23.08.2013 Views

Phase transition and density of subducted MORB crust in the lower ...

Phase transition and density of subducted MORB crust in the lower ...

Phase transition and density of subducted MORB crust in the lower ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Phase</strong> <strong>transition</strong> <strong>and</strong> <strong>density</strong> <strong>of</strong> <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong> <strong>in</strong><br />

<strong>the</strong> <strong>lower</strong> mantle<br />

Kei Hirose a,b, *, Naoto Takafuji a,c , Nagayoshi Sata b , Yasuo Ohishi d<br />

a Department <strong>of</strong> Earth <strong>and</strong> Planetary Sciences, Tokyo Institute <strong>of</strong> Technology, Meguro, Tokyo 152-8551, Japan<br />

b Institute for Research on Earth Evolution, Japan Agency for Mar<strong>in</strong>e-Earth Science <strong>and</strong> Technology, Yokosuka, Kanagawa 237-0061, Japan<br />

c Division <strong>of</strong> Earth <strong>and</strong> Planetary Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan<br />

d Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Hyogo 679-5198, Japan<br />

Abstract<br />

Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

Received 7 March 2005; received <strong>in</strong> revised form 31 May 2005; accepted 16 June 2005<br />

Editor: S. K<strong>in</strong>g<br />

<strong>Phase</strong> relations, m<strong>in</strong>eral chemistry, <strong>and</strong> <strong>density</strong> <strong>of</strong> a natural mid-oceanic ridge basalt (<strong>MORB</strong>) composition were <strong>in</strong>vestigated<br />

up to 134 GPa <strong>and</strong> 2300 K by a comb<strong>in</strong>ation <strong>of</strong> <strong>in</strong>-situ X-ray diffraction measurements <strong>and</strong> chemical analyses us<strong>in</strong>g transmission<br />

electron microscope (TEM). Results demonstrate that <strong>the</strong> <strong>MORB</strong> composition consists <strong>of</strong> MgSiO3-rich perovskite, stishovite,<br />

CaSiO 3 perovskite, <strong>and</strong> CaFe 2O 4-type Al-phase <strong>in</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> <strong>lower</strong> mantle. The most abundant m<strong>in</strong>eral <strong>of</strong> MgSiO 3rich<br />

perovskite undergoes phase <strong>transition</strong> to a CaIrO3-type post-perovskite phase above 110 GPa <strong>and</strong> 2500 K. Post-perovskite<br />

phase is similar <strong>in</strong> composition to perovskite except considerably high Na2O content. Stishovite transforms to CaCl2-type SiO2<br />

phase above 62 GPa <strong>and</strong> 2000 K <strong>and</strong> fur<strong>the</strong>r to a-PbO 2-type phase above 110 GPa. a-PbO 2-type SiO 2 phase <strong>in</strong>cludes large<br />

amount <strong>of</strong> Al2O3, which significantly exp<strong>and</strong>s its stability relative to CaCl2-type phase. <strong>Phase</strong> <strong>transition</strong> <strong>of</strong> CaSiO3 perovskite<br />

from tetragonal to cubic was also observed with <strong>in</strong>creas<strong>in</strong>g temperature. CaFe2O4-type Al-phase is stable to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong><br />

mantle. The <strong>density</strong> <strong>of</strong> <strong>MORB</strong> <strong>crust</strong> was calculated us<strong>in</strong>g volume data, comb<strong>in</strong><strong>in</strong>g with measured chemical compositions <strong>and</strong><br />

calculated m<strong>in</strong>eral proportions. The former <strong>MORB</strong> <strong>crust</strong> is denser than <strong>the</strong> average <strong>lower</strong> mantle at all depths greater than ~720<br />

km, contrary to earlier predictions. The <strong>subducted</strong> basaltic <strong>crust</strong> may have accumulated at <strong>the</strong> base <strong>of</strong> <strong>the</strong> mantle.<br />

D 2005 Elsevier B.V. All rights reserved.<br />

Keywords: <strong>MORB</strong>; phase <strong>transition</strong>; <strong>density</strong>; <strong>lower</strong> mantle; post-perovskite; <strong>in</strong>-situ X-ray observations<br />

* Correspond<strong>in</strong>g author. Department <strong>of</strong> Earth <strong>and</strong> Planetary<br />

Sciences, Tokyo Institute <strong>of</strong> Technology, 2-12-1 Ookayama,<br />

Meguro, Tokyo 152-8551, Japan. Tel.: +81 3 5734 2618; fax: +81<br />

3 5734 3538.<br />

E-mail address: kei@geo.titech.ac.jp (K. Hirose).<br />

0012-821X/$ - see front matter D 2005 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.epsl.2005.06.035<br />

1. Introduction<br />

www.elsevier.com/locate/epsl<br />

It is known that <strong>MORB</strong> composition consists<br />

<strong>of</strong> Mg-perovskite, stishovite, Ca-perovskite, <strong>and</strong><br />

CaFe2O4-type Al-phase below 720-km depth <strong>in</strong> <strong>the</strong><br />

upper part <strong>of</strong> <strong>the</strong> <strong>lower</strong> mantle [1–7]. Recent high-


240<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

pressure studies on end-member compositions suggest<br />

that <strong>the</strong>se m<strong>in</strong>erals may undergo structural phase<br />

<strong>transition</strong>s at greater depths. <strong>Phase</strong> relation <strong>and</strong> crystal<br />

chemistry <strong>in</strong> <strong>MORB</strong> bulk composition, however,<br />

are not yet well understood under <strong>the</strong> deep <strong>lower</strong><br />

mantle conditions [1,7]. Both experimental <strong>and</strong> <strong>the</strong>oretical<br />

studies showed that pure MgSiO3 perovskite<br />

transforms to a CaIrO3-type post-perovskite phase<br />

near <strong>the</strong> base <strong>of</strong> <strong>the</strong> mantle (e.g., [8–10]). MgSiO 3rich<br />

perovskite <strong>in</strong>cludes large amounts <strong>of</strong> FeO,<br />

Fe 2O 3, <strong>and</strong> Al 2O 3 <strong>in</strong> <strong>MORB</strong> bulk composition,<br />

which could significantly affect <strong>the</strong> stability <strong>of</strong> postperovskite<br />

phase. Pure SiO2 phase transforms from<br />

stishovite to CaCl2-type structure [11] <strong>and</strong> fur<strong>the</strong>r to<br />

a-PbO2-type structure [12] <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle. <strong>Phase</strong><br />

<strong>transition</strong> from tetragonal or orthorhombic to cubic<br />

structure <strong>in</strong> CaSiO 3 perovskite has been reported <strong>in</strong><br />

both pure [13] <strong>and</strong> Al-bear<strong>in</strong>g compositions [14].<br />

Funamori et al. [15] demonstrated that CaFe 2O 4type<br />

MgAl2O4 transforms to CaTi2O4-type structure<br />

above 40 GPa, suggest<strong>in</strong>g that phase <strong>transition</strong> <strong>of</strong><br />

CaFe2O4-type Al-phase <strong>in</strong> <strong>MORB</strong> composition possibly<br />

occurs <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle. Here we determ<strong>in</strong>ed<br />

<strong>the</strong> phase <strong>transition</strong> boundaries <strong>in</strong> <strong>MORB</strong> composition<br />

up to <strong>the</strong> condition <strong>of</strong> core–mantle boundary<br />

region, based on X-ray diffraction measurements <strong>in</strong>situ<br />

at high-pressure <strong>and</strong> -temperature. <strong>Phase</strong> <strong>transition</strong>s<br />

<strong>in</strong> <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong> may be <strong>the</strong> causes <strong>of</strong><br />

seismic anomalies observed locally but <strong>in</strong> a wide<br />

range <strong>of</strong> depths <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle (e.g., [16–20]).<br />

Subduction <strong>of</strong> basaltic <strong>crust</strong> gives rise to a strong<br />

chemical heterogeneity <strong>in</strong> <strong>the</strong> mantle. The amount <strong>of</strong><br />

basaltic component that has ever <strong>subducted</strong> <strong>in</strong>to <strong>the</strong><br />

Earth’s <strong>in</strong>terior over <strong>the</strong> geological time possibly sums<br />

up to several tens percent <strong>of</strong> <strong>the</strong> whole mantle [21].<br />

The fate <strong>of</strong> basaltic <strong>crust</strong> may be controlled by <strong>the</strong><br />

<strong>density</strong> relationship with <strong>the</strong> surround<strong>in</strong>g mantle. Previous<br />

studies suggested that basaltic <strong>crust</strong> is buoyant<br />

<strong>in</strong> <strong>the</strong> <strong>transition</strong> zone at 660- to 720-km depth<br />

[2,5,6,22] <strong>and</strong> possibly <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle below<br />

1500–2000-km depth [4,23]. In this paper, we determ<strong>in</strong>ed<br />

<strong>the</strong> chemical composition <strong>of</strong> each constituent<br />

m<strong>in</strong>eral by us<strong>in</strong>g analytical TEM. The <strong>density</strong> <strong>of</strong><br />

<strong>MORB</strong> <strong>crust</strong> <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle was calculated<br />

from measured volume <strong>and</strong> chemical composition<br />

data. Results <strong>in</strong>dicate that <strong>the</strong> <strong>subducted</strong> <strong>MORB</strong><br />

<strong>crust</strong> is denser than <strong>the</strong> surround<strong>in</strong>g below 720-km<br />

depth to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> mantle.<br />

2. Experimental <strong>and</strong> analytical procedures<br />

Start<strong>in</strong>g material was a glass (runs #1 to #4) or gel<br />

(runs #5 to #7) (Table 1). Both are chemically identical<br />

with a composition <strong>of</strong> normal <strong>MORB</strong> (Table 2).<br />

The same glass start<strong>in</strong>g material was used <strong>in</strong> our<br />

previous studies [2,5]. High P–T conditions were<br />

generated us<strong>in</strong>g laser-heated diamond anvil cell<br />

(LHDAC) techniques. The sample was mixed with a<br />

f<strong>in</strong>e powder <strong>of</strong> gold (~10 wt.%) that served as an<br />

<strong>in</strong>ternal pressure st<strong>and</strong>ard <strong>and</strong> a laser absorber. The<br />

sample mixture (~20-Am thick) was loaded <strong>in</strong>to a<br />

rhenium gasket with an <strong>in</strong>itial thickness <strong>of</strong> ~50 Am,<br />

be<strong>in</strong>g s<strong>and</strong>wiched by pure basalt layers that was not<br />

mixed with gold (~15-Am thick for both sides). About<br />

50-Am area was heated with a focused multimode<br />

cont<strong>in</strong>uous wave Nd:YAG laser us<strong>in</strong>g double-side<br />

heat<strong>in</strong>g technique, which m<strong>in</strong>imizes both radial <strong>and</strong><br />

axial temperature gradient [24]. The laser beam was<br />

not scanned on <strong>the</strong> sample.<br />

Angle-dispersive X-ray diffraction measurements<br />

were conducted <strong>in</strong>-situ at high-pressure <strong>and</strong> -temperature<br />

at BL10XU <strong>of</strong> SPr<strong>in</strong>g-8. A monochromatic<br />

<strong>in</strong>cident X-ray beam with a wavelength <strong>of</strong> 0.41328<br />

or 0.41688 A˚ was collimated to 20-Am <strong>in</strong> diameter.<br />

X-ray diffraction spectra were obta<strong>in</strong>ed on an imag<strong>in</strong>g<br />

plate with exposure time <strong>of</strong> 1 to 10 m<strong>in</strong>. Twodimensional<br />

