11.11.2013 Views

An Adaptive Uniaxial Perfectly Matched Layer Method for Time ...

An Adaptive Uniaxial Perfectly Matched Layer Method for Time ...

An Adaptive Uniaxial Perfectly Matched Layer Method for Time ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NUMERICAL MATHEMATICS: Theory, <strong>Method</strong>s and Applications<br />

Numer. Math. Theor. Meth. Appl., Vol. 1, No. 2, pp. 113-137 (2008)<br />

<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> <strong>Perfectly</strong> <strong>Matched</strong> <strong>Layer</strong> <strong>Method</strong><br />

<strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems<br />

Zhiming Chen ∗ and Xinming Wu<br />

LSEC, Institute of Computational Mathematics, Academy of Mathematics and<br />

System Science, Chinese Academy of Sciences, Beijing 100190, China.<br />

Received 1 July, 2007; Accepted (in revised version) 26 November, 2007<br />

Abstract. The uniaxial perfectly matched layer (PML) method uses rectangular domain<br />

to define the PML problem and thus provides greater flexibility and efficiency in dealing<br />

with problems involving anisotropic scatterers. In this paper an adaptive uniaxial<br />

PML technique <strong>for</strong> solving the time harmonic Helmholtz scattering problem is developed.<br />

The PML parameters such as the thickness of the layer and the fictitious medium<br />

property are determined through sharp a posteriori error estimates. The adaptive finite<br />

element method based on a posteriori error estimate is proposed to solve the PML equation<br />

which produces automatically a coarse mesh size away from the fixed domain and<br />

thus makes the total computational costs insensitive to the thickness of the PML absorbing<br />

layer. Numerical experiments are included to illustrate the competitive behavior of<br />

the proposed adaptive method. In particular, it is demonstrated that the PML layer can<br />

be chosen as close to one wave-length from the scatterer and still yields good accuracy<br />

and efficiency in approximating the far fields.<br />

AMS subject classifications: 65N30, 65N50<br />

Key words: Adaptivity, uniaxial perfectly matched layer, a posteriori error analysis, acoustic scattering<br />

problems.<br />

Dedicated to Professor Yucheng Su on the Occasion of His 80th Birthday<br />

1. Introduction<br />

We propose and study a uniaxial perfectly matched layer (PML) technique <strong>for</strong> solving<br />

Helmholtz-type scattering problems with perfectly conducting boundary:<br />

∆u+ k 2 u=0 in 2 \¯D, (1.1a)<br />

∂ u<br />

=−g onΓ D , (1.1b)<br />

∂ n D<br />

<br />

∂ u r<br />

∂ r − iku → 0 as r=|x|→∞. (1.1c)<br />

∗ Corresponding author. Email addresses:ÞÑÒÐ׺ººÒ(Z.<br />

M. Wu)<br />

Chen),ÜÑÛÙÐ׺ººÒ(X.<br />

http://www.global-sci.org/nmtma 113 c○2008 Global-Science Press


114 Z. Chen and X. M. Wu<br />

Here D⊂ 2 is a bounded domain with Lipschitz boundaryΓ D , g∈ H −1/2 (Γ D ) is determined<br />

by the incoming wave, and n D is the unit outer normal toΓ D . We assume the wave<br />

number k∈is a constant. We remark that the results in this paper can be extended to the<br />

case when k 2 (x) is a variable wave number inside some bounded domain, or to solve the<br />

scattering problems with other boundary conditions, such as Dirichlet or the impedance<br />

boundary condition onΓ D .<br />

Since the work of Bérénger[3] which proposed a PML technique <strong>for</strong> solving the time<br />

dependent Maxwell equations, various constructions of PML absorbing layers have been<br />

proposed and studied in the literature (cf., e.g., Turkel and Yefet[19], Teixeira and Chew<br />

[18] <strong>for</strong> the reviews). The basic idea of the PML technique is to surround the computational<br />

domain by a layer of finite thickness with specially designed model medium that<br />

would either slow down or attenuate all the waves that propagate from inside the computational<br />

domain.<br />

The convergence of the PML method is studied in Lassas and Somersalo[13], Hohage<br />

et al.[12] <strong>for</strong> the acoustic scattering problems <strong>for</strong> circular PML layers and in Lassas and<br />

Somersalo[14] <strong>for</strong> general smooth convex geometry. It is proved in[12–14] that the<br />

PML solution converges exponentially to the solution of the original scattering problem as<br />

the thickness of the PML layer tends to infinite. We remark that in practical applications<br />

involving PML techniques, one cannot af<strong>for</strong>d to use a very thick PML layer if uni<strong>for</strong>m<br />

meshes are used because it requires excessive grid points and hence more computer time<br />

and more storage. On the other hand, a thin PML layer requires a rapid variation of the<br />

artificial material property which deteriorates the accuracy if too coarse mesh is used in<br />

the PML layer.<br />

The adaptive PML technique was proposed in Chen and Wu[8] <strong>for</strong> a scattering problem<br />

by periodic structures (the grating problem), in Chen and Liu[6] <strong>for</strong> the acoustic scattering<br />

problem, and in Chen and Chen[5] <strong>for</strong> Maxwell scattering problems. The main idea of<br />

the adaptive PML technique is to use the a posteriori error estimate to determine the PML<br />

parameters and to use the adaptive finite element method to solve the PML equations. The<br />

adaptive PML technique provides a complete numerical strategy to solve the scattering<br />

problems in the framework of finite element which produces automatically a coarse mesh<br />

size away from the fixed domain and thus makes the total computational costs insensitive<br />

to the thickness of the PML absorbing layer.<br />

The purpose of this paper is to extend the adaptive PML technique developed <strong>for</strong> circular<br />

PML layer in[5, 6, 8] to deal with the uniaxial PML methods which are widely used<br />

in the engineering literature. The main advantage of the uniaxial PML method as opposing<br />

to the circular PML method is that it provides greater flexibility and efficiency to solve<br />

problems involving anisotropic scatterers. Our technique to prove the PML convergence<br />

is different from the techniques developed in[5, 6, 8] <strong>for</strong> circular PML layers. It is based<br />

on the integral representation of the exterior Dirichlet problem <strong>for</strong> the Helmholtz equation<br />

and the idea of the complex coordinate stretching. To the authors’ best knowledge, this is<br />

the first convergence proof of the uniaxial PML method in the literature. We remark that<br />

the boundary of the uniaxial PML layer is only Lipschitz and so the results in[14] cannot<br />

be applied.


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 115<br />

The layout of the paper is as follows. In Section 2 we recall the uniaxial PML <strong>for</strong>mulation<br />

<strong>for</strong> (1.1a)-(1.1c) by following the method of complex coordinate stretching in Chew<br />

and Weedon[4]. In Section 3 we prove the convergence of the uniaxial PML method.<br />

In Section 4 we introduce the finite element approximation. In Section 5 we derive the<br />

a posteriori error estimate which includes both the PML error and the finite element discretization<br />

error. Finally in Section 6 we describe our adaptive algorithm and present two<br />

examples to show the competitive behavior of the adaptive method.<br />

2. The PML equation<br />

Let D be contained in the interior of the rectangle B 1 ={x∈ 2 :|x 1 |< L 1 /2,|x 2 |<<br />

L 2 /2}. LetΓ 1 =∂ B 1 and n 1 the unit outer normal toΓ 1 . We start by introducing the<br />

Dirichlet-to-Neumann operator T : H 1/2 (Γ 1 )→ H −1/2 (Γ 1 ). Given f∈ H 1/2 (Γ 1 ), we define<br />

T f= ∂ξ<br />

∂ n 1<br />

on Γ 1 ,<br />

whereξis the solution of the exterior Dirichlet problem of the Helmholtz equation<br />

∆ξ+ k 2 ξ=0 in 2 \¯B 1 , (2.1a)<br />

ξ= f onΓ 1 , (2.1b)<br />

<br />

∂ξ r<br />

∂ r − ikξ → 0 as r=|x|→∞. (2.1c)<br />

It is well-known that (2.1a)-(2.1c) has a unique solutionξ∈H 1 loc (2 \¯B 1 ) (cf., e.g., Colten-<br />

Kress[11]). Thus T : H 1/2 (Γ 1 )→H −1/2 (Γ 1 ) is well-defined and is a continuous linear<br />

operator.<br />

Let a : H 1 (Ω 1 )× H 1 (Ω 1 )→, whereΩ 1 = B 1 \¯D, be the sesquilinear <strong>for</strong>m<br />

∫<br />

a(ϕ,ψ)=<br />

Ω 1<br />

<br />

∇ϕ·∇ ¯ψ− k 2 ϕ ¯ψ d x−〈Tϕ,ψ〉 Γ1<br />

, (2.2)<br />

where〈·,·〉 Γ1<br />

stands <strong>for</strong> the inner product on L 2 (Γ 1 ) or the duality pairing between H −1/2 (Γ 1 )<br />

and H 1/2 (Γ 1 ). The scattering problem (1.1a)-(1.1c) is equivalent to the following weak<br />

