23.10.2013 Views

Adobe Illustrator & Indesign Tutorial - UCSF Radiation Oncology ...

Adobe Illustrator & Indesign Tutorial - UCSF Radiation Oncology ...

Adobe Illustrator & Indesign Tutorial - UCSF Radiation Oncology ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Adobe</strong> <strong>Illustrator</strong> &<br />

<strong>Indesign</strong> <strong>Tutorial</strong><br />

presented by Robin Cheung<br />

Disclaimer: I’m not an employee of <strong>Adobe</strong> and have not been trained to<br />

provide instruction in these programs


<strong>Adobe</strong> Program Functions<br />

Photoshop photo editing, raster image creation<br />

<strong>Illustrator</strong> vector image creation<br />

InDesign layout


<strong>Adobe</strong> Program Functions<br />

Photoshop photo editing, raster image creation<br />

<strong>Illustrator</strong> vector image creation<br />

InDesign layout


Design Principles<br />

The goal of a scientific poster is to communicate informaton.


Hierarchy<br />

What is the most important thing on the page?<br />

What order do you want your reader to read in?<br />

If your reader spent 1 minute looking at your poster, what<br />

should they get from it? 5 mins? 10 mins?


Design Tools: Proximity<br />

It’s important to group information that is logically<br />

connected. This helps you organize information to<br />

create hierarchy.


Design Tools: Proximity<br />

Example images are from The Non-Designer’s Design Book by Robin Williams


Design Tools: Proximity<br />

Example images are from The Non-Designer’s Design Book by Robin Williams


Design Tools: Proximity


Design Tools: Proximity


Design Tools: Alignment<br />

Nothing should be placed arbitrarily on the page,<br />

everything should be visually connected.


Design Tools: Alignment


Design Tools: Alignment


Design Tools: Alignment


Design Tools: Alignment<br />

Create strong alignments to direct the eye


Design Tools: Repetition<br />

Create a visual system and stick to it.<br />

What do your headlines look like? What size font do<br />

you use for your paragraph text?


Design Tools: Repetition


Design Tools: Repetition


Design Tools: Contrast<br />

Contrast creates visual interest and helps distinguish<br />

different types of information.<br />

If the information you are communicating is similar,<br />

it should look similar. If the information you are<br />

communicating is different, it should look really<br />

different.


Design Tools: Contrast


Design Tools: Contrast


Design Tools: White Space<br />

White space is the empty areas in your layout.<br />

White space gives the eye a break and helps<br />

separate items from each other.<br />

Using white space well makes your information less<br />

overwhelming and confusing.


