block fault<strong>in</strong>g at the hypocentre (lower right) and the direction <strong>of</strong> <strong>in</strong>itial<br />

P horizontal motion at De Bilt (upper left) , dilatation to the southeast.<br />

59


It became clear that surface wave analysis is an excellent method for <strong>in</strong>vestigat<strong>in</strong>g<br />

marg<strong>in</strong>s <strong>of</strong> cont<strong>in</strong>ental plates (Nolet, Panza and Wortel, 1978). A further<br />

paper on higher mode data <strong>in</strong> Western Europe and Northern Eurasia was published<br />

by M. Cara, A. Nercessian and G. Nolet (1980).<br />

J. C. Mondt (1977a and 1977b) returned <strong>in</strong> his thesis (1977b) to the problem<br />

already broached by Scholte , viz. the diffraction <strong>of</strong> seismic waves <strong>in</strong> the transition<br />

zone between the earth's mantle and core. Based on theoretical models<br />

<strong>of</strong> the mantle and core he calculated the wave potentials and from these the<br />

amplitudes <strong>of</strong> the diffracted waves. <strong>The</strong> results were worked through further<br />

by Doornbos and Mondt (19798 and 1979b).<br />

Stimulated by the grow<strong>in</strong>g number <strong>of</strong> observations <strong>of</strong> free vibrations <strong>of</strong> the<br />

earth, Vlaar (1976) published a paper on the excitation <strong>of</strong> these vibrations, <strong>in</strong><br />

which he ceased us<strong>in</strong>g the model <strong>of</strong> a po<strong>in</strong>t source. An earthquake can be caused<br />

by a dislocation (block fault<strong>in</strong>g) but also by a sudden change <strong>of</strong> volume (implosion<br />

by phase transition) . This gave rise to a further study <strong>of</strong> gravity effects<br />

<strong>of</strong> a volume source (Vlaar and Wortel, 1978). Doornbos (1977) wrote an<br />

article on the excitation <strong>of</strong> normal modes by an implosion . <strong>The</strong> distribution <strong>of</strong><br />

energy among the various higher modes <strong>of</strong> the free vibrations <strong>of</strong> the earth<br />

caused by an implosion differs from that caused by block fault<strong>in</strong>g.<br />

After a certa<strong>in</strong> stabilization <strong>of</strong> the seismological research, the theoretical<br />

geophysics group at the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory at Utrecht started study<strong>in</strong>g<br />

tectonophysical problems under Vlaar's leadership . This was <strong>in</strong>duced by<br />

an hypothesis advanced by Vlaar (1975) stat<strong>in</strong>g that the <strong>in</strong>creas<strong>in</strong>g gravitational<br />

<strong>in</strong>stability <strong>of</strong> the age<strong>in</strong>g and cool<strong>in</strong>g oceanic lithosphere-upper mantle<br />

system should play an important role <strong>in</strong> plate tectonics. This idea was further<br />

developed <strong>in</strong> a paper by Vlaar and Wortel (1976) and <strong>in</strong> M. J. R. Wortel's thesis<br />

(1980). Wortel and Vlaar (1978) and P. England and Wortel (1980) elaborated<br />

on the same theme with applications associated with the South American subduction<br />

zone. <strong>The</strong> rheological properties and vertical velocity <strong>of</strong> the s<strong>in</strong>k<strong>in</strong>g<br />

lithosphere are determ<strong>in</strong>ed by age. If one takes this age dependence <strong>in</strong>to account,<br />

the differences between various zones <strong>of</strong> subduction can be expla<strong>in</strong>ed.<br />

<strong>The</strong> stress fields <strong>in</strong> the zones <strong>of</strong> subduction can be calculated. <strong>The</strong> creation<br />

<strong>of</strong> tension zones with volcanism then becomes understandable, just as does the<br />

appearance <strong>of</strong> earthq uakes at other places.<br />

<strong>The</strong> seismological-geotectonic research <strong>in</strong> the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory is<br />

cont<strong>in</strong>u<strong>in</strong>g. In the ne ar future a <strong>Netherlands</strong> Network <strong>of</strong> Automatically Record<strong>in</strong>g<br />

Stations (NARS-project) will be set up, with f<strong>in</strong>ancial aid from the <strong>Netherlands</strong><br />

Organization for the Advancement <strong>of</strong> Pure <strong>Research</strong> (ZWO) and from the<br />

European Science Foundation (ESF), <strong>in</strong> order to have available a homogeneous<br />

collection <strong>of</strong> seismograph data, suitable for the <strong>in</strong>vestigation <strong>of</strong> the higher modes<br />

<strong>of</strong> surface waves (Vlaar and Nolet, 1979).<br />

II.3. EARTHQUAKE MECHANISMS<br />

Several <strong>Netherlands</strong> seismologists have shown a special <strong>in</strong>terest <strong>in</strong> research<br />

<strong>in</strong>to the mechanism responsible for the emission <strong>of</strong> seismic waves from the focus<br />

<strong>of</strong> an earthquake. L. P. G. Kon<strong>in</strong>g (1941 and 1942) was the first to tackle this<br />

problem. In his thesis he came to the conclusion that the model <strong>of</strong> an earthq<br />

uake mechanism, <strong>in</strong> which the first onsets <strong>of</strong> the P waves are divided - as<br />

compressions and dilatations - <strong>in</strong>to a system <strong>of</strong> quadrants <strong>in</strong> the hypocentre,<br />

was suitable for the earthquakes studied by him.<br />

A system <strong>of</strong> four quadrants <strong>of</strong> compressional and dilatational waves must appear,<br />

if the earthquake is due to a sudden relative displacement <strong>of</strong> two blocks<br />

61


along a fault. Block fault<strong>in</strong>g can be expected when the earth's crust or mantle<br />

yields locally to a gradually <strong>in</strong>creas<strong>in</strong>g stress. Indeed, such displacements ,<br />

horizontal or vertical, can sometimes be obèerved at the surface <strong>of</strong> the earth<br />

af ter a large shallow earthquake. <strong>The</strong> problem is, however, that the seismic<br />

rays undergo considerable changes <strong>of</strong> direction <strong>in</strong> travell<strong>in</strong>g through the <strong>in</strong>terior<br />

<strong>of</strong> the earth. As a consequence, the boundaries bet ween compressions<br />

and dilatations plotted on the earth 's surface , are deformed <strong>in</strong>to irregularly<br />

bent surfaces , and it is difficult to f<strong>in</strong>d them.<br />

11.3. 1. <strong>Research</strong> by A . R. Ritsema and others<br />

Af ter Kon<strong>in</strong>g, research <strong>in</strong>to earthquake mechanisms was cont<strong>in</strong>ued and extended<br />

by A. R. Ritserna , who worked at the Meteorological and <strong>Geophysical</strong><br />

Institute (Lembaga Meteorologi dan Ge<strong>of</strong>isik) <strong>of</strong> Indonesia at Jakarta from 1952<br />

until1958, and at the KNMI s<strong>in</strong>ce then. Ritserna <strong>in</strong>troduced an important improvement<br />

<strong>in</strong>to the method <strong>of</strong> research by br<strong>in</strong>g<strong>in</strong>g the observed compressions and<br />

dilatations back to the vic<strong>in</strong>ity <strong>of</strong> the hypocentre. This amounts to project<strong>in</strong>g<br />

the seismograph stations on a small constant-velocity sphere cent red at the<br />

focus <strong>of</strong> the earthquake. On this sp here the quadrants <strong>of</strong> compression and dilatation<br />

are separated by great circles , which <strong>in</strong>terseet perpendicularly.<br />

In his thesis (1952) Ritsema <strong>in</strong>troduced a stereographic representation <strong>of</strong> the<br />

focal sphere , so that the separation <strong>of</strong> compressions from dilatations (first arrivals<br />

<strong>of</strong> pressure- and tension-waves) could be constructed easily <strong>in</strong> case <strong>of</strong><br />

a sufficient number <strong>of</strong> seismograph stations . A further extension <strong>of</strong> this research<br />

became possible by study<strong>in</strong>g compound patterns <strong>of</strong> compressions and<br />

dilatations <strong>of</strong> more earthquakes <strong>in</strong> a certa<strong>in</strong> region (Ritsema, 1954). He used<br />

for the first time <strong>in</strong>itial arrivals <strong>of</strong> S waves to supplement the study <strong>of</strong> P waves<br />

o 10· 2(1' 3(f' 40· 50· 6(f' 70· 8(f' 90· 100· 110· 120· 130· 140· 150· 160· 170· 180·<br />

320· 310· 300' 290' 28(f' 270' 260' 25(f' 240' 23r:t' 220' 210· 200· 190' 180·<br />

Figure 29. Graphs for calculat<strong>in</strong>g the angles (on vertieal seale) at which seismie<br />

waves leave the foeus <strong>of</strong> an earthquake, to emerge at a seismograph station (distanee<br />

between epieentre and station on horizontal seale) . See : Ritsema, 1958. Assumed<br />

depth <strong>of</strong> foeus 600 km.<br />

62


(Ritsema, 1957). In order to facilitate projection <strong>of</strong> seismograph observatories<br />

on the focal sphere he calculated standard curves which are useable for all<br />

epicentral distances and possible depths <strong>of</strong> the hypocentre (Ritsema, 1958).<br />

A theoretical model <strong>of</strong> an earthquake focus with a f<strong>in</strong>ite volume (<strong>in</strong>stead <strong>of</strong><br />

a po<strong>in</strong>t source) was drafted <strong>in</strong> cooperation with Scholte (1962a), and the partition<br />

<strong>of</strong> compressions and dilatations calculated and compared with observations<br />

(Ritsema, 1962). Scholte himself (1962b) also wrote a paper on the problem <strong>of</strong><br />

focal mechanisms bf earthquakes. An improvement <strong>of</strong> Scholte's model was accomplished<br />

by Csik6s (1975b).<br />

11.3.2. Work <strong>of</strong> J.A. Steketee<br />

At the request <strong>of</strong> J. Tuzo Wilson, pr<strong>of</strong>essor <strong>of</strong> geophysics at the University<br />

<strong>of</strong> Toronto, J. A. Steketee who had graduated <strong>in</strong> aerodynamics from the University<br />

<strong>of</strong> Technology (TH) at Delft, began a study <strong>of</strong> some geophysical problems<br />

<strong>in</strong> 1955. Steketee was successively lecturer and assistent pr<strong>of</strong>essor <strong>in</strong><br />

applied mathematics at the University <strong>of</strong> Toronto from 1950 to 1960; then he<br />

returned to Delft, where he became pr<strong>of</strong>essor <strong>of</strong> aerodynamics <strong>in</strong> 1960.<br />

In his first papers on fractures <strong>in</strong> the earth's crust (195& and 1958b) Steketee<br />

suggested that Volterra's theory <strong>of</strong> dislocations might be a proper tooI<br />

for a quantitative description <strong>of</strong> fracture zones <strong>in</strong> the crust. <strong>The</strong> term "elasticity<br />

theory <strong>of</strong> dislocations" (ETD) was <strong>in</strong>troduced as an appropriate means<br />

to denote a special part <strong>of</strong> the classical theory <strong>of</strong> elasticity. Bya careful analy'sis<br />

<strong>of</strong> the kernels <strong>in</strong> the representation theorem <strong>of</strong> Betti-Somigliana, Steketee<br />

identified elastic dislocations as surface distributions <strong>of</strong> double coup les <strong>in</strong> the<br />

static case. Elastic dislocations were observed from the 1906 San Francisco earthquake<br />

(largest at faultbreak and decreas<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g distance from it).<br />

In the ETD the earth is considered as a semi-<strong>in</strong>f<strong>in</strong>ite elastic medium with a<br />

stress free surface . <strong>The</strong> displacement field, caused by a stress pattern, is discussed,<br />

and an attempt is made to relate some simple cases <strong>in</strong> the ETD to certa<strong>in</strong><br />

geophysical features. Together with two graduate students Steketee applied<br />

ETD to calculations on a model <strong>of</strong> the 1906 San Francisco earthquake and two<br />

Japanese earthquakes.<br />

In some further papers Steketee (1974, 1975 and 1976) used a time dependent<br />

ETD, which can be applied to geophysics. Prescrib<strong>in</strong>g an earthquake mechanism<br />

(e. g. a double coup Ie at a mov<strong>in</strong>g focus) one could calculate, at least <strong>in</strong> pr<strong>in</strong>ciple,<br />

the displacement field and the waves emitted. <strong>The</strong> result can be compared<br />

with experimental data.<br />

11.3.3. Results <strong>of</strong> research <strong>in</strong> earthquake mechanisms<br />

Earthquake mechanisms yield <strong>in</strong>formation about stresses <strong>in</strong> the crust and<br />

mantle <strong>in</strong> regions where earthquakes occur. Stress fields have become <strong>of</strong> great<br />

importance <strong>in</strong> the theory <strong>of</strong> plate tectonics. <strong>The</strong> directions <strong>of</strong> maximum and<br />

m<strong>in</strong>imum stresses <strong>in</strong> the rocks at the hypocentre <strong>of</strong> an earthquake, which are<br />

calculated from the partition <strong>of</strong> compressions and dilatations , can be related<br />

directly to stresses <strong>in</strong> the plates <strong>of</strong> the lithosphere. <strong>Research</strong> <strong>in</strong>to mechanisms<br />

<strong>of</strong> a number <strong>of</strong> earthquakes <strong>in</strong> a seismic region (which mostly co<strong>in</strong>cides with a<br />

border zone between pla.tes) can give <strong>in</strong>dications about recent movements <strong>of</strong><br />

the plates.<br />

IJ. 3. 3.1. Southeast Asia and H<strong>in</strong>du Kush<br />

After some <strong>in</strong>dividual papers by both authors <strong>in</strong> earlier years, a summariz<strong>in</strong>g<br />

63


<strong>of</strong> the Anatolian-Aegean block with respect to Eurasia and Africa, and a westeast<br />

extension <strong>of</strong> the western Mediterranean bas<strong>in</strong> with respect to North Africa<br />

and the Italian Pen<strong>in</strong>suia . Dextral strike-slip fault movements occur <strong>in</strong> a zone<br />

extend<strong>in</strong>g from the Azores through Africa to North Anatolia. S<strong>in</strong>istral fault<br />

movements are observed <strong>in</strong> the Balkans and the region <strong>of</strong> the Red Sea.<br />

In comb<strong>in</strong><strong>in</strong>g these phenomena, it appears that the western part <strong>of</strong> the Mediterranean<br />

shifts to the east, with the Calabrian Arc slid<strong>in</strong>g over the Ionian Sea<br />

<strong>in</strong> an east-southeast direction. This is the cause <strong>of</strong> the deep Tyrrhenian subduction<br />

zone, with earthquakes down to 500 km and a compressive stress <strong>in</strong> the<br />

dip direction <strong>of</strong> the zone. <strong>The</strong> eastern part <strong>of</strong> the Mediterranean moves to the<br />

west, bet ween the North Anatolian zone and the Red Sea Rift. <strong>The</strong> Aegean Sea<br />

region is a down-rifted subsid<strong>in</strong>g zone, fr<strong>in</strong>ged by the subduction zone <strong>of</strong> the<br />

Hellenic Arc.<br />

<strong>The</strong> relative movement <strong>of</strong> the Aegean-Anatolian block with respect to that <strong>of</strong><br />

the Ionian Sea is a subduction <strong>of</strong> the latter <strong>in</strong> a general SW to NE direction .<br />

Intermediate focus earthquakes occur <strong>in</strong> the Aegean Sea to a depth <strong>of</strong> 170 km.<br />

<strong>The</strong> rare very deep earthquakes under South Spa<strong>in</strong> (at a depth <strong>of</strong> about 600<br />

km) do not have a generally accepted explanation.<br />

Earthquakes <strong>in</strong> the Tyrrhenian Sea <strong>in</strong>duced Ritsema (1972 and 1979) to a view<br />

on active and passive subduction. <strong>The</strong> crust below the Tyrrhenian Sea has been<br />

stretched and oceanized by the eastward drift <strong>of</strong> the Calabrian Arc. Volcanism<br />

appears bet ween the fragments <strong>of</strong> the orig<strong>in</strong>ally cont<strong>in</strong>ental crust. <strong>The</strong> Ionian<br />

block is stabie and must probably be considered as a part <strong>of</strong> Africa. <strong>The</strong> mechanisms<br />

<strong>of</strong> earthquakes <strong>in</strong> the Calabrian zone can best be expla<strong>in</strong>ed by passive<br />

subduction, that is to say an overthrust <strong>of</strong> the Tyrrhenian block over the African<br />

plate. <strong>The</strong> process <strong>of</strong> subduction <strong>in</strong> the Tyrrhenian Sea and <strong>in</strong> the Aegean<br />

Sea can be looked up on as the f<strong>in</strong>al phase <strong>of</strong> the disappearance <strong>of</strong> the former<br />

Tethys Sea, which was sqeezed bet ween Africa and Eurasia.<br />

Figure 31. <strong>The</strong> movement <strong>of</strong> lithospheric plates or blocks <strong>in</strong> the Mediterranean region.<br />

<strong>The</strong> eastern part <strong>of</strong> the Mediterranean Sea moves to the west, and the western<br />

part to the east. <strong>The</strong> Aegean Sea is a subduction zone (Ritsema, 1969a).<br />

65


II. 4.1. Seismicity <strong>of</strong> the Mediterranean region<br />

Seismicity <strong>in</strong> the eastern part <strong>of</strong> the Mediterranean Sea shows the remarkable<br />

phenomenon <strong>of</strong> travell<strong>in</strong>g epicentres. Series <strong>of</strong> earthquakes occur <strong>in</strong> the eastern<br />

part <strong>of</strong> the Mediterranean and along the Anatolian-Aegean block (Ritsema, 1975b).<br />

For <strong>in</strong>stance, after astrong earthquake <strong>in</strong> Anatolia sometimes series <strong>of</strong> shocks<br />

occur whose epicentres travel <strong>in</strong> a westerly direction with a velocity <strong>of</strong> more<br />

than 100 km/day. However, <strong>in</strong> general the ma<strong>in</strong> epicentres shift <strong>in</strong> the long run<br />

<strong>in</strong> a westerly direction along already exist<strong>in</strong>g fault planes, with a speed <strong>of</strong> less<br />

than 1 km/day.<br />

A. R. Ritsema and V. Karnik (1979) have published a review <strong>of</strong> catastrophic<br />

earthquakes <strong>in</strong> Europe. <strong>The</strong>y occur <strong>in</strong> a zone go<strong>in</strong>g from Lisbon/Agadir eastward<br />

to North Anatolia/Caucasus. Here more than 25000 deaths have occurred<br />

<strong>in</strong> the last 25 years. As regards the pros and cons <strong>of</strong> a warn<strong>in</strong>g service for<br />

earthquakes, Ritsema is <strong>of</strong> the op<strong>in</strong>ion that ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g good earthquake-resistant<br />

build<strong>in</strong>g regulations is better than publish<strong>in</strong>g predictions , s<strong>in</strong>ce reliable<br />

earthquake prediction is not yet possible.<br />

II. 4.2. Seismicity <strong>of</strong> the <strong>Netherlands</strong><br />

Weak <strong>in</strong>traplate earthquakes occur <strong>in</strong> the <strong>Netherlands</strong> <strong>in</strong> relation to mostly<br />

buried geological faults. <strong>The</strong> activity is greatest <strong>in</strong> South Limburg and decreases<br />

towards the north-west. Most epicentres are <strong>in</strong> the area <strong>of</strong> the Peelhorst,<br />

and especially <strong>in</strong> its south-westerly boundary, the Peelrand . Recently,<br />

levell<strong>in</strong>gs across the Peelrand fault demonstrated a cont<strong>in</strong>uous creep movement<br />

<strong>of</strong> the blocks along each other. Earthquakes occur when this creep movement<br />

stops (Ritsema, 1966b).<br />

Seismologists <strong>of</strong> the <strong>Netherlands</strong> , Belgium .and Northwest Germany drafted a<br />

seismicity map <strong>of</strong> Northwestern Europe (Ahorner, Flick, Van Gi/s, Houtgast and<br />

Ritsema, 1976). This study was <strong>in</strong>cluded <strong>in</strong> a report (Ritsema ed., 1976) <strong>of</strong> a<br />

symposium especially devoted to earthquake risks for nuclear power plants situated<br />

<strong>in</strong> Europe. Ritsema also has published a paper on the probabilities <strong>of</strong><br />

occurrence <strong>of</strong> earthquakes <strong>in</strong> the region <strong>of</strong> the North Sea (1980).<br />

H.5. NUCLEAR EXPLOSIONS<br />

Nuclear explosions (Ritsema, 1971, 1973, 1979 and 1980) radiate more energy<br />

<strong>in</strong> the higher frequences <strong>of</strong> P waves than do natural earthf]uakes. This is caused<br />

by the smaller source dimensions and smaller rise time <strong>in</strong> artificial explosions.<br />

<strong>The</strong> amplitude <strong>of</strong> the horizontal S waves is very smalI, less surface waves appear,<br />

and the first onset <strong>of</strong> the P waves is <strong>of</strong> course an omnidirectional compression<br />

. <strong>The</strong>se criteria among others must be used if one wishes to discrim<strong>in</strong>ate<br />

bet ween nuclear explosions and earthquakes. If it is the aim to reach a satisfactory<br />

control <strong>of</strong> experiments with nuclear weapons, then it will be necessary<br />

to arrange for a more homogeneous distribution <strong>of</strong> seismographs over the globe<br />

than at present is the case.<br />

II.6. SEISMOLOGICAL RESEARCH IN THE FORMER<br />

NETHERLANDS EAST INDIES<br />

Outside the <strong>Netherlands</strong> , seismological research was carried out by scientists<br />

from the <strong>Netherlands</strong> <strong>in</strong> the Royal Magnetic and Meteorological Observatory<br />

67


11.6.1. Instrumentation at the KMMO<br />

Already before 1898 some small primitive seismographs were used at the Observatory,<br />

which were able to record strong vibrations <strong>of</strong> the ground. <strong>The</strong><br />

seismological research began <strong>in</strong> 1898 (six years before record<strong>in</strong>g began at De<br />

Bilt), when a Milne seismograph was put <strong>in</strong>to operation ; it then became possible<br />

to check the reports <strong>of</strong> earthquakes that were frequently felt on the islands<br />

<strong>of</strong> the Archipelago. Seismographs , designed by the seismologist John Milne,<br />

were <strong>in</strong> use at many places <strong>in</strong> the British colonies , but they had only a low<br />

magnification (about 10 times).<br />

A great improvement was the purchase <strong>of</strong> a Wiechert horizontal seismograph<br />

<strong>of</strong> 1000 kg, which was <strong>in</strong>stalled by C. Braak <strong>in</strong> 1908. It now became possible<br />

to determ<strong>in</strong>e the epicentres <strong>of</strong> many earthquakes, even by us<strong>in</strong>g only the record<strong>in</strong>gs<br />

at Batavia. In 1911 a sm all Wiechert seismograph (100 kg) was set up<br />

at Malabar (about 100 km southeast <strong>of</strong> Jakarta). <strong>The</strong>' owner was K.A.R. Bosscha,<br />

adm<strong>in</strong>istrator <strong>of</strong> the famous Malabar tea plantation, who had a great <strong>in</strong>terest<br />

<strong>in</strong> scientific research.<br />

<strong>The</strong> seismograph collection at Batavia was augmented <strong>in</strong> 1928 by a vertical<br />

Wiechert seismograph <strong>of</strong> 1300 kg. As many strong earthquakes occur <strong>in</strong> the<br />

eastern part <strong>of</strong> the Archipelago and also earthquakes with a very deep focus,<br />

a large seismograph (1000 kg Wiechert horizontal) was <strong>in</strong>stalled <strong>in</strong> 1925 on the<br />

island <strong>of</strong> Ambon, south <strong>of</strong> Ceram. A smaller seismograph was put <strong>in</strong>to operation<br />

some years later near Medan (northeast coast <strong>of</strong> Sumatra) . <strong>The</strong> proper function<strong>in</strong>g<br />

<strong>of</strong> the seismographs on the islands outside Java took much care. Dur<strong>in</strong>g<br />

strong earthquakes the record<strong>in</strong>g pens were thrown <strong>of</strong>f rat her frequently. A<br />

separate problem was the accurate record<strong>in</strong>g <strong>of</strong> time on the seismograms, which<br />

was a weak po<strong>in</strong>t.<br />

Summary <strong>of</strong> Seismograph Installation <strong>in</strong> the former <strong>Netherlands</strong> East Indies<br />

Year Location<br />

Seismograph Type<br />

1898 Batavia (western Java)<br />

Milne<br />

1908 Batavia<br />

Wiechert horizontal (1000 kg)<br />

1911 Malabar (western Java)<br />

Wiechert horizontal (100 kg)<br />

1925 Ambon Island<br />

Wiechert horizontal (1000 kg)<br />

1928 Batavia<br />

Wiechert vertical (1300 kg)<br />

1929 Medan (northern Sumatra) Wiechert horizontal (1000 kg)<br />

11.6.2. <strong>Research</strong> results<br />

An important fact for the Observatory at Batavia was the arrival (<strong>in</strong> 1927)<br />

<strong>of</strong> H.P. Berlage, who had graduated <strong>in</strong> Zürich on the theory <strong>of</strong> seismographs<br />

and who had dealt with the problem <strong>of</strong> determ<strong>in</strong><strong>in</strong>g the position and depth <strong>of</strong><br />

an earthquake centre. <strong>The</strong> depth <strong>of</strong> a hypocentre was calculated from the difference<br />

<strong>in</strong> travel time between the normal P wave and its reflections from the<br />

core and the surface <strong>of</strong> the earth. In the first years <strong>of</strong> his stay at Batavia<br />

Berlage wrote an extensive contribution entitled "Seismometrie" for the "Handbuch<br />

der Geophysik"; Band 4 (Beriage, 1932). In this paper a description is<br />

given <strong>of</strong> the seismoscopes and seismographs known at that time, as weIl as a<br />

treatise on the theory <strong>of</strong> seismograph magnification. Berlage also dealt with<br />

the determ<strong>in</strong>ation <strong>of</strong> an epicentre and methods to calculate the depth <strong>of</strong> a hypocentre.<br />

(Nowadays these and ot her parameters c.an be calculated much more<br />

69


over the Mid-Atlantic Ridge, bet ween lOoN. and 19°N. Little or no sediment<br />

was found along the Mid-Atlantic Ridge nor along a broad strip on both sides<br />

<strong>of</strong> it. In the deep bas<strong>in</strong>s sediments were found <strong>in</strong> a few layers with a total<br />

thickness <strong>of</strong> 2 km. <strong>The</strong> distribution <strong>of</strong> the sediments can be expla<strong>in</strong>ed from<br />

the spread<strong>in</strong>g <strong>of</strong> the ocean floor, which now takes pIace with an average velocity<br />

<strong>of</strong> 1. 2 cm per year.<br />

II. 7.3. Sur<strong>in</strong>ame<br />

Follow<strong>in</strong>g the OCPS Project (research on the cont<strong>in</strong>ental shelf <strong>of</strong> Sur<strong>in</strong>ame,<br />

see section I. 8.1) Collette and co-workers (1971) carried out a seismometricgeomagnetic-gravimetric<br />

survey <strong>of</strong> the Guiana Plateau and the cont<strong>in</strong>ental shelf<br />

<strong>of</strong>f the coast <strong>of</strong> Sur<strong>in</strong>ame. Measurements were made on board H.Nl.M.S. Luymes<br />

<strong>in</strong> 1969 as well as on board the freighter <strong>The</strong>mis <strong>of</strong> the SMS (Sur<strong>in</strong>ame Shipp<strong>in</strong>g<br />

Company). Along eight pr<strong>of</strong>iles <strong>of</strong> about 500 km length the follow<strong>in</strong>g quantities<br />

were measured: the structure <strong>of</strong> the sea bottom, the strength <strong>of</strong> the geomagnetic<br />

field, and the acceleration <strong>of</strong> gravity. Surpris<strong>in</strong>g results were the asymmetric<br />

structure <strong>of</strong> the Guiana Plateau and the existence <strong>of</strong> large negative<br />

gravity anomalies on the cont<strong>in</strong>ent al sheIf north <strong>of</strong> Sur<strong>in</strong>ame.<br />

II. 7.4. Kroonvlag Project: 1967-1980<br />

After the NA V ADO Project (see section I. 8. 2) Collette and his research group<br />

were able to cont<strong>in</strong>ue the geophysical survey <strong>of</strong> the Atlantic Ocean <strong>in</strong> the form<br />