<strong>for</strong>mulation (cf., e.g.,[11]): Given g∈ H −1/2 (Γ D ), find u∈ H 1 (Ω 1 ) such that<br />

a(u,ψ)=〈g,ψ〉 ΓD<br />

, ∀ψ∈ H 1 (Ω 1 ). (2.3)<br />

The existence of a unique solution of the scattering problem (2.3) is known (cf., e.g.,<br />

[11], McLean[15]). Then the general theory in Babuška and Aziz[1, Chap. 5] implies<br />

that there exists a constantµ>0 such that the following inf-sup condition is satisfied<br />

sup<br />

0≠ψ∈H 1 (Ω 1 )<br />

|a(ϕ,ψ)|<br />

≥ µ‖ϕ‖<br />

‖ψ‖ H 1 (Ω 1 ) , ∀ϕ∈H1 (Ω 1 ). (2.4)<br />

H 1 (Ω 1 )


116 Z. Chen and X. M. Wu<br />

L 1<br />

d 1<br />

L 2<br />

D<br />

ÙÖ½ËØØÒÓØ×ØØÖÒÔÖÓÐÑÛØØÈÅÄÐÝÖº<br />

Γ D<br />

Γ 1<br />

d 2<br />

Γ 2<br />

Now we turn to the introduction of the absorbing PML layer. Let B 2 ={x∈ 2 :<br />

|x 1 |< L 1 /2+d 1 ,|x 2 |< L 2 /2+d 2 } be the rectangle which contains B 1 . Letα 1 (x 1 )=<br />

1+iσ 1 (x 1 ),α 2 (x 2 )=1+iσ 2 (x 2 ) be the model medium property which satisfy<br />

σ j ∈ C(), σ j ≥ 0, σ j (t)=σ j (−t), and σ j = 0 <strong>for</strong>|t|≤ L j /2, j= 1,2.<br />

Denote by ˜x j the complex coordinate defined by<br />

<br />

x j if|x j |< L j /2,<br />

˜x j = ∫ x j<br />

α 0 j(t)d t if|x j |≥ L j /2.<br />

(2.5)<br />

To derive the PML equation, we first notice that by the third Green <strong>for</strong>mula, the solutionξ<br />

of the exterior Dirichlet problem (2.1a)-(2.1c) satisfies<br />

ξ=−Ψ k SL (λ)+Ψk DL (f) in2 \¯B 1 , (2.6)<br />

whereλ= T f∈ H −1/2 (Γ 1 ) is the Neumann trace ofξonΓ 1 , andΨ k SL ,Ψk DL<br />

are respectively<br />

the single and double layer potentials<br />

Ψ k SL (λ)(x)= ∫Γ 1<br />

G k (x, y)λ(y) ds(y), ∀λ∈H −1/2 (Γ 1 ), (2.7)<br />

Ψ k DL (f)(x)= ∫<br />

∂ G k (x, y)<br />

∂ n<br />

Γ 1 1 (y)<br />

f(y) ds(y), ∀ f∈ H 1/2 (Γ 1 ). (2.8)<br />

Here G k is the fundamental solution of the Helmholtz equation satisfying the Sommerfeld<br />

radiation condition<br />

G k (x, y)= i 4 H(1) 0<br />

(k|x− y|),<br />

where H (1)<br />

0<br />

(z) is the first Hankel function of order zero.


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 117<br />

We follow the method of complex coordinate stretching[4] to introduce the PML equation.<br />

For any z∈, denote by z 1/2 the analytic branch of z such that Im(z 1/2 )>0<strong>for</strong><br />

any z∈\[0,+∞). Letρ(˜x, y)=[(˜x 1 − y 1 ) 2 +(˜x 2 − y 2 ) 2 ] 1/2 be the complex distance<br />

and define<br />

˜G k (x, y)= i 4 H(1) 0<br />

(kρ(˜x, y)).<br />

It is easy to see that ˜G k is smooth <strong>for</strong> x∈ 2 \¯B 1 and y∈¯B 1 . Now we can define the<br />

modified single and double layer potentials[14]<br />

˜Ψ k SL (λ)(x)= ∫Γ 1<br />

˜G k (x, y)λ(y) ds(y), ∀λ∈H −1/2 (Γ 1 ), (2.9)<br />

˜Ψ k DL (f)(x)= ∫<br />

∂ ˜G k (x, y)<br />

∂ n<br />

Γ 1 1 (y)<br />

It is clear that ˜Ψ k SL (λ), ˜Ψ k DL (f) are smooth in2 \¯B 1 , and<br />

f(y) ds(y), ∀ f∈ H 1/2 (Γ 1 ). (2.10)<br />

γ + D ˜Ψ k SL (λ)=γ+ D Ψk SL (λ), ∀λ∈H−1/2 (Γ 1 ),<br />

γ + D ˜Ψ k DL (f)=γ+ D Ψk DL (f), ∀ f∈ H1/2 (Γ 1 ),<br />

(2.11)<br />

whereγ + D : H1 loc (2 \¯B 1 )→H 1/2 (Γ 1 ) is the trace operator. For any f ∈ H 1/2 (Γ 1 ), let<br />

(f)(x) be the PML extension given by<br />

By (2.11) and (2.6) we know that<br />

(f)(x)=− ˜Ψ k SL (T f)+ ˜Ψ k DL (f) <strong>for</strong> x∈2 \¯B 1 . (2.12)<br />

γ + D (f)=−γ+ D Ψk SL (T f)+γ+ D Ψk DL (f)=γ+ D ξ= f on Γ 1<br />

<strong>for</strong> any f∈ H 1/2 (Γ 1 ). For the solution u of the scattering problem (2.3), let ũ=(u| Γ1<br />

)<br />

be the PML extension of u| Γ1 which satisfiesγ + Dũ=u| Γ 1<br />

onΓ 1 . Since H (1)<br />

0<br />

(z) decays exponentially<br />

on the upper half complex plane[6], heuristically ũ(x) will decay exponentially<br />

when x is away fromΓ 1 . It is obvious that ũ satisfies<br />

∂ 2 ũ<br />

∂ ˜x 2 + ∂ 2 ũ<br />

1<br />

∂ ˜x 2 + k 2 ũ=0 in 2 \¯B 1 ,<br />

2<br />

which yields the desired PML equation by the chain rule<br />

∇·(A∇ũ)+α 1 α 2 k 2 ũ=0 in 2 \¯B 1 ,<br />

where A= diag(α 2 (x 2 )/α 1 (x 1 ),α 1 (x 1 )/α 2 (x 2 )) is a diagonal matrix.<br />

The PML solution û inΩ 2 = B 2 \¯D is defined as the solution of the following system<br />

∇·(A∇û)+α 1 α 2 k 2 û=0 inΩ 2 , (2.13a)<br />

∂ û<br />

∂ n D<br />

=−g onΓ D , û=0 onΓ 2 . (2.13b)<br />

The well-posedness of the PML problem (2.13a)-(2.13b) and the convergence of its solution<br />

to the solution of the original scattering problem will be studied in the next section.


118 Z. Chen and X. M. Wu<br />

3. Convergence analysis<br />

We start by considering the Dirichlet problem of the PML equation in the layer<br />

∇·(A∇w)+α 1 α 2 k 2 w= 0 inΩ PML = B 2 \¯B 1 , (3.1a)<br />

w= 0 onΓ 1 , w= q onΓ 2 , (3.1b)<br />

where q∈H 1/2 (Γ 2 ). Introduce the sesquilinear <strong>for</strong>m c : H 1 (Ω PML )× H 1 (Ω PML )→ as<br />

∫<br />

c(ϕ,ψ)=<br />

Ω PML (A∇ϕ·∇ ¯ψ−α 1 α 2 k 2 ϕ ¯ψ) dx.<br />

Then the weak <strong>for</strong>mulation <strong>for</strong> (3.1a)-(3.1b) is: Given q∈H 1/2 (Γ 2 ), find w∈H 1 (Ω PML )<br />

such that w= 0 onΓ 1 , w= q onΓ 2 , and<br />

Notice that, <strong>for</strong> anyϕ∈H 1 (Ω PML ),<br />

<br />

<br />

1+σ 1 σ 2<br />

∂ϕ <br />

2<br />

Re[c(ϕ,ϕ)]=<br />

∫Ω PML 1+σ 2 ∂ x<br />

1 1<br />

c(w,ψ)=0, ∀ψ∈ H 1 0 (ΩPML ). (3.2)<br />

+ 1+σ 1σ 2<br />

1+σ 2 2<br />

∂ϕ <br />

2<br />

+(σ 1 σ 2 − 1)k 2 |ϕ| 2 dx.<br />

∂ x 2<br />

Since<br />

1+σ 1 σ 2<br />

1+σ 2 1<br />

1<br />

≥<br />

1+σ 2 ,<br />

m<br />

1+σ 1 σ 2<br />

1+σ 2 2<br />

1<br />

≥<br />

1+σ 2 ,<br />

m<br />

whereσ m = max x∈¯B 2<br />

(σ 1 (x 1 ),σ 2 (x 2 ))>0, we know by using the spectral theory of compact<br />

operators that (3.2) has a unique solution <strong>for</strong> every real k except possibly <strong>for</strong> a discrete<br />

set of values of k (see Collino and Monk[10, Theorem 2] <strong>for</strong> a similar discussion on the<br />

