23.08.2013 Views

Phase transition and density of subducted MORB crust in the lower ...

Phase transition and density of subducted MORB crust in the lower ...

Phase transition and density of subducted MORB crust in the lower ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

250<br />

skite conta<strong>in</strong>s less than 1 wt.% Al 2O 3 [23,32] <strong>and</strong><br />

<strong>transition</strong> temperature <strong>in</strong> such Al-poor Ca-perovskite<br />

is too low. The depth <strong>of</strong> phase <strong>transition</strong> can be quite<br />

variable <strong>in</strong> <strong>the</strong> upper to mid–<strong>lower</strong> mantle, due to <strong>the</strong><br />

variations <strong>in</strong> temperature <strong>of</strong> slabs <strong>and</strong> Al2O3 content<br />

<strong>in</strong> Ca-perovskite (Fig. 7).<br />

The tetragonal to cubic <strong>transition</strong> <strong>in</strong> Ca-perovskite<br />

may also be ferroelastic-type. It is already known that<br />

many distorted perovskites exhibit a ferroelastic behavior.<br />

Acoustic velocity <strong>in</strong> <strong>the</strong>se perovskites remarkably<br />

drops across <strong>the</strong> structural <strong>transition</strong> to high<br />

symmetry phases [46,47]. The <strong>subducted</strong> <strong>MORB</strong><br />

<strong>crust</strong> <strong>in</strong>cludes ~23% Al-bear<strong>in</strong>g Ca-perovskite, <strong>and</strong><br />

phase <strong>transition</strong> <strong>in</strong> Ca-perovskite possibly causes<br />

large seismic anomalies. Part <strong>of</strong> <strong>the</strong> <strong>lower</strong> mantle<br />

seismic scatters/reflectors may be reconciled with<br />

<strong>the</strong> phase <strong>transition</strong> <strong>in</strong> Al-bear<strong>in</strong>g Ca-perovskite <strong>in</strong>cluded<br />

<strong>in</strong> <strong>subducted</strong> <strong>MORB</strong> <strong>crust</strong>. The most <strong>in</strong>tense<br />

M-phase anomaly observed at 1400–1600-km depth<br />

[17,19] may be caused by <strong>the</strong> comb<strong>in</strong>ed effects <strong>of</strong><br />

phase <strong>transition</strong>s <strong>in</strong> SiO2 phase <strong>and</strong> Ca-perovskite.<br />

Acknowledgments<br />

We thank Y. Tatsumi <strong>and</strong> S. Kaneshima for helpful<br />

comments. The <strong>in</strong>-situ X-ray experiments were carried<br />

out at SPr<strong>in</strong>g-8 (proposal no. 2004A3013-LD2np<br />

<strong>and</strong> 2004B4013-LD2-np). Comments by anonymous<br />

reviewers improved <strong>the</strong> manuscript.<br />

Appendix A. Supplementary data<br />

Supplementary data associated with this article can<br />

be found, <strong>in</strong> <strong>the</strong> onl<strong>in</strong>e version, at doi:10.1016/<br />

j.epsl.2005.06.035.<br />

References<br />

K. Hirose et al. / Earth <strong>and</strong> Planetary Science Letters 237 (2005) 239–251<br />

[1] S.E. Kesson, J.D. Fitz Gerald, J.M.G. Shelley, M<strong>in</strong>eral chemistry<br />

<strong>and</strong> <strong>density</strong> <strong>of</strong> <strong>subducted</strong> basaltic <strong>crust</strong> at <strong>lower</strong>-mantle<br />

pressures, Nature 372 (1994) 767–769.<br />

[2] K. Hirose, Y. Fei, Y. Ma, H. Mao, The fate <strong>of</strong> <strong>subducted</strong><br />

basaltic <strong>crust</strong> <strong>in</strong> <strong>the</strong> Earth’s <strong>lower</strong> mantle, Nature 397 (1999)<br />

53–56.<br />

[3] N. Funamori, R. Jealoz, N. Miyajima, K. Fuj<strong>in</strong>o, M<strong>in</strong>eral<br />

assemblages <strong>of</strong> basalt <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle, J. Geophys. Res.<br />

105 (2000) 26037–26043.<br />

[4] S. Ono, E. Ito, T. Katsura, M<strong>in</strong>eralogy <strong>of</strong> <strong>subducted</strong> basaltic<br />

<strong>crust</strong> (<strong>MORB</strong>) from 25 to 37 GPa, <strong>and</strong> chemical heterogeneity<br />

<strong>of</strong> <strong>the</strong> <strong>lower</strong> mantle, Earth Planet. Sci. Lett. 190 (2001)<br />

57–63.<br />

[5] K. Hirose, Y. Fei, Subsolidus <strong>and</strong> melt<strong>in</strong>g phase relations <strong>of</strong><br />

basaltic composition <strong>in</strong> <strong>the</strong> uppermost <strong>lower</strong> mantle, Geochim.<br />