X-ray diffraction image was <strong>in</strong>tegrated<br />

as a function <strong>of</strong> two-<strong>the</strong>ta <strong>in</strong> order to give a conventional<br />

one-dimensional diffraction pr<strong>of</strong>ile. The<br />

diffraction patterns <strong>of</strong> <strong>the</strong> sample were repeatedly<br />

collected dur<strong>in</strong>g heat<strong>in</strong>g <strong>and</strong> after quench<strong>in</strong>g to<br />

room temperature.<br />

The uncerta<strong>in</strong>ty <strong>in</strong> temperature with<strong>in</strong> 20-Am area<br />

from which X-ray diffraction was collected could be<br />

F10% [14]. Pressure was determ<strong>in</strong>ed by apply<strong>in</strong>g <strong>the</strong><br />

equation <strong>of</strong> state (EOS) <strong>of</strong> gold, us<strong>in</strong>g two to four<br />

diffraction l<strong>in</strong>es. Pressure determ<strong>in</strong>ation strongly<br />

depends on <strong>the</strong> choice <strong>of</strong> EOS (e.g., [7]). We primarily<br />

used EOS recently proposed by Tsuchiya [25]. Tsuchiya’s<br />

gold scale is practically useful because it is<br />

consistent with plat<strong>in</strong>um pressure scale at 300 K [26].<br />

Pressures calculated by EOS <strong>of</strong> gold proposed by<br />

Jamieson et al. [27] were also presented <strong>in</strong> Table 1,<br />

which predicts larger <strong>the</strong>rmal pressure than Tsuchiya’s<br />

EOS. The pressure uncerta<strong>in</strong>ties shown <strong>in</strong> Table 1 are<br />

derived ma<strong>in</strong>ly from large errors <strong>in</strong> temperature to<br />

apply P–V–T EOS.


Table 1<br />

Volumes <strong>of</strong> coexist<strong>in</strong>g m<strong>in</strong>erals<br />

Run P (GPa) Au<br />

by Tsuchiya<br />

[25]<br />

P (GPa) Au<br />

by Jamieson<br />

et al. [27]<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251 241<br />

T (K) Unit-cell volumes (A˚ 3 )<br />

MgPv<br />

[Z =4]<br />

MgPP<br />

[Z =4]<br />

St (rutile-type<br />

SiO2) [Z =2]<br />

CaCl 2-type<br />

SiO2 [Z =2]<br />

a-PbO 2-type<br />

SiO2 [Z =4]<br />

CaPv<br />

[Z =1]<br />

CF [Z =4]<br />

#1 55.4 (14) 56.4 (17) 1890 145.68 (21) 41.64 (4) 39.62 (1) 205.27 (66)<br />

49.4 (13) 50.6 (16) 1750 147.94 (10) 42.09 (1) 40.12 (1) 208.02 (12)<br />

39.7 (3) 38.8 (3) 300 147.96 (14) 42.21 (3) 40.25 (4) 207.86 (75)<br />

#2 59.6 (16) 60.8 (19) 2140 144.86 (12) 41.27 (3) 39.22 (1) 202.65 (65)<br />

56.6 (15) 57.9 (18) 2060 146.31 (15) 41.70 (2) 39.59 (2) 203.93 (116)<br />

47.1 (3) 45.6 (2) 300 146.00 (9) 41.51 (6) 39.49 (5) 204.30 (36)<br />

#3 70.6 (15) 70.9 (19) 2170 139.99 (9) 40.43 (16) 38.29 (1) 197.09 (35)<br />

60.3 (3) 57.3 (3) 300 140.07 (7) 40.57 (5) 38.19 (6) 197.38 (15)<br />

73.2 (12) 72.4 (15) 1770 138.75 (8) 39.97 (6) 37.93 (1) 195.43 (22)<br />

68.6 (12) 68.3 (15) 1770 139.94 (12) 40.44 (12) 38.22 (0) 197.29 (5)<br />

62.0 (3) 58.8 (3) 300 139.39 (13) 40.31 (6) 38.11 (5) 196.08 (21)<br />

#4 132.0 (18) 124.4 (23) 2130 124.61 (8) 74.81 (13) 34.30 (2) 175.91 (33)<br />

122.2 (14) 110.2 (12) 300 124.09 (14) 74.71 (15) 34.25 (4) 176.11 (49)<br />

#5 85.0 (12) 83.3 (16) 1980 135.83 (21) 39.06 (11) 37.09 (1) 190.99 (28)<br />

78.3 (8) 72.9 (7) 300 134.29 (8) 39.20 (8) 36.94 (5) 189.72 (18)<br />

81.4 (9) 75.5 (8) 300 133.95 (12) 38.85 (6) 36.82 (5) 188.78 (19)<br />

100.0 (24) 96.5 (27) 2060 131.81 (19) 38.04 (13) 36.17 (4) 186.24 (28)<br />

86.4 (12) 79.8 (10) 300 132.88 (14) 38.50 (8) 36.35 (5) 186.83 (15)<br />

#6 112.6 (25) 108.0 (29) 2240 128.93 (8) 77.38 (17) 35.46 181.82 (57)<br />

104.3 (12) 95.0 (10) 300 128.52 (6) 76.89 (8) 35.41 (4) 181.47 (28)<br />

104.3 (13) 95.0 (11) 300 128.43 (10) 76.64 (2) 35.25 (4) 181.44 (21)<br />

106.9 (17) 97.2 (14) 300 128.62 (10) 76.51 (5) 35.16 (5) 180.34 (61)<br />

#7 129.9 (17) 123.1 (22) 2290 125.30 (6) 75.19 (9) 34.22 (2) 177.42<br />

127.0 (24) 120.5 (28) 2280 125.65 (15) 75.66 (13) 34.63 (3) 178.32 (62)<br />

125.2 (13) 118.7 (18) 2170 126.18 (8) 75.92 (10) 34.73 (1) 178.62 (34)<br />

116.4 (12) 105.2 (10) 300 125.50 (6) 75.48 (9) 34.64 (3) 177.62 (24)<br />

118.7 (9) 107.2 (7) 300 125.40 (15) 75.24 (8) 34.53 (2) 177.72 (27)<br />

132.3 (11) 118.9 (10) 300 122.76 (7) 73.79 (14) 33.91 (2) 173.75 (28)<br />

Numbers <strong>in</strong> paren<strong>the</strong>sis <strong>in</strong>dicate uncerta<strong>in</strong>ties <strong>in</strong> <strong>the</strong> last digits. MgPv, MgSiO3-rich perovskite; MgPP, MgSiO3-rich post-perovskite phase; St,<br />

stishovite; CaPv, CaSiO3 perovskite; CF, CaFe2O4-type Al-phase.<br />

Table 2<br />

Chemical compositions <strong>of</strong> start<strong>in</strong>g material <strong>and</strong> coexist<strong>in</strong>g phases at 60 <strong>and</strong> 113 GPa<br />

Sample SM 60 GPa (run #2) 113 GPa (run #6)<br />

MgPv St CaPv CF MgPP a-PbO2-SiO2 CaPv CF<br />

N a<br />

7 6 3 9 7 6 3 4<br />

SiO2 49.64 41.5 (24) 96.6 (11) 50.3 (21) 28.7 (26) 36.5 (22) 87.4 (18) 47.1 (24) 30.7 (13)<br />

TiO2 1.64 2.4 (5) – 0.3 (2) 1.6 (7) 2.9 (8) – 0.7 (6) 0.5 (1)<br />

Al2O3 14.88 13.7 (19) 3.4 (11) 2.9 (6) 35.5 (29) 12.1 (15) 12.6 (18) 4.2 (30) 37.1 (32)<br />

FeO* 11.43 20.1 (12) – 0.8 (6) 10.5 (28) 23.2 (27) – 2.7 (18) 9.6 (8)<br />

MgO 8.51 21.3 (32) – 1.6 (4) 9.0 (26) 19.5 (19) – 1.7 (7) 8.2 (12)<br />

CaO 10.55 1.0 (6) – 42.9 (9) 2.2 (23) 0.9 (9) – 43.6 (16) 1.7 (13)<br />

Na2O 2.90 – – 0.8 (4) 12.5 (12) 5.0 (14) – – 12.1 (11)<br />

K2O 0.12 – – 0.4 (4) – – – – –<br />

Proportion<br />

(wt.%)<br />

35 (5) 17 (2) 23 (3) 25 (4) 38 (3) 23 (2) 23 (2) 16 (3)<br />

Numbers <strong>in</strong> paren<strong>the</strong>sis <strong>in</strong>dicate one st<strong>and</strong>ard deviation <strong>in</strong> <strong>the</strong> last digits. SM, start<strong>in</strong>g material [2]; MgPv, MgSiO3-rich perovskite; St,<br />

stishovite; CaPv, CaSiO3 perovskite; CF, CaFe2O4-type Al-phase; MgPP, MgSiO3-rich post-perovskite phase.<br />

a<br />

Number <strong>of</strong> analyses.