PML equation in the polar coordinates). In this paper we will not elaborate on this issue<br />

and simply make the following assumption<br />

(H1) There exists a unique solution to the Dirichlet PML problem (3.2) in the layer.<br />

We remark that <strong>for</strong> the circular PML method, the unique existence of the PML equation<br />

in the layer can be proved under certain conditions on the PML medium property in[6,13].<br />

The proof of the unique existence of the Dirichlet problem <strong>for</strong> the uniaxial PML equation<br />

is an interesting open problem.<br />

Throughout the paper we will use the weighted H 1 -norm<br />

<br />

1/2<br />

‖∇ϕ‖ 2 L 2 (Ω) +|Ω|−1 ‖ϕ‖ 2 L (Ω)<br />

,<br />

2<br />

‖ϕ‖ H 1 (Ω)=<br />

<strong>for</strong> any bounded domainΩ⊂ 2 , where|Ω| is the Lebesgue measure ofΩ. For anyϕ∈<br />

H 1 (Ω PML ), we define<br />

⎡ <br />

<br />

1<br />

∂ϕ <br />

2<br />

‖ϕ‖ ∗,Ω PML=<br />

⎣<br />

∫Ω PML 1+σ 2 + 1<br />

⎤<br />

∂ϕ <br />

2<br />

1/2<br />

∂ x<br />

1 1 1+σ 2 +(1+σ 1 σ 2 )k 2 |ϕ| 2 dx⎦<br />

.<br />

∂ x<br />

2 2


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 119<br />

It is easy to see that‖·‖ ∗,Ω PML is an equivalent norm on H 1 (Ω PML ). Again by using the<br />

general theory in[1, Chap. 5] we know that there exists a constant Ĉ> 0 such that<br />

sup<br />

0≠ψ∈H 1 0 (ΩPML )<br />

|c(ϕ,ψ)|<br />

‖ψ‖ ∗,Ω PML<br />

≥ Ĉ‖ϕ‖ ∗,Ω PML. (3.3)<br />

The constant Ĉ depends in general on the domainΩ PML and the wave number k.<br />

Be<strong>for</strong>e we state the main result of this section, we make the following assumptions<br />

on the fictitious medium property, which is rather mild in the practical applications of the<br />

uniaxial PML method<br />

(H2)<br />

∫ L 1<br />

2 +d 1<br />

0<br />

σ 1 (t) dt=<br />

∫ L 2<br />

2 +d 2<br />

0<br />

σ 2 (t) dt=σ, σ>0 is a constant;<br />

(H3) σ j (t)= ˜σ j<br />

|t|− L j /2<br />

d j<br />

m<br />

, m≥1 integer, ˜σ j > 0 is a constant, j= 1,2.<br />

The following theorem is the main result of this section.<br />

Theorem 3.1. Let(H1)-(H3) be satisfied. Then <strong>for</strong> sufficiently largeσ>0, the PML problem<br />

(2.13a)-(2.13b) has a unique solution û∈H 1 (Ω 2 ). Moreover, we have the following error<br />

estimate<br />

‖u−û‖ H 1 (Ω 1 )≤CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖û‖ H 1/2 (Γ 1 ) ,<br />

(3.4a)<br />

where<br />

γ=<br />

min(d 1 , d 2 )<br />

(L 1 + d 1 ) 2 +(L 2 + d 2 ) 2 , L= max(L 1, L 2 ). (3.4b)<br />

The proof of this theorem will be given in Section 3.3 which depends on the exponential<br />

decay estimates of the PML extension in Section 3.1 and the stability estimates of the<br />

Dirichelt problem of the PML equation in the layer in Section 3.2.<br />

3.1. Estimates <strong>for</strong> the PML extension<br />

We start with the following elementary lemma.<br />

Lemma 3.1. For any z 1 = a 1 + ib 1 ,z 2 = a 2 + ib 2 with a 1 , b 1 , a 2 , b 2 ∈ such that a 1 b 1 +<br />

a 2 b 2 ≥ 0 and a 2 1 + a2 2<br />

> 0, we have<br />

Im(z 2 1 + z2 2 )1/2 ≥ a 1b 1 + a 2 b 2<br />

.<br />

a<br />

2<br />

1 + a2 2


120 Z. Chen and X. M. Wu<br />

Proof. For any a, b∈ we know that<br />

<br />

Im(a+ib) 1/2 −a+ a 2 + b 2<br />

=<br />

.<br />

2<br />

Here we used the convention that z 1/2 is the analytic branch of z such that Im(z 1/2 )>0<br />

<strong>for</strong> any z∈\[0,+∞). It is easy to check that Im(a+ ib) 1/2 is a decreasing function in<br />

a∈. Let z 2 1 + z2 2<br />

= a+ ib. Then<br />

a+ib=<br />

⎛<br />

⎝ a 2 1 + a2 2 + i a 1b 1 + a 2 b 2<br />

<br />

a<br />

2<br />

1 + a2 2<br />

⎞<br />

⎠<br />

2<br />

− (a 2b 1 − a 1 b 2 ) 2<br />

a 2 1 + .<br />

a2 2<br />

Let a ′ = a+(a 2 b 1 − a 1 b 2 ) 2 /(a 2 1 + a2 2 ). Since a 1b 1 + a 2 b 2 ≥ 0, we have<br />

Im(a ′ + ib) 1/2 = a 1b 1 + a 2 b 2<br />

.<br />

a<br />

2<br />

1 + a2 2<br />

On the other hand, since a ′ ≥ a, we know that Im(a+ib) 1/2 ≥ Im(a ′ + ib) 1/2 . This<br />

completes the proof.<br />

Now let<br />

z j = ˜x j − y j =(x j − y j )+i<br />

For any x∈Γ 2 , y∈¯Ω 1 , it is easy to see that<br />

(x j − y j )<br />

∫ x j<br />

0<br />

∫ x j<br />

0<br />

σ j (t) dt≥ 0.<br />

Thus, by Lemma 3.1,ρ(˜x, y)=(z 2 1 + z2 2 )1/2 satisfies<br />

σ j (t) dt.<br />

Imρ(˜x, y)≥ |x 1− y 1 || ∫ x 1<br />

0 σ 1(t) dt|+|x 2 − y 2 || ∫ x 2<br />

0 σ 2(t) dt|<br />

.<br />

|x− y|<br />

Now by (H2) we have, <strong>for</strong> any x∈Γ 2 , y∈¯Ω 1 ,<br />

Imρ(˜x, y)≥<br />

min(d 1 , d 2 )<br />

(3.5) (L 1 + d 1 ) 2 +(L 2 + d 2 ) 2σ=γσ,<br />

whereγis defined in (3.4b).<br />

We need the modified Bessel function K ν (z) of orderν,ν∈, which is the solution of<br />

the differential equation<br />

z 2 d2 w<br />

dz 2 + z dw<br />

dz −(z2 +ν 2 )w= 0


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 121<br />

satisfying the asymptotic behavior<br />

K ν (z)∼i( π 2z )1/2 e −z−π 4 i<br />

as|z|→∞.<br />

K ν (z) is connected with H (1)<br />

ν<br />

(z) through the relation<br />

Thus we know that<br />

K ν (z)= 1 2 πie 1 2 νπi H (1)<br />

ν (iz).<br />

˜G k (x, y)= i 1<br />

4 H(1) 0<br />

(kρ(˜x, y))=<br />

2π K 0(−ikρ(˜x, y)). (3.6)<br />

We refer to the treatise Watson[20] <strong>for</strong> extensive studies on the special function K ν (z).<br />