Cosmochim. Acta 66 (2002) 2099– 2108.<br />

[6] K. Litasov, E. Ohtani, A. Suzuki, T. Kawazoe, K. Funakoshi,<br />

Absence <strong>of</strong> <strong>density</strong> crossover between basalt <strong>and</strong> peridotite <strong>in</strong><br />

<strong>the</strong> cold slabs pass<strong>in</strong>g through 660 km discont<strong>in</strong>uity, Geophys.<br />

Res. Lett. 31 (2004), doi:10.1029/2004GL021306.<br />

[7] S. Ono, Y. Ohishi, M. Isshiki, T. Watanuki, In situ X-ray<br />

observations <strong>of</strong> phase assemblages <strong>in</strong> peridotite <strong>and</strong> basalt<br />

compositions at <strong>lower</strong> mantle conditions: implications for<br />

<strong>density</strong> <strong>of</strong> <strong>subducted</strong> oceanic plate, J. Geophys. Res. 110<br />

(2005), doi:10.1029/2004JB003196.<br />

[8] M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi,<br />

Post-perovskite phase <strong>transition</strong> <strong>in</strong> MgSiO3, Science 304<br />

(2004) 855–858.<br />

[9] T. Tsuchiya, J. Tsuchiya, K. Umemoto, R.M. Wentzcovitch,<br />

<strong>Phase</strong> <strong>transition</strong> <strong>in</strong> MgSiO3 perovskite <strong>in</strong> <strong>the</strong> Earth’s <strong>lower</strong><br />

mantle, Earth Planet. Sci. Lett. 224 (2004) 241–248.<br />

[10] A.R. Oganov, S. Ono, Theoretical <strong>and</strong> experimental evidence<br />

for a post-perovskite phase <strong>of</strong> MgSiO 3 <strong>in</strong> Earth’s DQ layer,<br />

Nature 430 (2004) 445–448.<br />

[11] S. Ono, K. Hirose, M. Murakami, M. Isshiki, Post-stishovite<br />

phase boundary <strong>in</strong> SiO 2 determ<strong>in</strong>ed by <strong>in</strong> situ X-ray observations,<br />

Earth Planet. Sci. Lett. 197 (2002) 187–192.<br />

[12] M. Murakami, K. Hirose, S. Ono, Y. Ohishi, Stability <strong>of</strong><br />

CaCl2-type <strong>and</strong> a-PbO2-type SiO2 at high pressure <strong>and</strong> temperature<br />

determ<strong>in</strong>ed by <strong>in</strong>-situ X-ray measurements, Geophys.<br />

Res. Lett. 30 (2003), doi:10.1029/2002GL016722.<br />

[13] S.-H. Shim, R. Jeanloz, T.S. Duffy, Tetragonal structure <strong>of</strong><br />

CaSiO 3 perovskite above 20 GPa, Geophys. Res. Lett. 29<br />

(2002), doi:1029/2002GL016148.<br />

[14] T. Kurash<strong>in</strong>a, K. Hirose, S. Ono, N. Sata, Y. Ohishi, <strong>Phase</strong><br />

<strong>transition</strong> <strong>in</strong> Al-bear<strong>in</strong>g CaSiO3 perovskite: implications for<br />

seismic discont<strong>in</strong>uities <strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle, Phys. Earth Planet.<br />

Inter. 145 (2004) 67–74.<br />

[15] N. Funamori, R. Jeanloz, J.H. Nguyen, A. Kavner, W.A.<br />

Caldwell, K. Fuj<strong>in</strong>o, N. Miyajima, T. Sh<strong>in</strong>mei, N. Tomioka,<br />

High-pressure transformations <strong>in</strong> MgAl 2O 4, J. Geophys. Res.<br />

103 (1998) 20813–20818.<br />

[16] H. Kawakatsu, F.L. Niu, Seismic evidence for a 920-km<br />

discont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> mantle, Nature 371 (1994) 301–305.<br />

[17] S. Kaneshima, G. Helffrich, Dipp<strong>in</strong>g low-velocity layer <strong>in</strong> <strong>the</strong><br />

mid–<strong>lower</strong> mantle: evidence for geochemical heterogeneity,<br />

Science 283 (1999) 1888–1891.<br />

[18] L. V<strong>in</strong>nik, M. Kato, H. Kawakatsu, Search for seismic discont<strong>in</strong>uities<br />

<strong>in</strong> <strong>the</strong> <strong>lower</strong> mantle, Geophys. J. Int. 147 (2001)<br />

41–56.<br />

[19] S. Kaneshima, G. Helffrich, Subparallel dipp<strong>in</strong>g heterogeneities<br />

<strong>in</strong> <strong>the</strong> mid–<strong>lower</strong> mantle, J. Geophys. Res. 108 (2003),<br />

doi:10.1029/2001JB001596.<br />

[20] F. Niu, H. Kawakatsu, Y. Fukao, Seismic evidence for a<br />

chemical heterogeneity <strong>in</strong> <strong>the</strong> midmantle: a strong <strong>and</strong><br />

slightly dipp<strong>in</strong>g seismic reflector beneath <strong>the</strong> Mariana sub-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!