242<br />

We conducted seven separate experiments at pressures<br />

from 40 to 134 GPa (Fig. 1). In each run, <strong>the</strong><br />

sample was heated at a s<strong>in</strong>gle P–T condition <strong>of</strong> <strong>in</strong>terest,<br />

although both pressure <strong>and</strong> temperature slightly<br />

changed dur<strong>in</strong>g heat<strong>in</strong>g (Table 1). Only <strong>in</strong> run #5,<br />

second heat<strong>in</strong>g cycle was made after <strong>the</strong> sample was<br />

once quenched <strong>and</strong> fur<strong>the</strong>r compressed at room temperature.<br />

The heat<strong>in</strong>g duration was 49 to 154 m<strong>in</strong> at<br />

1750–2300 K.<br />

After <strong>the</strong> sample was recovered from DAC, it was<br />

Ar ion-th<strong>in</strong>ned for TEM analysis. Chemical composition<br />

<strong>of</strong> each constituent m<strong>in</strong>eral was determ<strong>in</strong>ed<br />

by NORAN Instruments/Voyager energy-dispersive<br />

(EDS) analytical system attached with JEOL-2010<br />

TEM operat<strong>in</strong>g at 200 kV. We calculated <strong>the</strong> chemical<br />

Temperature (K)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

compositions from measured X-ray <strong>in</strong>tensities us<strong>in</strong>g<br />

K-factors. These K-factors were determ<strong>in</strong>ed experimentally<br />

us<strong>in</strong>g natural alkali–basalt glass as st<strong>and</strong>ard<br />

[28–30]. All <strong>the</strong> chemical analyses were made only<br />

for extremely th<strong>in</strong> parts where electron transparent<br />

rates were higher than 94%.<br />

3. <strong>Phase</strong> <strong>transition</strong> <strong>in</strong> <strong>MORB</strong><br />

In <strong>the</strong> first two sets <strong>of</strong> experiments (runs #1 <strong>and</strong><br />

#2), four-phase assemblage <strong>of</strong> Mg-perovskite +stishovite<br />

+Ca-perovskite +CaFe2O4-type Al-phase was observed<br />

<strong>in</strong> <strong>the</strong> X-ray diffraction patterns, up to 60 GPa<br />

<strong>and</strong> 2140 K (Fig. 1). Funamori et al. [3] reported<br />

Depth (km)<br />

800 1200 1600 2000 2400 2800<br />

MgPv<br />

+St<br />

+CaPv+CF<br />

MgPv<br />

+CaCl2-SiO2<br />

+CaPv+CF<br />

20 40 60 80 100 120 140<br />

Pressure (GPa)<br />

MgPP<br />

+α-PbO2-SiO2<br />

+CaPv+CF<br />

Fig. 1. <strong>Phase</strong> relations <strong>of</strong> <strong>MORB</strong> composition <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle. Squares <strong>and</strong> triangles <strong>in</strong>dicate <strong>the</strong> phase assemblage <strong>of</strong> MgSiO 3-rich<br />

perovskite (MgPv)+stishovite (St) or CaCl2-type SiO2 phase+CaSiO3 perovskite (CaPv)+CaFe2O4-type Al-phase (CF). Circles represent <strong>the</strong><br />

assemblage <strong>of</strong> MgSiO3-rich post-perovskite phase (MgPP)+a-PbO2-type SiO2 phase+CaPv+CF. A broken l<strong>in</strong>e shows <strong>the</strong> tetragonal to cubic<br />

<strong>transition</strong> boundary <strong>in</strong> CaSiO 3 (+3 wt.% Al 2O 3), accord<strong>in</strong>g to Kurash<strong>in</strong>a et al. [14].


CaMgAl-rich perovskite with <strong>in</strong>termediate composition<br />

<strong>and</strong> structure between Mg-rich <strong>and</strong> Ca-rich perovskites<br />

at similar P–T conditions, but such CaMgAlperovskite<br />

was not observed <strong>in</strong> this study. A splitt<strong>in</strong>g<br />

Intensity<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251 243<br />

(a) T-quenched from<br />

69GPa, 1770K<br />

MgPv+CaCl2-SiO2 +CaPv+CF<br />

CF200<br />

PP020<br />

CF200<br />

SC011<br />

SC101<br />

11.00 11.08<br />

MP002+110<br />

CF220<br />

MP111<br />

SC110<br />

(b) T-quenched from<br />

113GPa, 2240K<br />

MgPP<br />

+α-PbO2-SiO2 +CaPv+CF<br />

SA110<br />

CP110+011<br />

MP020<br />

MP112<br />

CF320<br />

MP200<br />

PP022<br />

SA111<br />

PP110<br />

CP110+011<br />

CF320<br />

PP111<br />

Au111<br />

SA021<br />

PP040<br />

PP041<br />

CP111, CF131<br />

Au200<br />

PP023, SA102<br />

SA121<br />

CF420<br />

PP131, CF311<br />

SA112<br />

PP042<br />

CF141+250<br />

CP200<br />

CF040<br />

Au111<br />

SC101<br />

MP120<br />

MP210<br />

MP121<br />

MP103<br />

SC011<br />

SC020<br />

<strong>of</strong> (200) peak <strong>of</strong> cubic Ca-perovskite was recognized<br />

after quench<strong>in</strong>g to room temperature <strong>in</strong> all <strong>the</strong> pressure<br />

range studied here (Fig. 2). This suggests a<br />

distortion to tetragonal structure [13,14]. The splitt<strong>in</strong>g<br />

CP111, CF131, MP211<br />

Au200<br />

CF420<br />

MP202<br />

CF311<br />

MP113<br />

SC120<br />

SC210 MP122<br />

MP212<br />

CF141+250<br />

CP200<br />

CP002<br />

MP004<br />

MP220<br />

MP023, CF241<br />

MP221<br />

CF411<br />

14.0 14.2<br />

6 8 10 12<br />

2θ<br />

14 16 18<br />

CP002<br />

PP132<br />

PP113<br />

PP004<br />

CF331+241<br />

CF401<br />

CF411<br />

CP200<br />

CP002<br />

MP213+130<br />

MP114<br />

MP131+222, SC211<br />

SC121<br />

SC220<br />

CP211+121<br />

Au220<br />

MP204<br />

Fig. 2. X-ray diffraction pattern at (a) 62 GPa <strong>and</strong> 300 K after heat<strong>in</strong>g at 67–73 GPa <strong>and</strong> 1770–2170 K <strong>and</strong> (b) at 104 GPa <strong>and</strong> 300 K after<br />

heat<strong>in</strong>g at 113–114 GPa <strong>and</strong> 2050–2240 K. MP, MgSiO3-rich perovskite; SC, CaCl2-type SiO2 phase; CP, CaSiO3 perovskite; CF, CaFe2O4-type<br />

Al-phase; PP, MgSiO 3-rich post-perovskite phase; SA, a-PbO 2-type SiO 2 phase; Au, gold. The calculated peak positions are shown by vertical<br />

bars. Enlarged patterns around 118 <strong>and</strong> 148 <strong>of</strong> two-<strong>the</strong>ta angle show <strong>the</strong> peak splitt<strong>in</strong>g for CaCl 2-type SiO 2 phase <strong>and</strong> CaSiO 3 perovskite,<br />

respectively.<br />

SA202<br />

SA221<br />

PP133+150<br />

MP<br />

SC<br />

CP<br />

CF<br />

Au<br />

PP<br />

SA<br />

CP<br />

CF<br />

Au


244<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

disappeared <strong>and</strong> <strong>the</strong> sharp s<strong>in</strong>gle (200) peak was<br />

observed upon heat<strong>in</strong>g, <strong>in</strong>dicat<strong>in</strong>g that Ca-perovskite<br />

adopts cubic structure at high temperature. NALphase,<br />

which is a K-bear<strong>in</strong>g Al-phase, was not<br />

found <strong>in</strong> X-ray diffraction patterns <strong>and</strong> TEM observations<br />

<strong>in</strong> <strong>the</strong> present study [5,31]. It is possibly present<br />

as a host <strong>of</strong> potassium, but <strong>the</strong> amount should be very<br />

m<strong>in</strong>or.<br />

In runs #3 <strong>and</strong> #5, (101) peak <strong>of</strong> stishovite changed<br />

to doublet both at 300 K <strong>and</strong> high temperatures,<br />

show<strong>in</strong>g a second-order structural phase <strong>transition</strong><br />

from tetragonal to orthorhombic. Representative Xray<br />

diffraction spectrum is presented <strong>in</strong> Fig. 2a. A<br />

m<strong>in</strong>eral assemblage <strong>of</strong> Mg-perovskite +CaCl2-type<br />

SiO2 phase + Ca-perovskite+CaFe2O4-type Al-phase<br />

was obta<strong>in</strong>ed from 67 GPa <strong>and</strong> 1760 K to 100 GPa<br />

<strong>and</strong> 2060 K (Fig. 1). Observed <strong>and</strong> calculated X-ray<br />

diffraction pattern is presented <strong>in</strong> Table 3. <strong>Phase</strong><br />

<strong>transition</strong> boundary between Al-bear<strong>in</strong>g stishovite to<br />

CaCl2-type phase <strong>in</strong> <strong>MORB</strong> composition is located at<br />

~62 GPa <strong>and</strong> 2000 K.<br />

At higher pressures above 113 GPa at 2240 K<br />

(runs #4, #6, <strong>and</strong> #7), X-ray diffraction pattern drastically<br />

changed (Fig. 2b). These X-ray peaks can be<br />

expla<strong>in</strong>ed by <strong>the</strong> coexistence <strong>of</strong> MgSiO 3-rich postperovskite<br />

phase +a-PbO 2-type SiO 2 +Ca-perovskite+CaFe<br />

2O 4-type Al-phase. This m<strong>in</strong>eral assemblage<br />

was confirmed to 134 GPa <strong>and</strong> 2300 K,<br />

correspond<strong>in</strong>g to <strong>the</strong> condition at <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

mantle. Recently Ono et al. [7] reported CaTi2O4type<br />

Al-phase with a unit-cell volume <strong>of</strong> 150.2 A˚ 3 <strong>in</strong><br />

<strong>MORB</strong> composition at 143 GPa. This volume is<br />

much smaller than that <strong>of</strong> CaFe 2O 4-type phase observed<br />

<strong>in</strong> this study at 132 GPa (173.8 A˚ 3 )(Table 1).<br />

It contrasts with <strong>the</strong> fact that volume change is<br />

m<strong>in</strong>imal at <strong>the</strong> phase <strong>transition</strong> between CaFe2O4type<br />

<strong>and</strong> CaTi2O4-type structures <strong>in</strong> Mg-end-member<br />

MgAl2O4 [15].<br />

<strong>Phase</strong> <strong>transition</strong> from (Al,Fe)-bear<strong>in</strong>g MgSiO3 perovskite<br />

to a post-perovskite phase occurred between<br />

100 <strong>and</strong> 113 GPa at 2060–2240 K. This is consistent<br />

with <strong>the</strong> result on a natural pyrolite composition [32],<br />

<strong>in</strong> which <strong>the</strong> post-perovskite phase <strong>transition</strong> was<br />

observed between 103 <strong>and</strong> 115 GPa at 2060–2550<br />

K on <strong>the</strong> basis <strong>of</strong> Tsuchiya’s gold scale same as <strong>in</strong> this<br />

study. Pressures <strong>of</strong> post-perovskite phase <strong>transition</strong> <strong>in</strong><br />

pyrolite <strong>and</strong> <strong>MORB</strong> compositions are apparently<br />

<strong>lower</strong> by about 10 GPa than that <strong>in</strong> pure MgSiO3<br />

composition determ<strong>in</strong>ed by us<strong>in</strong>g plat<strong>in</strong>um pressure<br />

st<strong>and</strong>ard. It could be primarily due to <strong>the</strong> difference <strong>in</strong><br />

<strong>the</strong> pressure scale used <strong>in</strong> <strong>the</strong> experiments. In addition,<br />

<strong>the</strong>re should be compositional effects on post-perovskite<br />

phase <strong>transition</strong>, but <strong>the</strong>y are not yet well understood.<br />

<strong>MORB</strong> conta<strong>in</strong>s high Al2O3, FeO, Fe2O3,<br />

<strong>and</strong> Na2O. Presence <strong>of</strong> Al2O3 stabilizes perovskite<br />

relative to post-perovskite phase [33]. Post-perovskite<br />

phase <strong>in</strong>cludes much more Na 2O than perovskite<br />

(Table 2), <strong>in</strong>dicat<strong>in</strong>g that Na 2O exp<strong>and</strong>s <strong>the</strong> stability<br />