Lemma 3.2. For anyν∈,θ 2 ≥θ 1 > 0, we have<br />

K ν (θ 2 )≤ e −(θ 2−θ 1 ) K ν (θ 1 ).<br />

Proof. We first recall the Schläfli integral representation <strong>for</strong>mula[20, P. 181], <strong>for</strong> z∈<br />

such that| arg z| 0 depending only onγbut independent of k,σ, L j , d j ,<br />

j= 1,2, such that <strong>for</strong> any x∈Γ 2 , y∈ ¯Ω 1 ,<br />

(i) | ˜G k (x, y)|≤ C e −(γkσ−1) ;<br />

(ii) ∂ ˜G<br />

<br />

k≤Ck|αm<br />

| e −(γkσ−1) , j= 1,2;<br />

∂ x j (iii) ∂ ˜G<br />

<br />

k≤<br />

Ck e −(γkσ−1) , j= 1,2;<br />

∂ y j (iv) ∂ 2 ˜G<br />

<br />

k≤<br />

Ck 2 |α m | e −(γkσ−1) , i, j= 1,2.<br />

∂ x i ∂ y j<br />

Hereα m = max(|α 1 (x 1 )|,|α 2 (x 2 )|).<br />

x∈Γ 2


122 Z. Chen and X. M. Wu<br />

Proof. By the Schläfli integral representation <strong>for</strong>mula (3.7), it is easy to see that<br />

|K 0 (z)|0. Thus, by (3.6) and Lemma<br />

3.2, if k Imρ(˜x, y)≥1,<br />

| ˜G k |≤ 1<br />

2π |K 0(−ikρ(˜x, y))|≤ 1<br />

2π K 0(kImρ(˜x, y))≤ 1<br />

2π K 0(1)e −(kImρ(˜x,y)−1) .<br />

This proves (i) by (3.5) and (3.8). To show (ii) we first notice that<br />

∂ ˜G k<br />

=− ik<br />

y)<br />

∂ x j 2π K′ 0<br />

(−ikρ(˜x, y))∂ρ(˜x,<br />

= ik<br />

∂ x j 2π K 1(−ikρ(˜x, y)) (˜x j− y j )α j (x j )<br />

,<br />

ρ(˜x, y)<br />

where we have used the identity K ′ 0 (z)=−K 1(z). Note that when|x− y|≥2σ, we have<br />

|ρ(˜x, y)|≥|Re(z 2 1 + z2 2 )|1/2 ≥(|x− y| 2 − 2σ 2 ) 1/2 ≥ 1<br />

<br />

2<br />

|x− y|,<br />

where z j =(˜x j − y j ). Thus <strong>for</strong> any x∈Γ 2 , y∈¯Ω 1 ,<br />

|˜x j − y j |<br />

|ρ(˜x, y)| ≤ 2 (|x− y|2 +σ 2 ) 1/2<br />

≤ 1/2 <br />

2 1+ σ2<br />

10<br />

|x− y| |x− y| 2 ≤<br />

2 . (3.9)<br />

On the other hand, when|x− y|≤2σ, by (3.5) we know that Imρ(˜x, y)≥γσ. Thus<br />

<strong>for</strong> any x∈Γ 2 , y∈¯Ω 1 ,<br />

|˜x j − y j |<br />

|ρ(˜x, y)| ≤(|x− y|2 +σ 2 ) 1/2<br />

≤γ −1(|x− y|2 +σ 2 ) 1/2<br />

≤ 5γ −1 . (3.10)<br />

Imρ(˜x, y) σ<br />

This proves (ii) again by using (3.8) and Lemma 3.2. Similarly, we can prove (iii).<br />

To prove (iv) we note that<br />

∂ 2 ˜G k<br />

∂ x i ∂ y j<br />

= k2<br />

2π K′ 1 (−ikρ(˜x, y))−(˜x i− y i )(˜x j − y j )α i (x i )<br />

ρ(˜x, y) 2<br />

+ ik<br />

2π K 1(−ikρ(˜x, y)) −ρ2 δ i j α i (x i )+(˜x i − y i )(˜x j − y j )α i (x i )<br />

ρ 3 .<br />

By using the identity K ′ 1 (z)=− 1 2 (K 0(z)+ K 2 (z)), we have<br />

|K ′ 1 (−ikρ(˜x, y))|≤ 1 2 (|K 0(−ikρ(˜x, y))|+|K 2 (−ikρ(˜x, y))|)<br />

≤ e −(γkσ−1) 1 2 (K 0(1)+K 2 (1))= e −(γkσ−1) |K ′ 1 (1)|.<br />

There<strong>for</strong>e, by using (3.9)-(3.10) we obtain<br />

∂ 2 ˜G <br />

k<br />

≤ Ck 2 |α<br />

<br />

m | e −(γkσ−1) + Ck|α m |σ −1 e −(γkσ−1)<br />

∂ x i ∂ y j<br />

≤ Ck 2 |α m | e −(γkσ−1) ,


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 123<br />

where in the last inequality we have used the assumption (3.8) to conclude thatσ −1 ≤ kγ.<br />

This completes the proof.<br />

Now we are in the position to estimate the modified single and double layer potentials<br />

˜Ψ k SL , ˜Ψ k DL . Throughout the paper we shall use the weighted H1/2 (Γ j ) norm, j= 1,2,<br />

‖ v‖ H 1/2 (Γ j ) = |Γ j | −1 ‖ v‖ 2 L 2 (Γ j ) +|v|2 1<br />

2 ,Γ j<br />

1/2<br />

,<br />

where<br />

|v| 2 1 =<br />

2 ,Γ j<br />

∫Γ j<br />

∫<br />

|v(x)− v(x ′ )| 2<br />

Γ<br />

|x−x ′ | 2 ds(x) ds(x ′ ).<br />

j<br />

Lemma 3.4. For any f∈ H 1/2 (Γ 1 ), let<br />

v(x)= ˜Ψ k DL (f)= ∫<br />

be the double layer potential. Then<br />

where L= max(L 1 , L 2 ).<br />

Hence<br />

∂ ˜G k (x, y)<br />

∂ n<br />

Γ 1 1 (y)<br />

f(y) ds(y)<br />

‖ v‖ H 1/2 (Γ 2 ) ≤ C|α m|(1+ kL) 2 e −(γkσ−1) ‖ f‖ H 1/2 (Γ 1 ) ,<br />

Proof. For any x∈Γ 2 , by Lemma 3.3, we know that<br />

|v(x)|≤‖∂ n1 (y) ˜G k (x,·)‖ L ∞ (Γ 1 )‖f‖ L 1 (Γ 1 )≤Ck e −(γkσ−1) ‖f‖ L 1 (Γ 1 ).<br />

It is easy to see that, <strong>for</strong> any x, x ′ ∈Γ 2 ,<br />

Thus<br />

|Γ 2 | −1/2 ‖ v‖ L 2 (Γ 2 ) ≤ Ck e−(γkσ−1) ‖ f‖ L 1 (Γ 1 ) .<br />

|v(x)− v(x ′ )|≤C‖∇ x v‖ L ∞ (Γ 2 )|x−x ′ |.<br />

|v| 1<br />

2 ,Γ 2 ≤ C|Γ 2|‖∇ x v‖ L ∞ (Γ 2 )≤C|Γ 2 | max<br />

x∈Γ 2 ,y∈Γ 1<br />

|∇ y ∇ x ˜G k (x, y)|‖f‖ L 1 (Γ 1 )<br />

≤ Ck 2 |α m ||Γ 2 | e −(γkσ−1) ‖f‖ L 1 (Γ 1 ).<br />

Since‖f‖ L 1 (Γ 1 )≤C|Γ 1 |‖ f‖ H 1/2 (Γ 1 ) ≤ C L‖ f‖ H 1/2 (Γ 1 ), we conclude that<br />

This completes the proof.<br />

‖ v‖ H 1/2 (Γ 2 ) ≤ C|α m|(1+ kL) 2 e −(γkσ−1) ‖ f‖ H 1/2 (Γ 1 ) .


124 Z. Chen and X. M. Wu<br />

Lemma 3.5. For anyλ∈H −1/2 (Γ 1 ), let<br />

v(x)= ˜Ψ k SL (λ)= ∫Γ 1<br />

˜G k (x, y)λ(y) ds(y)<br />

be the single layer potential. Then<br />

where L= max(L 1 , L 2 ).<br />

‖ v‖ H 1/2 (Γ 2 ) ≤ C|α m|(1+ kL) 2 e −(γkσ−1) ‖λ‖ H −1/2 (Γ 1 ) ,<br />

Proof. For any x∈Γ 2 , we know that<br />

|v(x)|≤ C‖λ‖ H −1/2 (Γ 1 ) ‖ ˜G k (x,·)‖ H 1/2 (Γ 1 )<br />

≤ C‖λ‖ H −1/2 (Γ 1 ) ‖ ˜G k (x,·)‖ H 1 (Ω 1 )<br />

≤ C‖λ‖ H −1/2 (Γ 1 ) (‖ ˜G k (x,·)‖ L ∞ (Ω 1 )+|Ω 1 | 1/2 ‖∇ y ˜G k (x,·)‖ L ∞ (Ω 1 ))<br />