<strong>of</strong> the Kroonvlag Project, thanks to a subsidy from the <strong>Netherlands</strong> Organization<br />

for the Advancement <strong>of</strong> Pure <strong>Research</strong> (ZWO) and grants-<strong>in</strong>-aid from<br />

petroleum companies. Through the cooperation <strong>of</strong> the KNSM and the SMS more<br />

than 40 seismic and geomagnetic pr<strong>of</strong>iles were drawn up to the ocean bet ween<br />

the English Channel and Central and South America, at 6°N. up to 37°N. <strong>The</strong><br />

structure <strong>of</strong> the ocean bottom was determ<strong>in</strong>ed almost cont<strong>in</strong>uously by means <strong>of</strong><br />

an airgun (Lamont design, improved by Philips). <strong>The</strong> geomagnetic field strength<br />

was recorded cont<strong>in</strong>uously by a proton magnetometer. All data were recorded<br />

on magnetic tape by means <strong>of</strong> a computer.<br />

<strong>The</strong> follow<strong>in</strong>g ships <strong>of</strong>fered hospitality for the research: Luymes, Snellius<br />

and Vidal (all three dur<strong>in</strong>g the NAVADO Project) and af ter that 17 ships <strong>of</strong><br />

the Kroonvlag Company: Achilles , Adonis, Aegis, Arabian Express, Ares,<br />

Aristoteles, Charis, Daphnis, Hathor, Hercules, Herrnes , Marathon, Mercurius,<br />

Osiris, Palamedes, <strong>The</strong>mis. <strong>The</strong> courses sailed were mostly <strong>in</strong> a N.E./S.W. direction,<br />

but <strong>in</strong> some cases E. IW ., when the ships could deviate from the normal<br />

route (on request).<br />

An enormous amount <strong>of</strong> data obta<strong>in</strong>ed about bathymetry, seismic sound<strong>in</strong>g<br />

and geomagnetism (and <strong>in</strong> the first years also about gravity) was collected and<br />

processed. Special attention was paid to the fracture zones, which are perpendicular<br />

to the Central Rift <strong>of</strong> the Mid-Atlantic Ridge. <strong>The</strong> appearance <strong>of</strong> these<br />

fracture zones makes the geomagnetic patterns <strong>in</strong> the Ridge especially complicated.<br />

Already at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the Kroonvlag Project Collette and Rutten<br />

Figure 35. Topography <strong>of</strong> the ocean floor <strong>in</strong> part <strong>of</strong> the Atlantic Ocean northeast <strong>of</strong><br />

Sur<strong>in</strong>ame, accord<strong>in</strong>g to seismic research by the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory (State<br />

University at Utrecht). <strong>The</strong> Atlantic Rif t-zone (see: arrows) runs north-south and<br />

is <strong>of</strong>fset at 15°20'N. by an east-west fault called Fifteen Twenty Fracture Zone. At<br />

12°40'N. another fault, the Marathon Fracture Zone, is shown (Collette et al., 1974b<br />

and 1980). Photo courtesy <strong>of</strong> the "Sticht<strong>in</strong>g Film en Wetenschap" (Utrecht).<br />

72


(1972) tried to f<strong>in</strong>d arelation bet ween the direction <strong>of</strong> the Central Rift, the<br />

pattern <strong>of</strong> geomagnetic anomalies and the fracture zones. Prelim<strong>in</strong>ary results<br />

<strong>of</strong> the extensive research were embodied <strong>in</strong> two publications by Col/ette , Schouten,<br />

Rutten and Slootweg (1974a, 1974b).<br />

Col/ette (1975) published a review <strong>of</strong> the outcome <strong>of</strong> the <strong>in</strong>vestigations carried<br />

out <strong>in</strong> the years 1964 to 1974 <strong>in</strong> the Proceed<strong>in</strong>gs <strong>of</strong> the National Geodynamics<br />

Symposium (Amsterçlam, 1975).<br />

Col/ette, Schouten and Rutten (1971) performed a special <strong>in</strong>vestigation <strong>in</strong>to<br />

the sediments <strong>in</strong> the West European Bas<strong>in</strong>, which stretches from the Bay <strong>of</strong><br />

Biscay to Ireland, with assistance from freighters <strong>of</strong> the Kroonvlag Project<br />

(see section 1.8.3). <strong>The</strong> follow<strong>in</strong>g five KNSM vessels took part <strong>in</strong> this <strong>in</strong>vestigation:<br />

<strong>The</strong>mis, Aegis, Hathor , Osiris and Charis . <strong>The</strong> thickness <strong>of</strong> the sedimentary<br />

layers was measured as weIl as the <strong>in</strong>tensity <strong>of</strong> the geomagnetic field.<br />

II. 7.5. Vaarplan (Sail<strong>in</strong>g Scheme) Projects: 1974-1978 and 1978-1982<br />

A new phase <strong>in</strong> the study <strong>of</strong> the Atlantic Ocean began when H.NI.M.S. Tydeman<br />

was commissioned <strong>in</strong> 1977 (see Chapter I, section 1.8.4). This oceanographic<br />

ship was built to replace the hydrographic vessels H. NI.M.S. Snellius<br />

and Luymes and to be used also for civil oceanographic <strong>in</strong>vestigations.<br />

<strong>The</strong> scientific programme conta<strong>in</strong>ed, among ot hers , the follow<strong>in</strong>g projects : a<br />

detailed survey <strong>of</strong> the Mid-Atlantic Ridge, an <strong>in</strong>vestigation <strong>of</strong> the Demarara<br />

Abyssal Pla<strong>in</strong> , and a gravity, geomagnetic and seismic <strong>in</strong>vestigation <strong>of</strong> the Atlantis-<br />

Meteor seamounts complex south <strong>of</strong> the Azores.<br />

<strong>The</strong> Mar<strong>in</strong>e Geophysics Group <strong>of</strong> the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory began to<br />

<strong>in</strong>vestigate as a first object a region southeast <strong>of</strong> the Azores, <strong>in</strong> order to study<br />

the <strong>in</strong>fluence <strong>of</strong> sea-bottom topography on the geomagnetic anomalies , as weIl<br />

as disturbances <strong>in</strong> these anomalies by fracture zones (Twigt . Slootweg and<br />

Collette , 1979). As accurate echo-sound<strong>in</strong>gs <strong>of</strong> the sea bottom are a first requirement<br />

for bathymetry, Slootweg developed the theory and apparatus to<br />

carry out three-dimensional echo sound<strong>in</strong>gs at sea , which led to his thesis (1980) .<br />

It is <strong>of</strong> course <strong>in</strong>tended that the Mar<strong>in</strong>e Geophysics Group will use the acousticseismic<br />

echo sound<strong>in</strong>g method , when desirabie , <strong>in</strong> each fut ure <strong>in</strong>vestigation .<br />

II. 7.6. Disposal <strong>of</strong> radioactive waste<br />

In the year 1979 Collette was asked for advice by the M<strong>in</strong>istry <strong>of</strong> Economy<br />

with reference to the problem <strong>of</strong> bury<strong>in</strong>g highly radioactive waste <strong>in</strong> the bottom<br />

<strong>of</strong> the ocean. This is an <strong>in</strong>ternational problem, for which the OECD (Organization<br />

for Economic Cooperation and Development) has set up a Sea-bed Work<strong>in</strong>g<br />

Group represent<strong>in</strong>g the follow<strong>in</strong>g six countries: U. S. A., Canada, U. K., France,<br />

Japan and the <strong>Netherlands</strong> . <strong>The</strong> question was whether an appropriate place<br />

could be designated <strong>in</strong> the ocean bottom for bury<strong>in</strong>g the strongly radioactive<br />

waste from nuclear power plants and laboratories. A Sea-bed Programme has<br />

been drawn up, based on seismic research <strong>of</strong> the bottom <strong>of</strong> the Atlantic Ocean,<br />

which among others was executed by the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory . For the<br />

moment it is thought possible to bury this waste <strong>in</strong> a seismically and structurally<br />

quiet part <strong>of</strong> a deep ocean bas<strong>in</strong> (and not <strong>in</strong> a subduction zone) , although<br />

no material has yet been buried. At present the <strong>in</strong>vestigation is be<strong>in</strong>g cont<strong>in</strong>ued<br />

by the State Geological Survey at Haarlem.<br />

75


REFERENCES TO CHAPTER 11<br />

Ahorner, L., J.A. Flick, J.M. van Gils, G. Hout gast , A.R. Ritsema (1976) -<br />

First draft <strong>of</strong> an earthquake zon<strong>in</strong>g map <strong>of</strong> N. W. Germany, Belgium, Luxemburg<br />

and the <strong>Netherlands</strong>. K. N.M.1. Publ. 153,39-41,1976.<br />

Berg, A.P. van den, S.A.P.L. Cloet<strong>in</strong>gh, D.J. Doornbos (1978) - A comparison<br />

<strong>of</strong> PKP precursor data from several seismic arrays. Journ. Geophys., 44,<br />

499-510.<br />

Berlage, H.P. (1924) - Untersuchungder De Querva<strong>in</strong>-Piccard'schen Seismographen<br />

und e<strong>in</strong>iger allgeme<strong>in</strong>er seismometrischen Probleme. Dissertatie,<br />

Zürich.<br />

Berlage, H.P. (1932) - Seismometer. Handbuch der Geophysik, Band 4, 299-<br />

526, 1932.<br />

Berlage, H.P. (1937) - A provisional catalogue <strong>of</strong> deep-focus earthquakes <strong>in</strong><br />

the <strong>Netherlands</strong> East Indies, 1918-1936. Gerlands Beitr. zur Geophysik,<br />

50,7-17,1937.<br />

Cara, M., A. Nercessian and G. Nolet (1980) - New <strong>in</strong>ferences from higher mode<br />

data <strong>in</strong> Western Europe and Northern Eurasia. Geophys. Journ. Roy. Astr.<br />

Soc., 61, 459-478.<br />

Cloet<strong>in</strong>gh, S.A.P.L., G. Nolet and M.J.R. Wortel (1979) - On the use <strong>of</strong> Rayleigh<br />

wave group velocities for the analysis <strong>of</strong> cont<strong>in</strong>ent al marg<strong>in</strong>s . Tectonophysics,<br />

59, 335-346.<br />

Cloet<strong>in</strong>gh, S.A.P.L., G. Nolet and M.J.R. Wortel (1980a) - Crustal structure <strong>of</strong><br />

the Eastern Mediterranean <strong>in</strong>ferred from Rayleigh wave dispersion . Earth<br />

Plan. Sci. Lett., 51, 336-342.<br />

Cloet<strong>in</strong>gh, S.A.P.L., G. Nolet and M.J.R. Wortel (1980b) - Standard graphs<br />

and tables for the <strong>in</strong>terpretation <strong>of</strong> Rayleigh wave group velocities <strong>in</strong> crustal<br />

studies. Proc. Kon. Ned. Akad . Wet., B 83 (1),101-118.<br />

Cloet<strong>in</strong>gh, S.A.P.L., G. Nolet and M.J.R. Wortel (1980c) - Crustal studies <strong>of</strong><br />

the Eastern Mediterranean <strong>in</strong>ferred from Rayleigh wave dispersion . Proc.<br />

"Evolution and Tectonics <strong>of</strong> the Western Mediterranean and surround<strong>in</strong>g<br />

areas", Inst. Geograph. Nat., Madrid, Spec. Pap., 201, 259-269.<br />

Collette, B. J ., R. A. Lagaay, A. R. Ritsema and J. A. Schouten (1967) - Seismic<br />

<strong>in</strong>vestigations <strong>in</strong> the North Sea, 1 &. 2. Geophys . Journ. Roy. Astr. Soc. ,<br />

12,363-373,1967.<br />

Collette, B.J., J.1. Ew<strong>in</strong>g, R.A. Lagaay and M. Truchan (1962) - Sediment distribution<br />

<strong>in</strong> the oceans: the Atlantic bet ween lOoN. and 19°N. Mar<strong>in</strong>e Geology<br />

, 7, 279-345,1969.<br />

Collette, B.J., R.A. Lagaay, A . R. Ritsema and J.A. Schouten (1970) - Seismic<br />

<strong>in</strong>vestigations <strong>in</strong> the North Sea, 3 to 7. Geophys. Journ. Roy. Astr. Soc. ,<br />

19, 183-199, 1970.<br />

Collette, B. J ., J. A. Schouten and K. W . R utten (1971) - Sediment distribution<br />

<strong>in</strong> the West European bas<strong>in</strong> <strong>of</strong> the Atlantic Ocean. In: Histoire structurale<br />

du Golfe de Gascogne , VI. 7, Ed. Technip, Paris, 1971.<br />

Collette, B.J., J.A. Schouten, K.W. Rutten, D.J. Doornbos and W.H. Staverman<br />

(1971) - <strong>Geophysical</strong> <strong>in</strong>vestigations <strong>of</strong>f the Sur<strong>in</strong>am Coast. Hydrogr.<br />

Newsl. Spec. Publ. 6,17-24.<br />

76


Collette, B.J. and K. W. Rutten (1972) - Crest and fracture zone geometry<strong>of</strong><br />

the Mid-Atlantic Ridge between lOoN. and 16°N. Nature Phys. Sciences,<br />

237,131-134,1972.<br />

Collette, B.J., K.W. Rutten, J.A. Schouten and A.P . Slootweg (1974a) - Cont<strong>in</strong>uous<br />

seismic and magnetic pr<strong>of</strong>iles over the Mid-Atlantic Ridge bet ween<br />

12°N. and 18°N. Mar<strong>in</strong>e Geophys. <strong>Research</strong>. 2,133-141,1974.<br />

Collette, B.J., J.A. Schouten, K.W. Rutten and A.P. Slootweg (1974b) - Structure<br />

<strong>of</strong> the Mid-Atlantic Ridge Prov<strong>in</strong>ce bet ween 12°N. and 18°N. Mar<strong>in</strong>e<br />

Geophys. Res., 2,143-179.<br />

Collette, B.J. (1975) - Fracture zones <strong>in</strong> the Central North Atlantic: a review<br />

and progress report. In: Progress <strong>in</strong> Geodynamics, 208-217, Kon. Ned.<br />

Akad. Wet., 1975.<br />

Csikós, I. (1975) - On the theory <strong>of</strong> the electromagnetic seismograph. Mededel<strong>in</strong>gen<br />

en Verhandel<strong>in</strong>gen van het K.N.M.I .. no. 95 (1975).<br />

Csikós, I. (1975) - A prelim<strong>in</strong>ary no te on Scholte's model <strong>of</strong> the earthquake<br />

focus with a discont<strong>in</strong>uous stress field. Sci. Rep. no. 13, Proc. Geodyn.<br />

Symp., Amsterdam, 1975.<br />

Doornbos, D.J. and E.S. Huseby (1972) - Array analysis <strong>of</strong> PKP phases and<br />

their precursors. Phys . Earth Plan. Inter. 5, 387-399.<br />

Doornbos, D.J. and N.J. Vlaar (1973) - Regions <strong>of</strong> seismic wave scatter<strong>in</strong>g <strong>in</strong><br />

the earth's mantle and precursors to PKP. Nature Physical Science, 243,<br />

58-61.<br />

Doornbos, D.J. (1974) - <strong>The</strong> anelasticity <strong>of</strong> the Inner Core. Geoph. Journ.<br />

Roy. Astr. Soc., 38, 397-415.<br />

Doornbos, D. J. (1974) - Seismic wave scatter<strong>in</strong>g near caustics: obervations <strong>of</strong><br />

PKKP precursors. Nature, 247, 352-353.<br />

Doornbos, D.J. (1974) - Array analysis <strong>of</strong> Core phases . Proefschrift, Utrecht.<br />

Doornbos, D. J. (1976) - Characteristics <strong>of</strong> Lower Mantle <strong>in</strong>homogeneities from<br />

scattered waves. Geoph. Journ. Roy. Astr. Soc., 44, 447-470.<br />

Doornbos, D.J. (1977) - <strong>The</strong> excitation <strong>of</strong> normal modes <strong>of</strong> the Earth by sources<br />

with volume change. Geophys. Journ. Roy. Astr. Soc., 51, 465-474, 1977.<br />

Doornbos, D.J. and J.C. Mondt (1979a) - Attenuation <strong>of</strong> P- and S-waves diffracted<br />

arond the co re . Geophys. Journ. Roy. Astr. Soc. , 57, 353 - 380.<br />

Doornbos, D.J. and J . C. Mondt (1979b) - P- and S-waves diffracted around<br />

the core and the velocity structure at the base <strong>of</strong> the mantle. Geophys.<br />

Journ. Roy. Astr. Soc., 57, 381-396, 1979.<br />

E<strong>in</strong>dverslag (1918) - E<strong>in</strong>dverslag over de onderzoek<strong>in</strong>gen en uitkomsten van<br />

den Dienst der Rijksopspor<strong>in</strong>g van Delfst<strong>of</strong>fen <strong>in</strong> Nederland, 1903-1916,<br />

Amsterdam, 1918.<br />

England , F. and R. Wortel (1980) - Some consequences <strong>of</strong> the subduction <strong>of</strong><br />

young slabs. Earth and Plan. Sci. Lett., 47, 403-415.<br />

Gedenkboek (1954) - Gedenkboek van het Kon<strong>in</strong>klijk Nederlands Meteorologisch<br />

Instituut, 1854-1954. Staatsdrukkerij- en Uitgeverijbedrijf , Den Haag.<br />

Kennett, B. L. N. and G. Nolet (1978) - Resolution analysis for discrete systems.<br />

Geophys. Journ . Roy. Astr. Soc., 53, 413-425.<br />

77


Kennett, B. L. N. and G. Nolet (1979) - <strong>The</strong> <strong>in</strong>fluence <strong>of</strong> Upper MantIe discont<strong>in</strong>uities<br />

on the toroidal free oscillations <strong>of</strong> the Earth. Geophys. Journ.<br />

Roy. Astr. Soc., 56, 283-308.<br />

Kon<strong>in</strong>g, L. P. G. (1941) - Over het mechanisme <strong>in</strong> den haard van diepe aardbev<strong>in</strong>gen.<br />

Proefschrift, Amsterdam, 1941.<br />

Kon<strong>in</strong>g, L.P.G. (1942) - On the mechanism <strong>of</strong> deep-focus earthquakes. Gerl.<br />

Beitr. zur Geophys., 58,159-197.<br />

K.N.M.1. (1904-now) - Seismische Registrierungen <strong>in</strong> De Bilt, Vol. 1 (1904)<br />

- 30 (1942); Seismic Records at De Bilt. Vol. 31 (1943)-now.<br />

Mondt, J.C. (1977) - SH-waves: theory and observations for l:J. > 90°. Phys.<br />

Earth and Planet. Int., 15, 46-59.<br />

Mondt, J.C. (1977) - Full wave theory and the structure <strong>of</strong> the Lower MantIe.<br />

Proefschrift, Utrecht.<br />

N . T . v. N . I. (1898-1942) - Vulkanische verschijnselen en aardbev<strong>in</strong>gen <strong>in</strong> den<br />

Oost-Indischen Archipel. Natuurkundig Tijdschrift van Nederlands-Indië,<br />

1898-1942.<br />

Nolet, G. (1975) - Higher Rayleigh modes <strong>in</strong> W. Europe. Geophys. Res. Lett.,<br />

2, 60-62.<br />

Nolet, G. (1976) - Higher modes and the determ<strong>in</strong>ation <strong>of</strong> Upper MantIe structure.<br />

Proefschrift, Utrecht.<br />

Nolet, G. and G.F. Panza (1976) - Array analysis <strong>of</strong> seismic Surface Waves:<br />

Limits and Possibilities. Pure Appl. Geophys. , 114, 776-790.<br />

Nolet, G. (1977) - <strong>The</strong> Upper MantIe under Western Europe <strong>in</strong>ferred from the<br />

dispersion <strong>of</strong> Rayleigh Modes. Journ. Geophys., 43, 265-285.<br />

Nolet, G. (1978) - Simultaneous <strong>in</strong>versions <strong>of</strong> seismic data. Geophys. Journ.<br />

Roy. Astr. Soc., 55, 679-691.<br />

Nolet, G., G.F. Panza, M.J.R. Wortel (1978) - An averaged model for the Adriatic<br />

Subplate. Pure Appl. Geophys., 116, 1284-1298.<br />

Nolet, G. and B . L. N . Kennett (1978) - Normal mode representation <strong>of</strong> multipleray<br />

reflections <strong>in</strong> a spherical Earth. Geoph. Jour. Roy. Astr. Soc. 53, 219-226.<br />

Ritserna , A. R. (1952) - Over diepe aardbev<strong>in</strong>gen <strong>in</strong> de Indische Archipel.<br />

Proefschrift, Utrecht, 1952.<br />

Ritserna, A.R. (1954) - <strong>The</strong> seismicity <strong>of</strong> the Sunda Arc <strong>in</strong> space and time.<br />

Indonesian Journal for Natural Sciences, 41-50, 1954.<br />

Ritserna, A.R. (1955) - <strong>The</strong> fault plane technique and the mechanism <strong>in</strong> the<br />

focus <strong>of</strong> the H<strong>in</strong>du Kush earthquakes. Indian Journ. Meteor. Geophys.,<br />

6, 41-50, 1955.<br />

Ritserna, A.R. (1957) - On the use <strong>of</strong> transverse waves <strong>in</strong> earthquake mechanism<br />

studies. Verhand. 52, Lemb. Meteor. Ge<strong>of</strong>., Djakarta, 1957.<br />

Ritserna, A.R. (1958) - (i,l:J.)-curves for bodily seismic waves <strong>of</strong> any focal<br />

depth. Verh. 54, Lemb. Meteor. Ge<strong>of</strong>., Djakarta, 1958.<br />

Ritserna, A.R. and J. Veldkamp (1960) - Fault plane mechanisms <strong>of</strong> Southeast<br />

Asian earthquakes. Meded. en Verhand. K.N .M.I., No. 76,1960.<br />

78


Ritsema, A.R. (1962) - Pand S amplitudes <strong>of</strong> two earthquakes <strong>of</strong> the s<strong>in</strong>gle<br />

force couple type. Bull. Seism. Soc. Amer., 52, 723-746,1962.<br />

Ritsema, A.R. (1966a) - <strong>The</strong> fault plane solutions <strong>of</strong> earthquakes <strong>of</strong> the H<strong>in</strong>du<br />

Kush Centre. Tectonophysics, 3,147-163,1966.<br />

Ritsema, A . R. (1966b) - Note on the seismicity <strong>of</strong> the <strong>Netherlands</strong> . Kon. Ned.<br />

Akad. van Wet., Proc. Ser. B, 69, 2, 235-239,1966.<br />

Ritsema, A.R. (1969a) - Seismic-tectonic implications <strong>of</strong> a review <strong>of</strong> European<br />

earthquake mechanisms. Geol. Rundschau, 59, 36-56, 1969.<br />

Ritsema, A. R. (1969b) - Seismie data <strong>of</strong> the West Mediterranean and the problem<br />

<strong>of</strong> oceanization. Verh. Kon. Ned. Geol. Mijnb. Gen., 26,105-120,1969.<br />

Ritsema, A.R. (1970a) - Notes on Plate Tectonics and Arc Movements <strong>in</strong> the<br />

Mediterranean Region. Proc. XII Gen. Ass. Eur. Seism. Comm., 1970.<br />

Ritsema, A. R. (1970b) - On the orig<strong>in</strong> <strong>of</strong> the Western Mediterranean Sea Bas<strong>in</strong>s .<br />

Tectonophysics, 10, 609-623, 1970.<br />

Ritsema, A.R. (1971,1973,1979) - Seismie detection and identification <strong>of</strong> underground<br />

nuclear explosions. Work<strong>in</strong>g paper <strong>Netherlands</strong> at C.C .D. no. 323/<br />

416, and C.D. no. 7,1971,1973,1979.<br />

Ritsema, A.R. (1972) - Deep earthquakes <strong>of</strong> the Tyrrhenian Sea. Geologie en<br />

Mijnbouw, 51, 541-545, 1972.<br />

Ritsema, A.R. (1974a) - General trends <strong>of</strong> fault plane solutions <strong>in</strong> Europe.<br />

Proc. General Assembly E.S.C., Trieste, Italy. 379-385,1974.<br />

Ritsema, A.R. (1974b) - <strong>The</strong> earthquake mechanisms <strong>of</strong> the Balkan Region,<br />

U.N.D.P.-Project Rem/70/172: K.N.M.1. Scient. Rep. 74-4. pp. 86.1974.<br />

Ritsema. A.R. (1975a) - <strong>The</strong> contribution <strong>of</strong> the study <strong>of</strong> seismicity and earthquake<br />

mechanisms to the knowledge <strong>of</strong> Mediterranean geodynamic processes.<br />

Progress <strong>in</strong> Geodyn .• Proc. Nat. Symp. Geod .• Amsterdam. 142-153. 1975.<br />

Ritsema. A.R. (1975b) - Seismie sequences <strong>in</strong> the European Mediterranean.<br />

Proc. XIV General Assembly E.S.C .• Trieste. Italy. 367-372.1975.<br />

Ritsema. A.R. (1976. editor) - On earthquake risk for Nuclear Power Plants.<br />

K.N.M.1. Publ. 153. pp. 192. 1976.<br />

Ritsema. A.R. (1977) - Seismicity and seismie risk <strong>in</strong> the Sunda Arc. Proc.<br />

Symp. on the analysis <strong>of</strong> seismicity and on seismie risk. Liblica. 151-156.<br />

Ritsema. A.R. (1979) - Active and passive subduction at the Calabrian Arc.<br />

Geologie en Mijnbouw. 58.127-134.1979.<br />

Ritsema. A. R. and Z. V . Karnik (1979. editors) - European Catastrophic Earthquakes.<br />

Tectonophysics. 53. 155-337. 1979.<br />

Ritsema. A.R. (1980) - On the assessment <strong>of</strong> seismie risk <strong>in</strong> the North Sea<br />

Area. K.N .M.1. Publ. V366. pp. 19. 1980.<br />

Ritsema. A.R. (1980) - Seismische controle op kernwapenproeven. Verslag Afd.<br />

Natuurkunde Kon. Ned. Akad. Wet.. 89. 36-41.1980.<br />

Scholte • J. G . J. (1956) - On seismie waves <strong>in</strong> a spherical earth. Mededel<strong>in</strong>gen<br />

en Verhandel<strong>in</strong>gen K.N.M.I.. 65.1956.<br />

Scholte. J.G.J. (1958) - Rayleigh waves <strong>in</strong> isotropie and anisotropic elastic<br />

media. Mededel<strong>in</strong>gen en Verhandel<strong>in</strong>gen K. N .M. 1.. 72. 1958.<br />

79


Scholte , J . G . J. (1961) - Propagation <strong>of</strong> waves <strong>in</strong> <strong>in</strong>homogeneous media. <strong>Geophysical</strong><br />

Prospect<strong>in</strong>g, Vol. 9, 86-115.<br />

Scholte , J . G . J. (1962) - Obliq ue propagation <strong>of</strong> waves <strong>in</strong> <strong>in</strong>homogeneous media.<br />

Geophys. Journ. 7, 244-261, 1962.<br />

Scholte, J.G.J. and A.R. Ritsema (1962a) - Generation <strong>of</strong> earthquakes by a<br />

volume souree with moment. Bull. Seism. Soc. Amer., 52, 747-765,1962.<br />

Scholte, J.G.J. (1962b) - <strong>The</strong> mechanism at the focus <strong>of</strong> an earthquake. Bull.<br />

Seism. Soc. <strong>of</strong> America, 52, 711-721, 1962.<br />

Slootweg, A.P. (1980) - Multiple beam generation with a digital computer for<br />

echo-sound<strong>in</strong>g at low and high frequencies. Proefschrift, Utrecht, 1980.<br />

Steketee, J.A. (1958a) - On Volterra's dislocations <strong>in</strong> a semi-<strong>in</strong>f<strong>in</strong>ite elastic<br />

medium. Canad. Journ. <strong>of</strong> Physics, 36,192-205.<br />

Steketee, J.A. (1958b) - Some <strong>Geophysical</strong> Applications <strong>of</strong> the Elasticity <strong>The</strong>ory<br />

<strong>of</strong> Dislocations. Canad. Journ. <strong>of</strong> Physics, 36,1168-1198.<br />

Steketee, J.A. (1974) Elasticiteitstheorie van Dislocaties . Delft Univ. <strong>of</strong> Techn. ,<br />

Dept. <strong>of</strong> Aeron. Eng., Report VTH-179, 1-70.<br />

Steketee, J.A. (1975) - A no te on Elasticity <strong>The</strong>ory <strong>of</strong> Dislocations and Earthquake<br />

Mechanisms. Progress <strong>in</strong> Geodynamics (Roy. Neth. Acad. <strong>of</strong> Arts and<br />