P–T field <strong>of</strong> <strong>the</strong> post-perovskite phase. Partition<strong>in</strong>g <strong>of</strong><br />

iron is under hot debate [32,34]. It depends on <strong>the</strong><br />

valence state <strong>and</strong> sp<strong>in</strong> state, both <strong>of</strong> which significantly<br />

affect <strong>the</strong> ionic radius <strong>of</strong> iron. It is noted that<br />

Mg 2+ site is smaller <strong>in</strong> post-perovskite phase than <strong>in</strong><br />

perovskite.<br />

<strong>Phase</strong> <strong>transition</strong> from CaCl 2-type to a-PbO 2-type<br />

SiO 2 phase occurred also between 100 <strong>and</strong> 113 GPa.<br />

a-PbO 2-type phase <strong>in</strong>cludes large amount <strong>of</strong> Al 2O 3<br />

(Table 2), which should remarkably exp<strong>and</strong>s its stability<br />

P–T field. Murakami et al. [12] demonstrated<br />

that phase <strong>transition</strong> between CaCl2-type <strong>and</strong> a-PbO2type<br />

structures occurs above 121 GPa <strong>and</strong> 2400 K <strong>in</strong><br />

pure SiO2 based on plat<strong>in</strong>um pressure scale.<br />

4. M<strong>in</strong>eral chemistry<br />

Chemical compositions <strong>of</strong> coexist<strong>in</strong>g phases were<br />

determ<strong>in</strong>ed for both low-pressure (perovskite-dom<strong>in</strong>ant)<br />

<strong>and</strong> high-pressure (post-perovskite phase-dom<strong>in</strong>ant)<br />

assemblies, recovered respectively from 60 <strong>and</strong><br />

113 GPa (Table 2). A typical TEM image is presented<br />

<strong>in</strong> Fig. 3. Analyses were made only for <strong>the</strong> part<br />

coexist<strong>in</strong>g with gold gra<strong>in</strong>s. The coexistence <strong>of</strong> gold<br />

<strong>in</strong>dicates that this portion was heated to high temperatures.<br />

The TEM analyses confirmed <strong>the</strong> m<strong>in</strong>eral<br />

assemblages same as those observed <strong>in</strong> X-ray diffraction<br />

patterns. Both MgSiO3-rich post-perovskite phase<br />

<strong>and</strong> Ca-perovskite converted to amorphous on release<br />

<strong>of</strong> pressure. Chemical analyses showed that <strong>the</strong> heated<br />

area lost 10–15% iron, which is usually observed <strong>in</strong><br />

<strong>the</strong> LHDAC experiments due to relatively large <strong>the</strong>rmal<br />

gradient [32].<br />

Post-perovskite phase is similar <strong>in</strong> composition to<br />

Mg-perovskite, except that <strong>the</strong> former has remarkably<br />

high Na2O content. Similar observation was made <strong>in</strong> a<br />

natural pyrolite composition [32]. Here we consider


K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251 245<br />

Fig. 3. TEM image <strong>of</strong> <strong>the</strong> sample recovered from 113 GPa <strong>and</strong> 2240<br />

K. Abbreviations are similar to those <strong>in</strong> Fig. 2.<br />

Na2SiO3 end-member. Post-perovskite phase has a<br />

chemical formula on <strong>the</strong> jo<strong>in</strong> [(Mg,Fe 2+ ,Ca)1 X<br />

(Al,Fe 3+ ) 2X(Si,Ti) 1 X]O 3–Na 2SiO 3 (Table 2). It suggests<br />

a high abundance <strong>of</strong> Fe 3+ <strong>in</strong> <strong>the</strong> post-perovskite<br />

phase (Fe 3+ /total Fe =0.81).<br />

Stishovite <strong>in</strong>cludes 3.4 wt.% Al2O3 at 60 GPa,<br />

consistently with <strong>the</strong> results <strong>of</strong> previous studies on<br />

<strong>MORB</strong> composition [1–6]. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, a-<br />

PbO2-type SiO2 phase <strong>in</strong>cludes significantly high<br />

Al2O3 content (12.6 wt.%) at 113 GPa. It has been<br />

reported that a-PbO 2-type TiO 2 phase conta<strong>in</strong>s large<br />

amount <strong>of</strong> Fe 2O 3 [35]. A trivalent cation <strong>of</strong> Al 3+ may<br />

substitute Si 4+ with oxygen vacancy. Alternatively, Al<br />

may be <strong>in</strong>corporated without oxygen vacancy under<br />

such ultra-high pressure conditions. Half <strong>of</strong> <strong>the</strong> octahedral<br />

sites <strong>of</strong> oxygen hexagonal close-packed structure<br />

are vacant <strong>in</strong> a-PbO2-type structure. Such vacant<br />

site may be partially occupied by Al ions when three<br />

Si 4+ ions are substituted by four Al 3+ ions.<br />

Both Ca-perovskite <strong>and</strong> CaFe 2O 4-type Al-phase<br />

exhibit similar chemical compositions <strong>in</strong> perovskitedom<strong>in</strong>ant<br />

<strong>and</strong> post-perovskite phase-dom<strong>in</strong>ant assemblies.<br />

CaFe2O4-type Al-phase has complex chemical<br />

formula approximately on <strong>the</strong> jo<strong>in</strong> NaAlSiO4–<br />

(Mg,Fe)Al2O4 [36]. Relatively wide chemical variations<br />

when syn<strong>the</strong>sized <strong>in</strong> <strong>MORB</strong> bulk composition<br />

were reported <strong>in</strong> <strong>the</strong> literature [1–6,22].<br />

M<strong>in</strong>eral proportions were estimated by mass-balance<br />

calculations us<strong>in</strong>g all oxides analyzed except<br />

K2O. Results show 35% Mg-perovskite, 25%<br />

CaFe2O4-type Al-phase, 23% Ca-perovskite, <strong>and</strong><br />

17% stishovite <strong>in</strong> weight <strong>in</strong> <strong>the</strong> low-pressure assembly.<br />

The high-pressure assembly consists <strong>of</strong> 38%<br />

MgSiO 3-rich post-perovskite phase, 23% Ca-perovskite,<br />

23% a-PbO2-type SiO2, <strong>and</strong> 16% CaFe2O4type<br />

Al-phase. A remarkable decrease <strong>of</strong> CaFe2O4type<br />

Al-phase is due to <strong>the</strong> partition<strong>in</strong>g <strong>of</strong> high Al2O3<br />

<strong>in</strong>to a-PbO2-type SiO2 phase <strong>and</strong> high Na2O <strong>in</strong>to<br />

post-perovskite phase (Table 2).<br />

5. Density <strong>of</strong> <strong>MORB</strong> <strong>crust</strong> <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle<br />

5.1. Volume <strong>of</strong> each constituent m<strong>in</strong>eral<br />

The unit-cell volumes <strong>of</strong> coexist<strong>in</strong>g phases were<br />

determ<strong>in</strong>ed from <strong>the</strong> X-ray diffraction patterns both at<br />

high temperature (1750 to 2290 K) <strong>and</strong> at 300 K<br />

(Table 1). These room temperature P–V data were<br />

fitted to <strong>the</strong> Birch–Murnaghan equation <strong>of</strong> state <strong>in</strong><br />

order to obta<strong>in</strong> <strong>the</strong> bapparentQ compressibility <strong>of</strong><br />

each constituent m<strong>in</strong>eral <strong>in</strong> <strong>MORB</strong> composition. Previous<br />

experimental studies suggest that chemical composition<br />

<strong>of</strong> each phase changes little with <strong>in</strong>creas<strong>in</strong>g<br />

pressure to 100 GPa [1,3,4].<br />

The iso<strong>the</strong>rmal bulk modulus (K 0) was obta<strong>in</strong>ed to<br />

be 217(F2) GPa for Mg-perovskite, assum<strong>in</strong>g that<br />

pressure derivative <strong>of</strong> <strong>the</strong> iso<strong>the</strong>rmal bulk modulus,<br />

KV, is 4 <strong>and</strong> <strong>the</strong> volume at ambient condition (V0) is<br />

169.5 A˚ 3 [2,4,6] (Fig. 4a). This is much <strong>lower</strong> than <strong>the</strong><br />

values <strong>of</strong> ~261 GPa previously determ<strong>in</strong>ed for Mgend-member<br />

composition (e.g., [37]). Mg-perovskite<br />

<strong>in</strong> <strong>MORB</strong> composition <strong>in</strong>cludes large amount <strong>of</strong><br />

Al 2O 3 <strong>and</strong> Fe 2O 3. These results suggest that solution<br />

<strong>of</strong> Al 2O 3 <strong>and</strong> Fe 2O 3 significantly reduces <strong>the</strong> bulk<br />

modulus, consistently with <strong>the</strong>oretical predictions on<br />

<strong>the</strong> effect <strong>of</strong> Al2O3 [38,39]. It is, however, noted that<br />

chemical composition <strong>of</strong> Mg-perovskite syn<strong>the</strong>sized<br />

<strong>in</strong> <strong>MORB</strong> bulk composition may be different at each<br />

pressure, which could cause apparent <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

compressibility.<br />

The volumes <strong>of</strong> post-perovskite phase are plotted<br />

<strong>in</strong> Fig. 4a, toge<strong>the</strong>r with those <strong>of</strong> Mg-perovskite.<br />

The unit-cell parameters <strong>of</strong> post-perovskite phase<br />

are a =2.472(1) A˚ , b =8.096(2) A˚ , <strong>and</strong> c =6.134(1)<br />

A˚ at 132 GPa <strong>and</strong> 300 K. Each unit-cell length is<br />

larger by about 6% than that <strong>of</strong> pure MgSiO3 postperovskite<br />

phase measured at 121 GPa <strong>and</strong> 300 K<br />

[8]. Previous experiments on pure MgSiO3 demon-


246<br />

strated that <strong>the</strong> volume decreased by about 1% at<br />

<strong>the</strong> post-perovskite phase <strong>transition</strong> [8]. These P–V<br />

data <strong>in</strong> <strong>MORB</strong> composition, however, do not <strong>in</strong>dicate<br />

such a large volume decrease. It should be due<br />

to a change <strong>in</strong> <strong>the</strong> chemical composition from perovskite<br />

to post-perovskite phase <strong>in</strong> <strong>MORB</strong> bulk<br />

composition.<br />

The P–V data <strong>of</strong> stishovite <strong>and</strong> CaCl2-type SiO2<br />

were fitted toge<strong>the</strong>r to <strong>the</strong> Birch–Murnaghan equation<br />

<strong>of</strong> state (Fig. 4b). Fitt<strong>in</strong>g result shows<br />

K0=279(F13) GPa <strong>and</strong> V0=47.3(F0.3) A˚ 3 when<br />

KV=4, which are quite consistent with <strong>the</strong> previous<br />

results on Al-bear<strong>in</strong>g stishovite [40]. a-PbO2-type<br />

phase <strong>in</strong> <strong>MORB</strong> composition conta<strong>in</strong>s 12.6 wt.%<br />