Design Tools: White Space<br />

Leading = the space between lines of text<br />

Sed magna faci tion henibh eu feumsan venisi.<br />

Ut non utat amet do dolorero consed dolent<br />

eum dipissenim do od diam nullaor iuscidunt<br />

venim aut vel incipsum vent acip eu feum ad<br />

elestrud te et nit augiamet ulputpat. Lesenissequi<br />

eum quat praesendiam, sum quip ea<br />

feuisl digna aliquat.<br />

Volupta tismodipis nim do odiam vulla feugiam<br />

vendigna cortie dunt adip ea commolo<br />

rperaessi blaorperci ex et nim vercidunt alissequis<br />

nonsectem doloborper susci tio od er<br />

at, quis adiat diam aliquipit, vullut luptat. Ut<br />

praesed magnit, conulput augait ullam nullamcon<br />

veliquam iliquam volortinis dolutatio<br />

Sed magna faci tion henibh eu feumsan venisi.<br />

Ut non utat amet do dolorero consed dolent<br />

eum dipissenim do od diam nullaor iuscidunt<br />

venim aut vel incipsum vent acip eu feum ad<br />

elestrud te et nit augiamet ulputpat. Lesenissequi<br />

eum quat praesendiam, sum quip ea<br />

feuisl digna aliquat.<br />

Volupta tismodipis nim do odiam vulla feugiam<br />

vendigna cortie dunt adip ea commolo<br />

rperaessi blaorperci ex et nim vercidunt alissequis<br />

nonsectem doloborper susci tio od er<br />

at, quis adiat diam aliquipit, vullut luptat. Ut<br />

praesed magnit, conulput augait ullam nullamcon<br />

veliquam iliquam volortinis dolutatio<br />

Sed magna faci tion henibh eu feumsan venisi.<br />

Ut non utat amet do dolorero consed dolent<br />

eum dipissenim do od diam nullaor iuscidunt<br />

venim aut vel incipsum vent acip eu feum ad<br />

elestrud te et nit augiamet ulputpat. Lesenis-<br />

sequi eum quat praesendiam, sum quip ea<br />

feuisl digna aliquat.<br />

Volupta tismodipis nim do odiam vulla feu-<br />

giam vendigna cortie dunt adip ea commolo<br />

rperaessi blaorperci ex et nim vercidunt alis-<br />

sequis nonsectem doloborper susci tio od er<br />

at, quis adiat diam aliquipit, vullut luptat. Ut<br />

praesed magnit, conulput augait ullam nul-<br />

lamcon veliquam iliquam volortinis dolutatio


Font Issues<br />

Do not use too many fonts. For most projects, one<br />

font is enough.


Font Issues<br />

For easy communication use appropriate, easy-to-read fonts<br />

not childish ones<br />

not hard to read ones<br />

not scripty ones<br />

not girly ones<br />

not weird ones


Dose Delivered to Patients for Megavoltage Cone-Beam CT Imaging<br />

Olivier Morin1,2, Je Bellerose1, Clayton Akazawa1, Amy Gillis1, Martina Descovich1, Michèle Aubin1, Josephine Chen1, Hong Chen1,<br />

Jean-François Aubry1, Ping Xia1,2 and Jean Pouliot1,2<br />

PURPOSE<br />

<strong>UCSF</strong><br />

University of California San Francisco<br />

1600 Divisadero Street, Suite H1031<br />

San Francisco CA 94143-1708<br />

Email: morin@radonc17.ucsf.edu<br />

WebSite: http://www.ucsf.edu/jpouliot/<br />

AAPM 2006 SU-FF-I-13<br />

1- Department of <strong>Radiation</strong> <strong>Oncology</strong>, <strong>UCSF</strong> Comprehensive Cancer Center<br />

2- <strong>UCSF</strong> / UC Berkeley Joint Graduate Group in Bioengineering<br />

