12.10.2013 Views

Derivation of a Theoretically Maximum Evaporative Flux ... - FEFlow

Derivation of a Theoretically Maximum Evaporative Flux ... - FEFlow

Derivation of a Theoretically Maximum Evaporative Flux ... - FEFlow

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

WASY <strong>Theoretically</strong> maximum evaporative flux 1<br />

<strong>Derivation</strong> <strong>of</strong> a <strong>Theoretically</strong> <strong>Maximum</strong><br />

<strong>Evaporative</strong> <strong>Flux</strong> Based on Gardner’s Analytical<br />

Solution for an Unsaturated Soil Column<br />

H.-J. G. Diersch<br />

WASY Institute for Water Resources Planning and Systems Research Ltd., Berlin<br />

ANALYTICAL SOLUTION IN THE VADOSE ZONE AT STEADY STATE<br />

Assuming an exponential law for the relative conductivity as given by Gardner 1 and Philip 2<br />

Kr( ψ)<br />

which is related to the hydraulic conductivity according to<br />

where is the sorptive number, the capillary pressure head and the saturated conductivity, an<br />

analytical solution for the steady-state capillary head distribution above the water table (Fig. 1) can<br />

be derived according to Gardner 1 α ψ Ks ψ<br />

in the following manner:<br />

The Darcy law is given by<br />

with<br />

Kr( ψ)<br />

e αψ ⎧ for ψ < 0<br />

⎨<br />

⎩1<br />

for ψ ≥ 0<br />

where q is the Darcy flux, h is the hydraulic head (piezometric head) and z is the vertical coordinate<br />

(negative in the gravitational direction g),<br />

The continuity equation (fluid mass conservation) for the vertical column at steady state is simply<br />

which means that the vertical flux q<br />

through the system has to be constant.<br />

We can write from (3)<br />

=<br />

K( ψ)<br />

= KsK r( ψ)<br />

q = – K∇h<br />

q = – K∇ψ – K<br />

q+ K = – K∇ψ ⎭ ⎪⎬⎪⎫<br />

h = ψ + z<br />

∇h = ∇ψ + 1<br />

∇<br />

d<br />

=<br />

dz<br />

⎭ ⎪⎬⎪⎫<br />

∇ ⋅ q = 0<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

(5)


WASY <strong>Theoretically</strong> maximum evaporative flux 2<br />

which can be integrated to obtain<br />

or with (2) and (1)<br />

Substituting<br />

we get with<br />

finally the solution as<br />

dz( q + K)<br />

= – Kdψ<br />

∫dz<br />

∫dz<br />

=<br />

=<br />

vadose zone<br />

water table<br />

–<br />

K<br />

∫------------<br />

dψ<br />

q + K<br />

Kse αψ<br />

q Kse αψ<br />

– ∫----------------------<br />

dψ<br />

+<br />

Figure 1 Sketch <strong>of</strong> the unsaturated solution<br />

domain above the water table.<br />

v<br />

a q Kse αψ<br />

= +<br />

a – q Kse αψ<br />

=<br />

da<br />

-----dψ<br />

αKse αψ<br />

=<br />

da αKse αψ = dψ<br />

dψ<br />

dψ<br />

1<br />

--------- e α<br />

=<br />

αK s<br />

– ψ da<br />

1<br />

--<br />

α<br />

1<br />

= -----------da<br />

a– q<br />

z<br />

L<br />

1<br />

----------- =<br />

a – q<br />

e α – ψ<br />

---------<br />

Ks g<br />

⎫<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎬<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎭<br />

(6)<br />

(7)<br />

(8)<br />

(9)<br />

(10)


WASY <strong>Theoretically</strong> maximum evaporative flux 3<br />

where ’ln’ represents the natural logarithm and C is an integration constant to be determined by the<br />

following boundary conditions.<br />

According to Fig. 1, where L is the depth <strong>of</strong> the water table and v is the evaporative flux (exfiltration<br />

rate), we find from the continuity condition (5) that<br />

Furthermore, we know that at z<br />

Accordingly from (11) we obtain<br />

= – L (the location <strong>of</strong> the water table) the pressure head ψ is zero.<br />

Thus, with (12) and (13)<br />

Since<br />

it yields<br />

and<br />

1<br />

∫dz<br />

--<br />

α<br />

1<br />

= – ∫--da<br />

a<br />

z = –<br />

1<br />

-- ln a + C<br />

α<br />

1<br />

z -- ln q Kse α<br />

αψ<br />

⎫<br />

⎪<br />

⎪<br />

⎪<br />

⎬<br />

⎪<br />

⎪<br />

= – + + C ⎪<br />

⎭<br />

– L<br />

C<br />

q = v<br />

= –<br />

1<br />

-- ln q + Ks+ C ⎫<br />

α<br />

⎪<br />

⎬<br />

1<br />

= -- ln q+ Ks– L ⎪<br />

α<br />

⎭<br />

1<br />

z --- ln v Kse α<br />

αψ<br />

= [ – + + ln v+ Ks] – L<br />

1 v + Ks z --- ln<br />

α v Kse αψ<br />

⎫<br />

⎪<br />

⎪<br />

⎬<br />

= ⎛<br />

⎝<br />

----------------------<br />

⎞ – L<br />

⎪<br />

+<br />

⎠<br />

⎪<br />

⎭<br />

v + Ks α( z + L)<br />

ln<br />

v Kse αψ<br />

= ⎛<br />

⎝<br />

----------------------<br />

⎞<br />

+<br />

⎠<br />

e<br />

+<br />

v Kse αψ = ----------------------<br />

+<br />

α z L + ( ) v Ks v Kse αψ<br />

+ ( v + Ks)e α – z L + ( )<br />

=<br />

αψ 1<br />

e ---- ( v+ Ks)e Ks α – z L + ( )<br />

= [ – v]<br />

αψ ln 1<br />

---- ( v + Ks)e Ks α – z L +<br />

⎫<br />

⎪<br />

⎪<br />

⎪<br />

⎬<br />

⎪<br />

⎧ ( ) ⎫<br />

= ⎨ [ – v]<br />

⎪<br />

⎬⎪<br />

⎩ ⎭⎭<br />

(11)<br />

(12)<br />

(13)<br />

(14)<br />

(15)<br />

(16)<br />

(17)