Sciences),126-137.<br />

Steketee, J.A. (1976) - Elasticity <strong>The</strong>ory <strong>of</strong> Dislocations . Proc. 21st Congress<br />

<strong>of</strong> the Indian Soc. <strong>of</strong> <strong>The</strong>or. and Appl. Mechanics at Bangalore, 85 -100.<br />

Twigt, W., A.P. Slootweg and B.J. Collette (1979) - Topography and a magnetic<br />

analysis <strong>of</strong> an area south-east <strong>of</strong> the Azores. Mar. Geophys. Res., 4, 91-<br />

104, 1979.<br />

Veen, H.J. van (1969) - A laser stra<strong>in</strong> seismometer. Proefschrift, Utrecht, 1969.<br />

Vermeulen, J.M. and D.J. Doornbos (1977) - Mantle heterogeneity and mislocation<br />

patterns for seismie networks. Journ. Geophys., 43, 545-559, 1977.<br />

Visser, S. W. (1921) - On the distribution <strong>of</strong> earthquakes <strong>in</strong> the <strong>Netherlands</strong><br />

East Indian Archipelago, 1909-1919. Verh. Kon. Magn. en Meteor. Obs. te<br />

Batavia, 7, 1921.<br />

Visser, S.W. (1922) - Inland and submar<strong>in</strong>e epicentra <strong>of</strong> Sumatra and Java<br />

earthquakes. Verh. Kon. Magn. en Meteor. Obs. te Batavia, 9,1922.<br />

Visser, S. W. (1925) - Some researches <strong>in</strong>to the propagation <strong>of</strong> Seismie Long<br />

Waves. Verh. Kon. Magn. en Meteor. Obs. te Batavia, 16, 1925.<br />

Visser, S. W. (1931) - On the distribution <strong>of</strong> earthquakes <strong>in</strong> the <strong>Netherlands</strong><br />

East Indian Archipelago, 1920-1926. Verh. Kon. Magn. en Meteor. Obs. te<br />

Batavia, 22, 1931.<br />

Visser, S.W. (1933) - Aardbev<strong>in</strong>gen en getijden te Ambo<strong>in</strong>a <strong>in</strong> 1932. Natuurk.<br />

Tijdschr. voor Ned. Indië, 93,143-147.1933.<br />

Visser, S. W. (1936a) - Some remarks on the deep-focus earthquakes <strong>in</strong> the<br />

I.S.S. Gerlands Beiträge zur Geophysik, 47, 321-332. 1936.<br />

Visser, S.W. (l936b) - Some remarks on the deep-focus earthquakes <strong>in</strong> the<br />

I.S.S. Gerlands Beiträge zur Geophysik, 48. 254-267,1936.<br />

80


Visser, S.W. (1937) - Aardbev<strong>in</strong>gen met zeer diepe haard <strong>in</strong> Nederlandsch Indië.<br />

Natuurk. Tijdschr. voor Ned. Indië, 97,168-172,1937.<br />

Visser, S.W. (1937a) - Aardbev<strong>in</strong>gen met zeer diepen haard. Tijdschrift Kon.<br />

Ned. Aardr. Gen., 54, 313-335,1937.<br />

Vlaar, N.J. (1964) - <strong>The</strong> seismic pulse <strong>in</strong> a semi-<strong>in</strong>f<strong>in</strong>ite medium. Appl. Sc .<br />

Res., Bl1, 67-83.<br />

Vlaar, N.J . (19668) - <strong>The</strong> fjeld from an SH-po<strong>in</strong>t source <strong>in</strong> a cont<strong>in</strong>uously layered<br />

<strong>in</strong>homogeneous medium, part I: <strong>The</strong> field <strong>in</strong> a layer <strong>of</strong> f<strong>in</strong>ite depth.<br />

Bull. Seism. Soc. Amer., 56, 715-724.<br />

Vlaar, N.J. (1966b) - <strong>The</strong> field from an SH-po<strong>in</strong>t source <strong>in</strong> a cont<strong>in</strong>uously layered<br />

<strong>in</strong>homogeneous medium, part 11: T he field <strong>in</strong> a half space. Bull. Seism.<br />

Soc. Amer., 56, 1305-1315.<br />

Vlaar, N . J. (1968) - Ray theory for an anisotropic <strong>in</strong>homogeneous elastic medium.<br />

Bull. Seism. Soc. Amer., 58, 2053-2072.<br />

Vlaar, N.J. (1969) - Rays and travel times <strong>in</strong> a spherical anisotropic earth.<br />

Bull. Seism. Soc. "Amer., 59,1051-1060.<br />

Vlaar, N.J. (1975) - <strong>The</strong> driv<strong>in</strong>g mechanism <strong>of</strong> plate tectonics: a qualitative<br />

approach. In: Progress <strong>in</strong> Geodynamics, North Holland Publ. Cy., Amsterdam,<br />

234-245, 1975.<br />

Vlaar, N.J. (1976) - On the excitation <strong>of</strong> the earth's seismic Normal Modes.<br />

Pure and Appl. Geophys., 114, 863-875,1976.<br />

Vlaar, N.J. and M.J.R. Wortel (1976) - Lithospheric ag<strong>in</strong>g, <strong>in</strong>stability and subduction.<br />

Tectonophysics, 32, 331-351.<br />

Vlaar, N.J. and M.J.R. Wortel (1978) - Gravity and the earthquake mechanism.<br />

Phys. Earth and Planetary Interiors, 16,240-246,1978.<br />

Vlaar, N . J. and G. Nolet (1978) - Seismic surface waves. In: Modern problems<br />

<strong>in</strong> elastic wave propagation, ed. J. Miklowitz, 419-443,1978.<br />

Vlaar, N.J. en G. Nolet (1979) - Het NARS project. Intern rapport, Instituut<br />

voor Aard wetenschappen, Utrecht.<br />

Wortel, M.J.R. and N.J. Vlaar (1978) - Age dependent subduction <strong>of</strong> oceanic<br />

lithosphere beneath Western South-America. Phys. <strong>of</strong> the Earth and Plan.<br />

Int., 17, 201-208.<br />

Wortel, M.J.R. (1980) - Age-dependent subduction <strong>of</strong> oceanic lithosphere.<br />

Proefschrift, Utrecht.<br />

81


Figure 37. F. A. Ven<strong>in</strong>g Me<strong>in</strong>esz with his pendulum gravimeter. Photo by courtesy <strong>of</strong> University Museum at Utrecht.


CHAPTER 111<br />

<strong>Research</strong> <strong>in</strong> gravity<br />

lII.l. THE LIFE WORK OF F.A. VENING MEINESZ - GRAVITY SURVEYS<br />

<strong>The</strong> third and the youngest field <strong>in</strong> which <strong>Netherlands</strong> geophysicists at home<br />

and abroad have become active, is the study <strong>of</strong> gravity. Whereas <strong>in</strong> this country<br />

magnetism <strong>of</strong> the earth had ·already excited <strong>in</strong>terest for centuries, and<br />

earthquake record<strong>in</strong>g had be gun at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the present century, the<br />

study <strong>of</strong> gravity <strong>in</strong> the <strong>Netherlands</strong> began somewhat later, <strong>in</strong> the year 1912,<br />

when a young civil eng<strong>in</strong>eer, F. A. Ven<strong>in</strong>g Me<strong>in</strong>esz, was appo<strong>in</strong>ted to measure<br />

the attraction <strong>of</strong> the earth by means <strong>of</strong> gravity pendulums.<br />

Af ter obta<strong>in</strong><strong>in</strong>g the degree <strong>of</strong> civil eng<strong>in</strong>eer at the Delft University <strong>of</strong> Technology<br />

<strong>in</strong> 1910, Ven<strong>in</strong>g Me<strong>in</strong>esz accepted a post with the Commission on Arc<br />

measurement and Levell<strong>in</strong>g, now known as the <strong>Netherlands</strong> Geodetic Commission<br />

. He was charged with the task <strong>of</strong> tak<strong>in</strong>g gravity measurements by determ<strong>in</strong><strong>in</strong>g<br />

the oscillation time <strong>of</strong> a pendulurn, but he was <strong>in</strong>itially h<strong>in</strong>dered <strong>in</strong> this<br />

work by the motion <strong>of</strong> the ground, especially <strong>in</strong> the western part <strong>of</strong> the <strong>Netherlands</strong>.<br />

<strong>The</strong> problem was overcome for the most part by us<strong>in</strong>g pairs <strong>of</strong> pendulums<br />

sw<strong>in</strong>g<strong>in</strong>g <strong>in</strong> the same plane but <strong>in</strong> opposite directions. In this way the<br />

effect <strong>of</strong> horizontal accelerations <strong>of</strong> the ground could be, to a first approximation<br />

, elim<strong>in</strong>ated. He ga<strong>in</strong>ed his doctor's degree with a thesis written on this<br />

research (Ven<strong>in</strong>g Me<strong>in</strong>esz, 1915).<br />

Between 1913 and 1920 (with an <strong>in</strong>terruption due to illness <strong>in</strong> 1916/1917)<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz determ<strong>in</strong>ed at 52 stations the differences <strong>in</strong> gravity with a reference<br />

station <strong>in</strong> the Royal <strong>Netherlands</strong> Meteorological Institute (KNMI) at De<br />

Bilt. Absolute values were obta<strong>in</strong>ed by measur<strong>in</strong>g the difference between the<br />

KNMI and the absolute value at the Geodetic Institute <strong>of</strong> Potsdam . A very detailed<br />

report was published <strong>in</strong> 1923 (Ven<strong>in</strong>g Me<strong>in</strong>esz, 1923). His widc-spread<br />

<strong>in</strong>terest is demonstrated <strong>in</strong> the last section <strong>of</strong> the report, where he makes an<br />

attempt to relate the Bouguer anomalies to the subsurface geology as known<br />

at the time. <strong>The</strong> results obta<strong>in</strong>ed by the State Survey <strong>of</strong> M<strong>in</strong>eral Resources <strong>in</strong>dicated<br />

the presence <strong>of</strong> young Palaeozoic sediments near the surface <strong>in</strong> the<br />

south-eastern part <strong>of</strong> the country, and it was surmised that they dipped to<br />

ever greater depths <strong>in</strong> north-western direction where they were supposed to<br />

be covered by a thick sequence <strong>of</strong> ma<strong>in</strong>ly Quaternary deposits (E<strong>in</strong>dverslag,<br />

1918). Ven<strong>in</strong>g Me<strong>in</strong>esz remarks, that the gravity anomalies do not support this<br />

general view; they are not smaller <strong>in</strong> the north-west than <strong>in</strong> the south-east.<br />

This proved to be a most significant observation , when <strong>in</strong> the late 1940s and<br />

early 1950s the first geological results <strong>of</strong> the exploration for oil were obta<strong>in</strong>ed.<br />

83


In the mcantime an <strong>in</strong>terest<strong>in</strong>g problem was put forward <strong>in</strong> <strong>in</strong>ternational geodesy<br />

circles. An hypothesis arose that the earth resem bIed more a triaxial than<br />

a biaxial ellipsoid. In other words, the equatorial cross-section <strong>of</strong> the earth<br />

should be somewhat elliptic. Arc measurements <strong>in</strong> various cont<strong>in</strong>ents had given<br />

rise to this hypothesis , though this was difficuit to accept from a physical viewpo<strong>in</strong>t.<br />

Arc measurements were not accurate enough to determ<strong>in</strong>e the shape <strong>of</strong><br />

the earth with the necessary precision ; however, this was possible <strong>in</strong> fact by<br />

gravity measurements.<br />

<strong>The</strong> shape <strong>of</strong> the earth can best be approximated by a geoid; this is the surface<br />

formed by mean sea level <strong>in</strong> the oceans, which is then extended through<br />

the cont<strong>in</strong>ents . A very useful mathematical approximation to the shape <strong>of</strong> the<br />

earth is a biaxial ellipsoid, whose short axis co<strong>in</strong>cides with the pol ar axis <strong>of</strong><br />

the earth. <strong>The</strong> shape <strong>of</strong> the earth is determ<strong>in</strong>ed by the position <strong>of</strong> the geoid<br />

with respect to a standard ellipsoid. This problem can be solved if a sufficiently<br />

dense network <strong>of</strong> gravity data is available.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz accepted the task <strong>of</strong> mak<strong>in</strong>g many measurements over as large<br />

an area as possible. As the greater part <strong>of</strong> the earth 's surface is occupied by<br />

oceans, the pendulum apparatus had to be set up on board a ship. <strong>The</strong> use <strong>of</strong><br />

a submar<strong>in</strong>e gave an almost ideal sol ut ion ; at a depth <strong>of</strong> some tens <strong>of</strong> meters<br />

the ship's roll<strong>in</strong>g and pitch<strong>in</strong>g were so much reduced that an accurate measurement<br />

<strong>of</strong> the period <strong>of</strong> the pendulum became possible, and therefore also<br />

the calculation <strong>of</strong> the value <strong>of</strong> gravity. Each measurement took half an hour,<br />

dur<strong>in</strong>g which the oscillations <strong>of</strong> the pendulurns were recorded. <strong>The</strong> accuracy<br />

<strong>of</strong> such a gravity measurement is a few milligals (1 mgal = 0.001 cm/sec 2 ). <strong>The</strong><br />

pendulum apparatus, adapted for measurements at sea, was developed at the<br />

KNMI <strong>in</strong> the years 1923 to 1928. Dur<strong>in</strong>g more than 30 years Ven<strong>in</strong>g Me<strong>in</strong>esz'<br />

pendulum <strong>in</strong>strument was the best and most accurate sea gravimeter <strong>in</strong> the world.<br />

In order to solve the problem <strong>of</strong> the biaxiality or triaxiality <strong>of</strong> the earth long<br />

series <strong>of</strong> measurements we re required, along or parallel to the equator or at<br />

least along a good part <strong>of</strong> it. This is the reason for the long voyages made by<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, as summarized below. <strong>The</strong> best known voyage was that <strong>of</strong><br />

1934-1935 aboard H.Nl.M.S . K XVIII to the East Indies via Buenos Aires, Cape<br />

Town and Perth. Each time after arriv<strong>in</strong>g <strong>in</strong> the East Indian Archipelago, gravity<br />

measurements were cont<strong>in</strong>ued, particularly <strong>in</strong> 1929 and 1930, when the ship<br />

was made available for research purposes for some months.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz covered <strong>in</strong> total a distance <strong>of</strong> several times the circumference<br />

<strong>of</strong> the earth and carried out more than 1000 gravity measurements. Reports <strong>of</strong><br />

these voyages and <strong>in</strong>terpretation <strong>of</strong> the gravity measurements wcre published<br />

by the <strong>Netherlands</strong> Commission on Arc measurement and Levell<strong>in</strong>g (Ven<strong>in</strong>g<br />

Me<strong>in</strong>esz, 1932, 1934, 1941 and 1948).<br />

One <strong>of</strong> the results <strong>of</strong> these measurements was the denial <strong>of</strong> triaxiality. <strong>The</strong>re<br />

was no significant ellipticity <strong>of</strong> the equator. <strong>The</strong> orig<strong>in</strong>al reason for these voyages<br />

was therefore answered <strong>in</strong> a negative scnse. But many important positive<br />

results became apparent.<br />

In the first place it became clear that on the whole the field <strong>of</strong> gravity values<br />

po<strong>in</strong>ted to a rather weIl balanced situation <strong>of</strong> the earth 's crust: <strong>in</strong> general<br />

the isostatic gravity anomalies were found to be small. This result can be <strong>in</strong>terpreted<br />

as follows: the cru st <strong>of</strong> the earth is float<strong>in</strong>g <strong>in</strong> equilibrium on the<br />

layers underneath. <strong>The</strong> isostatic deviations that show up must be ascribed to<br />

tectonic processes that disturb the equilibrium.<br />

Secondly, Ven<strong>in</strong>g Me<strong>in</strong>esz <strong>in</strong>tensively occupied himself with the theory <strong>of</strong><br />

gravity <strong>in</strong> relation to the tectonics <strong>of</strong> the crust <strong>of</strong> the earth, and with the reductions<br />

and corrections , necessary to compare the results <strong>of</strong> the measurements<br />

84


Submar<strong>in</strong>e<br />

KIl<br />

KXIII<br />

KXIII<br />

K XVIII<br />

Vnderwater Pendulurn Surveys by Ven<strong>in</strong>g Me<strong>in</strong>esz<br />

Years Voyage<br />

1923<br />

Den Helder to East Indies via Suez<br />

Canal<br />

1926-1927<br />

To East Indies via Panama Canal<br />

1929-1930<br />

East Indian Archipelago<br />

1934-1935<br />

To East Indies via Buenos Aires<br />

(Argent<strong>in</strong>a) , Cape Town (South<br />

Africa) and Perth (Australia)<br />

Vnderwater Pendulurn Surveys by other <strong>Netherlands</strong> geophysicists<br />

o 24 1948-1949 Round-trip : Rotterdam to Curaçao<br />

Tijgerhaai<br />

1951<br />

Round-trip : Rotterdam to Curaçao<br />

Zeeleeuw<br />

1956<br />

N ort h Sea (see section 11 I. 5)<br />

Walrus<br />

1957<br />

Pacific and Caribbean near Central<br />

America<br />

with respect to one another (Ven<strong>in</strong>g Me<strong>in</strong>esz, 1929 and 1941) . He broadened<br />

and deepened the theory <strong>of</strong> tectonic processes <strong>in</strong> the earth by tak<strong>in</strong>g <strong>in</strong>to consideration<br />

the mechanism <strong>of</strong> thermal convection (Ven<strong>in</strong>g Me<strong>in</strong>esz, 193.4, 1940,<br />

1947) . <strong>The</strong> value <strong>of</strong> the viscosity under the earth's crust was determ<strong>in</strong>ed from<br />

the post-gracial rise <strong>of</strong> Fennoscandia (Ven<strong>in</strong>g Me<strong>in</strong>esz, 1937).<br />

After an <strong>in</strong>terruption <strong>of</strong> 10 years due to World War 11, the gravity expeditions<br />

we re resumed (see Tabie) and were aimed at the West Indies and Central<br />

America. Because Ven<strong>in</strong>g Me<strong>in</strong>esz had become Director-<strong>in</strong>-Chief <strong>of</strong> the<br />

KNMI , members <strong>of</strong> his scientific staff as weIl as those <strong>of</strong> the Department <strong>of</strong> Geodesy<br />

<strong>of</strong> the University <strong>of</strong> Technology (TH) at Delft, participated <strong>in</strong> these expeditions.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz' pendulum apparatus was used <strong>in</strong> 1948 and 1949,<br />

with G. J. Bru<strong>in</strong>s and H. J. A. Vesseur as observers and aga<strong>in</strong> <strong>in</strong> 1951 , when<br />

most <strong>of</strong> the measurements were made by R. Dorreste<strong>in</strong>. A report <strong>of</strong> both voyages<br />

was published <strong>in</strong> "Gravity expeditions 1948-1958, Vol. V" (Bru<strong>in</strong>s, Dorreste<strong>in</strong>,<br />

Vesseur, Bakker and Otto, 1960). Technical troubles , which appeared<br />

dur<strong>in</strong>g these voyages (deposition <strong>of</strong> salt on the optics <strong>of</strong> the pendulum apparatus)<br />

prevented complete success.<br />

<strong>The</strong> purpose <strong>of</strong> the 1957 expedition , the Ion ge st and the last <strong>in</strong> which scientific<br />

staff <strong>of</strong> the KNMI participated, was the study <strong>of</strong> the Central American<br />

region with its complicated topographic and tectonic structures. Because <strong>of</strong><br />

the International <strong>Geophysical</strong> Year (1957-1958) the submar<strong>in</strong>e H . Nl.M.S. Walrus<br />

was made available for scientific research for more than 5 weeks, <strong>in</strong> addition<br />

to the voyages to and from the area <strong>of</strong> research. L. Otto (KNMI) and G .. Bakker<br />

(TH) carried out 64 measurements <strong>of</strong> gravity ne ar the Pacific coast <strong>of</strong> Colombia,<br />

Ecuador, Costa Rica and Panama. On the eastern side, <strong>in</strong> the Caribbean Sea,<br />

15 measurements were made <strong>of</strong>f Colombia and Panama. <strong>The</strong> report <strong>of</strong> this expedition<br />

was also published <strong>in</strong> "Gravity expeditions 1948-1958" (Bru<strong>in</strong>s et al. ,<br />

1960) .<br />

After 1958 the pendulum apparatus was no longer used; it is now displayed<br />

85


creas<strong>in</strong>g pressure waves are formed <strong>in</strong> the sheet, until a strongly one-sided<br />

downward deviation appears, after a certa<strong>in</strong> limit is passed - downward, because<br />

due to gravity a downward buckl<strong>in</strong>g takes less energy than an upward<br />

one. Ven<strong>in</strong>g Me<strong>in</strong>esz' buckl<strong>in</strong>g theory was illustrated experimentally by Ph. H.<br />

Kuenen (1936).<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz assumed that mounta<strong>in</strong> build<strong>in</strong>g beg<strong>in</strong>s with the formation<br />

<strong>of</strong> a syncl<strong>in</strong>al fOld, followed by downbuckl<strong>in</strong>g. <strong>The</strong>reafter equilibrium can be<br />

restored by ri se <strong>of</strong> the folded belt and formation <strong>of</strong> an elongated cha<strong>in</strong> <strong>of</strong> mounta<strong>in</strong>s.<br />

Volcanism and seismicity are due to tectonic stresses <strong>in</strong> the region.<br />

<strong>The</strong> positive gravity anomalies <strong>in</strong> the deep bas<strong>in</strong>s (Soenda, Soela, Banda,<br />

etc.) could be expla<strong>in</strong>ed by Ven<strong>in</strong>g Me<strong>in</strong>esz by assum<strong>in</strong>g that these bas<strong>in</strong>s<br />

sank by convection currents <strong>in</strong> a plastic layer below the earth's crust, put <strong>in</strong>to<br />

movement by the ris<strong>in</strong>g <strong>of</strong> the folded belt. Indeed, positive gravity anomalies<br />

and subsidence <strong>of</strong> the earth's surface should appear above downward mov<strong>in</strong>g<br />

convection currents.<br />

In his thesis (1954) B.J. Collette <strong>in</strong>vestigated <strong>in</strong> more detail the negative<br />

belt with the adjacent positive zones. Various models <strong>of</strong> the earth's crust and<br />

various viscosity constants were compared with the observed gravity field.<br />

<strong>The</strong> buckl<strong>in</strong>g hYPQthesis was supported by the geologist J. H. F. Umbgrove<br />

(see: Ven<strong>in</strong>g Me<strong>in</strong>esz, Umbgrove and Kuenen, 1934), who had studied the history<br />

<strong>of</strong> the Tertiary <strong>in</strong> the <strong>Netherlands</strong> East Indies. Accord<strong>in</strong>g to him buckl<strong>in</strong>g<br />

<strong>of</strong> the earth 's crust had taken place <strong>in</strong> the Miocene period; this was visible on<br />

Timor, the Tanimbar Islands and the Kei Islands. Umbgrove discovered also<br />

traces <strong>of</strong> Miocene fold<strong>in</strong>g on Sumatra and Java and on some islands east <strong>of</strong> Java.<br />

Accord<strong>in</strong>g to Umbgrove the relief <strong>of</strong> the deep-sea bas<strong>in</strong>s was <strong>of</strong> post-Miocene<br />

age, and it had been created by downward movement <strong>of</strong> the bottom <strong>of</strong> an orig<strong>in</strong>ally<br />

shallow sea. <strong>The</strong>se observations we re <strong>in</strong> agreement with the downward<br />

mov<strong>in</strong>g convection current, as assumed by Ven<strong>in</strong>g Me<strong>in</strong>esz.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz was also supported by the geologist and oceanographer<br />

Kuenen (1934), who had participated <strong>in</strong> the Snellius-expedition (1929-1930,<br />

oceanographic research aboard H. NI.M. S. Willebrord Snellius, <strong>of</strong> the deep bas<strong>in</strong>s<br />

<strong>in</strong> the eastern part <strong>of</strong> the Archipelago). As Umbgrove, he too considered<br />

most <strong>of</strong> the deep-sea bas<strong>in</strong>s as sunken cont<strong>in</strong>ent al areas. <strong>The</strong> complicated morphology<br />

and tectonics <strong>of</strong> the East Indian Archipelago were considered by him<br />

to be the result <strong>of</strong> processes <strong>in</strong> the orig<strong>in</strong>al contact zone between Asia and<br />

Australia.<br />

In part 11 <strong>of</strong> "Gravity Expeditions at Sea" Ven<strong>in</strong>g Me<strong>in</strong>esz <strong>in</strong>terprets the<br />

gravity data <strong>in</strong> other se as and oceans. Measurements <strong>in</strong> the West Indies show<br />

a gravity field that has a surpris<strong>in</strong>g resemblance to that <strong>of</strong> the <strong>Netherlands</strong><br />

East Indies. In the West Indies too a narrow belt with negative deviations from<br />

the normal gravity is found, flanked by positive areas. <strong>The</strong> negative belt beg<strong>in</strong>s<br />

at the east po<strong>in</strong>t <strong>of</strong> Cuba, runs along the outside <strong>of</strong> the arc <strong>of</strong> the Leeward<br />

Islands, then east <strong>of</strong> the W<strong>in</strong>dward Islands and ends at the coast <strong>of</strong> South<br />

America. Ven<strong>in</strong>g Me<strong>in</strong>esz assumed that this gravity field is due to the downbuckl<strong>in</strong>g<br />

<strong>of</strong> the crust by compression from the west.<br />

In the coastal region from Venezuela to Haïti a belt <strong>of</strong> negative anomalies can<br />

be attributed to a compression <strong>of</strong> the crust <strong>in</strong> the direction N. 35°E. , caused<br />

by the drift<strong>in</strong>g <strong>of</strong> South America with respect to the Caribbean region . South<br />

<strong>of</strong> Panama positive anomalies above deep-sea bas<strong>in</strong>s can be compared with positive<br />

areas <strong>in</strong> the Indonesian Archipelago.<br />

As for the Atlantic Ocean, Ven<strong>in</strong>g Me<strong>in</strong>esz opposed the theory <strong>of</strong> Alfred Wegener<br />

and based his opposition on the op<strong>in</strong>ion that below cont<strong>in</strong>ents convective<br />

upward currents must always be present and downward currents below<br />

87


the oceans. This is a consequence <strong>of</strong> the difference <strong>in</strong> radioactivity bet ween<br />

cont<strong>in</strong>ental and oceanic rocks . <strong>The</strong>refore Africa and South America for example,<br />

would not drift apart as Wegener stated, but on the contrary would be pushed<br />

towards each other.<br />

In the Mediterranean Sea also Ven<strong>in</strong>g Me<strong>in</strong>esz observed beits <strong>of</strong> negative<br />

gravity anomalies , which he ascribed to tangential pressure , and positive anomalies<br />

above the deep-sea bas <strong>in</strong>s . H. P. Cos ter (1945) dealt with these matters<br />

<strong>in</strong> his doctor's thesis.<br />

111.3. VENING MEINESZ AND THE THEORY OF WEGENER<br />

It has already been mentioned that Ven<strong>in</strong>g Me<strong>in</strong>esz was an opponent <strong>of</strong> Wegener's<br />

theory. He believed that great cont<strong>in</strong>ent al displacements , which<br />

accord<strong>in</strong>g to Wegener took place largely dur<strong>in</strong>g the Tertiary and Quaternary,<br />

had only been possible <strong>in</strong> a very early phase <strong>of</strong> the earth 's history. At that<br />

time the oceanic crust was so plastic because <strong>of</strong> the high temperature. that the<br />

cont<strong>in</strong>ent al blocks could move through it . Af ter the Precambrian only limited<br />

movements would have been possible <strong>in</strong> the crust, such as the formation <strong>of</strong><br />

geosyncl<strong>in</strong>es and mounta<strong>in</strong> ranges · <strong>in</strong> the cont<strong>in</strong>ents and <strong>of</strong> troughs <strong>in</strong> the<br />

oceans. In the hook "<strong>The</strong> Earth and its Gravity Field" written by Ven<strong>in</strong>g Me<strong>in</strong>esz<br />

and W. A. Heiskanen , they treat subjects such as the mechanics <strong>of</strong> the<br />

earth 's crust. the geophysical history <strong>of</strong> a geosyncl<strong>in</strong>e. and the theory <strong>of</strong> thermal<br />

convection <strong>in</strong> the earth. However, they only say <strong>of</strong> Wegener's theory that<br />

the primeval cont<strong>in</strong>ent <strong>in</strong>deed was torn apart by convection currents <strong>in</strong> the<br />

mantie <strong>of</strong> the earth, but that this was only possible <strong>in</strong> the first phase <strong>of</strong> the<br />

earth 's history (Heiskanen and Ven<strong>in</strong>g Me<strong>in</strong>esz. 1958).<br />