≤ C‖λ‖ H −1/2 (Γ 1 ) (1+ kL) e−(γkσ−1) ,<br />

where we have used Lemma 3.3. Hence<br />

|Γ 2 | −1/2 ‖ v‖ L 2 (Γ 2 )≤C(1+ kL) e −(γkσ−1) ‖λ‖ H −1/2 (Γ 1 ) .<br />

On the other hand, similar argument as in Lemma 3.4 yields<br />

|v| 1<br />

2 ,Γ 2 ≤ C|Γ 2|‖∇ x v‖ L ∞ (Γ 2 )<br />

≤ C L‖λ‖ H −1/2 (Γ 1 ) max<br />

x∈Γ 2<br />

‖∇ x ˜G k (x,·)‖ H 1/2 (Γ 1 )<br />

≤ C L‖λ‖ H −1/2 (Γ 1 ) max<br />

x∈Γ 2<br />

‖∇ x ˜G k (x,·)‖ H 1 (Ω 1 )<br />

≤ C L‖λ‖ H −1/2 (Γ 1 ) max<br />

x∈Γ 2<br />

<br />

‖∇x ˜G k (x,·)‖ L ∞ (Ω 1 )+|Ω 1 | 1/2 ‖∇ y ∇ x ˜G k (x,·)‖ L ∞ (Ω 1 )<br />

Again by using Lemma 3.3 we obtain<br />

This completes the proof.<br />

|v| 1<br />

2 ,Γ 2 ≤ C|α m|(1+ kL) 2 e −(γkσ−1) ‖λ‖ H −1/2 (Γ 1 ) .<br />

The following theorem is the main result of this subsection.<br />

Theorem 3.2. Let(H1)-(H3) and (3.8) be satisfied. For any f∈ H 1/2 (Γ 1 ), let(f) be the<br />

PML extension defined in (2.12). Then there exists a constant C depending only onγbut<br />

independent of k,σ, L j , d j , j= 1,2, such that<br />

where L= max(L 1 , L 2 ).<br />

‖(f)‖ H 1/2 (Γ 2 ) ≤ C|α m|(1+kL) 2 e −(γkσ−1) ‖ f‖ H 1/2 (Γ 1 ) ,<br />

Proof. This theorem is a direct consequence of Lemmas 3.4-3.5 and the continuity of<br />

the Dirichlet-to-Neumann operator T : H 1/2 (Γ 1 )→H −1/2 (Γ 1 ).<br />

<br />

.


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 125<br />

3.2. The PML equation in the layer<br />

In this subsection we derive the stability estimates <strong>for</strong> the Dirichlet problem of the PML<br />

equation in the layer.<br />

Theorem 3.3. Let(H1) be satisfied. For q∈H 1/2 (Γ 2 ), let w be the solution of the PML<br />

equation in the layer (3.1a)-(3.1b). Then there exists a constant C> 0 independent of k,σ<br />

such that<br />

‖∇w‖ L 2 (Ω PML ) ≤ CĈ−1 |α m | 2 (1+ kL)‖q‖ H 1/2 (Γ 2 ) ,<br />

∂ w H ≤ CĈ −1 |α m | 2 (1+ kL) 2 ‖q‖<br />

∂ n H 1/2 (Γ 2 ) .<br />

1 −1/2 (Γ 1 )<br />

Proof. For anyζ∈H 1 (Ω PML ) such thatζ=q onΓ 2 andζ=0onΓ 1 . By the inf-sup<br />

condition in (3.3) and using (3.2), we know that<br />

|c(w−ζ,ψ)|<br />

Ĉ‖ w−ζ‖ ∗,Ω PML≤ sup = sup<br />

0≠ψ∈H 1 0 (ΩPML )<br />

‖ψ‖ ∗,Ω PML<br />

0≠ψ∈H 1 0 (ΩPML )<br />

By Cauchy-Schwarz inequality<br />

|c(ζ,ψ)|<br />

‖ψ‖ ∗,Ω PML<br />

<br />

|c(ζ,ψ)|≤C max |α 2 |,|α 1 |,|Ω PML | 1/2 k|α 1 ||α 2 |<br />

‖ζ‖<br />

x∈Ω PML (1+σ 1 σ 2 ) 1/2 H 1 (Ω PML )‖ψ‖ ∗,Ω PML<br />

Notice that<br />

≤ C(1+ kL)|α m |‖ζ‖ H 1 (Ω PML )‖ψ‖ ∗,Ω PML. (3.11)<br />

‖ζ‖ ∗,Ω PML≤ C|α m |(1+ kL)‖ζ‖ H 1 (Ω PML ),<br />

by the triangle inequality and the trace inequality, we conclude that<br />

‖ w‖ ∗,Ω PML≤ CĈ −1 |α m |(1+ kL)‖q‖ H 1/2 (Γ 2 ) . (3.12)<br />

This shows the first estimate in the theorem by using the definition of‖·‖ ∗,Ω PML.<br />

Next, since A(x) reduces to the identity matrix onΓ 1 , we know that, <strong>for</strong> anyψ∈<br />

H 1 (Ω PML ) such thatψ=0 onΓ 2 ,<br />

∫ ∫ ∫<br />

∂ w<br />

− ¯ψ= A∇w· n<br />

∂ n ¯ψ= (A∇w·∇ ¯ψ+∇·(A∇w)) dx<br />

Γ 1 1 ∂Ω PML Ω<br />

∫<br />

PML<br />

=<br />

Ω PML (A∇w·∇ ¯ψ− k 2 α 1 α 2 w ¯ψ) dx,<br />

where we have used (3.1a) and the <strong>for</strong>mula of integration by parts. Again by Cauchy-<br />

Schwarz inequality and the argument in (3.11) we get<br />

∫<br />

∂ w<br />

¯ψ<br />

∂ n 1 ≤ C(1+ kL)|α m|‖ w‖ ∗,Ω PML‖ψ‖ H 1 (Ω PML ).<br />

Γ 1<br />

This completes the proof by using (3.12) and the trace inequality.<br />

.


126 Z. Chen and X. M. Wu<br />

3.3. Convergence of the PML problem<br />

The purpose of this section is to prove Theorem 3.1. We start by introducing the<br />

approximate Dirichlet-to-Neumann operator ˆT : H 1/2 (Γ 1 )→H −1/2 (Γ 1 ) associated with<br />

the PML problem. Given f∈ H 1/2 (Γ 1 ), letˆT f =∂ζ/∂ n 1 | Γ1<br />

, whereζ∈ H 1 (Ω PML ) be the<br />

solution of the PML problem in the layer<br />

By assumption (H1),ˆT is well-defined.<br />

∇·(A∇ζ)+α 1 α 2 k 2 ζ=0 inΩ PML , (3.13a)<br />

ζ= f onΓ 1 , ζ=0 onΓ 2 . (3.13b)<br />

Lemma 3.6. Let(H1)-(H3) and (3.8) be satisfied. We have, <strong>for</strong> any f∈ H 1/2 (Γ 1 ),<br />

‖T f−ˆT f‖ H −1/2 (Γ 1 ) ≤ CĈ−1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖ f‖ H 1/2 (Γ 1 ) .<br />

Proof. For any f∈ H 1/2 (Γ 1 ), let(f) be the PML extension defined in (2.12). Denote<br />

byγ + N v=∂v/∂ n 1| Γ1<br />

be the Neumann trace onΓ 1 <strong>for</strong> any function v defined on 2 \¯B 1 . It<br />

is easy to see that<br />

γ + N ˜Ψ k SL (λ)=γ+ N Ψk SL (λ),<br />

γ+ N ˜Ψ k DL (f)=γ+ N Ψk DL (f)<br />

<strong>for</strong> anyλ∈H −1/2 (Γ 1 ) and f∈ H 1/2 (Γ 1 ). Thus, by (2.6),<br />

γ + N (f)=−γ+ N Ψk SL (T f)+γ+ N Ψk DL (f)=γ+ N ξ= T f .<br />

By (3.13a)-(3.13b), we know that T f−ˆT f=∂w/∂ n 1 | Γ1 , where w=(f)−ζ∈ H 1 (Ω PML )<br />

satisfies<br />

∇·(A∇w)+α 1 α 2 k 2 w= 0 inΩ PML ,<br />

w= 0 onΓ 1 , w=(f) onΓ 2 .<br />

By Theorem 3.3 and Theorem 3.2,<br />

∂ w H ≤ CĈ −1 |α m | 2 (1+ kL) 2 ‖(f)‖<br />

∂ n H 1/2 (Γ 2 )<br />

1 −1/2 (Γ 1 )<br />

This completes the proof.<br />

≤ CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖ f‖ H 1/2 (Γ 1 ) .<br />

Proof of Theorem 3.1: We first prove the estimate (3.4a). Let û be the solution of the<br />

PML problem (2.13a)-(2.13b). Simple integration by parts implies that<br />

Subtracting with (2.3) we get<br />

a(û,ψ)+〈Tû−ˆTû,ψ〉 Γ1<br />

=〈g,ψ〉 ΓD<br />

, ∀ψ∈ H 1 (Ω 1 ).<br />

a(u−û,ψ)=〈Tû−ˆTû,ψ〉 Γ1 , ∀ψ∈H 1 (Ω 1 ).