Megavoltage Cone-Beam CT (MVCBCT) uses a<br />

conventional treatment unit equipped with a at<br />

panel detector to obtain a 3D representation of the<br />

patient in treatment position. MVCBCT has been<br />

used for 2 years in our clinic for anatomy verication<br />

and to improve patient alignment<br />

prior to dose delivery. Depending<br />

on the soft-tissue information<br />

required for setup we are currently<br />

using a total exposure ranging<br />

between 2-10 monitor units (MU).<br />

CT MVCBCT (5MU)<br />

The objectives of this work are:<br />

To evaluate the dose delivered to patients for MVCBCT acquisition.<br />

To develop a simple plan modication receipe to compensate for<br />

the dose received by daily MVCBCT.<br />

METHODS & MATERIALS<br />

The MVCBCT dose calculated by our treatment planning system<br />

(Phillips, Pinnacle) was compared to measurements.<br />

Typical MVCBCT acquisition:<br />

6 MV beam, 27.4 x 27.4 cm2 eld size, 145 cm source-detector distance, Arc: 270o to 110o Experimental setup to<br />

measure MVCBCT dose<br />

IMRT QA Cylinder<br />

MOSFETS and an<br />

ion chamber<br />

Dose (cGy/MVCBCT MU)<br />

1.12<br />

1.05<br />

-2.1 % 1.7 %<br />

2.3 %<br />

0.95<br />

0.3 %<br />

-1.1 %<br />

1.4 % 0.2 %<br />

0.85<br />

2.8 % 1.4 %<br />

0.75<br />

-0.9 %<br />

2.6 %<br />

16 cm<br />

Percentage dierence<br />

between the dose<br />

calculated by Pinnacle<br />

and the measurements<br />

ALL WITHIN 3 %<br />

MVCBCT acquisition<br />

simulated in Pinnacle<br />

Simulation of an arc<br />

treatment with<br />

MVCBCT setting<br />

Pinnacle can be used to simulate the<br />

MVCBCT dose received by the patients.<br />

Normalized Volume<br />

RESULTS<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

MVCBCT Portal Imaging<br />

or Film<br />

Tx (solid) with Tx+MVCBCT (dashed)<br />

Rectum<br />

Right Femoral<br />

Spinal Cord<br />

Penis Bulb<br />

cGy per MU<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.4<br />

Bladder<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

CONCLUSION<br />

Seminal Vesicles<br />

Prostate<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Dose (Gy)<br />

MVCBCT dose evaluated in the treatment planning system<br />

Table 1. Dose per fraction delivered to prostate<br />

patients at <strong>UCSF</strong> for daily alignment verication.<br />

MVCBCT (9 MU) and portal imaging (4 x 2 MU = 8 MU).<br />

Simple method to compensate for daily MVCBCT<br />

Prostate (daily 9MU MVCBCT, 40 fractions)<br />

Head and Neck (daily 5 MU MVCBCT, 33 fractions)<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

A compensation factor (CBCF) was introduced<br />

to keep the target mean dose the same.<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

77 Gy<br />

70 Gy<br />

55 Gy<br />

45 Gy<br />

35 Gy<br />

28 Gy<br />

15 Gy<br />

Prostate<br />

Seminal Ves.<br />

Nodes<br />

Rectum<br />

Bladder<br />

Penis Bulb<br />

Small Bowel<br />

Spinal Cord<br />

MVCBCT [cGy] Portal Imaging [cGy]<br />

Min Mean Max Min Mean Max<br />

6.4<br />

6.3<br />

5.2<br />

5.3<br />

6.7<br />

6.5<br />

2.7<br />

0.9<br />

6.9<br />

6.5<br />

6.8<br />

5.9<br />

7.8<br />

6.9<br />

8.3<br />

3.9<br />

Tx (solid) with CBCF. Tx+MVCBCT (dashed)<br />

100<br />

CBCF = 96%<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

7.6<br />

6.8<br />

10.1<br />

6.8<br />

9.5<br />

7.6<br />

11.2<br />

5.2<br />

5.5<br />

5.4<br />

4.4<br />

4.8<br />

5.8<br />

5.8<br />

3.0<br />

0.8<br />

20<br />

Brain<br />

20<br />

10<br />

Right Eye<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Dose (Gy)<br />

Patient CT scans can be imported in Pinnacle to evaluate the dose delivered by MVCBCT. For a typical MVCBCT, the delivered dose forms<br />

a small anterior-posterior gradient roughly ranging from 0.6 to 1.2 cGy per MVCBCT MU. A MVCBCT acquisition of 9 MU in the pelvis area<br />

delivers slightly more dose than what is currently delivered by portal imaging at <strong>UCSF</strong>. Daily 9 MU MVCBCT remains a small dose addition<br />

compared to treatment dose (


What’s good about it?<br />

Repetition good visual system<br />

Contrast


What needs work?<br />

White space poster is too crowded, overwhelming<br />

Alignment


Dose Delivered to Patients for Megavoltage Cone-Beam CT Imaging<br />

Olivier Morin1,2, Je Bellerose1, Clayton Akazawa1, Amy Gillis1, Martina Descovich1, Michèle Aubin1, Josephine Chen1, Hong Chen1,<br />

Jean-François Aubry1, Ping Xia1,2 and Jean Pouliot1,2<br />

PURPOSE<br />

<strong>UCSF</strong><br />

University of California San Francisco<br />

1600 Divisadero Street, Suite H1031<br />

San Francisco CA 94143-1708<br />

Email: morin@radonc17.ucsf.edu<br />

WebSite: http://www.ucsf.edu/jpouliot/<br />

AAPM 2006 SU-FF-I-13<br />

1- Department of <strong>Radiation</strong> <strong>Oncology</strong>, <strong>UCSF</strong> Comprehensive Cancer Center<br />

2- <strong>UCSF</strong> / UC Berkeley Joint Graduate Group in Bioengineering<br />