Al2O3 that significantly exp<strong>and</strong>s volumes. The unitcell<br />

volume <strong>of</strong> a-PbO2-type phase syn<strong>the</strong>sized <strong>in</strong><br />

<strong>MORB</strong> composition is 73.79 A˚ 3 at 132 GPa (Table<br />

1), which is larger by about 4% than that <strong>of</strong> pure<br />

SiO2 phase obta<strong>in</strong>ed at 136 GPa [12]. It is noted<br />

that <strong>the</strong> unit-cell volume <strong>of</strong> a-PbO2-type phase<br />

[Z =4] is remarkably larger than double unit-cell<br />

volume <strong>of</strong> CaCl2-type phase [Z =2] at equivalent<br />

pressure (Fig. 4b).<br />

The volumes <strong>of</strong> Ca-perovskite were determ<strong>in</strong>ed on<br />

<strong>the</strong> basis <strong>of</strong> tetragonal structure (space group; P4/<br />

mmm) proposed by Shim et al. [13] at 300 K <strong>and</strong><br />

cubic structure at high temperatures. The P–V data <strong>of</strong><br />

Ca-perovskite <strong>and</strong> CaFe2O4-type Al-phase from 40 to<br />

132 GPa respectively lie on a s<strong>in</strong>gle compression<br />

curve (Fig. 4c <strong>and</strong> d). Fitt<strong>in</strong>g to <strong>the</strong> Birch–Murnaghan<br />

equation <strong>of</strong> state show K0=245(F6) GPa <strong>and</strong><br />

V0=45.6(F0.2) A˚ 3<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

for Al-bear<strong>in</strong>g Ca-perovskite<br />

<strong>and</strong> K 0=214(F8) GPa <strong>and</strong> V 0=239.7(F1.5) A˚ 3 for<br />

CaFe 2O 4-type Al-phase, when KV is fixed at 4. Previous<br />

measurements <strong>of</strong> <strong>the</strong> compressibility <strong>of</strong> CaFe 2O 4type<br />

Al-phase showed relatively wide variation <strong>in</strong> <strong>the</strong><br />

value <strong>of</strong> K0. Present result is higher than that measured<br />

by Guignot <strong>and</strong> Andrault [36] (~190 GPa) but is<br />

<strong>lower</strong> than that by Ono et al. [41] (243 GPa).<br />

Fig. 4. Change <strong>in</strong> <strong>the</strong> unit-cell volumes as a function pressure for (a)<br />

MgSiO 3-rich perovskite (circles) <strong>and</strong> post-perovskite phase<br />

(squares), (b) stishovite (circles), CaCl2-type SiO2 (triangles), <strong>and</strong><br />

a-PbO2-type SiO2 (squares), (c) CaSiO3 perovskite, <strong>and</strong> (d)<br />

CaFe2O4-type Al-phase. Half unit-cell volumes are plotted for a-<br />

PbO 2-type SiO 2 phase. Closed <strong>and</strong> open symbols <strong>in</strong>dicate room<br />

temperature <strong>and</strong> high temperature (1750–2290 K) data, respectively.<br />

Solid l<strong>in</strong>es show apparent compression curves at 300 K. See text for<br />

details.<br />

unit-cell volume (Å 3 unit-cell volume (Å )<br />

3 ) unit-cell volume (Å 3 unit-cell volume (Å )<br />

3 )<br />

155<br />

150<br />

145<br />

140<br />

135<br />

130<br />

125<br />

43<br />

42<br />

41<br />

40<br />

39<br />

38<br />

37<br />

40<br />

38<br />

36<br />

34<br />

210<br />

200<br />

190<br />

180<br />

170<br />

a<br />

b<br />

c<br />

d<br />

MgPv+MgPP<br />

SiO 2 -phases<br />

CaPv<br />

CF<br />

40 60 80 100 120 140<br />

Pressure (GPa)


Density (g/cm 3 )<br />

Density (g/cm 3 )<br />

Density (g/cm 3 )<br />

Density (g/cm 3 )<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

4.5<br />

5.6<br />

5.4<br />

5.2<br />

5.0<br />

4.8<br />

4.6<br />

5.6<br />

5.4<br />

5.2<br />

5.0<br />

4.8<br />

4.6<br />

5.6<br />

5.4<br />

5.2<br />

5.0<br />

4.8<br />

4.6<br />

4.4<br />

a<br />

b<br />

c<br />

d<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251 247<br />

PREM<br />

MgPv+MgPP<br />

SiO 2 -phases<br />

CaPv<br />

CF<br />

40 60 80 100 120 140<br />

Pressure (GPa)<br />

5.2. Density pr<strong>of</strong>ile <strong>of</strong> <strong>MORB</strong><br />

On <strong>the</strong> basis <strong>of</strong> measured crystal chemistry <strong>and</strong><br />

volume data, <strong>the</strong> <strong>density</strong> <strong>of</strong> each constituent m<strong>in</strong>eral<br />

was calculated for both 300 K <strong>and</strong> high temperatures.<br />

The chemical composition <strong>of</strong> each phase is assumed<br />

to be constant <strong>in</strong> perovskite-dom<strong>in</strong>ant (below 100<br />

GPa) <strong>and</strong> post-perovskite phase-dom<strong>in</strong>ant assemblies<br />

(above 104 GPa), respectively. <strong>Phase</strong> transformation<br />

between stishovite <strong>and</strong> CaCl 2-type structure is second-order,<br />

<strong>and</strong> <strong>the</strong>refore both phases likely have similar<br />

chemical compositions. The m<strong>in</strong>eral densities<br />

were plotted <strong>in</strong> Fig. 5, toge<strong>the</strong>r with <strong>the</strong> PREM <strong>density</strong><br />

pr<strong>of</strong>ile [42] <strong>in</strong> order to illustrate which phase<br />

contributes to <strong>the</strong> buoyancy <strong>of</strong> <strong>the</strong> <strong>subducted</strong><br />

<strong>MORB</strong> <strong>crust</strong> <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle.<br />

Mg-perovskite is <strong>the</strong> densest phase below 100 GPa<br />

<strong>and</strong> is much denser than <strong>the</strong> mean <strong>lower</strong> mantle (Fig.<br />

5a). The post-perovskite phase is denser than perovskite<br />

by about 3% at <strong>the</strong> phase <strong>transition</strong>. SiO2 phases<br />

are least compressible <strong>and</strong> are <strong>the</strong> lightest m<strong>in</strong>eral <strong>in</strong><br />

<strong>MORB</strong> composition <strong>in</strong> a pressure range studied here<br />

(Fig. 5b). Al-bear<strong>in</strong>g stishovite <strong>and</strong> CaCl2-type SiO2<br />

phase are less dense than <strong>the</strong> PREM <strong>density</strong> at high<br />

temperatures. The <strong>density</strong> a-PbO 2-type SiO 2 phase<br />

strongly depends on <strong>the</strong> substitution mechanism <strong>of</strong><br />

Al 2O 3. Two types <strong>of</strong> mechanism, (1) oxygen vacancytype<br />

<strong>and</strong> (2) octahedral vacancy-occupied-type, are<br />

considered. In both <strong>the</strong> cases, Al-bear<strong>in</strong>g a-PbO2type<br />

SiO2 phase is remarkably less dense than<br />

CaCl2-type phase at equivalent pressure. The <strong>density</strong><br />

<strong>of</strong> SiO2 phase <strong>in</strong> <strong>MORB</strong> composition decreases at <strong>the</strong><br />

phase <strong>transition</strong> to a-PbO 2-type phase due to <strong>the</strong><br />

<strong>in</strong>corporation <strong>of</strong> much higher Al 2O 3 content. a-<br />

PbO 2-type SiO 2 phase significantly contributes to<br />

<strong>the</strong> buoyancy <strong>of</strong> <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong> <strong>in</strong> <strong>the</strong> <strong>lower</strong>most<br />

mantle. Ca-perovskite is marg<strong>in</strong>ally denser<br />

than <strong>the</strong> mean <strong>lower</strong> mantle (Fig. 5c). The <strong>density</strong><br />

Fig. 5. Density pr<strong>of</strong>ile <strong>of</strong> each constituent m<strong>in</strong>eral <strong>in</strong> <strong>MORB</strong><br />

composition. Two types <strong>of</strong> Al substitution mechanisms <strong>in</strong> a-<br />

PbO2-type SiO2 phase, oxygen vacancy-type (reversed triangles)<br />

<strong>and</strong> octahedral vacancy-occupied-type (squares), are considered<br />

here. O<strong>the</strong>r symbols are same as those <strong>in</strong> Fig. 4. The PREM <strong>density</strong><br />

is shown for comparison by broken l<strong>in</strong>es [42]. High-temperature<br />

(2070–2410 K) data by Ono et al. [7] are also plotted by pluses. The<br />

ma<strong>in</strong> difference is seen <strong>in</strong> <strong>the</strong> <strong>density</strong> pr<strong>of</strong>ile <strong>of</strong> CaFe2O4-type Al<br />

phase, which is primarily due to <strong>the</strong> difference <strong>in</strong> chemical composition,<br />

especially <strong>in</strong> FeO content.


248<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

<strong>of</strong> CaFe 2O 4-type Al-phase is larger <strong>the</strong> PREM <strong>density</strong><br />

even at high temperatures (Fig. 5d). It is noted, however,<br />

that chemical composition <strong>of</strong> CaFe 2O 4-type Alphase<br />

is variable depend<strong>in</strong>g on <strong>the</strong> bulk <strong>MORB</strong> composition<br />

as summarized by Guignot <strong>and</strong> Andrault<br />

[36], which significantly affects <strong>the</strong> m<strong>in</strong>eral <strong>density</strong>.<br />

Ono et al. [7] calculated remarkably <strong>lower</strong> densities<br />

for this m<strong>in</strong>eral primarily due to <strong>the</strong> difference <strong>in</strong><br />

chemical composition.<br />

The net <strong>density</strong> <strong>of</strong> <strong>MORB</strong> composition is calculated<br />

from <strong>the</strong> <strong>density</strong> <strong>of</strong> each constituent m<strong>in</strong>eral <strong>and</strong><br />

m<strong>in</strong>eral proportions. The <strong>density</strong> pr<strong>of</strong>ile <strong>of</strong> <strong>MORB</strong><br />

composition is presented <strong>in</strong> Fig. 6. Fitt<strong>in</strong>g <strong>of</strong> pressure–<strong>density</strong><br />

data for perovskite-dom<strong>in</strong>ant assembly<br />

at 300 K to <strong>the</strong> Birch–Murnaghan equation <strong>of</strong> state<br />

gives K0=222(F6) GPa <strong>and</strong> q0=4.22(F0.02) g/cm 3<br />

when KV is fixed at 4 (Fig. 6a). The <strong>density</strong> <strong>of</strong><br />

<strong>MORB</strong> <strong>crust</strong> <strong>in</strong>creases by about 1% at ~2400-km<br />

depth, if Al substitutes Si by us<strong>in</strong>g octahedral vacancy<br />

(without form<strong>in</strong>g oxygen vacancy) <strong>in</strong> a-PbO2-type<br />