Some years before his death Ven<strong>in</strong>g Me<strong>in</strong>esz (1964) published a 'summary <strong>of</strong><br />

his views oh processes <strong>in</strong> the earth 's crust and mantie , <strong>in</strong> which a certa<strong>in</strong> rapprochement<br />

to Wegener attracted attention . Impressed by the results <strong>of</strong> palaeomagnetic<br />

research on rocks from many parts <strong>of</strong> the world, which po<strong>in</strong>ted to<br />

large horizont al displacements , he came to the conclusion that <strong>in</strong>deed very large<br />

parts <strong>of</strong> the crust can disappear by fold<strong>in</strong>g and melt<strong>in</strong>g; this may change the<br />

position <strong>of</strong> the cont<strong>in</strong>ents . However, such a drift <strong>of</strong> the cont<strong>in</strong>ents would rema<strong>in</strong><br />

limited to the orogenic phases <strong>in</strong> the earth 's history. An almost cont<strong>in</strong>ual<br />

drift <strong>of</strong> the cont<strong>in</strong>ents as taught by palaeomagnetism rema<strong>in</strong>ed unacceptable<br />

for Ven<strong>in</strong>g Me<strong>in</strong>esz. But he found <strong>in</strong> the drift <strong>of</strong> the cont<strong>in</strong>ents an affirmation<br />

<strong>of</strong> his hypothesis that convection currents were active <strong>in</strong> the mantie <strong>of</strong> the<br />

earth.<br />

111. 4. IMPORT ANCE OF VENING MEINESZ<br />

<strong>The</strong> life work <strong>of</strong> Ven<strong>in</strong>g Me<strong>in</strong>esz is <strong>of</strong> great importance for geodesy as weil<br />

as for geophysics and geology. Many <strong>in</strong>vestigators have been stimulated by<br />

his ideas, which were put forward with conv<strong>in</strong>c<strong>in</strong>g power. Even those who<br />

could not agree with him <strong>in</strong> everyth<strong>in</strong>g were impressed by his mathematical<br />

grasp <strong>of</strong> the <strong>of</strong>ten difficult problems. <strong>The</strong> <strong>in</strong>ternational appreciation enjoyed<br />

by Ven<strong>in</strong>g Me<strong>in</strong>esz appears clearly from the "Gedenkboek F. A. Ven<strong>in</strong>g Me<strong>in</strong>esz"<br />

(A. van Weelden, editor, 1957) written as a tribute and presented to him on<br />

the occasion <strong>of</strong> his 70th birthday. It conta<strong>in</strong>s about 30 scientific papers by<br />

geodesists and geophysicists from the <strong>in</strong>ternational community.<br />

Much <strong>of</strong> what Ven<strong>in</strong>g Me<strong>in</strong>esz published is still valuable. although some theories<br />

turned out to be less successful. In expla<strong>in</strong><strong>in</strong>g the beits <strong>of</strong> negative<br />

gravity anomalies the buckl<strong>in</strong>g hypothesis could not stand up to the subduc-<br />

88


tion process <strong>in</strong> the theory <strong>of</strong> global plate tectonics. <strong>The</strong> statement that upward<br />

convection currents must always be present below the cont<strong>in</strong>ents and downward<br />

currents under the oceans was based on <strong>in</strong>correct data about the thermal<br />

balance <strong>in</strong> and below the crust. However, the major part <strong>of</strong> his work will rema<strong>in</strong><br />

<strong>of</strong> value for a long time.<br />

111. 5. GRAVITY RESEARCH BY OTHERS<br />

East Indian Archipelago. Us<strong>in</strong>g the gravity determ<strong>in</strong>ations made by Ven<strong>in</strong>g<br />

Me<strong>in</strong>esz <strong>in</strong> the former <strong>Netherlands</strong> East Indies dur<strong>in</strong>g the submar<strong>in</strong>e expeditions<br />

<strong>in</strong> the years 1923-1930, J.E. Baron de Vos van Steenwijk (1946) calculated<br />

plumb-l<strong>in</strong>e deflections and geoid anomalies <strong>in</strong> the eastern part <strong>of</strong> the<br />

East Indian Archipelago. <strong>The</strong> deviations are <strong>of</strong> course greatest near the beIts<br />

<strong>of</strong> negative gravity anomalies. Plumb-l<strong>in</strong>e deflections up to 40 seconds <strong>of</strong> arc<br />

were found. Geoid anomalies (elevations <strong>of</strong> the geoid relative to the standard<br />

ellipsoid) were calculated for a number <strong>of</strong> stations; values up to 30 metres<br />

were found.<br />

<strong>Netherlands</strong> . Dur<strong>in</strong>g the Second World-War and also <strong>in</strong> the years afterwards<br />

many gravity measurements were made by G. J . Bru<strong>in</strong>s and G. L. Strang van<br />

Hees for the State Commission for Geodesy (RCG), and also later by the "Bataafsche<br />

Petroleum Maatschappij" (BPM). Measurements were carried out with<br />

Thyssen and Graf gravimeters, and later on with gravimete-rs <strong>of</strong> Askania,<br />

Worden and the North American Company, that were based on changes <strong>in</strong> the<br />

length <strong>of</strong> a spr<strong>in</strong>g and had replaced the cumbersome pendulums. A detailed<br />

map <strong>of</strong> isogams <strong>of</strong> Bouguer anomalies <strong>in</strong> the <strong>Netherlands</strong> - the resuIt <strong>of</strong> more<br />

than 26000 measurements - was published by A. van Weel den <strong>in</strong> the "Gedenkboek<br />

F .A. Ven<strong>in</strong>g Me<strong>in</strong>esz" (1957). In the gravity field <strong>of</strong> the <strong>Netherlands</strong> the<br />

buried geological structures are revealed .<br />

North Sea. Ven<strong>in</strong>g Me<strong>in</strong>esz' research <strong>in</strong> the North Sea was cont<strong>in</strong>ued by<br />

B. J. Collette (1960) with the aid <strong>of</strong> the Royal <strong>Netherlands</strong> Navy, us<strong>in</strong>g the<br />

submar<strong>in</strong>e H.Nl.M . S. Zeeleeuw <strong>in</strong> 1956 and two surface ships, H.Nl.M.S. Vos<br />

<strong>in</strong> 1955, and H.NI.M.S. Fret <strong>in</strong> 1957. Dur<strong>in</strong>g the voyages <strong>of</strong> the Vos and the<br />

Fret the gravimeters (North American) were put down on the bottom <strong>of</strong> the<br />

North Sea and connected by cable to recorders on the ship. At places where<br />

the sea was too deep the pendulum apparatus <strong>of</strong> Ven<strong>in</strong>g Me<strong>in</strong>esz was used,<br />

placed <strong>in</strong> the submar<strong>in</strong>e. <strong>The</strong> motive for this research was the catastrophic<br />

flood <strong>of</strong> 1953. Ven<strong>in</strong>g Me<strong>in</strong>esz considered it possible that the subsidence <strong>of</strong><br />

the <strong>Netherlands</strong> could be a reaction to the post-glacial uplift <strong>of</strong> Fennoscandia,<br />

and this might be verified by gravity measurements. However, Collette's me asurements<br />

did not confirm the theory <strong>of</strong> Ven<strong>in</strong>g Me<strong>in</strong>esz. Isostatic anomalies<br />

<strong>in</strong> the North Sea could be expla<strong>in</strong>ed by geological structures, and no <strong>in</strong>fluence<br />

<strong>of</strong> the ris<strong>in</strong>g <strong>of</strong> .Fennoscandia could be found. This is <strong>in</strong> agreement with<br />

calculations by J. M. Burgers and B. J. Collette (1958) who studied the glacial<br />

s<strong>in</strong>k<strong>in</strong>g, us<strong>in</strong>g a time-dependent model <strong>of</strong> the earth 's crust.<br />

Caribbean region, Southeast Asia, Europe, North Africa, Andes. Us<strong>in</strong>g a<br />

great number <strong>of</strong> gravity measurements carried out by Companies <strong>of</strong> Royal<br />

Dutch/Shell, J. W. de Bruyn (1951, 1955) published gravity maps for the Caribbean<br />

region and for Southeast Asia. as weIl as for Europe and North Africa.<br />

J. Hospers and J. C. van Wijnen studied the gravity field <strong>of</strong> the Venezuelan<br />

Andes and the adjacent bas<strong>in</strong>s (1959). <strong>The</strong>y concluded that these Andes were<br />

89


shaped when a southeasterly crustal block was pushed over a northwesterly<br />

part <strong>of</strong> the earth 's crust.<br />

South America and Caribbean Sea. American geophysicists under the leadership<br />

<strong>of</strong> M. Ew<strong>in</strong>g carried out, <strong>in</strong> submar<strong>in</strong>es <strong>of</strong> the U. S. N avy, hundreds<br />

<strong>of</strong> gravity measurements along the west coast <strong>of</strong> South America and <strong>in</strong> the Caribbean<br />

Sea. <strong>The</strong>ir results were published <strong>in</strong> the "Gedenkboek" which <strong>in</strong> 1957<br />

was presented to Ven<strong>in</strong>g Me<strong>in</strong>esz. In 1964 Ven<strong>in</strong>g Me<strong>in</strong>esz gave an <strong>in</strong>terpreta-<br />

Figure 39. Gravity anomalies <strong>in</strong> the <strong>Netherlands</strong> . Negative values, especially above<br />

the Cent ral Graben <strong>in</strong> North Brabant, are due to deeply buried high-density rocks.<br />

A more detailed map was published <strong>in</strong> the "Gedenkboek F. A. Ven<strong>in</strong>g Me<strong>in</strong>esz" (Van<br />

Weelden, ed., 1957).<br />

90


tion <strong>of</strong> these results . <strong>The</strong> formation <strong>of</strong> the Andes mounta<strong>in</strong>s and the deep<br />

trenches <strong>in</strong> the ocean bottom along the west coast <strong>of</strong> South America, comb<strong>in</strong>ed<br />

with negative gravity anomalies along the west coast, was attributed to the<br />

<strong>in</strong>fluence <strong>of</strong> an assumed convection current <strong>in</strong> the mantle, ris<strong>in</strong>g under the<br />

East Pacific Rise and press<strong>in</strong>g the South American crust <strong>in</strong> a north-northwestern<br />

direction . Topography as weU as gravity can be compared with that <strong>in</strong> the<br />

Indonesian Archipelago; the <strong>in</strong>terpretation is essentially the same (Ven<strong>in</strong>g Me<strong>in</strong>esz,<br />

1964).<br />

Sur<strong>in</strong>ame. Gravity measurements were carried out also by Veldkamp (1960)<br />

under the program <strong>of</strong> the International <strong>Geophysical</strong> Year, <strong>in</strong> Sur<strong>in</strong>ame along<br />

the Marowijne river and along the Paramaribo-Kabel-Dam railroad. <strong>The</strong>se me asurements<br />

can be jo<strong>in</strong>ed with pendulum measurements by Ven<strong>in</strong>g Me<strong>in</strong>esz performed<br />

<strong>in</strong> 1949 <strong>in</strong> the Atlantic Ocean on board H.NI.M. submar<strong>in</strong>e 0 24. <strong>The</strong><br />

results <strong>of</strong> the measurements <strong>in</strong> Sur<strong>in</strong>ame po<strong>in</strong>t to a gradual change <strong>of</strong> cont<strong>in</strong>ental<br />

crust <strong>in</strong>to oceanic crust north <strong>of</strong> Sur<strong>in</strong>ame. This research was cont<strong>in</strong>ued<br />

by J.J.G.M. van Boeckel, who measured gravity <strong>in</strong> north Sur<strong>in</strong>ame <strong>in</strong> the years<br />

1958 and 1960 at about 400 places, which led to a doctor's thesis (Van Boeckel,<br />

1968). Very strik<strong>in</strong>g was a large region <strong>in</strong> Central Sur<strong>in</strong>ame with strong negative<br />

anomalies; it was ascribed by Van Boeckel to an enormous granitic batholith<br />

<strong>in</strong> the crust. lts dimensions are so large that the determ<strong>in</strong>ations <strong>of</strong> the<br />

geodetic locations are disturbed perceptibly. This gravity research was made<br />

posslble by the <strong>Netherlands</strong> Organization for the Advancement <strong>of</strong> Pure <strong>Research</strong><br />

(ZWO).<br />

OCPS project. Gravity measurements formed also part <strong>of</strong> the OCPS-programme<br />

(multidiscipl<strong>in</strong>ary research on the cont<strong>in</strong>ent al shelf <strong>of</strong> Sur<strong>in</strong>ame, see Chapter<br />

I, section 8). In 1966 gravity <strong>in</strong> the western part <strong>of</strong> this region was mapped<br />

by Strang van Hees, us<strong>in</strong>g the sea gravimeter on board the Snellius. <strong>The</strong> eastern<br />

part <strong>of</strong> the Sur<strong>in</strong>ame shelf was surveyed by Strang van Hees and Vesseur<br />

<strong>in</strong> 1969 us<strong>in</strong>g the hydrographic survey vessel H.NI.M.S. Luymes (Veldkamp,<br />

1967 and 1971). Collette and co-workers (1971) carried out a correspond<strong>in</strong>g<br />

survey on the adjo<strong>in</strong><strong>in</strong>g Guiana Plateau on board the Luymes; also a number<br />

<strong>of</strong> pr<strong>of</strong>iles we re surveyed with the vessel <strong>The</strong>mis (SMS). In this project gravity<br />

played an important role.<br />

<strong>Netherlands</strong> Antilles. R.A. Lagaay (1969) carried out a gravity survey <strong>in</strong><br />

the <strong>Netherlands</strong> Antilles and published the results <strong>in</strong> his thesis. <strong>The</strong> gravity<br />

field can be expla<strong>in</strong>ed by an undulatory deformation <strong>of</strong> the crust <strong>in</strong> the transitional<br />

region between cont<strong>in</strong>ent and ocean. Accord<strong>in</strong>g to Lagaay the <strong>in</strong>tricate<br />

structures <strong>in</strong> the Caribbean region are controUed by the north-west drift <strong>of</strong><br />

South America and by the east-northeast movement <strong>of</strong> the floor <strong>of</strong> the Pacific<br />

Ocean. <strong>The</strong> gravimetrical parts <strong>of</strong> the theses <strong>of</strong> Van Boeckel nnd Lagaay were<br />

also published separately by the <strong>Netherlands</strong> Geodetic Commission (Veldkamp ,<br />

1969). Lagaay's research was subsidized by ZWO.<br />

NAVADO project. In the years 1964-1965 a <strong>Netherlands</strong> team on board the<br />

hydrographic survey vessel, H. NI. M. S. Snellius, made ten cross<strong>in</strong>gs over the<br />

North Atlantic Ocean between 22°N. and 49 0 N. latitude, as part <strong>of</strong> the program<br />

<strong>of</strong> the NA V ADO project (see: Geomagnetism, section I. 8.2). On these<br />

voyages gravity was recorded with the aid <strong>of</strong> an Askania sea gravimeter, developed<br />

for use on surface ships. Under favourable circumstances, dependent<br />

on navigation and location , this <strong>in</strong>strument reaches an accuracy <strong>of</strong> a few mgal<br />

91


-<br />

-<br />

o -<br />

.tJ_-<br />

7


Boeckel, J. J. G. M. van (1968) - Gravitational and geomagnetic <strong>in</strong>vestigations<br />

<strong>in</strong> Sur<strong>in</strong>am and their structural implications. Proefschrift, Amsterdam,<br />

1968.<br />

Bruyn, J.W. de (1951) - lsogam maps <strong>of</strong> Caribbean Sea and surround<strong>in</strong>gs and<br />

<strong>of</strong> south east Asia. Proc. Third World Petr. Congress, Section Geol. and<br />

Geoph., Leiden, 598-612, 1951.<br />

Bruyn, J.W. de (1955) - Isogam maps <strong>of</strong> Europe and North Africa, Geophys.<br />

Prospect. 3, 1-14, 1955.<br />

Bru<strong>in</strong>s, G.J., R. Dorreste<strong>in</strong>, H.J.A. Vesseur, G. Bakker, L.Otto (1960) -<br />

Gravity Expeditions 1948-1958, Vol. V. Atlantic, Caribbean and Pacific<br />

Cruises. Rijkscommissie voor Geodesie, Delft, 1960.<br />

Burgers, J. M. and B. J. Collette (1958) - On the problem <strong>of</strong> the post glacial uplift<br />

<strong>of</strong> Fennoscandia. Proc. Kon. Ned. Akad. Wet., Series B 61, 221-241,<br />

1958.<br />

Collette, B.J. (1954) - On the gravity field <strong>of</strong> the Sunda region (West Indonesia)<br />

. Proefschrift, Utrecht, 1954.<br />

Collette, B.J. (196Ó) - <strong>The</strong> gravity field<strong>of</strong>the North Sea. Gravity expeditions,<br />

1948-1958, Vol. V, Rijkscommissie voor Geodesie, Delft, 1960.<br />

Collette, B. J ., J. A. Schouten, K. W. R utten, D. J . Doornbos and W. H. Staverman<br />

(1971) - <strong>Geophysical</strong> <strong>in</strong>vestigations <strong>of</strong>f the Sur<strong>in</strong>am Coast. Hydrograph.<br />

Newsletter, Spec. Publ. Nr. 6, 17-24, Hydrografisch Bureau Kon. Ned.<br />

Mar<strong>in</strong>e.<br />

Collette, B.J., J. Verhoef and A.F.J. de Mulder (1980) - Gravity and a Model<br />

<strong>of</strong> the Median Valley. Journal<strong>of</strong> Geophysics, 47, 91-98, 1980.<br />

Coster, H.P. (1945) - <strong>The</strong> gravity field <strong>of</strong> the Western and Central Mediterranean.<br />

Proefschrift, Utrecht, 1945.<br />

E<strong>in</strong>dverslag (1918) - E<strong>in</strong>dverslag over de onderzoek<strong>in</strong>gen en uitkomsten van<br />

den Dienst der Rijksopspor<strong>in</strong>gen van Delfst<strong>of</strong>fen <strong>in</strong> Nederland, 1903-1916,<br />

Amsterdam.<br />

Gedenkboek F.A. Ven<strong>in</strong>g Me<strong>in</strong>esz (1957) - Verh. Kon. Ned, Geol. Mijnbouwk.<br />

Genootschap, Geol. Serie, Vol. 18, 1957.<br />

Heiskanen , W. A. and F. A. Ven<strong>in</strong>g Me<strong>in</strong>esz (1958) - <strong>The</strong> Earth and its Gravity<br />

Field. McGraw-Hill Book Comp. Inc., 1958.<br />

Hospers , J. and J.C. van Wijnen (1959) - <strong>The</strong> gravity field <strong>of</strong> the Venezuelan<br />

Andes and adjacent bas<strong>in</strong>s. Verh. Kon. Ned. Akad. Wet., Afd. Nat., deel<br />

23, Nr. 1, 1959.<br />

Kuenen, Ph. H. (1936) - <strong>The</strong> negative isostatic anomalies <strong>in</strong> the East Indies.<br />

Leidse Geol. Mededel<strong>in</strong>gen, VIII, 169-214, 1936.<br />

Lagaay, R.A. (1969) - <strong>Geophysical</strong> <strong>in</strong>vestigations <strong>of</strong> the <strong>Netherlands</strong> Leeward<br />

Antilles. Proefschrift, Utrecht, 1969.<br />

Veldkamp , J. (1960) - Measurements <strong>of</strong> gravity <strong>in</strong> Sur<strong>in</strong>am. Gravity expeditions<br />

1948-1958, Vol. V, Rijkscommissie voor Geodesie, Delft. 1960.<br />

Veldkamp, J. (ed.) (1967) - Scientific Investigations on the shelf<strong>of</strong> Sur<strong>in</strong>am,<br />

Hr. NL. Ms. Snellius (1966). Hydrographic Newsletter, Spec. Publ. Nr.<br />

5, Hydrografisch Bureau Kon . Ned. Mar<strong>in</strong>e.<br />

94


Veldkamp, J. (ed.) (1969) - Gravity surveys <strong>in</strong> Sur<strong>in</strong>am and the <strong>Netherlands</strong><br />

Leeward Islands area, 1958-1965. Rijkscom. Geodesie, Vol. 3, Nr. 3, Delft,<br />

1969.<br />

Veldkamp, J. (ed.) (1971) - Scientific <strong>in</strong>vestigations on the shelf <strong>of</strong> Sur<strong>in</strong>am,<br />

Hr. NL. Ms. Luymes (1969). Hydrographic Newsletter, Spec. Publ. Nr. 6,<br />

Hydrografisch Bureau Kon. Ned. Mar<strong>in</strong>e, 1971.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F. A. (1915) - Bijdragen tot de theorie der sl<strong>in</strong>gerwaarnem<strong>in</strong>gen.<br />

Proefschrift, Delft, 1915.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A. (1923) - Observations de pendule dans les Pays-Bas,<br />

1913-1921, Delft.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F .A. (1929 and 1941) - <strong>The</strong>ory and practice <strong>of</strong> Pendulum Observations<br />

at Sea, Vol. I, 1929 and Vol. 11, 1941. Rijkscommissie voor Geodesie,<br />

Delft.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A. (1932) - Gravity expeditions at Sea, 1923-1930, Vol. I.<br />

Rijkscommissie voor Graadmet<strong>in</strong>g en Waterpass<strong>in</strong>g, Delft, 1932.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A., J.H.F. Umbgrove, Ph. H. Kuenen (1934) - Gravity expeditions<br />

at Sea, 1923-1932, Vol. 11. Rijkscommissie voor Graadmet<strong>in</strong>g en<br />

Waterpass<strong>in</strong>g, Delft.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A. (1934) - Gravity and the hypothesis <strong>of</strong> convection currents<br />

<strong>in</strong> the earth. Verh. Kon. Ned. Akad. Wet., Vol. 37, 37-45, 1934.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F .A. (1937) - <strong>The</strong> determ<strong>in</strong>ation <strong>of</strong> the earth's plasticity from<br />

the post-glacial uplift <strong>of</strong> Scand<strong>in</strong>avia. Proc. Kon. Ned. Ak. Wet., Vol.<br />

40, 654- 662.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A. (1940) - <strong>The</strong> earth's crust deformation <strong>in</strong> the East Indies.<br />

Proc. Kon. Ned. Akad. Wet., Vol. 43, 278-293, 1940.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A. (1941) - Gravity expeditions at Sea, 1934-1939. <strong>The</strong> expeditions,<br />

the computations and the results, Vol. 111. Rijkscommissie voor<br />

Geodesie, Delft.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F .A. (1948) - Gravity expeditions at Sea, 1923-1938. Complete<br />

results with isostatic reduction . Interpretations <strong>of</strong> the results, Vol.<br />

IV. Rijkscommissie voor Geodesie, 1948.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A. (1947) - Convection Currents <strong>in</strong> the Earth. Proc. Kon.<br />

Ned. Akad. Wet., Vol. 50, 237-245, 1947.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F.A. (1964) - <strong>The</strong> Earth's Crust and Mantle. Developments<br />

<strong>in</strong> Solid Earth Physics 1, Elsevier Publ. Comp., Amsterdam, 1964.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz, F. A. (1964) - Interpretation <strong>of</strong> gravity anomalies on the west<br />

coast <strong>of</strong> South America and <strong>in</strong> the Caribbean. Neth. Geod. Comm., Publ.<br />

on Geodesy, New Series Vol. 2, Nr. 1, 1964.<br />

Vos van Steenwijk, J.E. Baron de (1946) - Plumb-l<strong>in</strong>e deflections and geoid<br />

<strong>in</strong> the Eastern Indonesia, as derived from gravity. Publication <strong>of</strong> the <strong>Netherlands</strong><br />

Geodetic Commission (Delft).<br />

Weel den , A. van (1957) - <strong>History</strong> <strong>of</strong> gravity observations <strong>in</strong> the <strong>Netherlands</strong>.<br />

Gedenkboek F .A. Ven<strong>in</strong>g Me<strong>in</strong>esz, 305-309, 1957. Verhandel<strong>in</strong>gen KNGMG,<br />

Geol. Serie, deel XVIII.<br />

95


IV.1. POLAR YEARS<br />

CHAPTER IV<br />

<strong>Geophysical</strong> activity <strong>in</strong><br />

<strong>in</strong>ternational relations<br />

International <strong>in</strong>terest <strong>in</strong> the polar regions and <strong>in</strong> the, at that time not understood,<br />

geophysical phenomena that occur there (geomagnetic storms and<br />

aurora) led to the organization <strong>of</strong> the First International Polar Year 1882-1883.<br />

It was decided that the <strong>Netherlands</strong> should establish a meteorological and geomagnetic<br />

observatory near Port Dickson, at the mouth <strong>of</strong> the Jenissei <strong>in</strong> Siberia.<br />

In 1882 an expedition <strong>of</strong> 10 persons, under the leadership <strong>of</strong> M. Snellen (from<br />

the scientific staff <strong>of</strong> the KNMI), left for the north <strong>in</strong> the polar vessel·"Varna'·.<br />

Before the f<strong>in</strong> al dest<strong>in</strong>ation could be reached, the ship gat stuck <strong>in</strong> the pack<br />

ice <strong>of</strong> the Kara Sea and sprung a leak. <strong>The</strong> expedition w<strong>in</strong>tered on the ice and<br />

was not able to make geomagnetic observations because <strong>of</strong> the mobility <strong>of</strong> the<br />

ice. <strong>The</strong> meteorological program, however, could be carried out.<br />

Attention was also given to the northern lights . At that time scientists w.ere<br />

quite uncerta<strong>in</strong> about the height at which this phenomenon appears. <strong>The</strong>refore<br />

an attempt was made to measure the height by observ<strong>in</strong>g the aurora<br />

simultaneously at two weil separated places. A few km was thought to be<br />

sufficient, as it was commonly believed that at least some northern lights appeared<br />

at the height <strong>of</strong> the clouds. <strong>The</strong>refore they took with them a telephone<br />

cable <strong>of</strong> 5 km length plus two phones, so that observations could be made simultaneously.<br />

<strong>The</strong> reports <strong>of</strong> the expedition , written by Snellen (1886) and by<br />

Snellen and Ekama (1910) do not mention the results <strong>of</strong> the parallactic measurements.<br />

<strong>The</strong>y must certa<strong>in</strong>ly have failed.<br />

On the whole it can be stated that one <strong>of</strong> the results <strong>of</strong> the First Polar Year<br />

was the establishment <strong>of</strong> a clear relation bet ween the aurora and geomagnetic<br />

storms.<br />

Fifty years later an International Polar Year (1932-1933) was organized for<br />

the second time. A <strong>Netherlands</strong> expedition <strong>of</strong> four students (J. van Zuylen,<br />

J.A. de Bru<strong>in</strong>e, H.P.Th. van Lohuizen and K.L. van Schouwenburg) lived for<br />

Figure 42. <strong>The</strong> staff <strong>of</strong> the <strong>Netherlands</strong> Arctic Expedition 1882-1883. Seated at left<br />

M. Snellen (chief <strong>of</strong> the expedition) and at right L.A.H. Lamie (practical leader and<br />

astronomical observer). Stand<strong>in</strong>g, from left to right, H.J. Kremer (physician), J.M.<br />

Ruys (natural philosopher). H. Ekama (physicist) and F. Rust (charged with open<strong>in</strong>g<br />

trade relations). Support staff for the expedition consisted <strong>of</strong> 5 persons (shipsmate,<br />

carpenter, fireman, cook and eng<strong>in</strong>eer).<br />

97


a year at Angmagssalik (East Greenland) and worked through an extensive<br />

program consist<strong>in</strong>g <strong>of</strong> meteorological and geomagnetic observations , photographs<br />

<strong>of</strong> the aurora and ionospheric sound<strong>in</strong>gs.<br />

<strong>The</strong> plan to determ<strong>in</strong>e the height <strong>of</strong> the aurora from photographs taken simultaneously<br />

at different stations had only limited success. MosUy, variations<br />

<strong>of</strong> the auroral forms occurred so rapidly that simultaneous photography proved<br />

to be anillusion; the radio contacts bet ween Angmagssalik and other stations<br />

were <strong>in</strong>sufficient for that purpose .<br />

Thanks to the establishment <strong>of</strong> a great number <strong>of</strong> observ<strong>in</strong>g-stations <strong>in</strong> the<br />

polar region, a better <strong>in</strong>sight was obta<strong>in</strong>ed <strong>in</strong>to the location <strong>of</strong> the auroras:<br />

they appeared mostly <strong>in</strong> a rather narrow belt (the auroral belt) around the<br />

geomagnetic axis <strong>of</strong> the earth.<br />

<strong>The</strong> ionospheric research proved the <strong>in</strong>fluence <strong>of</strong> electrically charged particles<br />