Megavoltage Cone-Beam CT (MVCBCT) uses a<br />

conventional treatment unit equipped with a at<br />

panel detector to obtain a 3D representation of the<br />

patient in treatment position. MVCBCT has been<br />

used for 2 years in our clinic for anatomy verication<br />

and to improve patient alignment<br />

prior to dose delivery. Depending<br />

on the soft-tissue information<br />

required for setup we are currently<br />

using a total exposure ranging<br />

between 2-10 monitor units (MU).<br />

CT MVCBCT (5MU)<br />

The objectives of this work are:<br />

To evaluate the dose delivered to patients for MVCBCT acquisition.<br />

To develop a simple plan modication receipe to compensate for<br />

the dose received by daily MVCBCT.<br />

METHODS & MATERIALS<br />

The MVCBCT dose calculated by our treatment planning system<br />

(Phillips, Pinnacle) was compared to measurements.<br />

Typical MVCBCT acquisition:<br />

6 MV beam, 27.4 x 27.4 cm2 eld size, 145 cm source-detector distance, Arc: 270o to 110o Experimental setup to<br />

measure MVCBCT dose<br />

IMRT QA Cylinder<br />

MOSFETS and an<br />

ion chamber<br />

Dose (cGy/MVCBCT MU)<br />

1.12<br />

1.05<br />

-2.1 % 1.7 %<br />

2.3 %<br />

0.95<br />

0.3 %<br />

-1.1 %<br />

1.4 % 0.2 %<br />

0.85<br />

2.8 % 1.4 %<br />

0.75<br />

-0.9 %<br />

2.6 %<br />

16 cm<br />

Percentage dierence<br />

between the dose<br />

calculated by Pinnacle<br />

and the measurements<br />

ALL WITHIN 3 %<br />

MVCBCT acquisition<br />

simulated in Pinnacle<br />

Simulation of an arc<br />

treatment with<br />

MVCBCT setting<br />

Pinnacle can be used to simulate the<br />

MVCBCT dose received by the patients.<br />

Normalized Volume<br />

RESULTS<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

MVCBCT Portal Imaging<br />

or Film<br />

Tx (solid) with Tx+MVCBCT (dashed)<br />

Rectum<br />

Right Femoral<br />

Spinal Cord<br />

Penis Bulb<br />

cGy per MU<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.4<br />

Bladder<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

CONCLUSION<br />

Seminal Vesicles<br />

Prostate<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Dose (Gy)<br />

MVCBCT dose evaluated in the treatment planning system<br />

Table 1. Dose per fraction delivered to prostate<br />

patients at <strong>UCSF</strong> for daily alignment verication.<br />

MVCBCT (9 MU) and portal imaging (4 x 2 MU = 8 MU).<br />

Simple method to compensate for daily MVCBCT<br />

Prostate (daily 9MU MVCBCT, 40 fractions)<br />

Head and Neck (daily 5 MU MVCBCT, 33 fractions)<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

A compensation factor (CBCF) was introduced<br />

to keep the target mean dose the same.<br />

Tx Alone Tx + MVCBCT Compensated Tx<br />

+ MVCBCT<br />

77 Gy<br />

70 Gy<br />

55 Gy<br />

45 Gy<br />

35 Gy<br />

28 Gy<br />

15 Gy<br />

Prostate<br />

Seminal Ves.<br />

Nodes<br />

Rectum<br />

Bladder<br />

Penis Bulb<br />

Small Bowel<br />

Spinal Cord<br />

MVCBCT [cGy] Portal Imaging [cGy]<br />

Min Mean Max Min Mean Max<br />

6.4<br />

6.3<br />

5.2<br />

5.3<br />

6.7<br />

6.5<br />

2.7<br />

0.9<br />

6.9<br />

6.5<br />

6.8<br />

5.9<br />

7.8<br />

6.9<br />

8.3<br />

3.9<br />

Tx (solid) with CBCF. Tx+MVCBCT (dashed)<br />

100<br />

CBCF = 96%<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

7.6<br />

6.8<br />

10.1<br />

6.8<br />

9.5<br />

7.6<br />

11.2<br />

5.2<br />

5.5<br />

5.4<br />

4.4<br />

4.8<br />

5.8<br />

5.8<br />

3.0<br />

0.8<br />

20<br />

Brain<br />

20<br />

10<br />

Right Eye<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Dose (Gy)<br />

Patient CT scans can be imported in Pinnacle to evaluate the dose delivered by MVCBCT. For a typical MVCBCT, the delivered dose forms<br />

a small anterior-posterior gradient roughly ranging from 0.6 to 1.2 cGy per MVCBCT MU. A MVCBCT acquisition of 9 MU in the pelvis area<br />

delivers slightly more dose than what is currently delivered by portal imaging at <strong>UCSF</strong>. Daily 9 MU MVCBCT remains a small dose addition<br />

compared to treatment dose (


DOSE DELIVERED TO PATIENTS FOR MEGAVOLTAGE CONE-BEAM CT IMAGING<br />

Olivier Morin 1,2 , Jeff Bellerose 1 , Clayton Akazawa 1 , Amy Gillis 1 , Martina Descovich 1 , Michèle Aubin 1 , Josephine Chen 1 ,<br />