SiO2 phase. In contrast, if oxygen vacancy-type substitution<br />

is assumed, <strong>the</strong> calculation shows that <strong>density</strong><br />

<strong>of</strong> <strong>MORB</strong> <strong>crust</strong> marg<strong>in</strong>ally decreases at <strong>the</strong><br />

pressure-<strong>in</strong>duced phase <strong>transition</strong>, which is physically<br />

unreasonable. It <strong>in</strong>dicates that <strong>the</strong> former Al substitution<br />

mechanism is dom<strong>in</strong>ant <strong>in</strong> a-PbO 2-type SiO 2<br />

phase.<br />

The <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong> is denser than <strong>the</strong><br />

average <strong>lower</strong> mantle at all depths greater than 720<br />

km where <strong>MORB</strong> <strong>crust</strong> becomes perovskite-dom<strong>in</strong>ant<br />

lithology [2,5,6], even after <strong>the</strong>rmal equilibrium is<br />

atta<strong>in</strong>ed. The same conclusions are obta<strong>in</strong>ed when<br />

pressure is estimated by us<strong>in</strong>g different EOS <strong>of</strong> gold<br />

proposed by Jamieson et al. [27] (Fig. 6b).<br />

This conclusion contrasts with earlier predictions<br />

[4,23]. The m<strong>in</strong>eral volumes were not measured at<br />

high P–T <strong>in</strong> <strong>the</strong>se previous studies, <strong>and</strong> <strong>in</strong>stead compression<br />

<strong>and</strong> <strong>the</strong>rmal expansion data <strong>of</strong> <strong>the</strong> end-member<br />

composition were used for each constituent<br />

m<strong>in</strong>eral. This resulted <strong>in</strong> a serious underestimate <strong>of</strong><br />

<strong>the</strong> <strong>density</strong> <strong>of</strong> <strong>MORB</strong> <strong>crust</strong> <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle [4,23].<br />

It is true that <strong>MORB</strong> <strong>crust</strong> has extensively wide<br />

chemical variations. Present study demonstrated that<br />

only <strong>the</strong> SiO2 phases, especially a-PbO2-type phase,<br />

contribute to <strong>the</strong> buoyancy <strong>of</strong> <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong><br />

relative to <strong>the</strong> surround<strong>in</strong>g mantle, us<strong>in</strong>g <strong>the</strong> particular<br />

<strong>MORB</strong> sample. Ono et al. [7] showed that CaFe2O4type<br />

Al-phase is also less dense than <strong>the</strong> normal<br />

Rock <strong>density</strong> (g/cm 3 ) Rock <strong>density</strong> (g/cm 3 )<br />

6.0<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5.0<br />

4.8<br />

4.6<br />

4.4<br />

6.0<br />

5.8<br />

5.6<br />

5.4<br />

5.2<br />

5.0<br />

4.8<br />

4.6<br />

4.4<br />

a<br />

40 60 80 100 120 140<br />

b<br />

Depth (km)<br />

1200 1600 2000 2400 2800<br />

Pressure (GPa)<br />

Depth (km)<br />

1200 1600 2000 2400 2800<br />

40 60 80 100 120 140<br />

Pressure (GPa)<br />

PREM<br />

Au_Tsuchiya<br />

PREM<br />

Au_Jamieson<br />

Fig. 6. Net <strong>density</strong> pr<strong>of</strong>ile <strong>of</strong> <strong>MORB</strong> composition. Pressure was<br />

calculated based on EOS <strong>of</strong> gold proposed by (a) Tsuchiya [25] <strong>and</strong><br />

by (b) Jamieson et al. [27]. Circles, MgPv+St+CaPv+CF; triangles,<br />

MgPv+CaCl 2-type SiO 2+CaPv+CF; squares, MgPP+a-<br />

PbO2-type SiO2+CaPv+CF. Closed <strong>and</strong> open symbols <strong>in</strong>dicate<br />

300 K <strong>and</strong> high temperature (1750–2290 K) data, respectively.<br />

Broken l<strong>in</strong>es <strong>in</strong>dicate <strong>the</strong> PREM <strong>density</strong> [42]. The error <strong>of</strong> <strong>density</strong><br />

is typically 0.02 g/cm 3 , derived from <strong>the</strong> uncerta<strong>in</strong>ties <strong>in</strong> volumes<br />

<strong>of</strong> coexist<strong>in</strong>g phases <strong>and</strong> <strong>in</strong> m<strong>in</strong>eral proportion. (a) Solid l<strong>in</strong>e shows<br />

a <strong>density</strong> pr<strong>of</strong>ile at 300 K for perovskite-dom<strong>in</strong>ant assembly fitted<br />

to <strong>the</strong> Birch–Murnaghan equation <strong>of</strong> state. (b) Data by Ono et al.<br />

[7] us<strong>in</strong>g Jamieson’s gold scale were shown for comparison (pluses).<br />

Slightly <strong>lower</strong> <strong>density</strong> reported by [7] is primarily due to <strong>the</strong><br />

<strong>lower</strong> <strong>density</strong> <strong>of</strong> CaFe 2O 4-type Al-phase with a different chemical<br />

composition.<br />

mantle (Fig. 5d) us<strong>in</strong>g <strong>the</strong> different <strong>MORB</strong> composition.<br />

However, both reached <strong>the</strong> same conclusion on<br />

<strong>the</strong> <strong>density</strong> relationship between <strong>MORB</strong> <strong>and</strong> <strong>the</strong> nor-


mal mantle. The <strong>density</strong> crossover is not likely to<br />

occur below 720-km depth, even for <strong>the</strong> highly<br />

evolved <strong>MORB</strong> with high SiO 2 contents.<br />

6. Implications for seismic heterogeneities <strong>in</strong> <strong>the</strong><br />

mid–<strong>lower</strong> mantle<br />

<strong>Phase</strong> <strong>transition</strong> <strong>of</strong> <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong> may<br />

cause local but large seismic heterogeneities <strong>in</strong> <strong>the</strong><br />

<strong>lower</strong> mantle. A number <strong>of</strong> seismic heterogeneities<br />

have been found <strong>in</strong> <strong>the</strong> upper to middle layers <strong>of</strong> <strong>the</strong><br />

<strong>lower</strong> mantle (900–1850-km depth) (e.g., [16–20]).<br />

These are <strong>of</strong>ten observed beneath convergent marg<strong>in</strong>s,<br />

but <strong>the</strong>y are not global [43]. Subduction <strong>of</strong><br />

<strong>MORB</strong> <strong>crust</strong> gives rise to a chemical <strong>and</strong> m<strong>in</strong>eralogical<br />

heterogeneity <strong>in</strong> <strong>the</strong> mantle, which could be<br />

<strong>the</strong> orig<strong>in</strong> <strong>of</strong> such local seismic anomalies.<br />

A couple <strong>of</strong> phase <strong>transition</strong>s occur <strong>in</strong> <strong>the</strong> <strong>subducted</strong><br />

<strong>MORB</strong> <strong>crust</strong> <strong>in</strong> <strong>the</strong> upper- to mid–<strong>lower</strong> mantle<br />

(Fig. 7). One is second-order structural phase<br />

<strong>transition</strong> <strong>in</strong> SiO2 phase from stishovite to CaCl2type<br />

structure. It is well known that this is ferroelas-<br />

Temperature (K)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

600 800 1000 1200 1400 1600 1800 2000<br />

cubic CaPv<br />

tetragonal<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251 249<br />

Depth (km)<br />

normal mantle<br />

hot slab<br />

cold slab<br />

stishovite<br />

20 30 40 50 60 70 80 90<br />

Pressure (GPa)<br />

CaCl 2 -type SiO 2<br />

Fig. 7. Temperature pr<strong>of</strong>iles <strong>of</strong> normal mantle <strong>and</strong> subduct<strong>in</strong>g slabs<br />

[48], superimposed on <strong>the</strong> phase <strong>transition</strong> boundaries <strong>of</strong> Al-bear<strong>in</strong>g<br />

SiO2 phase (solid l<strong>in</strong>e) <strong>and</strong> CaSiO3 (+3 wt.% Al2O3) perovskite<br />

(broken l<strong>in</strong>e). <strong>Phase</strong> <strong>transition</strong> <strong>of</strong> SiO2 phase occurs at ~1500-km<br />

depth <strong>in</strong> <strong>the</strong> former <strong>MORB</strong> <strong>crust</strong>. The depth <strong>of</strong> phase <strong>transition</strong> <strong>in</strong><br />

Al-bear<strong>in</strong>g Ca-perovskite can be variable, depend<strong>in</strong>g on temperature<br />

<strong>of</strong> slabs <strong>and</strong> Al2O3 content [14].<br />

tic-type phase <strong>transition</strong>. Carpenter et al. [44] showed<br />

that seismic wave velocities, especially S-wave speed,<br />

are significantly reduced near <strong>the</strong> phase <strong>transition</strong>; Swave<br />

velocity drops by ~25% at <strong>the</strong> phase <strong>transition</strong><br />

<strong>and</strong> by 12–15% 100 km above <strong>and</strong> below <strong>the</strong> phase<br />

<strong>transition</strong>. Present results demonstrate that phase <strong>transition</strong><br />

boundary is located at ~62 GPa <strong>and</strong> 2000 K,<br />

correspond<strong>in</strong>g to 1500-km depth (Fig. 7). Kaneshima<br />

<strong>and</strong> Helffrich [17,19] found seismic scatters (called<br />

M-phase anomaly) with at least 4% slow S-wave<br />

velocity at 1400- to 1600-km depth nor<strong>the</strong>ast <strong>of</strong> <strong>the</strong><br />

Mariana subduction zone. The M-phase anomaly is<br />

likely attributed to this ferroelastic-type phase <strong>transition</strong><br />

<strong>of</strong> SiO2 phase. Such seismic scatters should be<br />

present <strong>in</strong> <strong>the</strong> former <strong>MORB</strong> <strong>crust</strong>, <strong>in</strong> which SiO2<br />

phase is <strong>in</strong>cluded about 20%. It is noted that SiO2<br />

phase is not stable <strong>in</strong> a peridotitic mantle composition<br />

(e.g., [32]). This is consistent with <strong>the</strong> fact that <strong>the</strong><br />

heterogeneity is not observed globally.<br />

The <strong>lower</strong> mantle seismic heterogeneities are not<br />

restricted to 1400- to 1600-km depth. For example,<br />

Kaneshima <strong>and</strong> Helffrich [19] reported similar scatters<br />

called S-phase anomaly at 1100- to 1450-km depth<br />

<strong>and</strong> D-phase anomaly at 1700- to 1850-km depth <strong>in</strong><br />

<strong>the</strong> same area, although <strong>the</strong>se anomalies are less <strong>in</strong>tense<br />

than <strong>the</strong> M-phase. Niu et al. [20] also found a<br />

reflector at a depth <strong>of</strong> 1115 km <strong>in</strong> nearby area with<strong>in</strong><br />

high-velocity anomaly <strong>in</strong> global tomographic models.<br />

These anomalies are difficult to be reconciled with <strong>the</strong><br />

phase <strong>transition</strong> <strong>of</strong> SiO2 phase. Alternatively, phase<br />