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 127<br />

Thus, by the inf-sup condition (2.4) and Lemma 3.6,<br />

‖u−û‖ H 1 (Ω 1 )≤CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖û‖ H 1/2 (Γ 1 ) . (3.14)<br />

This is the desired estimate (3.4a).<br />

Now we turn to the well-posedness of the PML problem. By the Fredholm alternative<br />

theorem we only need to show the uniqueness of the PML problem (2.13a)-(2.13b). For<br />

that purpose we let g= 0 in (2.13a)-(2.13b). By the uniqueness of the scattering problem<br />

we know that the corresponding scattering solution u=0 inΩ 1 . Thus (3.14) implies<br />

‖û‖ H 1 (Ω 1 )≤CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖û‖ H 1/2 (Γ 1 )<br />

≤ CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖û‖ H 1 (Ω 1 ).<br />

Thus <strong>for</strong> sufficiently largeσwe conclude that û=0onΩ 1 . That û also vanishes in<br />

Ω 2 is a direct consequence of the unique continuation theorem (cf., e.g.,[16, P. 92]). This<br />

completes the proof of Theorem 3.1.<br />

4. Finite element approximation<br />

In this section we introduce the finite element approximations of the PML problems<br />

(2.13a)-(2.13b). From now on we assume g∈L 2 (Γ D ). Let b : H 1 (Ω 2 )× H 1 (Ω 2 )→ be<br />

the sesquilinear <strong>for</strong>m given by<br />

∫<br />

b(ϕ,ψ)=<br />

Ω 2<br />

<br />

A∇ϕ·∇ ¯ψ−α1 α 2 k 2 ϕ ¯ψ d x. (4.1)<br />

Denote by H 1 (0) (Ω 2)={v∈H 1 (Ω 2 ) : v= 0 onΓ 2 }. Then the weak <strong>for</strong>mulation of (2.13a)-<br />

(2.13b) is: Given g∈L 2 (Γ D ), find û∈H 1 (0) (Ω 2) such that<br />

∫<br />

b(û,ψ)=<br />

Γ D<br />

g ¯ψ ds, ∀ψ∈ H 1 (0) (Ω 2). (4.2)<br />

Let h be a regular triangulation of the domainΩ 2 . We assume the elements K∈ h<br />

may have one curved edge align withΓ D so thatΩ 2 =∪ K∈h K. Let V h ⊂ H 1 (Ω 2 ) be the<br />

con<strong>for</strong>ming linear finite element space overΩ 2 , and<br />

◦<br />

V h ={v h ∈ V h : v h = 0 onΓ 2 }.<br />

The finite element approximation to the PML problem (2.13a)-(2.13b) reads as follows:<br />

Find u h ∈ ◦ V h such that<br />

b(u h ,ψ h )=<br />

∫<br />

Γ D<br />

g ¯ψ h ds, ∀ψ h ∈ ◦ V h . (4.3)


128 Z. Chen and X. M. Wu<br />

Following the general theory in[1, Chap. 5], the existence of unique solution of the discrete<br />

problem (4.3) and the finite element convergence analysis depend on the following<br />

discrete inf-sup condition<br />

|b(ϕ h ,ψ h )|<br />

sup ≥ˆµ‖ϕ h ‖<br />

0≠ψ h ∈V ◦ ‖ψ h ‖ H 1 (Ω 2 ), ∀ϕ h ∈ V ◦ h , (4.4)<br />

H 1 (Ω 2 )<br />

h<br />

where the constant ˆµ>0is independent of the finite element mesh size. Since the<br />

continuous problem (4.2) has a unique solution by Theorem 3.1, the sesquilinear <strong>for</strong>m<br />

b : H 1 (0) (Ω 2)× H 1 (0) (Ω 2)→ satisfies the continuous inf-sup condition. Then a general argument<br />

of Schatz[17] implies (4.4) is valid <strong>for</strong> sufficiently small mesh size h 0<br />

depending only onγand the minimum angle of the mesh h such that the following a<br />

posterior error estimate is valid<br />

⎛<br />

‖u−u h ‖ H 1 (Ω 1 )≤CĈ −1 |α m | 2 (1+ kL) ⎝ ∑<br />

K∈ h<br />

η 2 K<br />

⎞<br />

⎠<br />

1/2<br />

+CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖u h ‖ H 1/2 (Γ 1 ) .


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 129<br />

5. A posteriori error analysis<br />

For anyϕ∈H 1 (Ω 1 ), let ˜ϕ be its extension inΩ PML such that<br />

∇·(Ā∇ ˜ϕ)+α 1 α 2 k 2 ˜ϕ= 0 inΩ PML , (5.1a)<br />

˜ϕ=ϕ onΓ 1 , ˜ϕ= 0 onΓ 2 . (5.1b)<br />

Lemma 5.1. Let (H1) be satisfied. For anyϕ,ψ∈H 1 (Ω PML ), we have<br />

〈ˆTϕ,ψ〉 Γ1<br />

=〈ˆT ¯ψ, ¯ϕ〉 Γ1<br />

.<br />

Proof. By definition,ˆTϕ=∂ξ/∂ n 1 onΓ 1 , whereξsatisfies<br />

∇·(A∇ξ)+α 1 α 2 k 2 ξ=0 inΩ PML ,<br />

ξ=ϕ onΓ 1 , ξ=0 onΓ 2 .<br />

Similarly, ˆT ¯ψ=∂ζ/∂ n 1 onΓ 1 , whereζsatisfies the same equation butζ= ¯ψ onΓ 1 ,<br />

ζ=0 onΓ 2 . Integrating by parts we know that<br />

∫<br />

0=− (A∇ξ·∇ζ−α 1 α 2 k 2 ξ·ζ)−<br />

Ω<br />

∫<br />

PML ∫<br />

0=−<br />

Ω PML (A∇ζ·∇ξ−α 1 α 2 k 2 ζ·ξ)−<br />

∫<br />

Γ 1<br />

Γ 1<br />

∂ξ<br />

∂ n 1·ζ,<br />

∂ζ<br />

∂ n 1·ξ.<br />

Since A is a diagonal matrix, the first integrals on the right-hand side of the above two<br />

equations are equal. Thus〈ˆTϕ, ¯ζ〉 Γ1<br />

=〈ˆT ¯ψ,ξ〉 Γ1<br />

. This completes the proof sinceξ=<br />

ϕ,ζ= ¯ψ onΓ 1 .<br />

Lemma 5.2 (Error representation <strong>for</strong>mula). For anyϕ∈H 1 (Ω 1 ), which is extended to be a<br />

function ˜ϕ∈H 1 (Ω 2 ) according to (5.1a)-(5.1b), andϕ h ∈ V ◦ h , we have<br />

∫<br />

a(u−u h ,ϕ)= g(ϕ−ϕ h )− b(u h , ˜ϕ− ˜ϕ h )+〈Tu h −ˆTu h ,ϕ〉 Γ1 . (5.2)<br />

Γ D<br />

Proof. By (2.3) and the definitions (2.2) and (4.1),<br />

=<br />

=<br />

a(u−u h ,ϕ)<br />

∫ ∫<br />

g ¯ϕ− (A∇u h·∇ ¯ϕ−α 1 α 2 k 2 u h ¯ϕ)+〈Tu h ,ϕ〉 Γ1<br />

Γ D Ω<br />

∫<br />

1<br />

∫<br />

g ¯ϕ− b(u h , ˜ϕ)+ (A∇u h·∇ ¯˜ϕ−α 1 α 2 k 2 u h ¯˜ϕ)+〈Tu h ,ϕ〉 Γ1<br />

. (5.3)<br />

Γ D Ω PML


130 Z. Chen and X. M. Wu<br />

On the other hand, by multiplying (5.1a) by ū h , integrating by parts, and recalling that n 1<br />

is the unit outer normal toΓ 1 which points outsideΩ 1 , we deduce that<br />

−<br />

∫<br />

which is equivalent to<br />

∫<br />

Ω PML (Ā∇ ˜ϕ·∇ū h −α 1 α 2 k 2 ˜ϕū h )−<br />

Ω PML (A∇u h·∇ ¯˜ϕ−α 1 α 2 k 2 u h ¯˜ϕ)=−<br />

Since by the definition ofˆT : H 1/2 (Γ 1 )→ H −1/2 (Γ 1 ),<br />

∂ ¯˜ϕ<br />

∂ n 1<br />

Γ1<br />

=ˆT ¯ϕ,<br />

we obtain by substituting (5.4) into (5.3) that<br />

∫<br />

a(u−u h ,ϕ)=<br />

∂ ˜ϕ<br />

∂ n 1<br />

,u h<br />

<br />

<br />

∂ ¯˜ϕ<br />

∂ n 1<br />

,ū h<br />

<br />

Γ 1<br />

= 0,<br />

Γ D<br />

g ¯ϕ− b(u h , ˜ϕ)+〈Tu h ,ϕ〉−〈ˆT ¯ϕ,ū h 〉.<br />

This completes the proof upon using Lemma 5.1 and (4.3).<br />

Γ 1<br />

. (5.4)<br />

Proof of Theorem 4.1: First, we construct a Clément type interpolation operatorΠ h :<br />

H 1 (0) (Ω 2)→ ◦ V h , where<br />

H 1 (0) (Ω 2)={v∈ H 1 (Ω 2 ) : v= 0 onΓ 2 }.<br />

Let h ={a i } N i=1 be the set of the nodes of h which is interior toΩ 2 or on the boundary<br />

Γ D , and{φ i } N i=1 be the corresponding nodal basis of V h. Define∆ i = suppφ i ∩Ω 2 . Then<br />

the interpolation operatorΠ h : H 1 (0) (Ω 2)→ V h is defined by<br />

Π h v(x)=<br />

<br />

N∑<br />

i=1<br />

1<br />

|∆ i |<br />

∫<br />

∆ i<br />

v(x)d x<br />

<br />

φ i (x).<br />

Since the nodes onΓ 2 are not included in the definition ofΠ h , we know thatΠ h v∈ ◦ V h .<br />

Moreover, by slightly modifying the argument in Chen and Nochetto[7, Lemmas 3.1-3.2],<br />

one can show that the operatorΠ h enjoys the following interpolation estimates, <strong>for</strong> any<br />

v∈H 1 (0) (Ω 2),<br />

‖ v−Π h v‖ L 2 (K) ≤ Ch K‖∇v‖ L 2 (˜K) , ‖ v−Π hv‖ L 2 (e) ≤ Ch1/2 e<br />

‖∇v‖ L 2 (ẽ) , (5.5)<br />

where ˜K and ẽ are the union of all elements in h having non-empty intersection with<br />

K∈ h and the side e, respectively.