Hong Chen 1 , Jean-François Aubry 1 , Ping Xia 1,2 and Jean Pouliot 1,2<br />

1 Department of <strong>Radiation</strong> <strong>Oncology</strong>, <strong>UCSF</strong> Comprehensive Cancer Center<br />

2 <strong>UCSF</strong> / UC Berkeley Joint Graduate Group in Bioengineering<br />

PURPOSE<br />

Megavoltage Cone-Beam CT (MVCBCT) uses a<br />

conventional treatment unit equipped with a flat<br />

panel detector to obtain a 3D representation of<br />

the patient in treatment position. MVCBCT has<br />

been used for 2 years in our clinic for anatomy<br />

verification and to improve patient alignment prior<br />

to dose delivery. Depending on the soft-tissue<br />

information required for setup we are currently<br />

using a total exposure ranging between 2-10<br />

monitor units (MU).<br />

The objectives of this work are:<br />

♦ To evaluate the dose delivered to<br />

patients for MVCBCT acquisition.<br />

♦ To develop a simple plan modifi-cation<br />

receipe to compensate for the dose<br />

received by daily MVCBCT.<br />

METHODS & MATERIALS<br />

CT MVCBCT (5MU)<br />

♦ The MVCBCT dose calculated by our treatment planning system<br />

(Phillips, Pinnacle) was compared to measurements.<br />

Typical MVCBCT acquisition: 6 MV beam, 27.4 x 27.4 cm 2 field size,<br />

145 cm source-detector distance, Arc: 270 o to 110 o<br />

Experimental setup to<br />

measure MVCBCT dose<br />

IMRT QA Cylinder MOSFETS<br />

and an ion chamber<br />

Percentage difference between<br />

the dose calculated by Pinnacle<br />

and the measurements<br />

ALL WITHIN 3 %*<br />

MVCBCT acquisition<br />

simulated in Pinnacle<br />

Simulation of an arc treatment<br />

with MVCBCT setting<br />

Pinnacle can be used to simulate the MVCBCT dose received by the patients.<br />

RESULTS<br />

MVCBCT dose evaluated in the treatment planning system<br />

CONCLUSION<br />

GTV<br />

CTV<br />

M andible<br />

Spinal Cord<br />

Left Parotid<br />

Brain tem s<br />

Skin<br />

Right lens<br />

GTV<br />

CTV<br />

M andible<br />

Spinal Cord<br />

Left Parotid<br />

Brain tem s<br />

Skin<br />

Right lens<br />

MVCBCT [c Gy] CR Film Gy] [c<br />

Min Mean Max Min M ean Max<br />

4.7<br />

2.7<br />

3.5<br />

3.3<br />

2.4<br />

6.5<br />

2.7<br />

0.9<br />

5.2<br />

5.0<br />

5.4<br />

4.2<br />

4.9<br />

6.9<br />

8.3<br />

3.9<br />

5.8<br />

5.8<br />

6.0<br />

4.8<br />

5.3<br />

7.6<br />

11.2<br />

5.2<br />

6.6<br />

3.8<br />

5.5<br />

5.1<br />

4.2<br />

6.6<br />

0.0<br />

5.4<br />

Simple method to compensate for daily MVCBCT<br />

Patient CT scans can be imported in Pinnacle to evaluate the dose delivered by MVCBCT. For a typical MVCBCT, the delivered dose<br />

forms a small anterior-posterior gradient roughly ranging from 0.6 to 1.2 cGy per MVCBCT MU. A MVCBCT acquisition of 9 MU<br />

in the pelvis area delivers slightly more dose than what is currently delivered by portal imaging at <strong>UCSF</strong>. Daily 9 MU MVCBCT<br />

remains a small dose addition compared to treatment dose (


Design Tools Summary<br />

Proximity<br />

Alignment<br />

Repetition<br />

Contrast<br />

White space

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!