<strong>transition</strong> <strong>in</strong> Al-bear<strong>in</strong>g Ca-perovskite may be responsible<br />

for <strong>the</strong>se heterogeneities. Ca-perovskite adopts<br />

tetragonal structure at low temperature <strong>and</strong> transforms<br />

to cubic with <strong>in</strong>creas<strong>in</strong>g temperature [13,14,45]. The<br />

solution <strong>of</strong> Al 2O 3 enhances <strong>the</strong> distortion <strong>of</strong> perovskite<br />

structure, <strong>and</strong> remarkably <strong>in</strong>creases <strong>the</strong> <strong>transition</strong><br />

temperature to cubic perovskite. Present experiments<br />

that Ca-perovskite <strong>in</strong>cludes 3 to 4 wt.% Al2O3 <strong>in</strong><br />

<strong>MORB</strong> composition, consistently with earlier studies<br />

[1–6]. Accord<strong>in</strong>g to <strong>the</strong> experimental work by Kurash<strong>in</strong>a<br />

et al. [14], <strong>the</strong> tetragonal to cubic <strong>transition</strong><br />

boundary <strong>in</strong> CaSiO 3 (+3 wt.% Al 2O 3) is located at<br />

about 1200 K <strong>and</strong> 50 GPa (Fig. 7). The phase <strong>transition</strong><br />

boundary is temperature-sensitive with a slightly<br />

positive Clapeyron slope. <strong>Phase</strong> <strong>transition</strong> <strong>in</strong> CaSiO3<br />

(+3 wt.% Al2O3) perovskite can occur <strong>in</strong> basaltic<br />

<strong>crust</strong> layer <strong>of</strong> cold subduct<strong>in</strong>g slabs. <strong>Phase</strong> <strong>transition</strong><br />

is not expected <strong>in</strong> peridotite layer because Ca-perov-


250<br />

skite conta<strong>in</strong>s less than 1 wt.% Al 2O 3 [23,32] <strong>and</strong><br />

<strong>transition</strong> temperature <strong>in</strong> such Al-poor Ca-perovskite<br />

is too low. The depth <strong>of</strong> phase <strong>transition</strong> can be quite<br />

variable <strong>in</strong> <strong>the</strong> upper to mid–<strong>lower</strong> mantle, due to <strong>the</strong><br />

variations <strong>in</strong> temperature <strong>of</strong> slabs <strong>and</strong> Al2O3 content<br />

<strong>in</strong> Ca-perovskite (Fig. 7).<br />

The tetragonal to cubic <strong>transition</strong> <strong>in</strong> Ca-perovskite<br />

may also be ferroelastic-type. It is already known that<br />

many distorted perovskites exhibit a ferroelastic behavior.<br />

Acoustic velocity <strong>in</strong> <strong>the</strong>se perovskites remarkably<br />

drops across <strong>the</strong> structural <strong>transition</strong> to high<br />

symmetry phases [46,47]. The <strong>subducted</strong> <strong>MORB</strong><br />

<strong>crust</strong> <strong>in</strong>cludes ~23% Al-bear<strong>in</strong>g Ca-perovskite, <strong>and</strong><br />

phase <strong>transition</strong> <strong>in</strong> Ca-perovskite possibly causes<br />

large seismic anomalies. Part <strong>of</strong> <strong>the</strong> <strong>lower</strong> mantle<br />

seismic scatters/reflectors may be reconciled with<br />

<strong>the</strong> phase <strong>transition</strong> <strong>in</strong> Al-bear<strong>in</strong>g Ca-perovskite <strong>in</strong>cluded<br />

<strong>in</strong> <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong>. The most <strong>in</strong>tense<br />

M-phase anomaly observed at 1400–1600-km depth<br />

[17,19] may be caused by <strong>the</strong> comb<strong>in</strong>ed effects <strong>of</strong><br />

phase <strong>transition</strong>s <strong>in</strong> SiO2 phase <strong>and</strong> Ca-perovskite.<br />

Acknowledgments<br />

We thank Y. Tatsumi <strong>and</strong> S. Kaneshima for helpful<br />

comments. The <strong>in</strong>-situ X-ray experiments were carried<br />

out at SPr<strong>in</strong>g-8 (proposal no. 2004A3013-LD2np<br />

<strong>and</strong> 2004B4013-LD2-np). Comments by anonymous<br />

reviewers improved <strong>the</strong> manuscript.<br />

Appendix A. Supplementary data<br />

Supplementary data associated with this article can<br />

be found, <strong>in</strong> <strong>the</strong> onl<strong>in</strong>e version, at doi:10.1016/<br />

j.epsl.2005.06.035.<br />

References<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

[1] S.E. Kesson, J.D. Fitz Gerald, J.M.G. Shelley, M<strong>in</strong>eral chemistry<br />

<strong>and</strong> <strong>density</strong> <strong>of</strong> <strong>subducted</strong> basaltic <strong>crust</strong> at <strong>lower</strong>-mantle<br />

pressures, Nature 372 (1994) 767–769.<br />

[2] K. Hirose, Y. Fei, Y. Ma, H. Mao, The fate <strong>of</strong> <strong>subducted</strong><br />

basaltic <strong>crust</strong> <strong>in</strong> <strong>the</strong> Earth’s <strong>lower</strong> mantle, Nature 397 (1999)<br />

53–56.<br />

[3] N. Funamori, R. Jealoz, N. Miyajima, K. Fuj<strong>in</strong>o, M<strong>in</strong>eral<br />

assemblages <strong>of</strong> basalt <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle, J. Geophys. Res.<br />

105 (2000) 26037–26043.<br />

[4] S. Ono, E. Ito, T. Katsura, M<strong>in</strong>eralogy <strong>of</strong> <strong>subducted</strong> basaltic<br />

<strong>crust</strong> (<strong>MORB</strong>) from 25 to 37 GPa, <strong>and</strong> chemical heterogeneity<br />

<strong>of</strong> <strong>the</strong> <strong>lower</strong> mantle, Earth Planet. Sci. Lett. 190 (2001)<br />

57–63.<br />

[5] K. Hirose, Y. Fei, Subsolidus <strong>and</strong> melt<strong>in</strong>g phase relations <strong>of</strong><br />

basaltic composition <strong>in</strong> <strong>the</strong> uppermost <strong>lower</strong> mantle, Geochim.<br />

Cosmochim. Acta 66 (2002) 2099– 2108.<br />

[6] K. Litasov, E. Ohtani, A. Suzuki, T. Kawazoe, K. Funakoshi,<br />

Absence <strong>of</strong> <strong>density</strong> crossover between basalt <strong>and</strong> peridotite <strong>in</strong><br />

<strong>the</strong> cold slabs pass<strong>in</strong>g through 660 km discont<strong>in</strong>uity, Geophys.<br />

Res. Lett. 31 (2004), doi:10.1029/2004GL021306.<br />

[7] S. Ono, Y. Ohishi, M. Isshiki, T. Watanuki, In situ X-ray<br />

observations <strong>of</strong> phase assemblages <strong>in</strong> peridotite <strong>and</strong> basalt<br />

compositions at <strong>lower</strong> mantle conditions: implications for<br />

<strong>density</strong> <strong>of</strong> <strong>subducted</strong> oceanic plate, J. Geophys. Res. 110<br />

(2005), doi:10.1029/2004JB003196.<br />

[8] M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi,<br />

Post-perovskite phase <strong>transition</strong> <strong>in</strong> MgSiO3, Science 304<br />

(2004) 855–858.<br />

[9] T. Tsuchiya, J. Tsuchiya, K. Umemoto, R.M. Wentzcovitch,<br />

<strong>Phase</strong> <strong>transition</strong> <strong>in</strong> MgSiO3 perovskite <strong>in</strong> <strong>the</strong> Earth’s <strong>lower</strong><br />

mantle, Earth Planet. Sci. Lett. 224 (2004) 241–248.<br />

[10] A.R. Oganov, S. Ono, Theoretical <strong>and</strong> experimental evidence<br />

for a post-perovskite phase <strong>of</strong> MgSiO 3 <strong>in</strong> Earth’s DQ layer,<br />

Nature 430 (2004) 445–448.<br />

[11] S. Ono, K. Hirose, M. Murakami, M. Isshiki, Post-stishovite<br />

phase boundary <strong>in</strong> SiO 2 determ<strong>in</strong>ed by <strong>in</strong> situ X-ray observations,<br />

Earth Planet. Sci. Lett. 197 (2002) 187–192.<br />

[12] M. Murakami, K. Hirose, S. Ono, Y. Ohishi, Stability <strong>of</strong><br />

CaCl2-type <strong>and</strong> a-PbO2-type SiO2 at high pressure <strong>and</strong> temperature<br />

determ<strong>in</strong>ed by <strong>in</strong>-situ X-ray measurements, Geophys.<br />

Res. Lett. 30 (2003), doi:10.1029/2002GL016722.<br />

[13] S.-H. Shim, R. Jeanloz, T.S. Duffy, Tetragonal structure <strong>of</strong><br />

CaSiO 3 perovskite above 20 GPa, Geophys. Res. Lett. 29<br />

(2002), doi:1029/2002GL016148.<br />

[14] T. Kurash<strong>in</strong>a, K. Hirose, S. Ono, N. Sata, Y. Ohishi, <strong>Phase</strong><br />

<strong>transition</strong> <strong>in</strong> Al-bear<strong>in</strong>g CaSiO3 perovskite: implications for<br />

seismic discont<strong>in</strong>uities <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle, Phys. Earth Planet.<br />

Inter. 145 (2004) 67–74.<br />

[15] N. Funamori, R. Jeanloz, J.H. Nguyen, A. Kavner, W.A.<br />

Caldwell, K. Fuj<strong>in</strong>o, N. Miyajima, T. Sh<strong>in</strong>mei, N. Tomioka,<br />

High-pressure transformations <strong>in</strong> MgAl 2O 4, J. Geophys. Res.<br />

103 (1998) 20813–20818.<br />

[16] H. Kawakatsu, F.L. Niu, Seismic evidence for a 920-km<br />

discont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> mantle, Nature 371 (1994) 301–305.<br />

[17] S. Kaneshima, G. Helffrich, Dipp<strong>in</strong>g low-velocity layer <strong>in</strong> <strong>the</strong><br />

mid–<strong>lower</strong> mantle: evidence for geochemical heterogeneity,<br />

Science 283 (1999) 1888–1891.<br />

[18] L. V<strong>in</strong>nik, M. Kato, H. Kawakatsu, Search for seismic discont<strong>in</strong>uities<br />

<strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle, Geophys. J. Int. 147 (2001)<br />

41–56.<br />

[19] S. Kaneshima, G. Helffrich, Subparallel dipp<strong>in</strong>g heterogeneities<br />