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 131<br />

Now we takeϕ h =Π h ˜ϕ∈ V ◦ h in the error representation <strong>for</strong>mula (5.2) to get<br />

∫<br />

a(u−u h ,ϕ) = g(ϕ−Π h ϕ)− b(u h , ˜ϕ−Π h ˜ϕ)+〈Tu h −ˆTu h ,ϕ〉 Γ1<br />

Γ D<br />

:= II 1 + II 2 + II 3 . (5.6)<br />

We observe that, by integration by parts and using (4.5)-(4.7),<br />

∫ <br />

∑ ∑ 1<br />

II 1 + II 2 = R h ( ˜ϕ−Π h ˜ϕ) dx+ J e ( ˜ϕ−Π h ˜ϕ) ds .<br />

2<br />

e<br />

K∈ h<br />

∫K<br />

e⊂∂ K<br />

By using standard argument in the a posteriori error analysis and (5.5) we get<br />

<br />

∑<br />

|II 1 + II 2 |≤C ‖h K R h ‖ 2 L 2 (K) + 1 ∑<br />

2<br />

K∈ h<br />

⎛<br />

≤ C⎝ ∑ ⎞1/2<br />

⎠ ‖∇ ˜ϕ‖ L 2 (Ω 2 ).<br />

K∈ h<br />

η 2 K<br />

By the argument in Theorem 3.3, we deduce that<br />

e⊂∂ K<br />

‖h 1/2<br />

e<br />

J e ‖ 2 L 2 (e) 1/2<br />

‖∇ ˜ϕ‖ L 2 (˜K)<br />

‖∇ ˜ϕ‖ L 2 (Ω PML )≤CĈ −1 |α m | 2 (1+ kL)‖ϕ‖ H 1/2 (Γ 1 )<br />

≤ CĈ −1 |α m | 2 (1+ kL)‖ϕ‖ H 1 (Ω 1 ) .<br />

Thus<br />

⎛<br />

|II 1 + II 2 |≤CĈ −1 |α m | 2 (1+ kL) ⎝ ∑<br />

K∈ h<br />

η 2 K<br />

⎞<br />

⎠<br />

1/2<br />

‖ϕ‖ H 1 (Ω 1 ).<br />

By Lemma 3.6, we obtain<br />

|II 3 |≤CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖u h ‖ H 1/2 (Γ 1 ) ‖ϕ‖ H 1/2 (Γ 1 ) .<br />

There<strong>for</strong>e, by the inf-sup condition (2.4), we finally get<br />

‖u−u h ‖ H 1 (Ω 1 ) ≤ C sup |a(u−u h ,ϕ)|<br />

0≠ϕ∈H 1 (Ω 1 ) ‖ϕ‖ H 1 (Ω 1 )<br />

⎛<br />

≤ CĈ −1 |α m | 2 (1+ kL) ⎝ ∑<br />

K∈ h<br />

η 2 K<br />

+CĈ −1 |α m | 3 (1+ kL) 4 e −(γkσ−1) ‖u h ‖ H 1/2 (Γ 1 ) .<br />

This completes the proof.<br />

⎞<br />

⎠<br />

1/2


132 Z. Chen and X. M. Wu<br />

6. Implementation and numerical examples<br />

In this section, we present several numerical examples to illustrate the per<strong>for</strong>mance of<br />

the adaptive uniaxial PML method. The computations are carried out by using the PDE<br />

toolbox of MATLAB. The PML parameters are determined through the a posteriori error<br />

estimate in Theorem 4.1. Note that in Theorem 4.1 that the a posteriori error estimate<br />

consists of two parts: the PML error and the finite element discretization error. First we<br />

choose L 1 , L 2 such that D⊂B 1 and choose d 1 , d 2 such that<br />

d 1<br />

L 1<br />

= d 2<br />

L 2<br />

=χ, (6.1)<br />

whereχ is a constant. Then we chooseχ andσsuch that the exponentially decaying<br />

factor:<br />

χ<br />

<br />

min(L<br />

ω=e −(γkσ−1) −<br />

1 ,L 2 )<br />

kσ−1<br />

χ+1<br />

L<br />

= e<br />

1 2+L2 2 ≤ 10 −8 , (6.2)<br />

which makes the PML error negligible compared with the finite element discretization<br />

errors. By (H3),<br />

σ j (t)= ˜σ j<br />

|t|− L j /2<br />

d j<br />

m<br />

, j= 1,2, (6.3)<br />

where ˜σ 1 , ˜σ 2 are determined fromσas follows<br />

˜σ j = (m+1)σ<br />

d j<br />

, j= 1,2. (6.4)<br />

Once the PML region and the medium property are fixed, we use the standard finite element<br />

adaptive strategy to modify the mesh according to the a posteriori error estimate.<br />

Now we describe the adaptive uniaxial PML method used in the paper.<br />

Algorithm 6.1. Given tolerance TOL> 0. Let m=2.<br />

• Choose L 1 , L 2 such that D⊂B 1 ;<br />

• Chooseχ andσsuch that the exponentially decaying factorω≤10 −8 ;<br />

• Set d 1 , d 2 and ˜σ 1 , ˜σ 2 according to (6.1),(6.4);<br />

• Set the computational domainΩ 2 = B 2 \¯D and generate an initial mesh h over<br />

Ω 2 ;<br />

• While F EM = ∑<br />

K∈ h<br />

η 2 K 1/2>TOL<br />

do<br />

- refine the mesh h according to the strategy:<br />

ifη K > 1 2 max K∈ h<br />

η K , refine the element K∈ h<br />

- solve the discrete problem (4.3) on h<br />

- compute error estimators on h<br />

end while


ÌнÌÈÅÄÔÖÑØÖ×ÓÖÜÑÔÐ׺½Òº¾º ×Ø ×Ø<br />

<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 133<br />

Example 6.1 Example 6.2<br />

ÌоÌÒÙÑÖÓÒÓ×ÖÕÙÖØÓÚØÚÒÖÐØÚÖÖÓÖÓØÖÐÓÖÖÒØ Ó×Ó×ØÓÖÜÑÔк½ºÌÜØÖÐ×¼º¾¾¼¼¹¼º¾¾¼¼iº<br />

χ σ χ σ<br />

0.1λ 1.0 9λ 1.0λ 0.5 20λ<br />

1.0λ 1.0 9λ 1.0λ 1.0 14λ<br />

5.0λ 1.0 9λ 1.0λ 2.0 10λ<br />

0.1λ 1.0 19λ<br />

Error×Ø=0.1λ×Ø=1.0λ×Ø=5.0λ<br />

10% 295 557 5111<br />

1% 997 5556 16845<br />

0.1% 2989 16006 >114848<br />

Now we report two numerical examples to demonstrate the efficiency of the proposed<br />

algorithm. We scale the error estimator <strong>for</strong> determining finite element meshes by a default<br />

factor 0.15 as in the PDE toolbox of MATLAB.<br />

Example 6.1. Let D=[−λ/2,λ/2]×[−λ/2,λ/2]. We consider the scattering problem<br />

whose exact solution is known: u=H (1)<br />

0<br />

(k|x|), where k=2π/λ and soλis the wavelength.<br />

Define<br />

×Ø= min{|x−x ′ |, x∈Γ D , x ′ ∈Γ 1 }<br />

as the minimum distance between the scatterer to the inner boundary of the PML layer. We<br />

want to test the influence of the different choices of the size of B 1 . Fixχ= 1.0 and take<br />

different×Ø, that is, in the first step we choose different L 1 and L 2 . Table 1 shows the<br />

different choices of the PML parameters×Ø,χ andσdetermined by the relation (6.2).<br />

In the following we simply takeλ=1.0 to fix the exact solution.<br />

Fig. 2 shows the log N k -log‖u−u k ‖ H 1 (Ω 1 ) curves, where N k is the number of nodes of<br />

the mesh k and u k is the finite element solution of (4.3) over the mesh k . It indicates<br />

that <strong>for</strong> different choices of×Ø, the meshes and the associated numerical complexity are<br />

quasi-optimal:‖u−u k ‖ H 1 (Ω 1 )≈CN −1/2 is valid asymptotically.<br />

k<br />

One of the important quantities in the scattering problems is the far field pattern:<br />

u ∞ (ˆx)= eiπ 4<br />

<br />

8πk<br />

∫<br />

∂ D<br />

<br />

u(y) ∂ e−ikˆx·y<br />

∂ν(y)<br />

−∂<br />

u(y)<br />

∂ν(y) e−ikˆx·y <br />

ds(y),<br />

ˆx= x<br />

|x| .<br />

We compute the far field u ∞ (ˆx),ˆx=(cos(θ),sin(θ)) T in the observation directionθ=<br />

π/4. Table 2 shows the number of nodes required to achieve the given relative error of<br />

the far field <strong>for</strong> different choices of PML parameter×Ø. It demonstrates clearly that <strong>for</strong><br />

given relative error, a smaller×Øis preferred in terms of number of nodes used. Thus<br />

<strong>for</strong> the same accuracy of the far fields, we can choose small×Øwhich will largely save<br />

the computational costs.


