27.10.2013 Views

Preon physics at LHC

Preon physics at LHC

Preon physics at LHC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Preon</strong> <strong>physics</strong> <strong>at</strong> <strong>LHC</strong><br />

Philippe Mermod<br />

1


• Dark m<strong>at</strong>ter<br />

• Unific<strong>at</strong>ion<br />

• Hierarchy<br />

SM problems and weaknesses<br />

• Neutrino masses<br />

• M<strong>at</strong>ter/Antim<strong>at</strong>ter Ass.<br />

• Gravit<strong>at</strong>ion<br />

• Elementary particles :<br />

! Too many<br />

! Unstable<br />

! Unpredictable masses<br />

! Oscill<strong>at</strong>ions/mixing<br />

! Charge quantiz<strong>at</strong>ion<br />

! Lepton and baryon number conserv<strong>at</strong>ion<br />

" W and Z are massive<br />

! Higgs still escapes detection<br />

2


Possible remedy : composite leptons,<br />

• Dark m<strong>at</strong>ter<br />

quarks and vector bosons<br />

# preon stars and new neutrinos<br />

• Unific<strong>at</strong>ion<br />

# no fundamental weak force<br />

• Hierarchy<br />

# no higgs mechanism<br />

• Neutrino masses<br />

# neutrinos are composite<br />

• M<strong>at</strong>ter/Antim<strong>at</strong>ter Ass.<br />

# as many preons as antipreons<br />

• Gravit<strong>at</strong>ion<br />

• Elementary particles :<br />

! Too many<br />

# 3 preons<br />

! Unstable<br />

# rearrangement among preons<br />

! Unpredictable masses<br />

# preon dynamics ?<br />

! Oscill<strong>at</strong>ions/mixing<br />

# same net preon flavour<br />

! Charge quantiz<strong>at</strong>ion<br />

# only 1/3e and 2/3e<br />

! Lepton and baryon number conserv<strong>at</strong>ion<br />

# explained but can be broken<br />

$ W and Z are massive<br />

# preon-antipreon st<strong>at</strong>es<br />

3


<strong>Preon</strong>-trinity model<br />

J.-J. Dugnes, S. Fredriksson and J. Hansson,<br />

Europhys. Lett. 60, 188 (2002)<br />

• Three preons in total<br />

• They can form tight dipreon pairs<br />

• Lepton = preon + dipreon<br />

• Quark = preon + anti-dipreon<br />

• Vector boson = preon + anti-preon<br />

• The model is qualit<strong>at</strong>ive, it still lacks a dynamics<br />

4


Model predictions (1)<br />

• One new charged heavy lepton<br />

• Two new neutrinos<br />

• Three new heavy quarks (one with charge 4/3)<br />

• Two new heavy vector bosons<br />

• Good sign : the top quark is among the super-heavies<br />

(with isol<strong>at</strong>ed !)<br />

5


• No Higgs boson<br />

Model predictions (2)<br />

• The third oscill<strong>at</strong>ing neutrino is not the ! " :<br />

instead it is a new one, which does not couple to<br />

the Z<br />

• The top quark decay involves a new heavy<br />

• ...<br />

vector boson<br />

6


The neutrino front<br />

• Neutrino masses and oscill<strong>at</strong>ions easily<br />

explained in the model<br />

• On the CNGS beam, experiments like OPERA<br />

plan to measure directly " leptons from ! "<br />

interactions " not expected to happen in the<br />

preon model !<br />

7


Tev<strong>at</strong>ron and <strong>LHC</strong> front<br />

• New exotic heavy particles<br />

• New exotic decay channels<br />

• Richer top sector<br />

• Lepton and quark excited st<strong>at</strong>es<br />

• New interpret<strong>at</strong>ion in case of non-discovery of<br />

Higgs<br />

8


• # + lepton :<br />

New heavy lepton<br />

– Very weak production <strong>at</strong> hadron colliders<br />

– Decay involves very hard single #$%&'( with very large MET<br />

and no jets<br />

9


• t quark :<br />

Heavy quark decays<br />

– Decay involves a W' (which in turn might decay into W +<br />

neutrinos)<br />

• e, $ and " are not on the same footing<br />

• can try to reconstruct the W' invariant mass if lighter than<br />

the top mass<br />

– New decay mode involving a Z*<br />

• specific sign<strong>at</strong>ure : 1 hard jet (not a b-jet) + large MET<br />

• h and g quarks :<br />

– Same decays as t, but with no b-jets<br />

10


Summary<br />

• The preon trinity model can qualit<strong>at</strong>ively<br />

explain all fe<strong>at</strong>ures of the SM<br />

• It solves many problems of the SM<br />

• It predicts new <strong>physics</strong> which are expected to<br />

show up <strong>at</strong> <strong>LHC</strong><br />

11


Outlook<br />

• The model can easily be killed (Higgs<br />

discovery, OPERA experiment, refined top<br />

decays)<br />

• We can produce a paper on potential<br />

sign<strong>at</strong>ures <strong>at</strong> <strong>LHC</strong><br />

• If devi<strong>at</strong>ions from SM are seen, they might be<br />

interpreted in terms of compositeness<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!