<strong>in</strong> <strong>the</strong> mid–<strong>lower</strong> mantle, J. Geophys. Res. 108 (2003),<br />

doi:10.1029/2001JB001596.<br />

[20] F. Niu, H. Kawakatsu, Y. Fukao, Seismic evidence for a<br />

chemical heterogeneity <strong>in</strong> <strong>the</strong> midmantle: a strong <strong>and</strong><br />

slightly dipp<strong>in</strong>g seismic reflector beneath <strong>the</strong> Mariana sub-


K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251 251<br />

duction zone, J. Geophys. Res. 108 (2003) , doi:10.1029/<br />

2002JB002384.<br />

[21] T. Komiya, Material circulation model <strong>in</strong>clud<strong>in</strong>g chemical<br />

differentiation with<strong>in</strong> <strong>the</strong> mantle <strong>and</strong> secular variation <strong>of</strong> temperature<br />

<strong>and</strong> composition <strong>of</strong> <strong>the</strong> mantle, Phys. Earth Planet.<br />

Inter. 146 (2004) 333–367.<br />

[22] T. Irifune, A.E. R<strong>in</strong>gwood, <strong>Phase</strong> transformations <strong>in</strong> <strong>subducted</strong><br />

oceanic <strong>crust</strong> <strong>and</strong> buoyancy relationships at depths <strong>of</strong> 600–800<br />

km <strong>in</strong> <strong>the</strong> mantle, Earth Planet. Sci. Lett. 117 (1993) 101–110.<br />

[23] S.E. Kesson, J.M. Fitz Gerald, J.M. Shelley, M<strong>in</strong>eralogy <strong>and</strong><br />

dynamics <strong>of</strong> a pyrolite <strong>lower</strong> mantle, Nature 393 (1998)<br />

252–255.<br />

[24] G. Shen, H.K. Mao, R.J. Hemley, Laser-heated diamond anvil<br />

cell technique: double-sided heat<strong>in</strong>g with multimode Nd:YAG<br />

laser, Advance Materials ’96 New Trends <strong>in</strong> High Pressure<br />

Research, 3rd NIRIM ISAM Proc., 1996, pp. 149–152.<br />

[25] T. Tsuchiya, First-pr<strong>in</strong>ciples prediction <strong>of</strong> <strong>the</strong> P–V–T equation<br />

<strong>of</strong> state <strong>of</strong> gold <strong>and</strong> <strong>the</strong> 660-km discont<strong>in</strong>uity <strong>in</strong> Earth’s mantle,<br />

J. Geophys. Res. 108 (2003) , doi:10.1029/2003JB002446.<br />

[26] Y. Akahama, H. Kawamura, A.K. S<strong>in</strong>gh, Equation <strong>of</strong> state<br />

<strong>of</strong> bismuth to 222 GPa <strong>and</strong> comparison <strong>of</strong> gold <strong>and</strong> plat<strong>in</strong>um<br />

pressure scales to 145 GPa, J. Appl. Phys. 92 (2002)<br />

5892–5897.<br />

[27] J.C. Jamieson, J.N. Fritz, M.H. Manghnani, Pressure measurement<br />

at high temperature <strong>in</strong> X-ray diffraction studies: gold as a<br />

primary st<strong>and</strong>ard, <strong>in</strong>: S. Akimoto, M.H. Manghnani (Eds.),<br />

High-Pressure Research <strong>in</strong> Geophysics, CAPJ, Tokyo, 1982,<br />

pp. 27–48.<br />

[28] G. Cliff, G.W. Lorimer, The quantitative analysis <strong>of</strong> th<strong>in</strong><br />

specimens, J. Microsc. 103 (1975) 203–207.<br />

[29] K. Fuj<strong>in</strong>o, N. Miyajima, T. Yagi, T. Kondo, N. Funamori,<br />

Analytical electron microscopy <strong>of</strong> <strong>the</strong> garnet–perovskite transformation<br />

<strong>in</strong> a laser-heated diamond anvil cell, <strong>in</strong>: M.H.<br />

Manghnani, T. Yagi (Eds.), Properties <strong>of</strong> Earth <strong>and</strong> Planetary<br />

Materials at High Pressure <strong>and</strong> Temperature, AGU Monogr.,<br />

AGU, Wash<strong>in</strong>gton, DC, 1998, pp. 409–417.<br />

[30] N. Takafuji, K. Hirose, S. Ono, F. Xu, M. Mitome, Y. B<strong>and</strong>o,<br />

Segregation <strong>of</strong> core melts by permeable flow <strong>in</strong> <strong>the</strong> <strong>lower</strong><br />

mantle, Earth Planet. Sci. Lett. 224 (2004) 249–257.<br />

[31] N. Miyajima, T. Yagi, K. Hirose, T. Kondo, K. Fuj<strong>in</strong>o,<br />

H. Miura, Potential host phase <strong>of</strong> alum<strong>in</strong>um <strong>and</strong> potassium<br />

<strong>in</strong> <strong>the</strong> Earth’s <strong>lower</strong> mantle, Am. M<strong>in</strong>eral. 86 (2001)<br />

740–746.<br />

[32] M. Murakami, K. Hirose, S. Nagayoshi, Y. Ohishi, Postperovskite<br />

phase <strong>transition</strong> <strong>and</strong> m<strong>in</strong>eral chemistry <strong>in</strong> <strong>the</strong><br />

pyrolitic <strong>lower</strong>most mantle, Geophys. Res. Lett. 32 (2005),<br />

doi:10.1029/2004GL021956.<br />

[33] B. Kiefer, L.P. Stixrude, The effect <strong>of</strong> alum<strong>in</strong>um on <strong>the</strong><br />

perovskite to post-perovskite phase <strong>transition</strong> <strong>and</strong> elasticity,<br />

Eos. Trans. AGU 85 (2004) (Fall Meet<strong>in</strong>g Suppl.<br />

MR23A-0195).<br />

[34] W.L. Mao, G. Shen, V.B. Prakapenka, Y. Meng, A.J. Cambell,<br />

D. He<strong>in</strong>z, J. Shu, R.J. Hemley, H.K. Mao, Ferromagnesian<br />

postperovskite silicates <strong>in</strong> <strong>the</strong> DQ layer <strong>of</strong> <strong>the</strong> earth, Proc. Natl.<br />

Acad. Sci. U. S. A. 101 (2004) 15867–15869.<br />

[35] G. Bromiley, N. Hilaret, C. McCammon, Solubility <strong>of</strong> hydrogen<br />

<strong>and</strong> ferric iron <strong>in</strong> rutile <strong>and</strong> TiO2 (II): implications for<br />

phase assemblages dur<strong>in</strong>g ultrahigh-pressure metamorphism<br />

<strong>and</strong> for <strong>the</strong> stability <strong>of</strong> silica polymorphs <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle,<br />

Geophys. Res. Lett. 31 (2004), doi:10.1029/2004GL019430.<br />

[36] N. Guignot, D. Andrault, Equations <strong>of</strong> state <strong>of</strong> Na–K–Al host<br />

phases <strong>and</strong> implications for <strong>MORB</strong> <strong>density</strong> <strong>in</strong> <strong>the</strong> <strong>lower</strong><br />

mantle, Phys. Earth Planet. Inter. 143–144 (2004) 107–128.<br />

[37] G. Fiquet, A. Dewaele, D. Andrault, M. Kunz, T. LeBihan,<br />

Thermoelastic properties <strong>and</strong> crystal structure <strong>of</strong> MgSiO3 perovskite<br />

at <strong>lower</strong> mantle pressure <strong>and</strong> temperature conditions,<br />

Geophys. Res. Lett. 27 (2000) 21–24.<br />

[38] T. Yamamoto, D. Yuen, T. Ebisuzaki, Substitution mechanism<br />

<strong>of</strong> Al ions <strong>in</strong> MgSiO3 perovskite under high pressure conditions<br />

from first-pr<strong>in</strong>ciples calculations, Earth Planet. Sci. Lett.<br />

206 (2003) 617–625.<br />

[39] J.P. Brodholt, Pressure-<strong>in</strong>duced changes <strong>in</strong> <strong>the</strong> compression<br />

mechanism <strong>of</strong> alum<strong>in</strong>ous perovskite <strong>in</strong> <strong>the</strong> Earth’s mantle,<br />

Nature 407 (2000) 620–622.<br />

[40] S. Ono, T. Suto, K. Hirose, Y. Kuwayama, T. Komabayashi, T.<br />

Kikegawa, Equation <strong>of</strong> state <strong>of</strong> Al-bear<strong>in</strong>g stishovite to 40<br />

GPa at 300K, Am. M<strong>in</strong>eral. 87 (2002) 1486–1489.<br />

[41] S. Ono, K. Hirose, T. Kikegawa, Y. Saito, The compressibility<br />

<strong>of</strong> a natural composition calcium ferrite-type alum<strong>in</strong>ous phase<br />

to 70 GPa, Phys. Earth Planet. Inter. 131 (2002) 311–318.<br />

[42] A.M. Dziewonski, D.L. Anderson, Prelim<strong>in</strong>ary reference Earth<br />

model, Phys. Earth Planet. Inter. 25 (1981) 297–356.<br />

[43] J.C. Castle, R.D. van der Hilst, Search<strong>in</strong>g for seismic scatter<strong>in</strong>g<br />

<strong>of</strong>f mantle <strong>in</strong>terfaces between 800 km <strong>and</strong> 2000 km depth,<br />

J. Geophys. Res. 108 (2003) , doi:10.1029/2001JB000286.<br />

[44] M.A. Carpenter, R.J. Hemley, H.-K. Mao, High-pressure elasticity<br />

<strong>of</strong> stishovite <strong>and</strong> <strong>the</strong> P42/mnm–Pnnm phase <strong>transition</strong>,<br />

J. Geophys. Res. 105 (2000) 10807–10816.<br />

[45] L. Stixrude, R.E. Cohen, R. Yu, H. Krakauer, Prediction <strong>of</strong><br />

phase <strong>transition</strong> <strong>in</strong> CaSiO3 perovskite <strong>and</strong> implications for<br />

<strong>lower</strong> mantle structure, Am. M<strong>in</strong>eral. 81 (1996) 1293–1296.<br />

[46] Y. Wang, F. Guyot, R.C. Liebermann, Electron microscopy <strong>of</strong><br />

(Mg,Fe)SiO 3 perovskite: evidence for structural phase <strong>transition</strong>s<br />

<strong>and</strong> implications for <strong>the</strong> <strong>lower</strong> mantle, J. Geophys. Res.<br />

97 (1992) 12327–12347.<br />

[47] M.A. Carpenter, E.K.H. Salje, Elastic anomalies <strong>in</strong> m<strong>in</strong>erals<br />

due to structural phase <strong>transition</strong>s, Eur. J. M<strong>in</strong>eral. 10 (1998)<br />

693–812.<br />

[48] S.H. Kirby, S. Ste<strong>in</strong>, E.A. Okal, D.C. Rubie, Metastable<br />

mantle phase transformations <strong>and</strong> deep earthquakes <strong>in</strong> subduct<strong>in</strong>g<br />

oceanic lithosphere, Rev. Geophys. 34 (1996)<br />

261–306.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!