(emitted by the sun) on the ionosphere above the polar region. <strong>The</strong> formation<br />

(nowand then) <strong>of</strong> a special, <strong>in</strong>tense ionisation (Es) at the height <strong>of</strong><br />

the normal E-Iayer, as weU as the polar black out. which is an unusually<br />

strong absorption <strong>of</strong> radio waves <strong>in</strong> the polar regions • were discoveries made<br />

dur<strong>in</strong>g the second Polar Year.<br />

<strong>The</strong> Greenland expedition and the geomagnetic observations at Angmagssalik<br />

are described <strong>in</strong> a KNMI publication (KNMI, 1940).<br />

In this second Polar Year another expedition was sent out by the <strong>Netherlands</strong><br />

, viz. to Iceland to <strong>in</strong>vestigate the troposphere. <strong>Netherlands</strong> military<br />

pilots, under the leadership <strong>of</strong> H.G. Cannegieter (from the scientific staff <strong>of</strong><br />

the KNMI), carried out twice daily aerological altitude flights near Reykjavik<br />

when weather permitted (Cannegieter, 1932 and 1934). us<strong>in</strong>g a meteorograph<br />

lo measure temperatures above Iceland. This succeeded 330 times on 260 days,<br />

and <strong>of</strong> ten the plane reached a height <strong>of</strong> more than 6000 m. Moreover , pilot<br />

balloons and radiosondes were flown near Reykjavik, which <strong>of</strong> ten penetrated<br />

<strong>in</strong>to the stratosphere.<br />

IV.2. GEOPHYSICAL YEARS<br />

Twenty-five years af ter the Polar Year the International <strong>Geophysical</strong> Year<br />

1957-1958 (lGY) was organized. This time the aim was to study not only the<br />

polar regions by geophysical expeditions • but to <strong>in</strong>clude the entire earth. In<br />

the <strong>Netherlands</strong> scientific <strong>in</strong>terest dur<strong>in</strong>g the IGY was directed not to the polar<br />

regions • but to its own country and its (former) Overseas Territories.<br />

<strong>The</strong> KNMI let radiosonde balloons fly to abnormally great heights. <strong>The</strong> ionosphere<br />

was sounded almost cont<strong>in</strong>uously. and on <strong>in</strong>ternational days drift <strong>in</strong><br />

the ionosphere above the <strong>Netherlands</strong> was <strong>in</strong>vestigated by means <strong>of</strong> radio signals.<br />

Geomagnetic variations were recorded <strong>in</strong> the Geomagnetic Observatory<br />

at Witteveen . <strong>The</strong> Astronomical Observatory at Utrecht studied every solar<br />

flare that could be observed. <strong>Netherlands</strong> weather ships were <strong>in</strong>cluded <strong>in</strong> the<br />

oceanographic program through measurements <strong>of</strong> temperature and sal<strong>in</strong>ity.<br />

<strong>The</strong> <strong>Netherlands</strong> program was carried out by the follow<strong>in</strong>g <strong>in</strong>stitutions : the<br />

KNMI at De Bilt. the Astronomical Observatory at Utrecht. the Neher Laboratory<br />

<strong>of</strong> the <strong>Netherlands</strong> Post al and Telecommunication Services (for study <strong>of</strong><br />

the sun and measurements <strong>of</strong> radio radiation <strong>of</strong> the sun); the Physical Laboratory<br />

<strong>of</strong> the Municipal University <strong>of</strong> Amsterdam (record<strong>in</strong>g <strong>of</strong> cosmic radiation)<br />

and the Department for Geodesy <strong>of</strong> the University <strong>of</strong> Technology at Delft<br />

(measurements <strong>of</strong> irregularities <strong>in</strong> the rotation <strong>of</strong> the earth and oscillations <strong>of</strong><br />

the terrestrial globe with respect to the axis <strong>of</strong> rotation) . <strong>The</strong> program was<br />

published by the KNMI (1957).<br />

99


100


Outside the <strong>Netherlands</strong> geophysical research was commenced at Paramaribo<br />

(Sur<strong>in</strong>ame) and near Hollandia (former <strong>Netherlands</strong> New Gu<strong>in</strong>ea). At both<br />

places a geomagnetic observatory was established, an ionosphere sound<strong>in</strong>g<br />

station was set up, and a radio telescope was mounted for record<strong>in</strong>g radio radiation<br />

from the sun. <strong>The</strong>se geophysical observations were cont<strong>in</strong>ued <strong>in</strong> Sur<strong>in</strong>ame<br />

after the IG Y. However, at Hollandia the observations were stopped<br />

aft er grant<strong>in</strong>g <strong>of</strong> sovereignty to Indonesia.<br />

<strong>The</strong> Department <strong>of</strong> Geodesy <strong>of</strong> the University <strong>of</strong> Technology at Delft organized<br />

an observatory for astronomical-geodetic observations on the Island <strong>of</strong><br />

Curaçao, north <strong>of</strong> Venezuela. Dur<strong>in</strong>g the IGY this observatory was operated<br />

by two geodetic eng<strong>in</strong>eers. Results <strong>of</strong> the observations formed the basis <strong>of</strong> a<br />

thesis written by one <strong>of</strong> them (Scheepmaker, 1963).<br />

<strong>The</strong> <strong>Netherlands</strong> program for the IGY 1957-1958 was made possible, thanks<br />

to f<strong>in</strong>ancial aid from the <strong>Netherlands</strong> Organization for the Advancement <strong>of</strong> Pure<br />

<strong>Research</strong> (ZWO).<br />

Observations <strong>of</strong> the geomagnetic field at Paramaribo and Hollandia were published<br />

<strong>in</strong> Yearbooks edited by the KNMI. <strong>The</strong> geomagnetic Yearbooks for Paramaribo<br />

appeared <strong>in</strong> the series 1957-1967 (Paramaribo, 1957-1967). It is the<br />

<strong>in</strong>tention that this series be cont<strong>in</strong>ued until 1981 (the record<strong>in</strong>gs <strong>of</strong> the geomagnetic<br />

field ended <strong>in</strong> 1981). Yearbooks Geomagnetism from Hollandia were<br />

issued for the years 1957-1962 (Hollandia, 1957-1962). <strong>The</strong> other observations ,<br />

sound<strong>in</strong>gs <strong>of</strong> the ionosphere at Paramaribo and at Hollandia, were published<br />

by the KNMI <strong>in</strong> a series <strong>of</strong> Monthly Bullet<strong>in</strong>s (Paramaribo, 1957-1970, and Hollandia,<br />

1958-1959).<br />

One <strong>of</strong> the results <strong>of</strong> the IGY was the discovery <strong>of</strong> the magnetosphere and<br />

the Van Allen belt. Af ter asolar flare electrically charged particles can penetrate<br />

<strong>in</strong>to the magnetosphere. <strong>The</strong>y become trapped <strong>in</strong> the Van Allen belt,<br />

and spiral around the geomagnetic field l<strong>in</strong>es back and forth between the northern<br />

and southern hemispheres. As a consequence the aurora appears almost<br />

always simultaneously <strong>in</strong> both auroral beits.<br />

<strong>The</strong> great geophysical activity that had come <strong>in</strong>to full sw<strong>in</strong>g dur<strong>in</strong>g the IGY,<br />

was channeled <strong>in</strong> part <strong>in</strong>to permanent structures after the IGY. Many newly<br />

established observation posts rema<strong>in</strong>ed <strong>in</strong> operation. <strong>The</strong> IGY was timed deliberately<br />

to co<strong>in</strong>cide with a period <strong>of</strong> extraord<strong>in</strong>arily great activity <strong>of</strong> the sun.<br />

In the years follow<strong>in</strong>g it became evident that results <strong>of</strong> this research would<br />

ga<strong>in</strong> still more significance if they could be compared with geophysical phenomena<br />

dur<strong>in</strong>g a sun-spot m<strong>in</strong>imum. This resulted <strong>in</strong> a plan to <strong>in</strong>tensify anew<br />

the research dur<strong>in</strong>g the International Quiet Sun Years (lQSY, 1964-1965).<br />

<strong>The</strong> program for the IQSY was similar to that <strong>of</strong> the IGY, but was less extensive.<br />

Much attention was paid to the vibrations <strong>of</strong> the earth 's magnetic field<br />

that are ascribed to the flash<strong>in</strong>g <strong>of</strong> charged particles back and forth along geomagnetic<br />

field l<strong>in</strong>es. Further, measurements <strong>of</strong> w<strong>in</strong>d velocities <strong>in</strong> the ionosphere<br />

raised <strong>in</strong>terest, as weIl as observations <strong>of</strong> whistlers, long wavelength radio<br />

signals connected with flashes <strong>of</strong> lightn<strong>in</strong>g.<br />

<strong>The</strong> <strong>Netherlands</strong> program for the IQSY was adapted to the <strong>in</strong>ternational program<br />

objectives. Just as dur<strong>in</strong>g the IGY, the meteorological, astronomical and<br />

geophysical observatories <strong>in</strong> the <strong>Netherlands</strong> , and also the geomagnetic ob ser-<br />

Figure 44. <strong>The</strong> <strong>Netherlands</strong> Committee for the Second International Polar Year 1932-<br />

1933, and seated, from left to right. the four expedition members: H. P. Th. van Lohuizen,<br />

J. van Zuylen. J.A. de Bru<strong>in</strong>e and K.L. van Schouwenburg (Photo N.V.<br />

Polygoon) .<br />

101


vatory at Paramaribo, took part <strong>in</strong> the measurements. Investigations dur<strong>in</strong>g<br />

the IQSY produced further details about discoveries made dur<strong>in</strong>g the IGY;<br />

this holds especially for the magnetosphere and the Van Allen belt.<br />

IV.3. BELGIAN-NETHERLANDS ANTARCTIC EXPEDITIONS<br />

After Belgium ha.d already sent out four expeditions to Antarctica <strong>in</strong> 1897,<br />

1958, 1959 and 1960, the <strong>Netherlands</strong> <strong>in</strong> 1964 took part <strong>in</strong> a Belgian-<strong>Netherlands</strong><br />

Antarctic Expedition , which w<strong>in</strong>tered at K<strong>in</strong>g Baudou<strong>in</strong> Base, <strong>in</strong> Queen<br />

Maud Land (south <strong>of</strong> Cape Town). <strong>The</strong> program <strong>of</strong> observations was very extensive.<br />

It consisted <strong>of</strong> meteorological observations , record<strong>in</strong>gs <strong>of</strong> geomagnetic<br />

variations , sound<strong>in</strong>gs <strong>of</strong> the ionosphere, observations <strong>of</strong> aurora and <strong>of</strong> atmospheric<br />

electricity. Furthermore, the program comprised the follow<strong>in</strong>g subjects:<br />

geodesy, topography, gravimetry, glaciology, biology and physiology.<br />

<strong>The</strong> <strong>Netherlands</strong> participants <strong>in</strong> the 1964 expedition (J. Rietman, P.M. Buis,<br />

J. van Ameyde and P. Verschoor) were responsible for the meteorological observations.<br />

Also, echo sound<strong>in</strong>gs <strong>of</strong> the ionosphere and measurements <strong>of</strong> atmospheric<br />

electricity belonged to their program.<br />

This Antarctic research was a cont<strong>in</strong>uation <strong>of</strong> the geophysical activity that<br />

had begun dur<strong>in</strong>g the IGY. It was organized by the Scientific Committee for<br />

Antarctic <strong>Research</strong> (SCAR) , which is a committee <strong>of</strong> the ICSU (International<br />

Council <strong>of</strong> Scientific Unions ) .<br />

<strong>The</strong> Belgian-<strong>Netherlands</strong> program also fitted with<strong>in</strong> the framework <strong>of</strong> the<br />

IQSY, <strong>in</strong> which special stress was laid on measurements <strong>of</strong> atmospheric ozone<br />

and <strong>of</strong> radioactivity <strong>in</strong> the air, as a means to <strong>in</strong>vestigate movements <strong>in</strong> the atmosphere.<br />

This might lead to a better <strong>in</strong>sight <strong>in</strong>to the remarkable transition<br />

from w<strong>in</strong>ter to summer <strong>in</strong> the upper air <strong>of</strong> the polar regions, known as stratospheric<br />

warm<strong>in</strong>g.<br />

Twice more (dur<strong>in</strong>g 1965 and 1966) a Belgian-<strong>Netherlands</strong> expedition used<br />

K<strong>in</strong>g Baudou<strong>in</strong> Base, each time for one year, to carry out an <strong>in</strong>ternational<br />

program. Aga<strong>in</strong> <strong>in</strong> these expeditions the <strong>Netherlands</strong> participants we re responsible<br />

for the meteorological and ionospheric observations. <strong>The</strong> <strong>Netherlands</strong><br />

participants <strong>in</strong> the expedition <strong>of</strong> 1965 were: J. Wisse, K. van der Veen, H. Noback<br />

and J. Roest. Participants <strong>in</strong> the third expedition (1966) were: A.J.<br />

Meerburg , C. Kraan, C. van Vliet and C. Stell<strong>in</strong>g.<br />

<strong>The</strong> Base was f<strong>in</strong>ally closed down <strong>in</strong> February 1967, and with that an <strong>in</strong>terest<strong>in</strong>g<br />

cooperation between Belgium and the <strong>Netherlands</strong> <strong>in</strong> the doma<strong>in</strong> <strong>of</strong> geophysics<br />

came to an end. <strong>The</strong> results <strong>of</strong> the three expeditions , which we re<br />

under the general leadership <strong>of</strong> Baron Gaston de Gerlache de Goméry, were<br />

published <strong>in</strong> a series <strong>of</strong> Yearbooks. <strong>The</strong> meteorological, geomagnetic and ionospheric<br />

data were for a considerable part collected by the KNMI and published<br />

<strong>in</strong> its Yearbooks, which are preserved <strong>in</strong> its Library.<br />

<strong>The</strong> Belgian-<strong>Netherlands</strong> Antarctic Expeditions could be carried out thanks<br />

to a large subsidy from the <strong>Netherlands</strong> Organization for ZWO. Belgium paid<br />

two-thirds <strong>of</strong> the total cost and ZWO one-third. Not only were three w<strong>in</strong>ter<strong>in</strong>gs<br />

made possible, but also some summer campaigns <strong>in</strong> Antarctica, before or after<br />

the w<strong>in</strong>ter expeditions .<br />

Figure 45. Observation posts <strong>in</strong> the Antarctic regions dur<strong>in</strong>g the IGY or (and)<br />

thereafter. <strong>The</strong> Belgian-<strong>Netherlands</strong> expeditions used the K<strong>in</strong>g Baudou<strong>in</strong> Base <strong>in</strong><br />

Queen Maud Land <strong>in</strong> 1964, 1965 and 1966. <strong>The</strong> grey r<strong>in</strong>g denotes the mean southern<br />

auroral belt.<br />

103


Figure 47. Launch<strong>in</strong>g <strong>of</strong> a meteorological radiosonde at the K<strong>in</strong>g Baudou<strong>in</strong> Base by<br />

members <strong>of</strong> the Belgian-<strong>Netherlands</strong> Antarctic Expedition 1964-1965 (Photo Ir. J.<br />

Rietman).<br />

105


<strong>The</strong> result <strong>of</strong> the comb<strong>in</strong>ed <strong>in</strong>vestigations <strong>of</strong> the participat<strong>in</strong>g countries can<br />

be summarized as follows. <strong>The</strong> meteorological observations led to an <strong>in</strong>sight<br />

<strong>in</strong>to the balance <strong>of</strong> heat <strong>in</strong> the Antarctic atmosphere. <strong>The</strong> strong radiation <strong>of</strong><br />

heat by the icecap is compensated by the meridional transport <strong>of</strong> warmer air<br />

through the troposphere. This process is accompanied by downward air movements<br />

above Antarctica. <strong>The</strong> rim <strong>of</strong> the cont<strong>in</strong>ent is characterized by a stormy<br />

climate, caused by squalls and by astrong activity <strong>of</strong> atmospheric lows around<br />

the icecap. <strong>The</strong> meteorological as well as the other geophysical observations<br />

(ionosphere, geomagnetism, aurora, atmospheric electricity) show that only a<br />

synoptic study <strong>of</strong> the data from all Antarctic stations can lead to a good <strong>in</strong>sight<br />

<strong>in</strong>to the processes. <strong>The</strong> observational data will provide food for study<br />

for many decades.<br />

A general account <strong>of</strong> the work carried out dur<strong>in</strong>g a w<strong>in</strong>ter<strong>in</strong>g <strong>in</strong> Antarctica<br />

has been written by Van der Veen and Wisse (1967).<br />

IV.4. THE UPPER MANTLE PROJECT (UMP)<br />

In 1960, after the IG Y, a specialorganization , the Upper Mantle Project<br />

(UMP), was set up to <strong>in</strong>vestigate the solid earth, <strong>in</strong> particular to study the<br />

outer mantle <strong>of</strong> the earth and the <strong>in</strong>fluence exerted by it on the earth 's crust.<br />

In the <strong>Netherlands</strong> some groups took part <strong>in</strong> the UMP by study<strong>in</strong>g the follow<strong>in</strong>g<br />

themes.<br />

a. Mechanisms <strong>of</strong> earthquakes with epicentres located <strong>in</strong> Indonesia, Japan,<br />

Europe, H<strong>in</strong>du Kush, the Mediterranean region and the Mid-Atlantic Ridge.<br />

b. Geomagnetism <strong>in</strong> the North Atlantic Ocean, the <strong>Netherlands</strong> Antilles and<br />

Sur<strong>in</strong>ame.<br />

c. Palaeomagnetism <strong>of</strong> rocks from Sweden, Germany, Spa<strong>in</strong>. Sard<strong>in</strong>ia. Alps.<br />

India and Iceland.<br />

d. Gravity measurements <strong>in</strong> the North Atlantic Ocean, <strong>in</strong> the North Sea, the<br />

Antilles and Sur<strong>in</strong>ame.<br />

e. Movements <strong>of</strong> the earth 's crust <strong>in</strong> the <strong>Netherlands</strong> , determ<strong>in</strong>ed from geodetic<br />

measurements.<br />

f. Measurements <strong>of</strong> the heat flow through the floor <strong>of</strong> the North Atlantic<br />

Ocean.<br />

g. Geochemistry and radiometrical dat<strong>in</strong>gs <strong>in</strong> Sur<strong>in</strong>ame, Scand<strong>in</strong>avia and the<br />

Iberian Pen<strong>in</strong>suia .<br />

h. Geotectonics <strong>in</strong> the Mediterranean Region and Scand<strong>in</strong>avia.<br />

Investigations under a, b, c, d and f have been discussed earlier <strong>in</strong> Chapters<br />

I, 11, 111. None <strong>of</strong> the <strong>in</strong>vestigations was started by the <strong>Netherlands</strong> Committee<br />

for the UMP; they were organized by the <strong>in</strong>terested Institutes. However, the<br />

UMP had a stimulat<strong>in</strong>g effect. not <strong>in</strong> the least by the contacts between researchworkers.<br />

<strong>The</strong> UMP ended <strong>in</strong> 1971. <strong>The</strong> <strong>Netherlands</strong> part was embodied <strong>in</strong> the F<strong>in</strong>al<br />

Report <strong>of</strong> the <strong>Netherlands</strong> Committee for the Upper Mantle Project (<strong>KNAW</strong>,<br />

1971) •<br />

IV.5. THE GEODYNAMICS PROJECT (GP)<br />

In 1970 the aim <strong>of</strong> the UMP was def<strong>in</strong>ed more precisely as the <strong>in</strong>vestigation<br />

<strong>of</strong> dynamical processes <strong>in</strong> and below the earth 's crust. This entailed a change<br />

<strong>of</strong> name; the UMP was converted <strong>in</strong>to the Geodynamics Project (GP). Movements<br />

<strong>of</strong> the plates <strong>in</strong>to which the lithosphere is divided, were to be studied by<br />

106


means <strong>of</strong> data from both seismology and palaeomagnetism. Moreover , plutonic<br />

rocks would be studied <strong>in</strong> special laboratories for a better understand<strong>in</strong>g <strong>of</strong><br />

the geodynamic properties <strong>of</strong> rocks <strong>in</strong> the outer mantle .<br />

A prelim<strong>in</strong>ary report <strong>of</strong> the <strong>Netherlands</strong> <strong>in</strong>vestigations can be found <strong>in</strong> the<br />

publication "Progress <strong>in</strong> Geodynamics" (<strong>KNAW</strong> , 1975). In this collection <strong>of</strong> papers<br />

the follow<strong>in</strong>g are <strong>of</strong> geophysical character: geomagnetic beits (As), sat-<br />

Figure 48. Measurement <strong>of</strong> w<strong>in</strong>d movements <strong>in</strong> the ionosphere above Sur<strong>in</strong>ame (1965).<br />

Rockets with built-<strong>in</strong> sodium ovens were launched from the airfield <strong>of</strong> Coronie <strong>in</strong> a<br />

southerly direction . <strong>The</strong> $Odium trails were visible to a height <strong>of</strong> more than 100 km.<br />

Observation posts were situated at Paramaribo. Zanderij and Brownsweg.<br />

107


ellite geodesy (Aardoom) • movements <strong>in</strong> the earth's crust (Baarda, Van Mierlo),<br />

dislocation theory and earthquake mechanisms (Steketee), model <strong>of</strong> an earthquake<br />

focus with a discont<strong>in</strong>uous stress field (Csikós), seismicity and earthquake<br />

mechanisms <strong>in</strong> the Mediterranean region (Ritsema), rotation <strong>of</strong> Italy<br />

accord<strong>in</strong>g to palaeomagnetic data (Van den Berg), anisotropy <strong>of</strong> magnetic susceptibility<br />

(Van den Ende), structural history <strong>of</strong> the India-Pakistan subcont<strong>in</strong>ent<br />

(Wens<strong>in</strong>k), fracture zones <strong>in</strong> the Mid-Atlantic Ocean (Collette) , mechanism<br />

<strong>of</strong> plate tectonics (Vlaar). Most <strong>of</strong> these <strong>in</strong>vestigations have been<br />

mentioned <strong>in</strong> previous chapters ..<br />

Figure 49. A Nike-Apache rocket ready to be launched for a study <strong>of</strong> w<strong>in</strong>ds <strong>in</strong> the<br />

ionosphere above Sur<strong>in</strong>ame (photo R. V.D., Paramaribo).<br />

108


IV.6. WIND MEASUREMENTS IN THE IONOSPHERE ABOVE SURINAME<br />

(SEPTEMBER 1965)<br />

In Chapter I, section 4, it was stated that w<strong>in</strong>d movements <strong>in</strong> the ionosphere<br />

can be derived from the fad<strong>in</strong>g pattern <strong>of</strong> radio waves reflected from the ionosphere<br />

(see: Vesseur, 1970) and that for this purpose a fad<strong>in</strong>g receiver had<br />

been operated at Paramaribo (Sur<strong>in</strong>ame) from January 1971 until September<br />

1972.<br />

As <strong>in</strong>terpretation <strong>of</strong> fad<strong>in</strong>g records depends on some assumptions , it was<br />

earlier decided to test the fad<strong>in</strong>g method by means <strong>of</strong> sodium trails produced<br />

<strong>in</strong> the ionosphere by rockets . ft appeared feasible to carry out this experiment<br />

<strong>in</strong> Sur<strong>in</strong>ame. An agreement with NASA was reached, approval <strong>of</strong> the Sur<strong>in</strong>ame<br />

government was obta<strong>in</strong>ed, and a subsidy was promised by the <strong>Netherlands</strong><br />

Organization for Pure <strong>Research</strong> (ZWO).<br />

Four rockets (Nike-Apache) were made available by NASA free <strong>of</strong> charge.<br />

Figure SO. A sodium trail, emitted by a rocket above Sur<strong>in</strong>ame, shows strong horizontal<br />

w<strong>in</strong>ds and w<strong>in</strong>d shears, alternated by turbulent layers, at heights bet ween 90<br />

and 110 km.<br />

109


Hollandia (1958-1959) - Monthly Bullet<strong>in</strong> on Ionospheric etc. Data, Hollandia,<br />

<strong>Netherlands</strong> New Gu<strong>in</strong>ea. K.N .M.I., De Bilt.<br />

K. N . A. W. (1971) - Upper Mantle Project, F<strong>in</strong>al Report <strong>of</strong> the <strong>Netherlands</strong> Commission.<br />

Kon. Ned. Akad. van Wetensch., 1971.<br />

K.N.A.W. (1975) - Progress <strong>in</strong> Geodynamics, Geodynamics Project, Scientific<br />

Report no. 13 by A.R. Ritsema ed. , Kon. Ned. Akad. van Wetensch.,<br />

1975.<br />

K.N.M.1. (1940) - Magnetische waarnem<strong>in</strong>gen te Angmagssalik gedurende het<br />

Internationaal Pooljaar 1932-1933. K.N.M.1. publicatie no. 98, De Bilt,<br />

1940.<br />

K.N.M.1. (1957) - Het Internationaal Geophysisch Jaar 1957-1958. Verspreide<br />

Opstellen no. 4, K.N .M. 1., De Bilt.<br />

Paramaribo (1957-1967) - Yearbook Geomagnetism, Paramaribo, Sur<strong>in</strong>am.<br />

K.N.M.I., De Bilt.<br />

Paramaribo (1957-1970) - Monthly Bullet<strong>in</strong> on Ionospheric etc. Data, Paramaribo.<br />

K.N.M.I., De Bilt.<br />

Scheepmaker, A. C. (1963) - Analyse van de waarnem<strong>in</strong>gsresultaten verkregen<br />

op het Geodetisch Astronomisch Station op Curaçao tijdens het Internationaal<br />

Ge<strong>of</strong>ysisch Jaar 1957-1958. Proefschrift, Delft, 1963.<br />

Sevensma, H. W . N. (1968) - Met<strong>in</strong>gen aan de ionosferische w<strong>in</strong>d boven Sur<strong>in</strong>ame<br />

<strong>in</strong> september 1965 met behulp van natriumsporen. Publicatie van het<br />

Sterrekundig Instituut der Rijksuniversiteit te Utrecht , nr. 1968/2.<br />

Snellen, M. (1886) - De Nederlandsche Pool-Expeditie 1882-83. Firma Bosch en<br />

Zoon, Utrecht. (Library KNMI)<br />

Snellen, M. en H. Ekama (1910) - Rapport sur l'expédition polaire néerlandaise.<br />

Utrecht, 1910. (Library KNMI)<br />

Veen, K. van der, en J.A. Wisse (1967) - De Belgisch-Nederlandse Antarctische<br />

Expedities. Diligentia voordracht. K. N . M.l., De Bilt, 1967.<br />

Vesseur, H.J.A. (1970) - A correlation apparatus for the measurement <strong>of</strong> the<br />

drift <strong>in</strong> the ionosphere by the spaced receiver method. Journ. Atm. Terr.<br />

Physics, 32, 829-835, 1970.<br />

111


y W. Bosrna, S. B. Kroonenberg, R. V . van Lissa, K. Maas and E. W. F. de Roever.<br />

It will appear <strong>in</strong> "<strong>The</strong> Geology <strong>of</strong> Sur<strong>in</strong>ame" (GMD, Sur<strong>in</strong>ame, Mededel<strong>in</strong>g 27).<br />

V.4. GEOPHYSICAL SURVEYS IN THE NETHERLANDS<br />

V.4.1. Gravity research <strong>in</strong> the Southeast <strong>Netherlands</strong> by Government Agencies<br />

Dur<strong>in</strong>g the years 1941 to 1944 the <strong>Geophysical</strong> Service <strong>of</strong> the State M<strong>in</strong>es<br />

carried out a gravity survey <strong>in</strong> the southeastern part <strong>of</strong> the <strong>Netherlands</strong> , <strong>in</strong><br />

South Limburg and <strong>in</strong> the eastern part <strong>of</strong> North Brabant. <strong>The</strong> leader <strong>of</strong> this<br />

survey was L. U . de Sitter. <strong>The</strong> aim was to determ<strong>in</strong>e, if possible, the position<br />

<strong>of</strong> the major faults and <strong>of</strong> the related smaller faults, <strong>in</strong> view <strong>of</strong> assess<strong>in</strong>g m<strong>in</strong><strong>in</strong>g<br />

possibilities <strong>in</strong> the coal field <strong>of</strong> the Peelhorst region. Students who carried out<br />

the measurements were protected aga<strong>in</strong>st the "Arbeitse<strong>in</strong>satz", this means forced<br />

labour by the German occupational forces. <strong>The</strong> <strong>in</strong>struments used <strong>in</strong> the gravity<br />

survey were Askania torsion balances and Thyssen gravimeters, made available<br />

by the BPM. <strong>The</strong> observations we re made by the geologists A. Maaskant and G.<br />