WASY <strong>Theoretically</strong> maximum evaporative flux 4<br />

Finally, we find Gardner’s solution in the form<br />

ψ( z)<br />

1<br />

-- ln e<br />

α<br />

α<br />

– z L + ( ) v<br />

Ks ⎛---- + 1⎞<br />

v<br />

– ----<br />

⎝ ⎠<br />

This solution can be used for either steady evaporation +v or infiltration – v.<br />

TWO INTERESTING CASES RESULTUNG FROM EQ. (18)<br />

Two interesting questions arise 3 :<br />

(1) Which flux is concerned to force the pressure head ψ zero everywhere? From (18) we require<br />

and can easily show that such a situation occurs if the infiltration has the amount <strong>of</strong> the saturated<br />

conductivity<br />

(2) Which flux is concerned to make the pressure head ψ infinity at the soil surface z = 0 ?<br />

This should occur for a certain rate v which represents the theoretically maximum evaporative flux<br />

.<br />

v max<br />

THE THEORETICALLY MAXIMUM EVAPORATIVE FLUX<br />

The pressure head ψ becomes infinity at z<br />

This implies that<br />

= 0 if the argument <strong>of</strong> the logarithm <strong>of</strong> (18) goes to zero.<br />

It gives a solution <strong>of</strong> the theoretically maximum evaporative flux as<br />

where L<br />

is the depth <strong>of</strong> the water table below the soil surface.<br />

=<br />

ln e α – z L + ( ) ⎛ v<br />

---- + 1⎞<br />

v<br />

– ---- = 0<br />

⎝ ⎠<br />

K s<br />

v = – Ks ψ( 0)<br />

= ∞<br />

vmax -------- e<br />

Ks α<br />

=<br />

v max<br />

– L vmax Ks K s<br />

⎛-------- + 1⎞<br />

⎝ ⎠<br />

K s<br />

e αL = ---------------<br />

– 1<br />

K s<br />

v max<br />

(18)<br />

(19)<br />

(20)<br />

(21)<br />

(22)<br />

(23)


WASY <strong>Theoretically</strong> maximum evaporative flux 5<br />

v max<br />

EXAMPLES AND DISCUSSIONS REGARDING<br />

We consider the behavior <strong>of</strong> vmax ⁄ Ks for a typical range <strong>of</strong> α-parameter,<br />

e.g.,<br />

α ( 12510 , , , ) m 1 –<br />

=<br />

Figure 2 illustrates the sharpness <strong>of</strong> the maximum evaporative flux in dependence on soil type α<br />

and depth to the water table L . It points out the very rapid decrease in the evaporative flux as the depth<br />

to the water table increases. Otherwise, the plots <strong>of</strong> Fig. 2 indicate that vmax tends to +∞ for small L<br />

and to zero for large L .<br />

v max /K s<br />

v max /K s<br />

10 0<br />

10 -10<br />

10 -20<br />

10 -30<br />

10 -40<br />

10 -50<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

α = 10 m -1<br />

α = 5 m -1<br />

v max<br />

α = 2 m -1<br />

α = 1 m -1<br />

1 10 100<br />

L [m]<br />

10 -3 10 -2 10 -1 10 0 10 1 10 2<br />

Figure 2 <strong>Maximum</strong> evaporative flux vmax ⁄ Ks in dependence on the depth to the water<br />

table L and the soil parameter α .<br />

αL<br />

(24)


WASY <strong>Theoretically</strong> maximum evaporative flux 6<br />

The maximum evaporative flux seems to be useful to limit the actual evaporation rate in a numerical<br />

simulation, for instance, in such a way as<br />

v max<br />

where can be estimated by<br />

in which, in contrast to the exact formula (23), the depth <strong>of</strong> the water table L is approximated by the<br />

suction head ψ at the surface <strong>of</strong> the soil.<br />

Alternatively, introducing the effective saturation<br />

where s is the saturation and sris the residual saturation, we find for the exponential law the simple<br />

capillary pressure-saturation relationship<br />

It can be used to express directly the maximum evaporative flux as a function <strong>of</strong> the effective<br />

saturation . Since<br />

s e<br />

we find from (26) after simple manipulations<br />

REFERENCES<br />

v actual<br />

=<br />

v max<br />

min v prescribed ( , vmax) s e<br />

K s<br />

e αψ = ------------------<br />

– 1<br />

s e<br />

s – sr = ------------<br />

1 – sr se e αψ = for ψ < 0<br />

s e<br />

– ψ 1<br />

e α<br />

e αψ<br />

= = ---------<br />

v max<br />

seK s<br />

=<br />

------------<br />

1 – se<br />

1. Gardner, W.R., Some steady-state solutions <strong>of</strong> the unsaturated moisture flow equation with application to<br />

evaporation from a water table. Soil Sci. 35 (1958) 4, 228-232.<br />

2. Philip, J.R., Theory <strong>of</strong> infiltration. Adv. Hydroscience 5 (1969), 215-296.<br />

3. Selker, J.S., Keller, C.K. and McCord, J.T., Vadose zone processes. Lewis Publ., Boca Raton, 1999.<br />

v max<br />

(25)<br />

(26)<br />

(27)<br />

(28)<br />

(29)<br />

(30)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!