Zijlstra, assisted by W.J. van Riel, J.A.M. Schmedd<strong>in</strong>g and F. W<strong>in</strong>kelaar.<br />

Dur<strong>in</strong>g the war years the <strong>Netherlands</strong> Commission for Geodesy organized<br />

measurements <strong>in</strong> the southeastern part <strong>of</strong> the country. W. Nieuwenkamp was<br />

the leader <strong>of</strong> a party which established a rather dense network <strong>of</strong> Thyssen<br />

gravimeter stations <strong>in</strong> North Brabant and North Limburg dur<strong>in</strong>g the years<br />

1942 to 1944. <strong>The</strong> results <strong>of</strong> these measurements were comb<strong>in</strong>ed with the above<br />

mentioned survey by the <strong>Geophysical</strong> Service <strong>of</strong> the State M<strong>in</strong>es.<br />

<strong>The</strong> reason for the <strong>in</strong>tensive use <strong>of</strong> torsion balances <strong>in</strong> the gravimetric survey<br />

was the follow<strong>in</strong>g. <strong>The</strong> torsion balance gives the horizont al gradient <strong>of</strong><br />

the acceleration due to gravity, and reacts therefore strongly to the more or<br />

less vertical faults.<br />

Strictly speak<strong>in</strong>g, a unique <strong>in</strong>terpretation <strong>of</strong> a gradient pr<strong>of</strong>ile is possible<br />

only <strong>in</strong> simple cases, when only one discont<strong>in</strong>uity plane is present. S<strong>in</strong>ce the<br />

fault structure <strong>in</strong> the Southeastern <strong>Netherlands</strong> is complicated and, moreover ,<br />

the densities <strong>of</strong> the deeper rocks are not sufficiently well-known, quantitative<br />

analysis <strong>of</strong> the measurements is not always possible, although <strong>in</strong> many cases<br />

the model <strong>of</strong> only one discont<strong>in</strong>uity plane is sufficient. <strong>The</strong> f<strong>in</strong> al report <strong>of</strong> the<br />

survey appeared <strong>in</strong> the series "Mededel<strong>in</strong>gen van de Geologische Sticht<strong>in</strong>g"<br />

(De Sitter and co-workers, 1949).<br />

V.4.2. M<strong>in</strong><strong>in</strong>g possibilities <strong>in</strong> the Peel Field (North Brabant)<br />

As early as 1905 the geologist and m<strong>in</strong><strong>in</strong>g eng<strong>in</strong>eer W . A. J . M. van Waterschoot<br />

van der Gracht surmised a very gentle and wide topographic swell runn<strong>in</strong>g<br />

south-east to north-west <strong>in</strong> the eastern part <strong>of</strong> the prov<strong>in</strong>ce <strong>of</strong> North Brabant<br />

to be the surface expression <strong>of</strong> a horst-like structure <strong>in</strong> the subsurface. Subsequent<br />

drill<strong>in</strong>g by the State Survey <strong>of</strong> M<strong>in</strong>eral Resources led to the discovery<br />

<strong>of</strong> the Peel Horst with rather shallow Carboniferous coal measures (E<strong>in</strong>dverslag,<br />

1918). At the time, however, it was considered unadvisable to develop<br />

this field. <strong>The</strong> matter was taken up aga<strong>in</strong> <strong>in</strong> 1952, when the M<strong>in</strong>ister <strong>of</strong> Economic<br />

Affairs <strong>in</strong>stalled the "Peelcommissie" with the <strong>in</strong>struction to advise,<br />

whether it would be recommendable to develop the Peel Field <strong>in</strong> the near fut ure .<br />

<strong>The</strong> committee was chaired by the pr<strong>of</strong>essor <strong>of</strong> m<strong>in</strong><strong>in</strong>g technology Th. R. Seldenrath<br />

<strong>of</strong> the University <strong>of</strong> Technology at Delft; the <strong>in</strong>vestigation, seismic<br />

114


eflection and drill<strong>in</strong>g, was supervised by the <strong>Geophysical</strong> Survey <strong>of</strong> the State<br />

M<strong>in</strong>es and the Geological Bureau <strong>of</strong> the M<strong>in</strong><strong>in</strong>g Area.<br />

Between 1952 and 1959 a detailed seismic survey was carried out over an<br />

area <strong>of</strong> 255 km 2 with a total length <strong>of</strong> more than 300 km reflection pr<strong>of</strong>ile. <strong>The</strong><br />

drill<strong>in</strong>g pro gramme , consist<strong>in</strong>g <strong>of</strong> 7 boreholes, was begun before the completion<br />

<strong>of</strong> the seismic <strong>in</strong>vestigation. <strong>The</strong> Upper Carboniferous was cored; <strong>in</strong> addition<br />

to the usual physical logs, water tests and temperature measurements<br />

were taken. In 1962 the "Peelcommissie" came to the conclusion, that build<strong>in</strong>g<br />

a m<strong>in</strong>e could not be considered recommendable, due not only to technical and<br />

economical considerations, but also due to the discovery <strong>in</strong> 1959 <strong>of</strong> large reserves<br />

<strong>of</strong> natural gas <strong>in</strong> Gron<strong>in</strong>gen and cheap domestic production <strong>of</strong> oil and<br />

coal and cheap imports. <strong>The</strong> f<strong>in</strong>al report was published <strong>in</strong> 1963 (Peelcommissie,<br />

1963).<br />

As a consequence <strong>of</strong> the sharp <strong>in</strong>creases <strong>in</strong> oil prices dur<strong>in</strong>g the 1970s the<br />

outlook changed aga<strong>in</strong>. On October 4, 1979, on the <strong>in</strong>itiative <strong>of</strong> the pr<strong>of</strong>essor<br />

<strong>of</strong> geology at the M<strong>in</strong><strong>in</strong>g Department <strong>of</strong> the University <strong>of</strong> Technology J . J. Dozy,<br />

a symposium was held at <strong>The</strong> Hague (Symposium, 1979). It concerned the coal<br />

measures <strong>in</strong> the <strong>Netherlands</strong> subsurface as a possible fut ure source <strong>of</strong> energy.<br />

<strong>The</strong> outcome was to make an <strong>in</strong>ventory <strong>of</strong> the coal reserves <strong>in</strong> the structuraUy<br />

high parts <strong>of</strong> the country to a depth <strong>of</strong> 1500 metres. Seismic field work commenced<br />

<strong>in</strong> 1981 by the Groundwater Survey TNO under supervision <strong>of</strong> N. de<br />

Voogd.<br />

V. 4. 3. <strong>Geophysical</strong> survey <strong>in</strong> the prov<strong>in</strong>ce <strong>of</strong> Limburg<br />

In 1979 and 1980, the Geological Surveys <strong>of</strong> the <strong>Netherlands</strong> , Belgium and<br />

West Germany carried out a jo<strong>in</strong>t geophysical and geological <strong>in</strong>vestigation <strong>in</strong><br />

the southern part <strong>of</strong> the prov<strong>in</strong>ce <strong>of</strong> Limburg and <strong>in</strong> the adjo<strong>in</strong><strong>in</strong>g regions <strong>of</strong><br />

Belgium and West Germany. <strong>The</strong> aim was to obta<strong>in</strong> new <strong>in</strong>formation on the structure<br />

<strong>of</strong> the subsurface <strong>in</strong> this area, and to stimulate th<strong>in</strong>k<strong>in</strong>g on new hydrocarbon<br />

and metal prospect<strong>in</strong>g possibilities. Gravity measurements at almost<br />

1000 places were carried out with Lacoste-Romberg gravimeters. <strong>The</strong> tot al <strong>in</strong>tensity<br />

<strong>of</strong> the geomagnetic field was measured with a Geometrics proton magnetometer.<br />

AdditionaUy, the density <strong>of</strong> samples from about 50 borehole cores<br />

was determ<strong>in</strong>ed. A report with detailed maps written by M. J. M. Bless, P. van<br />

Rooyen et al. (1980) was published <strong>in</strong> the series "Mededel<strong>in</strong>gen Rijks Geologische<br />

Dienst" (Heerlen). <strong>The</strong> data obta<strong>in</strong>ed <strong>in</strong> this gravity and geomagnetic<br />

survey fit very weU <strong>in</strong>to the already exist<strong>in</strong>g picture. Geological and geophysical<br />

considerations lead to the hypothesis that the <strong>in</strong>vestigated area may conta<strong>in</strong><br />

evaporite deposits with<strong>in</strong> the Devono-D<strong>in</strong>antian sequence.<br />

V.5. GEOPHYSICAL EXPLORATION IN<br />

THE NETHERLANDS BY OIL COMPANIES<br />

V.5.1. Discovery <strong>of</strong> the Schoonebeek oil field<br />

Whereas geophysical research <strong>in</strong> the <strong>Netherlands</strong> was carried out before and<br />

dur<strong>in</strong>g the war, namely gravity measurements by BPM (see: Chapter 111, section<br />

111.5.) and geomagnetic measurements by KNMI (see: Chapter I, section<br />

1.2. ), detailed maps were published only later (geomagnetic maps by Veldkamp ,<br />

1951, gravity maps by Van Weelden , 1957).<br />

<strong>The</strong> gravimetrical survey by Bataafsche Petroleum Maatschappij <strong>in</strong> 1935 to<br />

1937 led to the discovery <strong>of</strong> the Schoonebeek oil field (V.P. Ulrich, 1956). <strong>The</strong><br />

115


Holland <strong>in</strong> 1953 to 1958. Only after the development <strong>of</strong> multiple seismometry<br />

and shot hole techniques could the difficulties be overcome. In East <strong>Netherlands</strong><br />

the presence <strong>of</strong> rock salt made it difficult to obta<strong>in</strong> data from the layers<br />

below the rock salt, because <strong>of</strong> the low velocity <strong>of</strong> seismic waves <strong>in</strong> the salt<br />

and the attendant strong absorption <strong>of</strong> seismic energy. Nevertheless <strong>in</strong> the<br />

1950s a number <strong>of</strong> gas fields were discovered <strong>in</strong> the prov<strong>in</strong>ce <strong>of</strong> Overijssel<br />

that produce from a dolomite below the rock salt deposits.<br />

V. 5. 2. Discovery <strong>of</strong> the Gron<strong>in</strong>gen gas field<br />

Improvement <strong>in</strong> seismic reflection techniques enabled a more reliable del<strong>in</strong>eation<br />

<strong>of</strong> geological structures at great depth. Interpretation <strong>of</strong> drill<strong>in</strong>g results<br />

and improved seismic control led to discovery <strong>of</strong> gas at Slochteren (near the<br />

town <strong>of</strong> Gron<strong>in</strong>gen) <strong>in</strong> 1959. This discovery was made by us<strong>in</strong>g simple shot<br />

hole and geophone pattern techniques. It was possible to correlate the structure<br />

<strong>of</strong> the subsurface from one well to another without too much difficulty.<br />

In 1962 seismics and drill<strong>in</strong>g had improved the knowledge <strong>of</strong> the subsurface<br />

to such an extent that the prov<strong>in</strong>ce <strong>of</strong> Gron<strong>in</strong>gen was seen to have a "giant"<br />

with<strong>in</strong> its boundaries, comparabie with the Panhandle-Hugoton gas field <strong>in</strong> the<br />

U . S. A. . Mapp<strong>in</strong>g <strong>of</strong> the field was greatly aided by the high signal-to-noise<br />

ratio <strong>of</strong> the reflection data <strong>in</strong> the Gron<strong>in</strong>gen area. Use <strong>of</strong> sophisticated process<strong>in</strong>g<br />

techniques for analyz<strong>in</strong>g seismic records was unnecessary <strong>in</strong> this area.<br />

<strong>The</strong> Gron<strong>in</strong>gen gas field was discussed at a Symposium held <strong>in</strong> 1968. <strong>The</strong><br />

geophysical exploration and del<strong>in</strong>eation was described by D.M. W. te Groen and<br />

W. F. Steen ken • <strong>The</strong> proceed<strong>in</strong>gs <strong>of</strong> the lectures held at the Symposium were<br />

published <strong>in</strong> "Verhandel<strong>in</strong>gen van het Kon<strong>in</strong>klijk Nederlands Geologisch Mijnbouwkundig<br />

Genootschap" , Geological Series, Vol. 25, 1968.<br />

<strong>The</strong> extraction <strong>of</strong> huge quantities <strong>of</strong> natural gas from the field causes subsidence<br />

<strong>of</strong> the subsurface. Knowledge <strong>of</strong> the amount <strong>of</strong> subsidence is <strong>of</strong> course<br />

important <strong>in</strong> a country were a cont<strong>in</strong>uous struggle aga<strong>in</strong>st the sea is necessary.<br />

<strong>The</strong> <strong>Netherlands</strong> Oil Company (NAM), which exploits the Gron<strong>in</strong>gen gas<br />

field, carried out levell<strong>in</strong>gs across the field <strong>in</strong> 1964/1965, 1968/1969, 1972,<br />

1975, 1978 and 1981. Almost the entire surface <strong>of</strong> the prov<strong>in</strong>ce <strong>of</strong> Gron<strong>in</strong>gen<br />

(2400 km 2 ) proved to be gradually s<strong>in</strong>k<strong>in</strong>g. S<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> gas production<br />

<strong>in</strong> 1965, a surface subsidence <strong>of</strong> 12 cm has occurred <strong>in</strong> the centre <strong>of</strong> the<br />

field. It is expected that f<strong>in</strong>ally a value <strong>of</strong> 30 cm will be reached. Reports on<br />

the subsidence were published by the "Meetkundige Dienst van de Rijkswaterstaat"<br />

(1979 and 1982, Delft).<br />

<strong>The</strong> discovery <strong>of</strong> the huge gas field <strong>in</strong> Gron<strong>in</strong>gen stimulated <strong>in</strong>terest to a<br />

great extent. Before, NAM was the only operator; <strong>in</strong> the 1960s a number <strong>of</strong><br />

foreign companies took part <strong>in</strong> the exploration. This resulted <strong>in</strong> the present<br />

knowledge <strong>of</strong> the richness <strong>of</strong> natural gas. Geological results <strong>of</strong> seismics and<br />

drill<strong>in</strong>g by NAM and others were presented <strong>in</strong> four tectonic maps <strong>of</strong> the <strong>Netherlands</strong><br />

cont<strong>in</strong>ent al area (Heybroek, 1974) that also were published <strong>in</strong> the<br />

Scientific Atlas <strong>of</strong> the <strong>Netherlands</strong> (Anonymous, 1963 to 1977), and <strong>in</strong> the<br />

Stratigraphic Nomenclature <strong>of</strong> the <strong>Netherlands</strong> (Nederlandse Aardolie Maatschappij<br />

and Rijks Geologische Dienst, 1980).<br />

V. 5. 3. <strong>Geophysical</strong> research at the KSEPL (Rijswijk, South Holland)<br />

Discovery <strong>of</strong> the natural gas field <strong>in</strong> Gron<strong>in</strong>gen gave rise to research on the<br />

permeability <strong>of</strong> gas-conta<strong>in</strong><strong>in</strong>g sandstone formations by the KSEPL (Royal<br />

Dutch/ Shell Exploration and Production Laboratory , at Rijswijk, South Holland).<br />

118


J. J. Staal and J. D. Rob<strong>in</strong>son (1977) succeeded <strong>in</strong> construct<strong>in</strong>g pr<strong>of</strong>iles <strong>of</strong> permeability<br />

by measur<strong>in</strong>g the damp<strong>in</strong>g <strong>of</strong> seismic waves. E. C. A. Gevers and S. W.<br />

Watson (1978) used the acoustic impedance to identify lithologic units and to<br />

estimate the pore fill<strong>in</strong> g <strong>of</strong> a reservoir rock. Also G. T. F. R. Maureau and D. H.<br />

van Wijhe (1979 and 1980) developed a method to calculate the position and the<br />

porosity <strong>of</strong> Permian carbonate rocks <strong>in</strong> East <strong>Netherlands</strong> from the acoustic impedance<br />

<strong>of</strong> seismic waves.<br />

Several geophysicists <strong>of</strong> the NAM and the KSEPL published contributions<br />

to research methods. Improvement <strong>of</strong> the signal-to-noise ratio by comb<strong>in</strong><strong>in</strong>g<br />

seismometers, by favourably locat<strong>in</strong>g shot· holes and by filter<strong>in</strong>g seismic signals,<br />

was described by G.H.F. Snijders (1958). J.Ph. Poley (1964) <strong>in</strong>vestigated<br />

theoreticaUy as weU as experimentally the <strong>in</strong>fluence <strong>of</strong> the critical angle<br />

<strong>of</strong> reflection on the amplitude <strong>of</strong> reflected seismic waves. H. van Deemter and<br />

A. W. H. van der Kallen (1978) demonstrated that a very complicated structure<br />

<strong>of</strong> oH-bear<strong>in</strong>g layers can be unraveled with the aid <strong>of</strong> three-dimensional seismics.<br />

J . K. Huys<strong>in</strong>ga and A.R. BiddIe (1978) published a method for obta<strong>in</strong><strong>in</strong>g<br />

a three-dimensional picture <strong>of</strong> the bottom <strong>of</strong> the North Sea by drill<strong>in</strong>g and shallow<br />

seismics.<br />

V. 5. 4. Exploration <strong>of</strong> the North Sea cont<strong>in</strong>ental shelf<br />

Af ter the discovery <strong>of</strong> the Gron<strong>in</strong>gen gas field the North Sea was <strong>in</strong>cluded<br />

<strong>in</strong> the geophysical research. This began <strong>in</strong> 1961 with an aerial geomagnetic<br />

survey, carried out by the oH qompanies <strong>in</strong> a jo<strong>in</strong>t venture. A gravity survey<br />

<strong>in</strong> the North Sea was made <strong>in</strong>itiaUy by means <strong>of</strong> div<strong>in</strong>g beUs, but these we re<br />

soon replaced by sea-bottom gravimeters, which were connected by cables to<br />

a ship.<br />

Af ter partition <strong>of</strong> the North Sea shelf among the adjacent countries, exploration<br />

was taken <strong>in</strong> hand on a large sc ale by seismic <strong>in</strong>vestigation and drill<strong>in</strong>g.<br />

It became evident that <strong>in</strong> the North Sea great variations <strong>of</strong> the solidity <strong>of</strong> the<br />

bottom sediments occur with<strong>in</strong> smaU distances , e. g. because old glacial valleys<br />

are filled with unconsolidated sediments. <strong>The</strong> right choice for the frequency<br />

radiated by the air gun is essential for a sufficient penetration <strong>of</strong> the seismic<br />

signal <strong>in</strong>to the sea floor.<br />

Exploration techniques and results have been presented and discussed <strong>in</strong><br />

<strong>in</strong>ternational conferences:<br />

- 1975, Read<strong>in</strong>g, England . Petroleum and the cont<strong>in</strong>ental shelf <strong>of</strong> North- west<br />

Europe.<br />

- 1981, London. Petroleum geology on the cont<strong>in</strong>ental shelf <strong>of</strong> North-west<br />

Europe.<br />

- 1982, <strong>The</strong> Hague. Petroleum geology <strong>of</strong> the southeastern North Sea and<br />

adjacent onshore areas.<br />

V.6. HYDROGEOLOGICAL RESEARCH IN THE NETHERLANDS<br />

V.6.1. Water supplies<br />

Dur<strong>in</strong>g preparations to reclaim the IJsselmeer (former Zuiderzee) it appeared<br />

necessary to <strong>in</strong>vestigate the salt percentage <strong>of</strong> the deeper ground water <strong>in</strong><br />

the sand layers under the IJsselmeer. Knowledge <strong>of</strong> this sal<strong>in</strong>ity was important<br />

with a view to the ooze that might appear <strong>in</strong> future polders after reclamation<br />

, and also <strong>in</strong> relation to the w<strong>in</strong>n<strong>in</strong>g <strong>of</strong> fresh dr<strong>in</strong>k<strong>in</strong>g water. <strong>The</strong> sal<strong>in</strong>ity<br />

<strong>in</strong> the botto!ll <strong>of</strong> the IJsselmeer was <strong>in</strong>vestigated by a geoelectric method to a<br />

119


depth <strong>of</strong> 250 to 350 meters, under the leadership <strong>of</strong> A. Volker (Dienst der<br />

Zuiderzeewerken) .<br />

Even before the present polders we re dra<strong>in</strong>ed, the relative distribution <strong>of</strong><br />

fresh and brackish water <strong>in</strong> the bottom could be calculated. <strong>The</strong> specific resistance<br />

<strong>of</strong> the bottom was determ<strong>in</strong>ed by the Schlumberger method by means<br />

<strong>of</strong> a movable cable that conta<strong>in</strong>ed contacts for the electric current and electrodes<br />

for measur<strong>in</strong>g the resistance <strong>of</strong> the bottom. In spite <strong>of</strong> the fact that<br />

the cable had contact also with the overly<strong>in</strong>g layer <strong>of</strong> fresh water, Volker<br />

proved that its <strong>in</strong>fluence on the apparent resistance <strong>of</strong> the soil underneath<br />

the bottom <strong>of</strong> the lake could be neglected.<br />

Investigation <strong>of</strong> the IJsselmeer was carried out <strong>in</strong> the years 1951 to 1955,<br />

and published <strong>in</strong> 1957 by J. Dijkstra and A. Volker. <strong>The</strong> results <strong>of</strong> these<br />

measurements were <strong>in</strong>terpreted with the aid <strong>of</strong> resistance functions calculated<br />

for a great number <strong>of</strong> modeis , foUow<strong>in</strong>g the methods <strong>of</strong> O. Koefoed (see section<br />

V. 7. ). <strong>The</strong> depth <strong>of</strong> the boundary between fresh and salt water, which was<br />

calculated from the resistance values, was confirmed by drill<strong>in</strong>g. Geoelectric<br />

exploration was also carried out <strong>in</strong> the Lauwerszee and <strong>in</strong> the Waddenzee,<br />

north <strong>of</strong> Gron<strong>in</strong>gen.<br />

<strong>The</strong> great success <strong>of</strong> the geoelectric method <strong>in</strong> the IJsselmeer led <strong>in</strong> 1954<br />

to the establishment <strong>of</strong> the Geoelectric <strong>Research</strong> Work<strong>in</strong>g Group <strong>of</strong> the Central<br />

Organisation for Applied Scientific <strong>Research</strong> (TNO). In 1967 the activities <strong>of</strong><br />

this group we re comb<strong>in</strong>ed with the hydrogeological mapp<strong>in</strong>g <strong>of</strong> the <strong>Netherlands</strong> ,<br />

which -was begun by TNO on request <strong>of</strong> "Rijkswaterstaat". <strong>The</strong> geological,<br />

hydrological and geophysical researches were <strong>in</strong>corporated <strong>in</strong> the "Dienst<br />

Grondwaterverkenn<strong>in</strong>g" (Groundwater Survey TNO, DGV) , with W .A. Visser<br />

as first director. He was succeeded <strong>in</strong> 1972 by F. Walter.<br />

<strong>The</strong> aim <strong>of</strong> DGV is mapp<strong>in</strong>g the distribution <strong>of</strong> the groundwater by comb<strong>in</strong><strong>in</strong>g<br />

exist<strong>in</strong>g data with geoelectrical surveys and borehole measurements. In this<br />

research the electrical resistance and the natural electric potential<strong>of</strong> the rock<br />

penetrated are measured, as weU as the natural y-radiation (as a lithological<br />

characteristic), and the acoustic velocity as a measure <strong>of</strong> porosity (by means<br />

<strong>of</strong> the sonic log).<br />

In the framework <strong>of</strong> the technical assistence to develop<strong>in</strong>g countries, the<br />

DGV carries out geoelectric <strong>in</strong>vestigations <strong>in</strong> Pakistan, Africa (Sudan and<br />

Kenya) and <strong>in</strong> Central America (Colombia and Jamaica) with the <strong>in</strong>tention to<br />

improve irrigation and the supply <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g water. For that purpose geoelectric<br />

prospect<strong>in</strong>g is complimented by gravimetric reconnaissance and seismic<br />

refraction (Jaarverslag DGV, 1980).<br />

V. 6. 2. Geothermal energy<br />

As a result <strong>of</strong> extensive seismic research by oil companies, the subsurface<br />

<strong>of</strong> the <strong>Netherlands</strong> is rather weU-known to a depth <strong>of</strong> 3 to 4 km. <strong>The</strong> presence<br />

<strong>of</strong> porous and permeable sandstone formations at great depth and at rat her high<br />

temperatures (<strong>in</strong>crease <strong>of</strong> 30°C to 35°C per km depth) made attractive the idea<br />

<strong>of</strong> extract<strong>in</strong>g geothermal energy. In 1974 the Central Organisation TNO formed<br />

an Earth's Heat Work<strong>in</strong>g Group, with the task <strong>of</strong> draw<strong>in</strong>g up a report on the<br />

possibility <strong>of</strong> obta<strong>in</strong><strong>in</strong>g geothermal energy from the deep layers <strong>in</strong> the subsurface<br />

<strong>of</strong> the <strong>Netherlands</strong>.<br />

Investigations commenced <strong>in</strong> 1980 and as geology, hydrology and geophysics<br />

are <strong>in</strong>volved, the execution <strong>of</strong> the program was entrusted to various <strong>in</strong>stitutes:<br />

DGV <strong>of</strong> TNO, the State Geological Survey, and the Ven<strong>in</strong>g Me<strong>in</strong>esz Laboratory<br />

for Geophysics and Geochemistry (Visser, 1978 and 1979). W. van Dalfsen<br />

120


(DGV) made an extensive <strong>in</strong>vestigation <strong>of</strong> the temperature field <strong>in</strong> the subsurface<br />

<strong>of</strong> the <strong>Netherlands</strong> (up to 400 m depth) , by means <strong>of</strong> measurements<br />

<strong>in</strong> II great number <strong>of</strong> shallow boreholcs (Van Dalfsen, 1980). <strong>The</strong> temperatures<br />

at great depths (at 500 to 3000 m) were compiled by S. Pr<strong>in</strong>s (State Geological<br />

Survey) and pubIished <strong>in</strong> the Atlas <strong>of</strong> Subsurface Temperatures <strong>in</strong> the<br />

European Community (E. Haenel, ed., 1980).<br />

As for a geothermal energy project, it is proposed to drill a test weil <strong>in</strong><br />

Delfland (northwest <strong>of</strong> Rotterdam), we re sal<strong>in</strong>e water <strong>of</strong> about 90°C is present<br />

<strong>in</strong> sandstone layers at a depth <strong>of</strong> 2500 metres. For <strong>in</strong>stance, this hot<br />

water might be used for heat<strong>in</strong>g hothouses <strong>in</strong> the area <strong>of</strong> Westland.<br />

V. 7. EXPLORATION GEOPHYSICS AT THE<br />

UNIVERSITY OF TECHNOLOGY (TH) AT DELFT<br />

<strong>Geophysical</strong> research <strong>in</strong> aid <strong>of</strong> m<strong>in</strong>eral exploration was tackled at the TH<br />

for the first time by J. A. A. Mekel, pr<strong>of</strong>essor <strong>of</strong> geology at the TH from 1929<br />

to 1940. (In 1942 he was executed because <strong>of</strong> activities aga<strong>in</strong>st the German occupation<br />

forces.) Mekel obta<strong>in</strong>ed his doctor's degree <strong>in</strong> 1928 with a thesis <strong>in</strong><br />

which gravity research was appIied to tectonic problems (Mekel, 1928). In the<br />

practical application <strong>of</strong> gravimetry he especially used the torsion balance, as<br />

a means for study<strong>in</strong>g fault zones.<br />

V. 7.1. Geoelectrical researchby O. Koefoed and co-workers<br />

After Mekel, exploration geophysics at the TH at Delft was undertaken by<br />

O. Koefoed. Koefoed has appIied himseIf with his students to the development<br />

<strong>of</strong> geoelectrical and electromagnetic sound<strong>in</strong>g methods. <strong>The</strong> scientific papers<br />

that he produced, alone or with co-workers, were pubIished <strong>in</strong> the journals<br />

"<strong>Geophysical</strong> Prospect<strong>in</strong>g" and "Geoexploration", and issued <strong>in</strong> a special pub­<br />

Iication "Collected Papers, 1952-1980" (Koefoed, 1980). In 1965 he was awarded<br />

the Conrad Schlumberger prize by the European Association <strong>of</strong> Exploration<br />

Geophysicists, for outstand<strong>in</strong>g contributions to appIied geophysics. N<strong>in</strong>e theses<br />

were achieved under his leaders hip .<br />

<strong>The</strong> greater part <strong>of</strong> the papers published by Koefoed and co-workers are<br />

devoted to electrical sound<strong>in</strong>g methods. <strong>The</strong> oldest is the method whereby a<br />

direct current is put <strong>in</strong>to the ground while the potential difference bet ween two<br />

po<strong>in</strong>ts on the earth's surface is measured. By vary<strong>in</strong>g the distance bet ween<br />

the po<strong>in</strong>ts where the current enters and leaves the surface , the dependence<br />

<strong>of</strong> conductivity on depth can be determ<strong>in</strong>ed from the measurements. <strong>The</strong> apparent<br />

electrical resistance <strong>of</strong> the layered subsurface is compared with resistance<br />

curves calculated for various models <strong>of</strong> layered structures. Initially<br />

Koefoed used this <strong>in</strong>direct method (Koefoed, 1955), which gave rise to the theses<br />

<strong>of</strong> J. C. van Dam (1964) and F. G. van der Hoeven (1964).<br />

Accord<strong>in</strong>g to a direct method, developed by Koefoed and ot hers , the apparent<br />

resistance is expressed <strong>in</strong> an <strong>in</strong>tegral equation , <strong>in</strong> which the <strong>in</strong>tegrand<br />

conta<strong>in</strong>s akernel determ<strong>in</strong>ed by the layer<strong>in</strong>g and the conductivity <strong>of</strong> the subsurface.<br />

In order to <strong>in</strong>terpret the apparent conductivity, the kernel, derived<br />

from the measurements <strong>of</strong> the electrical resistance, is compared with kernel<br />

functions calculated for various models <strong>of</strong> conductivity.<br />

After the <strong>in</strong>troduction <strong>of</strong> a semi-direct method (Koefoed, 1965a), which was<br />

appIied with the Schlumberger arrangement <strong>of</strong> the electrodes as weil as with<br />

the Wenner method (Koefoed, 1965b and 1966), he found a fast method to <strong>in</strong>vestigate<br />

the lam<strong>in</strong>ation <strong>of</strong> the ground, namely by a transformation <strong>of</strong> the kernel<br />

(Koefoed, 1969 and 1970).<br />

121


A major improvement <strong>in</strong> the method was reached by D. P. Ghosh, who applied<br />

<strong>in</strong> his thesis (Ghosh, 1970) the theory.<strong>of</strong> l<strong>in</strong>ear filter<strong>in</strong>g to the problem <strong>of</strong><br />

determ<strong>in</strong><strong>in</strong>g the electrical resistivity <strong>of</strong> a layered subsurface. This improvernent<br />

is based on the fact that the spectrum <strong>of</strong> the kernel function <strong>in</strong> the <strong>in</strong>tegral<br />

equation for the apparent resistance does not conta<strong>in</strong> high frequences,<br />

from which the calculation can be greatly simplified. Next, Koefoed developed<br />

a very fast method for <strong>in</strong>terpret<strong>in</strong>g resistance measurements at the sacrifice,<br />

however, <strong>of</strong> maximum accuracy (Koefoed, 1976a and 1976b).<br />

In the book "<strong>The</strong> application <strong>of</strong> the Kernel Function <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g geoelectrical<br />

resistivity measurements" (Koefoed, 1968) he expla<strong>in</strong>s how to derive the<br />

kernel function from the resistivity measurements by a practical procedure,<br />

and how the kernel function can be <strong>in</strong>terpreted for a series <strong>of</strong> layers with different<br />

resistance. A complete survey <strong>of</strong> the theory and methodology <strong>of</strong> electrical<br />

resistivity measurements, <strong>in</strong>clud<strong>in</strong>g ways to derive the layer parameters<br />

from the apparent resistivity, can be found <strong>in</strong> the book "Geosound<strong>in</strong>g Pr<strong>in</strong>cipIes,<br />

1. Resistivity Sound<strong>in</strong>g Measurements" (Koefoed, 1979).<br />

V. 7.2. Electromagnetic sound<strong>in</strong>g research by O. Koefoed and co-workers<br />

In electromagnetic sound<strong>in</strong>gs electric currents are <strong>in</strong>duced <strong>in</strong> the earth<br />

by a (generally vertical) alternat<strong>in</strong>g magnetic field. <strong>The</strong> <strong>in</strong>duced fields are<br />

detected by electrodes . <strong>The</strong> distances bet ween the transmitter, the <strong>in</strong>duction<br />

coU, and the surface <strong>of</strong> the earth are varied, as weIl as the frequency <strong>of</strong> the<br />

alternat<strong>in</strong>g field.<br />

Koefoed and co-workers first directed their attention to <strong>in</strong>duction by an alternat<strong>in</strong>g<br />

electromagnetic field <strong>in</strong> a semi-<strong>in</strong>f<strong>in</strong>ite plate, as a model <strong>of</strong> a dyke.<br />

<strong>The</strong>y coneidered this as a theoretical problem (Koefoed and Kegge, 1968) and<br />

as a subject for experiment al research (Koefoed and Struyk, 1969).<br />

<strong>The</strong> electromagnetic sound<strong>in</strong>g method has led to some publications and doctor's<br />

theses. <strong>The</strong> thesis <strong>of</strong> R.A. Bosschart (1964) deals with measurements<br />

with a fixed or a mov<strong>in</strong>g source <strong>of</strong> the electromagnetic alternat<strong>in</strong>g field. <strong>The</strong><br />

<strong>in</strong>duced field depends on the structure <strong>of</strong> the subsurface , the resistivity <strong>of</strong><br />

the layers, and the frequency <strong>of</strong> the source. <strong>The</strong> measurements are <strong>in</strong>terpreted<br />

by means <strong>of</strong> calculated modeis. P.J.M. Thomeer simplified the <strong>in</strong>terpretation<br />

by characteriz<strong>in</strong>g the electrical properties <strong>of</strong> the subsurface by a wave<br />

number (Thomeer, 1970).<br />

An important improvement came from apply<strong>in</strong>g l<strong>in</strong>ear filter theory to the<br />

kernel function that appears <strong>in</strong> the theory <strong>of</strong> the electromagnetic sound<strong>in</strong>g.<br />

<strong>The</strong> kernel <strong>of</strong> an <strong>in</strong>tegral equation for the field strength conta<strong>in</strong>s the required<br />

<strong>in</strong>formation about the layer<strong>in</strong>g <strong>of</strong> the subsurface and the specific resistivity<br />

as a function <strong>of</strong> depth (Koefoed, Ghosh and Polman, 1972; Verma and Koefoed,<br />

1973). In his thesis R.K. Verma gives a review <strong>of</strong> electromagnetic methods.<br />

<strong>The</strong> field around an oscillat<strong>in</strong>g magnetic dipole, placed on the earth, is calculated.<br />

<strong>The</strong> kernel function is subjected to a transformation by means <strong>of</strong> a digital<br />

l<strong>in</strong>ear filter, which means a great acceleration <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g the measurements<br />

(Verma, 1973). By the filter<strong>in</strong>g a transform function can be derived from<br />

measurements <strong>of</strong> resistivity, as a first step <strong>in</strong> the direct <strong>in</strong>terpretation <strong>of</strong> data<br />

(Das, Ghosh and Biew<strong>in</strong>ga, 1974).<br />

By comb<strong>in</strong><strong>in</strong>g the electromagnetic method with the electric one, the number<br />

<strong>of</strong> possible models <strong>of</strong> conductivity can be greatly reduced . Koefoed and coworkers<br />

applied these methods <strong>in</strong> 1973 and 1974 <strong>in</strong> an <strong>in</strong>vestigation <strong>in</strong>to the<br />

underground water <strong>in</strong> the arid areas <strong>of</strong> South Tunesia (Koefoed and Biew<strong>in</strong>ga.<br />

1976). D. T . Biew<strong>in</strong>ga wrote a report on these experiments (Biew<strong>in</strong>ga, 1977a<br />

122


.. and 1977b) and also a thesis (Biew<strong>in</strong>ga, 1979). <strong>The</strong> measured conductivity<br />

was compared with values calculated for various modeis. <strong>The</strong> resolv<strong>in</strong>g power<br />

<strong>of</strong> the electromagnetic sound<strong>in</strong>gs appeared to be rat her small.<br />

V. 8.1. Seismological research at the TH <strong>of</strong> Delft by O. Koefoed and co-workers<br />

Koefoed and co-workers made seismological experiments us<strong>in</strong>g reflected and<br />

refracted waves <strong>in</strong> models <strong>of</strong> plexiglas (Koefoed, Van Ewijk and Bakker, 1958).<br />

Koefoed calculated the amplitudes <strong>of</strong> reflected and refracted waves that orig<strong>in</strong>ate<br />

from the <strong>in</strong>cidence <strong>of</strong> a longitud<strong>in</strong>al wave on the boundary bet ween two<br />

media with various elastic parameters and densities (Koefoed, 1962). Together<br />

with his students he studied digital record<strong>in</strong>g <strong>of</strong> seismic waves, and its deconvolution.<br />

(This is a filter<strong>in</strong>g process for remov<strong>in</strong>gunwanted signals as<br />

completely as possible; at the same time, the analysis <strong>of</strong> the seismogram is<br />

accelerated.) <strong>The</strong> possibility <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g the resolv<strong>in</strong>g power <strong>of</strong> seismies by<br />

filter<strong>in</strong>g the signais, was treated by N. de Voogd <strong>in</strong> his thesis (De Voogd,<br />

1976) and other papers (De Voogd, 1974 and 1978). <strong>The</strong> <strong>in</strong>crease <strong>in</strong> resolv<strong>in</strong>g<br />

power is atta<strong>in</strong>ed by deconvolution <strong>of</strong> the reflected signals by means <strong>of</strong> digital<br />

filters. Koefoed and De Voogd (1980) applied this technique to the seismie<br />

response <strong>of</strong> a series <strong>of</strong> th<strong>in</strong> coal seams.<br />

V.8.2. Seismological research by A. T. de Hoop and co-workers<br />

A. T . de Hoop was assistent pr<strong>of</strong>essor <strong>of</strong> electromagnetic theory at the TH<br />

at Delft from 1953 to 1956. From 1956 to 1957 he was research assistant at the<br />

Institute <strong>of</strong> Geophysics (Los Angeles, CaUf.). Af ter return<strong>in</strong>g to Delft he became<br />

associate pr<strong>of</strong>essor at the TH, from 1957 to 1960. From 1960 to the present<br />

he has been pr<strong>of</strong>essor <strong>of</strong> electromagnetic theory and applied mathematics<br />

at the TH.<br />

De Hoop became more and more <strong>in</strong>terested <strong>in</strong> diffraction phenomena, not only<br />

<strong>of</strong> electromagnetic waves, but also <strong>of</strong> seismic waves. His work is therefore <strong>of</strong><br />

importance for applied geophysics.<br />

He <strong>in</strong>vestigated representation theorems for the particle displacement <strong>in</strong> an<br />

elastic solid, and their application to elastodynamic diffraction theory (Ph. D.<br />

dissertation , De Hoop, 1958). With the aid <strong>of</strong> these theorems he formulated<br />

the problem <strong>of</strong> diffraction by an ob st acle , and gave an exact time-doma<strong>in</strong> solution<br />

<strong>of</strong> diffraction by a semi-<strong>in</strong>f<strong>in</strong>ite rigid baffle and a semi-<strong>in</strong>f<strong>in</strong>ite crack.<br />

A special po<strong>in</strong>t <strong>in</strong> De Hoop 's work was the <strong>in</strong>troduction <strong>of</strong> a modification <strong>of</strong><br />

Cagniard 's method for solv<strong>in</strong>g pulsed wave problems (De Hoop, 1960). In order<br />

to give a clear picture <strong>of</strong> his method, two problems were considered, viz.<br />

the determ<strong>in</strong>ation <strong>of</strong> the cyl<strong>in</strong>drical wave generated by an impulsive l<strong>in</strong>e source,<br />

and the spherical wave generated by a po<strong>in</strong>t source. He showed that the method<br />

could be applied to determ<strong>in</strong>e the mot ion generated by any type <strong>of</strong> po<strong>in</strong>t source<br />

located either <strong>in</strong>side or at the surface <strong>of</strong> a half-space (De Hoop, 1962). Two<br />

papers on other subjects are: a note on the propagation <strong>of</strong> waves <strong>in</strong> a cont<strong>in</strong>uously<br />

layered medium (De Hoop, 1964) and a paper on an elastodynamic<br />

reciprocity theorem for l<strong>in</strong>ear, viscoelastic media (De Hoop, 1966). <strong>The</strong> problem<br />

<strong>of</strong> the pulsed l<strong>in</strong>e source at the stress-free boundary <strong>of</strong> a semi-<strong>in</strong>f<strong>in</strong>ite<br />

elastic soUd ("Lamb's problem") was solved by employ<strong>in</strong>g Cagniard-de Hoop's<br />

method (De Hoop, 1970). <strong>The</strong> pulsed electromagnetic radiation from a l<strong>in</strong>e<br />

source <strong>in</strong> a two-media configuration was <strong>in</strong>vestigated us<strong>in</strong>g the same method<br />

(De Hoop, 1979).<br />

Some co-workers <strong>of</strong> A. T . de Hoop also contributed to the solution <strong>of</strong> diffraction<br />

problems. T.H. Tan <strong>in</strong>vestigated the scatter<strong>in</strong>g <strong>of</strong> elastic waves by elastically<br />

123


T<br />

I<br />

M<br />

E<br />

I<br />

N<br />

5<br />

E<br />

C<br />

o<br />

N<br />

D<br />

5<br />

l2t 381 2B8 268 2. Z2e 211 188 168 1.<br />

Figure 53a. A seismie time section obta<strong>in</strong>ed from the subsurface <strong>of</strong> the <strong>Netherlands</strong><br />

North Sea shows many reflected and diffracted arrivals. caused by a complex structure<br />

(before migration) .<br />

lZ8 188


transparant obstacles (Tan, 1975a and 1975b). He also studied diffraction <strong>of</strong><br />

plane P waves and S waves by an obstacle <strong>of</strong> f<strong>in</strong>ite extent <strong>in</strong> a homogeneous ,<br />

isotropic, perfectly elastic medium (Tan, 1976a and 1976b). Reciprocity relations<br />

for the scatter<strong>in</strong>g <strong>of</strong> plane, elastic waves were derived (Tan, 1977). Tan<br />

also studied the scatter<strong>in</strong>g <strong>of</strong> plane, elastic waves by a plane crack <strong>of</strong> f<strong>in</strong>ite<br />

width, as weil as the scatter<strong>in</strong>g <strong>of</strong> plane, elastic waves by a plane, rigid strip<br />

(Tan, 1977a and 1977b) .<br />

Scatter<strong>in</strong>g <strong>of</strong> elastic waves was also a matter <strong>of</strong> <strong>in</strong>terest for F. L. Neerh<strong>of</strong>f,<br />

co-worker <strong>of</strong> De Hoop. Neerh<strong>of</strong>f <strong>in</strong>vestigated the scatter<strong>in</strong>g <strong>of</strong> SH waves by<br />

an <strong>in</strong>dentation at the mass-loaded boundary <strong>of</strong> a semi-<strong>in</strong>f<strong>in</strong>ite elastic medium<br />

(Neerh<strong>of</strong>f, 1975) and also the scatter<strong>in</strong>g and excitation <strong>of</strong> SH surface waves<br />

by a protrusion at the mass-loaded boundary <strong>of</strong> an elastic half-space (Neerh<strong>of</strong>f,<br />

1976). He <strong>in</strong>vestigated diffraction <strong>of</strong> Love waves by a stress-free crack <strong>of</strong><br />

f<strong>in</strong>ite width <strong>in</strong> the plane <strong>in</strong>terface <strong>of</strong> a layered composite (Neerh<strong>of</strong>f, 1979),<br />

and he formulated reciprocity and power-flow theorems for the scatter<strong>in</strong>g <strong>of</strong><br />

plane elastic waves <strong>in</strong> a half-space (Neerh<strong>of</strong>f, 1980).<br />

Diffraction problems were also treated by J. T. Fokkema and P. M. van den<br />

Berg, co-workers <strong>of</strong> A.T. de Hoop. J.T. Fokkema pubUshed a paper on diffraction<br />

<strong>of</strong> elastic waves by the periodic rigid boundary <strong>of</strong> a semi-<strong>in</strong>f<strong>in</strong>ite soUd<br />

(Fokkema, 1978) and another paper on reflection and transmission <strong>of</strong> elastic<br />

waves by the spatially periodic <strong>in</strong>terface bet ween two soUds (Fokkema , 1980).<br />

Fokkema and Van den Berg <strong>in</strong>vestigated elastodynamic diffraction by a periodic<br />

rough surface (Fokkema and Van den Berg, 1977). <strong>The</strong>y also calculated<br />

the wave motion generated by a time-harmonic buried l<strong>in</strong>e source <strong>in</strong> a soUd<br />

with a stress-free, periodic boundary (Fokkema and Van den Berg, 1980).<br />

V. 8. 3. <strong>Research</strong> <strong>in</strong>to seismic data process<strong>in</strong>g by A. J. Berkhout and co-workers<br />

An important contribution to exploration geophysics, especially to seismic<br />

data process<strong>in</strong>g, was presented by A.J. Berkhout and co-workers.<br />

Af ter obta<strong>in</strong><strong>in</strong>g the degree <strong>of</strong> physical eng<strong>in</strong>eer at the TH at Delft, Berkhout<br />

was a research geophysicist with Shell International <strong>Research</strong> from 1965 to 1971,<br />

be<strong>in</strong>g ma<strong>in</strong>ly engaged with seismic data analysis and process<strong>in</strong>g. Dur<strong>in</strong>g 1971<br />

to 1974 he was employed by Brunei Shell Petroleum Co. (Royal Dutch/Shell<br />

Group), develop<strong>in</strong>g and apply<strong>in</strong>g methods for direct gas and oH detection from<br />

seismic data. In 1975 and 1976 he served as adviser for Shell International<br />

Petroleum Co., on data analysis and process<strong>in</strong>g <strong>in</strong> seismic exploration . S<strong>in</strong>ce<br />

1976 Berkhout has been pr<strong>of</strong>essor <strong>of</strong> seismic and acoustics at the University<br />

<strong>of</strong> Technology at Delft. His ma<strong>in</strong> field <strong>in</strong>cludes seismic data process<strong>in</strong>g, uit rllsonic<br />

imag<strong>in</strong>g and architectural acoustics .<br />

Whereas before 1960 analyz<strong>in</strong>g seismic reflection records was conf<strong>in</strong>ed ma<strong>in</strong>ly<br />

to f<strong>in</strong>d<strong>in</strong>g qualitative correlations bet ween recorded events, digital process<strong>in</strong>g<br />

has become to play an all-important role <strong>in</strong> exploration seismology s<strong>in</strong>ce the<br />

early sixties . It became clear that details about subsurface structures and Uthology<br />

could be obta<strong>in</strong>ed from seismic data by digital analysis <strong>of</strong> the records.<br />

Several process<strong>in</strong>g techniques have been developed to improve signal-to-noise<br />

ratio. However, the ma<strong>in</strong> problem <strong>of</strong> an echo-acoustical system is the improvement<br />

<strong>of</strong> spatial resolution .<br />

Berkhout developed the theory and technique <strong>of</strong> seismic migration as a tooI<br />

to improve lateral re sol ut ion . Seismic migration has become one <strong>of</strong> the most<br />

important subjects <strong>in</strong> seismic research with<strong>in</strong> the last years. <strong>The</strong> potential<strong>of</strong><br />

seismic migration is far beyond its orig<strong>in</strong>al objective, i.e. positional correct ion<br />

<strong>of</strong> records.<br />

Seismic migration is a synthetic focuss<strong>in</strong>g technique. It is carried out digi-<br />

126


tally <strong>in</strong> a process<strong>in</strong>g centre. <strong>The</strong> wave fields <strong>of</strong> many sequentially fired shots<br />

are used for one focussed (migrated) depth po<strong>in</strong>t. Us<strong>in</strong>g the wave equation ,<br />

the recorded data are transformed <strong>in</strong>to a series <strong>of</strong> new record<strong>in</strong>gs, which represent<br />

simulated record<strong>in</strong>gs at new positions <strong>of</strong> the record<strong>in</strong>g plane.<br />

It is to Berkhout's credit that he has developed a systems approach to seismic<br />

migration by comb<strong>in</strong><strong>in</strong>g wave theory with discrete <strong>in</strong>verse filter<strong>in</strong>g methods<br />

(Berkhout , 1978). Together with D. W. van Wulfften Palthe (1979 and 1980)<br />

he <strong>in</strong>troduced migration as a spatial deconvolution process <strong>in</strong> the space-frequency<br />

doma<strong>in</strong>. A concise review, written by Berkhout (1981), expla<strong>in</strong>s wavefield<br />

extrapolation techniques <strong>in</strong> seismic migration. In the hook "Seismic Migration<br />

, imag<strong>in</strong>g <strong>of</strong> acoustic energy by wave field extrapolation " Berkhout<br />

(1980) discusses basic theory, different migration techniques and limits <strong>of</strong><br />

spatial resolution. <strong>The</strong> hook is written for all scientists who are deal<strong>in</strong>g with<br />

array methods and imag<strong>in</strong>g techniques <strong>in</strong> seismics, especially for geophysicists<br />

who want to have an extensive appreciation on methods <strong>of</strong> wave-equation migration.<br />

A second revised and enlarged edition appeared <strong>in</strong> 1982.<br />

Berkhout published some papers on the properties <strong>of</strong> one-sided signais,<br />

with application to seismic signals (1973a, 1973b, 1974). Together with P. R.<br />

Zaanen he studied filter<strong>in</strong>g techniques that are used for deconvolution filter<strong>in</strong>g<br />

(1976, 1977). A method was presented to derive approximate versions <strong>of</strong> the<br />

wave equation, which allow. f<strong>in</strong>ite difference migration for steep dips (Berkhout,<br />

1979). A.J. Berkhout, J. Ridder and L. F. van der Wal (1980) wrote a<br />

treatise on acoustic imag<strong>in</strong>g by wave-field extrapolation . Advanced acoustic<br />

imag<strong>in</strong>g reconstruction techniques comb<strong>in</strong>e different echo measurements <strong>in</strong><br />

such a way that diffractions collapse, distortions <strong>of</strong> reflections are corrected<br />

for, and noise is attenuated. W. Crans and A.J. Berkhout (1980) published a<br />

report on the assessment <strong>of</strong> seismic amplitude anomalies , which may be related<br />

to hydrocarbon pore fill<strong>in</strong>g. <strong>The</strong>y showed how a probabilistic assessment depends<br />

on the <strong>in</strong>tegration <strong>of</strong> seismic data, structural and stratigraphic <strong>in</strong>terpretation ,<br />

velocity studies and weIl data.<br />

V. 8. 4. Process<strong>in</strong>g <strong>of</strong> gravity data at the TH, Delft<br />

Digital filter<strong>in</strong>g can be useful for the analysis <strong>of</strong> gravity anomalies . This appeared<br />

from a study by B. A. N . C. ApeIl, who designed mathematical filters<br />

for separat<strong>in</strong>g local and regional anomalies (Apell, 1974). This filter<strong>in</strong>g means<br />

subtraction <strong>of</strong> the slid<strong>in</strong>g mean value from the measured data. <strong>The</strong> problem<br />

<strong>of</strong> process<strong>in</strong>g gravity data was treated amply <strong>in</strong> his thesis (Apell, 1979). He<br />

also studied filters for calculat<strong>in</strong>g the derivatives <strong>of</strong> gravity as a function <strong>of</strong><br />

depth. This means a transformation <strong>of</strong> the anomalies from the earth's surface<br />

to a lower level. This also gives a possibility for separat<strong>in</strong>g local and regional<br />

anomalies.<br />

V.9. EXPLORATION GEOPHYSICS IN THE STATE UNIVERSITY OF LEIDEN<br />

<strong>Research</strong> <strong>in</strong>to geophysics <strong>in</strong> the State University at Leiden was undertaken<br />

by J. G. Hagedoorn, who worked there as extraord<strong>in</strong>ary pr<strong>of</strong>essor from 1958<br />

to 1977. He dealt ma<strong>in</strong>ly with seismic research and with the <strong>in</strong>terpretation <strong>of</strong><br />

reflected and refracted waves, caused by explosions. <strong>The</strong> most important results<br />

<strong>of</strong> his work were published <strong>in</strong> the hook "<strong>The</strong> collected work <strong>of</strong> J. G .<br />

Hagedoorn", edited by G. Diephuis (1977).<br />

Hagedoorn's thesis (1954) was based on the idea that seismograms caused<br />

127


Berkhout , A. J. (1979) - Steep dip f<strong>in</strong>ite-difference migration . Geophys. Prosp.,<br />

27, 197-213.<br />

Berkhout , A. J. and D. W . van Wulfften Palthe (1980) - Migration <strong>in</strong> the presence<br />

<strong>of</strong> noise. Geophys. Prosp. , 28, 372-383.<br />

Berkhout , A. J. (1980) - Seismic migration , imag<strong>in</strong>g <strong>of</strong> acoustic energy by<br />

wave field extrapolation . Elsevier, Amsterdam /North Holland, 1980; 2nd<br />

edition appeared <strong>in</strong> 1982.<br />

Berkhout, A.J., J. Ridder and L.F. van der Wal (1980) - Acoustic imag<strong>in</strong>gby<br />

wave field extrapolation. Part I: <strong>The</strong>oretical considerations, part 11: Practical<br />

aspects. Proc. lOth Intern. Symp. on Acoust. Imag<strong>in</strong>g . Cannes, New<br />

York Plenum Press, 513-565.<br />

Berkhout, A.J. (1981) - Wave field extrapolation techniques <strong>in</strong> seismic migration<br />

, a tutorial. Geophysics, 46, 1638-1656.<br />

Biew<strong>in</strong>ga, D. T. (1977a) - Electromagnetic depth sound<strong>in</strong>g experiment. Geophys.<br />

Prospect. 25, 13-28.<br />

Biew<strong>in</strong>ga, D. T. (1977b) - A short note about a field test with an elect rom agnetic<br />

frequency sound<strong>in</strong>g <strong>in</strong>strument. Geoexploration 15, 57-64.<br />

Biew<strong>in</strong>ga, D. T. (1979) - An experiment al study <strong>of</strong> electromagnetic freq uency<br />

sound<strong>in</strong>g. Proefschrift, Delft.<br />

Bless, M.J.M., P. van Rooyen et al. (1980) - Geophysikalische Untersuchungen<br />

am ast-Rand des Brabanter Massivs <strong>in</strong> Belgien, den Niederlanden und<br />

der Bundesrepublik Deutschland. Meded. Rijks Geol. Dienst, 32-17, pp.<br />

313-343.<br />

Boeckel, J. J. G. M. van (1968) - Gravitational and geomagnetic <strong>in</strong>vestigations<br />

<strong>in</strong> Sur<strong>in</strong>am and their structural implications. Dissertation , Amsterdam,<br />

1968.<br />

Bosschart, R.A. (1964) - Analytical <strong>in</strong>terpretation <strong>of</strong> fixed source electromagnetic<br />

prospect<strong>in</strong>g data. Proefschrift, Delft. .<br />

Cambridge, R.A. (1967) - United Nations Special Fund, Sur<strong>in</strong>am M<strong>in</strong>eral Survey<br />

1961-1965, F<strong>in</strong>al Report. Geol. Mijnb. Dienst van Sur<strong>in</strong>ame, Paramaribo.<br />

Crans, W. and A.J. Berkhout (1980) - Assessment <strong>of</strong> seismic amplitude anomalies.<br />

Oil and Gas Journal, 156-168.<br />

Dalfsen, W. van (1980) - <strong>The</strong> shallow subsurface temperature field <strong>in</strong> the <strong>Netherlands</strong>.<br />

Proc. Second Intern. Sem<strong>in</strong>ar on the results <strong>of</strong> EC Geothermal<br />

Energy <strong>Research</strong>, Strassbourg, 1980. D. Reidel Publ. Comp., Dordrecht.<br />

Dam, J.C. van (1964) - A simple method for the calculation <strong>of</strong> standard graphs<br />

to be used <strong>in</strong> geo-electrical prospect<strong>in</strong>g. Proefschrift, Delft.<br />

Das, U.C., D.P. Ghosh and D.T.Biew<strong>in</strong>ga (1974) - Transformation<strong>of</strong>dipole<br />

resistivity sound<strong>in</strong>g measurements over layered earth by l<strong>in</strong>ear digital<br />

filter<strong>in</strong>g. Geophys. Prospect. 22, 476-489.<br />

Deemter, H. van, and A.W.H. van der Kallen (1978) - Solution <strong>of</strong> a complex<br />

structural problem by :JD-seismic. 53rd Annual SPE <strong>of</strong> AIME Fall conf.<br />

prepr<strong>in</strong>t no. SPE-7441.<br />

Diephuis, G. (ed. 1977) - <strong>The</strong> collected works <strong>of</strong> J.G. Hagedoorn.<br />

129


Dijkstra, J. en A. Volker (1957) - Geo-elektrisch onderzoek op het IJsselmeer.<br />

Rapporten en Mededel<strong>in</strong>gen betreffende de Zuiderzeewerken, No. 6, Dienst<br />

der Zuiderzeewerken.<br />

E<strong>in</strong>dverslag (1918) - E<strong>in</strong>dverslag over de onderzoek<strong>in</strong>gen en uitkomsten van<br />

den Dienst der Rijksopspor<strong>in</strong>g van Delfst<strong>of</strong>fen <strong>in</strong> Nederland, 1903-1916,<br />

Amsterdam.<br />

Fokkema , J. T. (1978) - Diffraction <strong>of</strong> elastic waves by the periodic rigid boundary<br />

<strong>of</strong> a semi-<strong>in</strong>f<strong>in</strong>ite solid. Proc. Roy. Soc. London, A 363, 487-502.<br />

Fokkema, J. T. (1980) - Reflection and transmission <strong>of</strong> elastic waves by the<br />

spatially periodic <strong>in</strong>terface between two solids. Wave Motion, 2, 375-393.<br />

Fokkema, J.T. and P.M. van den Berg (1977) - Elastodynamic diffraction by<br />

a periodic rough surface (stress-free boundary). Journ. Acoust. Soc.<br />

Am . , 62, 1095-1101.<br />

Fokkema , J. T. and P. M. van den Berg (1980) - Wave motion generated by a<br />

time-harmonic buried l<strong>in</strong>e force <strong>in</strong> asolid with a stress-free periodic boundary.<br />

Journ. Acoust. Soc. Am., 68, 1836-1849.<br />

Gevers, E.C.A. an4 S.W. Watson (1978) - Quantitative <strong>in</strong>terpretation <strong>of</strong> seismic<br />

data us<strong>in</strong>g well logs. 53rd Annual SPE <strong>of</strong> AIME Fall conf. prepr<strong>in</strong>t<br />

no. SPE-7439.<br />

Ghosh, D.P. (1970) - <strong>The</strong> application <strong>of</strong> l<strong>in</strong>ear filter theory to the direct <strong>in</strong>terpretation<br />

<strong>of</strong> geoelectric resistivity sound<strong>in</strong>g measurements. Proefschrift,<br />

Delft. Tevens <strong>in</strong> Geophys. Prospect. 19, 192-217.<br />

Ghosh, D.P. (1971) - Inverse filter coefficients for the computation <strong>of</strong> apparent<br />

resistivity standard curves for a horizontally stratified earth. Geophys.<br />

Prosp. 19, 769-775.<br />

GMD, Sur<strong>in</strong>ame (1971, 1973, 1975) - Mededel<strong>in</strong>gen 21, 22, 23. Contributions<br />

to the Geology <strong>of</strong> Sur<strong>in</strong>ame, Geol. Mijnb. Dienst, Paramaribo.<br />

Groen, D.M. W. te, and W. F. Steenken (1968) - Exploration and Del<strong>in</strong>eation<br />

<strong>of</strong> the Gron<strong>in</strong>gen gas field. Verh. Kon. Ned. Geol. Mijnb. Gen., Geol.<br />

Serie, Vol. 25, 9-20.<br />

Haenel, E. editor (1980) - Atlas <strong>of</strong> Subsurface Temperatures <strong>in</strong> the European<br />

Community. Commission <strong>of</strong> the European Communities, Directorate-General<br />

for <strong>Research</strong>, Science and Education . Energy <strong>Research</strong> and Development<br />

Programme , Subprogramme Geothermal Energy.<br />

Hagedoorn, J.G. (1954) - A process <strong>of</strong> seismic reflection <strong>in</strong>terpretation. Proefschrift,<br />

Utrecht. Ook <strong>in</strong> Geophys. Prospect. 2, 86-128, 1954.<br />

Hagedoorn, J.G. (1955) - Templates for fitt<strong>in</strong>g smooth velocity functions to<br />

seismic refraction and reflection data. Geophys. Prospect. 3, 324-338.<br />

HageEloorn, J.G. (1959) - <strong>The</strong> plus-m<strong>in</strong>us method <strong>of</strong> <strong>in</strong>terpret<strong>in</strong>g seismic refraction<br />

sections . Geophys. Prospect. 7, 158-182.<br />

Hagedoorn, J.G. (1962) - In pursuit <strong>of</strong> the errant seismic pulse. Geophys.<br />

Prospect. 10, 148-165.<br />

Helbig , K. (1980) - Model<strong>in</strong>g transversely isotropic media by th<strong>in</strong> isotropic<br />

layers. Prakla-Seismos GMBH.<br />

130


Heybroek, P. (1974) - Tektonische kaart van Nederland. Geol. Mijnbouw 53,<br />

43-50.<br />

Hoeven, F.G. van der (1964) - Interpretation <strong>of</strong> geoelectric resistivity curves.<br />

Proefschrift, Delft.<br />

Hoogervorst, G. H. T . C. (1976) - Occurrence, elim<strong>in</strong>ation , and use <strong>of</strong> fluctuat<strong>in</strong>g<br />

earth-currents. Dissertatie, Leiden.<br />

Hoop, A. T. de (1958) - Representation theorems for the displacement <strong>in</strong> an<br />

elastic solid and their application to elastodynamic diffraction theory. <strong>The</strong>sis,<br />

Delft.<br />

Hoop, A. T. de (1960) - A modification <strong>of</strong> Cagniard 's method for solv<strong>in</strong>g seismic<br />

pulse problems. Appl. Sci. Res., Section B, Vol. 8, 349-356.<br />

Hoop, A. T. de (1962) - <strong>The</strong>oretical determ<strong>in</strong>ation <strong>of</strong> the surface motion <strong>of</strong> a<br />

uniform elastic half-space produced by a dilatational, impulsive, po<strong>in</strong>t<br />

source. Colloques <strong>in</strong>ternationaux du Centre National de la Recherche Scientifique,<br />

no. 111, Marseille, 21-32.<br />

Hoop, A.T. de (1964) - A note on the propagation <strong>of</strong> waves <strong>in</strong> a cont<strong>in</strong>uously<br />

layered medium. Appl. Sci. Res., Section B, Vol. 12, 74-80.<br />

Hoop, A. T. de (1966) - An elastodynamic reciprocity theorem for l<strong>in</strong>ear viscoelastic<br />

media. Appl. Sci. Res., 16, 39-45.<br />

Hoop, A.T. de (1970) - <strong>The</strong> surface l<strong>in</strong>e source problem <strong>in</strong> elastodynamics.<br />

Elektronika en Telecommunicatie, I, 19-21.<br />

Hoop, A. T. de (1979) - Pulsed electromagnetic radiation from a l<strong>in</strong>e source <strong>in</strong><br />

a two-media configuration. Radio Science, 14, 253-268.<br />

Huys<strong>in</strong>ga, J.K. and A.R. Biddie (1978) - Shallow seismic as an aid to locat<strong>in</strong>g<br />

<strong>of</strong>fshore <strong>in</strong>stallations. SPE (UK) Ltd. Europe Offshore Petrol Conf. Proc.<br />

Vol. 2, 425-432.<br />

Jaarverslag (1980) - Dienst Grondwaterverkenn<strong>in</strong>g T.N .0.<br />

Koefoed, O. (1955) - Resistivity curves for a conduct<strong>in</strong>g layer <strong>of</strong> f<strong>in</strong>ite thickness<br />

embedded <strong>in</strong> an otherwise homogeneous and less conduct<strong>in</strong>g earth.<br />

Geophys. Prospect. 3, 258-267.<br />

Koefoed, 0., J.G. van Ewijk and W. T. Bakker (1958) - Seismic model experiments<br />

concern<strong>in</strong>g reflected refractions. Geophys. Prospect. 6, 382-393.<br />

Koefoed, O. (1962) - Reflection and transmission coefficients for plane longitud<strong>in</strong>al<br />

waves (compressional). Geophys. Prospect. 10, 304-351.<br />

Koefoed, O. (1965a) - A semi-direct method <strong>of</strong> <strong>in</strong>terpret<strong>in</strong>g resistivity observations.<br />

Geophys. Prospect. 13, 259-282.<br />

Koefoed, O. (1965b) - Direct method <strong>of</strong> <strong>in</strong>terpret<strong>in</strong>g resistivity observations.<br />

Geophys. Prospect. 13, 568-591.<br />

Koefoed, O. (1966) - <strong>The</strong> direct <strong>in</strong>terpretation <strong>of</strong> resistivity observations<br />

made with a Wenner electrode configuration. Geophys. Prospect. 14, 71-<br />

79.<br />

Koefoed, O. and G. Kegge (1968) - <strong>The</strong> electrical current pattern <strong>in</strong>duced by<br />

an oscillat<strong>in</strong>g magnetic dipole <strong>in</strong> a semi-<strong>in</strong>f<strong>in</strong>ite th<strong>in</strong> plate <strong>of</strong> <strong>in</strong>f<strong>in</strong>itesimal<br />

resistivity. Geophys. Prospect. 16, 144-158.<br />

131


Koefoed, O. (1968) - <strong>The</strong> application <strong>of</strong> the Kernel function <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g<br />

geoelectrical resistivity measurements. Borntraeger, Berl<strong>in</strong> .<br />

Koefoed, O. and A.P. Struyk (1969) - <strong>The</strong> electrical current pattern <strong>in</strong>duced<br />

by an oscillat<strong>in</strong>g magnetic dipole <strong>in</strong> a semi-<strong>in</strong>f<strong>in</strong>ite th<strong>in</strong> plate. Geophys.<br />

Prospect. 17, 182-195.<br />

Koefoed, O. (1969) - An analysis <strong>of</strong> equivalence <strong>in</strong> resistivity sound<strong>in</strong>g. Geophys.<br />

Prospect. 17, 327-335.<br />

Koefoed, O. (1970) - A fast method for determ<strong>in</strong><strong>in</strong>g the layer distribution from<br />

the raised kernel function <strong>in</strong> geoelectrical sound<strong>in</strong>g. Geophys. Prospect.<br />

18, 564-570.<br />

Koefoed, 0., D.P. Ghosh and G.J.Polman (1972) - Computation <strong>of</strong> type curves<br />

for electromagnetic depth sound<strong>in</strong>g with a horizontal transmitt<strong>in</strong>g coil by<br />

means <strong>of</strong> a digital l<strong>in</strong>ear filter. Geophys. Prospect. 20, 406-420.<br />

Koefoed, O. (1976a) - Progress <strong>in</strong> the direct <strong>in</strong>terpretation <strong>of</strong> resistivity sound<strong>in</strong>gs:<br />

an algorithm. Geophys. Prospect. 24, 233-240.<br />

Koefoed, O. (1976b) - An approximate method <strong>of</strong> resistivity soundirig <strong>in</strong>terpretation.<br />

Geophys. Prospect. 24, 617-632.<br />

Koefoed, O. and D. T . Biew<strong>in</strong>ga (1976) - <strong>The</strong> application <strong>of</strong> electromagnetic<br />

frequency sound<strong>in</strong>g to groundwater problems. Geoexploration 14, 229-<br />

241.<br />

Koefoed, O. (1979) - Geosound<strong>in</strong>g Pr<strong>in</strong>ciples 1. Resistivity Sound<strong>in</strong>g Measurements.<br />

Elsevier, Amsterdam.<br />

Koefoed, 0 and N. de Voogd (1980) - <strong>The</strong> l<strong>in</strong>ear properties <strong>of</strong> th<strong>in</strong> layers,<br />

with an application to synthetic seismograms over coal seams. Geophysics<br />

45, 1254-1268.<br />

Koefoed, O. (1980) - Collected Papers (1952-1980). University Press, Delft.<br />

Maureau, G. T . F. R. and D. H. van Wijhe (1979) - <strong>The</strong> prediction <strong>of</strong> porosity <strong>in</strong><br />

the Permian (Zechste<strong>in</strong> 2) carbonate <strong>of</strong> eastern <strong>Netherlands</strong> us<strong>in</strong>g seismic<br />

data. Geophysics 44, 1502-1517.<br />

Maureau, G. T . F. R. and D. H. van Wijhe (1980) - <strong>The</strong> use <strong>of</strong> advanced seismic<br />

techniques to study carbonate reservoirs. lOth World Petroleum Congress,<br />

Proc. 3, 205-211.<br />

Meetkundige Dienst Rijkswaterstaat (1979) - Rapport over de NAM-waterpass<strong>in</strong>g<br />

van 1978 over het gasveld Gron<strong>in</strong>gen. MDNP-R-7908, Delft. Idem<br />

van 1981, MDNP-R-8201, Delft.<br />

Mekel, J.A.A. (1928) - <strong>The</strong>orie van het tektonisch-gravimetrisch onderzoek.<br />

Proefschrift, Delft.<br />

Nederlandse Aardolie Maatschappij en Rijks Geologische Dienst (1980) - Stratigraphic<br />

Nomenclature <strong>of</strong> the <strong>Netherlands</strong>. Verh. Kon. Ned. Geol. Mijnb.<br />

Gen. 32 .<br />

Neerh<strong>of</strong>f, F.L. (1975) - Scatter<strong>in</strong>g <strong>of</strong> SH-waves by an irregularity at the massloaded<br />

boundary <strong>of</strong> a semi-<strong>in</strong>f<strong>in</strong>ite elastic medium. Proc. Roy. Soc. London,<br />

A 342, 237-257.<br />

Neerh<strong>of</strong>f, F.L. (1976) - Scatter<strong>in</strong>g and excitation <strong>of</strong> SH-surface waves by a<br />

protrusion at the mass-Ioaded boundary <strong>of</strong> an elastic half-space. Appl.<br />

Sci. Res. 32, 269-282.<br />

132


Neerh<strong>of</strong>f, F.L. (1979) - Diffraction <strong>of</strong> Love waves by a stress-free crack <strong>of</strong><br />

f<strong>in</strong>ite width <strong>in</strong> the plane <strong>in</strong>terface <strong>of</strong> a layered composite. Appl. Sci. Res.,<br />

35, 265-315.<br />

Neerh<strong>of</strong>f, F .L. (1980) - Reciprocity and power-flow theorems for the scatter<strong>in</strong>g<br />

<strong>of</strong> plane elastic waves <strong>in</strong> a half-space. Wave Motion, 2, 99-113.<br />

Nieuwenkamp, W. (1937) - Electrische opspor<strong>in</strong>g van ertsen <strong>in</strong> Zuid-Limburg.<br />

Handel<strong>in</strong>gen 26ste Natuur- en Geneeskundig Congres, Utrecht, 1937.<br />

Peelcommissie (1963) - Verslag van de Peelcommissie. Verh. Kon. Ned. Geol.<br />

Mijnbk. Gen., MS 5.<br />

Poley, J. Ph. (1964) - Critical-angle effects <strong>in</strong> seismic exploration . Geophys.<br />

Prospect. 12, 397-421.<br />

Poley, J. Ph. and J.J. Nootenboom (1966) - Seismic refraction and screen<strong>in</strong>g<br />

by high-velocity layers. Geophys. Prospect. 14, 184-203.<br />

Ristow, D. (1980) - 3D-Downward extrapolation <strong>of</strong> seismic data <strong>in</strong> particular<br />

by f<strong>in</strong>ite difference methods. <strong>The</strong>sis, Utrecht.<br />

Sitter, L.U. de, en,medewerkers (1949) - E<strong>in</strong>dverslag van het geophysische<br />

onderzoek <strong>in</strong> Z.O.-Nederland (<strong>in</strong> opdracht van de Geophysische Dienst<br />

der Staatsmijnen). Mededel<strong>in</strong>gen Geologische Sticht<strong>in</strong>g, Serie C-I-3, No. 1.<br />

Snijders, G.H.F. (1958) - Reflection shoot<strong>in</strong>g techniques <strong>in</strong> the <strong>Netherlands</strong>.<br />

Geophys. Prospect<strong>in</strong>g 6, 167-193.<br />

Staal, J.J. and J.D. Rob<strong>in</strong>son (1977) - Permeability pr<strong>of</strong>iles from acoustic logg<strong>in</strong>g.<br />

52nd Annual SPE <strong>of</strong> Fall Tech. Conf. Prepr<strong>in</strong>t no. SPE-6821.'<br />

Symposium (1979) - Steenkool onder Nederland: Energie voor de toekomst?<br />

- See also: Geol. en Mijnb. , special section, Dec. 1982, <strong>Research</strong> on coal<br />

beneath the <strong>Netherlands</strong> , p. 355- 396.<br />

Tan, T. H. (1975a) - Scatter<strong>in</strong>g <strong>of</strong> elastic waves by elastically transparant obstacles.<br />

Appl. Sci. Res., 31, 29-51.<br />

Tan, T. H. (197 5b) - Far-field radiation characteristics <strong>of</strong> elastic waves and<br />

the elastodynamic radiation condition . Appl. Sci. Res., 31, 363- 375.<br />

Tan, T.H. (1976a) - <strong>The</strong>orem on the scatter<strong>in</strong>g and the absorption cross section<br />

for scatter<strong>in</strong>g <strong>of</strong> plane, time-harmonic, elastic waves. Journ. Acoust.<br />

Soc. Am., 59, 1265-1267.<br />

Tan, T.H. (1976b) - Diffraction <strong>of</strong> time-harmonic elastic waves by a cyl<strong>in</strong>drical<br />

obstacle. Appl. Sci. Res., 32, 97-144.<br />

Tan, T. H. (1977) - Reciprocity relations for scatter<strong>in</strong>g <strong>of</strong> plane, elastic waves.<br />

Journ. Acoust. Soc. Am., 61, 928-931.<br />

Tan, T.H. (1977a) - Scatter<strong>in</strong>g <strong>of</strong> plane, elastic waves by a plane crack <strong>of</strong><br />

f<strong>in</strong>ite with. Appl. Sci. Res., 33, 75-88.<br />

Tan, T.H. (1977b) - Scatter<strong>in</strong>g <strong>of</strong> plane, elastic waves by aplane, rigid strip.<br />

Appl. Sci. Res., 33, 89-100.<br />

Thomeer, P.J.M. (1970) - Analysis <strong>of</strong> electromagnetic prospect<strong>in</strong>g data by<br />

means <strong>of</strong> apparent wave numbers. Proefschrift, Delft.<br />

Ulrich, V. P. (1956) - De geophysische opspor<strong>in</strong>g van het olieveld Schoonebeek.<br />

De Ingenieur, 68, no. 32, p. M21, 22.<br />

133


Veldkamp , J. (1951) - Geomagnetic anomalies <strong>in</strong> the <strong>Netherlands</strong>. Geologie en<br />

Mijnbouw, 13, 218-223.<br />

Verma, R.K. and O. Koefoed (1973) - A note on the l<strong>in</strong>ear filter method <strong>of</strong> comput<strong>in</strong>g<br />

electromagnetic sound<strong>in</strong>g curves. Geophys. Prospect. 21, 70-76.<br />

Verma, R.K. (1973) - A feasibility study <strong>of</strong> electromagnetic depth sound<strong>in</strong>g<br />

methods. Proefschrift, Delft.<br />

Visser, W. A. (1953) - Olie- en gasexploratie <strong>in</strong> Nederland. De Ingenieur 65,<br />

No. 33.<br />

Visser, W.A. (1978) - Early subsurface temperature measurements <strong>in</strong> the <strong>Netherlands</strong>.<br />

Geol. Mijnbouw, 57, 1-10.<br />

Visser, W. A. (1979) - De mogelijkheden van aardwarmte <strong>in</strong> Nederland. De<br />

Ingenieur, 91, 804-810.<br />

Visser, W.A . and J.J. Hermes (1962) - Geological results <strong>of</strong> the exploration<br />

for oil <strong>in</strong> Netherlantls New Gu<strong>in</strong>ea. Verh. Kon. Ned. Geol. Mijnb. Gen.,<br />

Deel XX.<br />

Voogd, N. de (1974) - Wavelet shap<strong>in</strong>g and noise reduction. Geophys. Prospect.<br />

22, 354-369.<br />

Voogd, N. de (1976) - An algorithm for digital Wiener filters and its application<br />

to seismic wavelets <strong>in</strong> noise. Proefschrift, Delft.<br />

Voogd, N. de (1978) - <strong>The</strong> phase property <strong>of</strong> a f<strong>in</strong>ite realization <strong>of</strong> random<br />

noise and its <strong>in</strong>fluence on deconvolution. Geophys. Prospect. 26, 509-524.<br />

Weelden, A . . van (1957) - <strong>History</strong> <strong>of</strong> gravity observations <strong>in</strong> the <strong>Netherlands</strong>.<br />

Verh. Kon. Ned. Geol. Mijnb. Gen., 18 , 305-309.<br />

Wijkerslooth de Weerdesteyn, P. J. C. de (1937) - Geophysikalische Untersuchungen<br />

nach Erzlagerstätten <strong>in</strong> Süd-Limburg (Holland). Fortschritte der<br />

M<strong>in</strong>eralogie, Kristallographie und Petrographie, Band. 22.<br />

134


CHAPTER VI<br />

<strong>The</strong>·teach<strong>in</strong>g <strong>of</strong> Solid Earth<br />

Geophysics<br />

VI.l. Teach<strong>in</strong>g geophysics at the State University <strong>of</strong> Utrecht<br />

In the middle <strong>of</strong> this century lectures <strong>in</strong> geophysics formed part <strong>of</strong> the tra<strong>in</strong><strong>in</strong>g<br />

<strong>of</strong> geologists at the Utrecht University. Courses <strong>of</strong> lectures on gravimetry,<br />

applied geophysics, geomagnetism and seismology were given by F .A. Ven<strong>in</strong>g<br />

Me<strong>in</strong>esz, o. Koefoed and J. Veldkamp . Students <strong>of</strong> geology could take geophysics<br />

as a second subject <strong>in</strong> their studies.<br />

Ven<strong>in</strong>g Me<strong>in</strong>esz was appo<strong>in</strong>ted extraord<strong>in</strong>ary pr<strong>of</strong>essor at the Utrecht University<br />

<strong>in</strong> 1927. <strong>The</strong>re he lectured on cartography and gravimetry, and <strong>in</strong> the<br />

later years also geotectonics and geophysics (1936-1957). Koefoed taught exploration<br />

geophysics <strong>in</strong> the years 1947 to 1958. Veldkamp gave lectures on<br />

geomagnetism and seismology (1955-1974).<br />

Af ter World War 11 education <strong>in</strong> geophysical exploration methods for students<br />

<strong>of</strong> geology and geophysics had begun <strong>in</strong> the State University at Utrecht. This<br />

was made possible thanks to the cooperation <strong>of</strong> Royal Dutch/Shell, who several<br />

times made available a geophysicist for teaeh<strong>in</strong>g. With<strong>in</strong> the framework <strong>of</strong><br />

this cooperation Koefoed was assigned to the tra<strong>in</strong><strong>in</strong>g <strong>of</strong> geologists at utrecht<br />

<strong>in</strong> the years 1947 to 1958.<br />

After Koefoed 's appo<strong>in</strong>tment as pr<strong>of</strong>essor at the TH at Delft, applied geophysics<br />

at the Utrecht University was taught by D.M. W. te Groen from 1959<br />

to 1962, and thereafter by J. Hospers (from 1962 to 1963). After that this lectureship<br />

was replaced by a pr<strong>of</strong>essorship , which was occupied first by J. C.<br />

d'Arnaud Gerkens from 1965 to 1976, and then by K. Helbig from 1977 to the<br />

present. <strong>Geophysical</strong> <strong>in</strong>vestigations at sea were executed by B. J. Collette. In<br />

1972 he was appo<strong>in</strong>ted lecturer and <strong>in</strong> 1980 pr<strong>of</strong>essor <strong>of</strong> mar<strong>in</strong>e geophysics.<br />

In the middle <strong>of</strong> the 1960s geophysics was gradually recognized as an <strong>in</strong>dependent<br />

discipl<strong>in</strong>e, which might be studied apart from geology. This development<br />

was confirmed by the appo<strong>in</strong>tment <strong>of</strong> J. G. J. Scholte to follow up Ven<strong>in</strong>g<br />

Me<strong>in</strong>esz as a full pr<strong>of</strong>essor <strong>in</strong> 1957. Scholte started a tra<strong>in</strong><strong>in</strong>g <strong>of</strong> graduate<br />

students <strong>in</strong> theoretical geophysics as ma<strong>in</strong> subject.<br />

After Scholte 's death (<strong>in</strong> 1970) N. J. Vlaar was appo<strong>in</strong>ted pr<strong>of</strong>essor <strong>of</strong> theoretical<br />

geophysics <strong>in</strong> 1973. He was conv<strong>in</strong>ced <strong>of</strong> the importance <strong>of</strong> geophysics<br />

with<strong>in</strong> the framework <strong>of</strong> earth sciences. At the same time the <strong>Netherlands</strong> <strong>in</strong>dustry<br />

and especially the <strong>in</strong>ternational oil companies showed an <strong>in</strong>creas<strong>in</strong>g demand<br />

for weil tra<strong>in</strong>ed geophysicists, <strong>in</strong> connection with the discovery <strong>of</strong> oil<br />

and gas <strong>in</strong> north-west Europe.<br />

135


versity <strong>of</strong> Toronto. <strong>The</strong>re he was successively lecturer and assistent pr<strong>of</strong>essor<br />

from 1950 to 1960. After hav<strong>in</strong>g returned to Delft he became pr<strong>of</strong>essor <strong>of</strong><br />

aerodynamics <strong>in</strong> 1960.<br />

S<strong>in</strong>ce 1976 A. J. Berkhout has been pr<strong>of</strong>essor <strong>of</strong> seismies and acoustics at<br />

the University <strong>of</strong> Technology at Delft. He teaches seismie data process<strong>in</strong>g and<br />

ultra-sonic imag<strong>in</strong>g . He has developed a systems approach to seismic migration<br />

by comb<strong>in</strong><strong>in</strong>g wave theory with filter<strong>in</strong>g methods. His book "Seismic migration ,<br />

imag<strong>in</strong>g <strong>of</strong> acoustic energy by wave field extrapolation " is based on lectures<br />

about theory and migration techniques. His teach<strong>in</strong>g is aimed not only at students<br />

<strong>of</strong> the TH , but also at geophysicists.<br />

VI. 5. University Teachers <strong>of</strong> solid earth geophysics<br />

Years Name Location Subiect<br />

1936-1957 F .A. Ven<strong>in</strong>g Me<strong>in</strong>esz Utrecht gravimetry , geodesy,<br />

Delft geotectonics<br />

1947-1958 O. Koefoed Utrecht exploration geophysics<br />

1955-1974 J. Veldkamp Utrecht geomagnetism, seismology<br />

1957-1970 J. G . J. Scholte Utrecht general geophysics<br />

1959-1962 D.M.W. te Groen Utrecht exploration geophysics<br />

1962-1963 J . Hospers Utrecht exploration geophysics<br />

1965-1976 J. C. d 'Arnaud Gerkens Utrecht exploration geophysics<br />

1972-now B . J. Collette Utrecht mar<strong>in</strong>e geophysics<br />

1973-now N .J. Vlaar Utrecht theoretical geophysics<br />

1977-now K. Helbig Utrecht exploration geophysics<br />

1939-1962 J. Westerveld Amsterdam geology and m<strong>in</strong>eralogy ,<br />

geophysics<br />

1944-1968 L.P.G. Kon<strong>in</strong>g Amsterdam physics, geophysics<br />

1965-1975 J. Hospers Amsterdam general geophysics<br />

1978-now K. Helbig Amsterdam exploration geophysics<br />

1958-1977 J. G. Hagedoorn Leiden exploration geophysics<br />

1929-1940 J .A.A. Mekel Delft geology, exploration<br />

geophysics<br />

1951-1980 O. Koefoed Delft exploration geophysics<br />

1957-now A.T. de Hoop Delft diffraction problems<br />

1950-1960 J. A . Steketee Toronto elasticity theory <strong>of</strong> dislocations<br />

1976-now A. J. Berkhout Delft seismie and acoustic<br />

data process<strong>in</strong>g<br />

137


digital process<strong>in</strong>g techniques. have enabled <strong>in</strong>vestigation <strong>in</strong>to the structure<br />

<strong>of</strong> conduct<strong>in</strong>g layers.<br />

As it can be expected that the development <strong>of</strong> mathematical and physical<br />

techniques for <strong>in</strong>vestigat<strong>in</strong>g geophysical problems has not yet reached its peak<br />

but will cont<strong>in</strong>ue. it can be stated that geophysical research will become more<br />

and more important to man k<strong>in</strong>d .<br />

139

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!