134 Z. Chen and X. M. Wu<br />

10 3 Number of nodal points<br />

10 2<br />

10 1<br />

dist=0.1λ<br />

dist=1.0λ<br />

dist=5.0λ<br />

a line with slope −1/2<br />

2.5<br />

2<br />

1.5<br />

1<br />

ÙÖ¾ÌÕÙ×¹ÓÔØÑÐØÝÓØÔØÚ<br />

10 0<br />

)ÓÖÜÑÔк½º<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 3 10 4 10 5<br />

−3<br />

Ñ×ÖÒÑÒØ×Ó‖u−u N ‖ H 1 (Ω 1<br />

||u−u N<br />

|| H<br />

1 (Ω1 )<br />

A Posteriori Error Estimate<br />

10 2 Number of nodal points<br />

χ=0.5<br />

χ=1.0<br />

χ=2.0<br />

a line with slope −1/2<br />

10 1<br />

Ñ×ÖÒÑÒØ×ÓØÔÓ×ØÖÓÖÖÖÓÖ×Øѹ ØÓÖÓÖÜÑÔк¾º ÙÖÌÕÙ×¹ÓÔØÑÐØÝÓØÔØÚ<br />

10 0<br />

10 −1<br />

10 2 10 3 10 4 10 5<br />

2<br />

0.5<br />

ÙÖ¿ÌÓÑØÖÝÓØ×ØØÖÖÓÖܹ<br />

0<br />

ÑÔк¾º<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

−2.5<br />

−2 −1 0 1 2 3<br />

The far−field pattern u ∞<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

χ=0.5<br />

χ=1.0<br />

χ=2.0<br />

−0.6<br />

−0.7<br />

ØÒÒØÖØÓÒÓÖÜÑÔк¾º ÙÖÌÖÐÔÖØÓØÖ¹ÐÔØØÖÒ×Ò<br />

−0.8<br />

−0.9<br />

−1<br />

−1.1<br />

4 6 8 10 12<br />

Number of nodal points<br />

x 10 4<br />

Example 6.2. This example is taken from[10] which concerns the scattering of the plane<br />

wave u I = e ikx 1<br />

from a perfectly conducting metal. The scatter D is contained in the box<br />

{x∈ 2 : −2< x 1 < 2.2,−0.7< x 2 < 0.7} as plotted in Fig. 3. We take k=2π, that<br />

is the wave lengthλ=1.0. Let×Ø=1.0 and thus the scatterer is contained in the<br />

box ¯B 1 =[−3.2,3.2]×[−1.7,1.7]. The different choices of PML parametersχ andσ<br />

determined by the relation (6.2) are shown in Table 1.<br />

Fig. 4 shows the log N k -log k curves, where N k is the number of nodes of the mesh k<br />

and the<br />

∑ 1/2<br />

k = η 2 K<br />

K∈ k<br />

is the associated a posteriori error estimate. It indicates that the meshes and the associated<br />

numerical complexity are quasi-optimal: k ≈ CN −1/2 is valid asymptotically.<br />

k<br />

Figs. 5 and 6 show the far fields in the incident directionθ = 0 and the reflective


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 135<br />

1.5<br />

1.4<br />

1.3<br />

χ=0.5<br />

χ=1.0<br />

χ=2.0<br />

The far−field pattern u ∞<br />

1.2<br />

1.1<br />

ÙÖÌÖÐÔÖØÓØÖ¹ÐÔØØÖÒ×ÒØÖØÚÖØÓÒÓÖÜÑÔк¾º<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

2 4 6 8 10 12<br />

Number of nodal points<br />

x 10 4<br />

5<br />

4<br />

3<br />

2<br />

º¾º<br />

1.0ÓÖÜÑÔÐ<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−8 −6 −4 −2 0 2 4 6 8<br />

ÙÖÌÑ×Ó¿ÒÓ×ØÖ½ÔØÚØÖØÓÒ×ÛÒ×Ø=1.0Òχ=<br />

ÙÖÌÖÐÔÖØÓØ×ÓÐÙØÓÒÓØÈÅÄÔÖÓÐÑÓÖÜÑÔк¾º<br />

directionθ=π. We observe that the far fields are insensitive to the thickness of the PML<br />

layers.<br />

Then we takeχ= 1.0 and test the influence of different choices of×Øas in Example<br />

6.1. Table 3 shows the number of nodes required to achieve the given relative error of the


ÌпÌÒÙÑÖÓÒÓ×ÖÕÙÖØÓÚØÚÒÖÐØÚÖÖÓÖÓØÖÐ×ÒÓØ ÒÒØÒÖØÚÖØÓÒ×ÓÖÖÒØÓ×Ó×ØÓÖÜÑÔк¾ºÌÖÐ×ÒØÐ×Ø<br />

1.0ÖÓ×Ò×ØÜØÖÐ׺<br />

136 Z. Chen and X. M. Wu<br />

ÔØÚ×ØÔÛÒ×Ø=1.0λÒχ=<br />

Error_inc×Ø= 0.1λ×Ø=1.0λ Error_ref×Ø= 0.1λ×Ø= 1.0λ<br />

10% 568 1032 10% 549 492<br />

1% 7315 12614 1% 2871 5183<br />

0.1% 29882 62605 0.1% 9812 23156<br />

far fields in both incident and reflective directions <strong>for</strong> different choices of PML parameter<br />

×Ø. It again shows that <strong>for</strong> the same accuracy of the far fields, a smaller×Øis a better<br />

choice.<br />

In Fig. 7 we show the mesh after 16 adaptive iterations when×Ø= 1.0 andχ= 1.0.<br />

We observe that the mesh near the boundaryΓ 2 is rather coarse, because the solution is<br />

rather small there due to the exponential damping of the PML layer. Fig. 8 shows the real<br />

part of the PML solution when×Ø= 1.0 andχ= 1.0.<br />

Acknowledgments This work was supported in part by China NSF under the grant<br />

10428105 and by the National Basic Research Project under the grant 2005CB321701.<br />

The authors wish to thank Peter Monk <strong>for</strong> several inspiring discussions and the referees <strong>for</strong><br />

constructive comments.<br />

References<br />

[1] I. Babuška and A. Aziz. Survey Lectures on Mathematical Foundations of the Finite Element<br />

<strong>Method</strong>. in The Mathematical Foundations of the Finite Element <strong>Method</strong> with Application to<br />

Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1973, 5-359.<br />

[2] I. Babuška and C. Rheinboldt. Error estimates <strong>for</strong> adaptive finite element computations. SIAM<br />

J. Numer. <strong>An</strong>al. 15 (1978), 736-754.<br />

[3] J. P. Bérénger. A perfectly matched layer <strong>for</strong> the absorption of electromagnetic waves. J.<br />

Comput. Phys. 114 (1994), 185-200.<br />

[4] W. C. Chew and W. Weedon. A 3D perfectly matched medium from modified Maxwell’s<br />

equations with stretched coordinates. Microwave Opt. Tech. Lett. 7 (1994), 599-604.<br />

[5] J. Chen and Z. Chen. <strong>An</strong> adaptive perfectly matched layer technique <strong>for</strong> 3-D time-harmonic<br />

electromagnetic scattering problems. Math. Comp., 77 (2008), 673-698.<br />

[6] Z. Chen and X. Liu. <strong>An</strong> adaptive perfectly matched layer technique <strong>for</strong> time-harmonic scattering<br />

problems. SIAM J. Numer. <strong>An</strong>al. 43, (2005), 645-671.<br />

[7] Z. Chen and R.H. Nochetto. Residual type a posteriori error estimates <strong>for</strong> elliptic obstacke<br />

problems. Numer. Math. 84 (2000), 527-548.<br />

[8] Z. Chen and H. Wu. <strong>An</strong> adaptive finite element method with perfectly matched absorbing<br />

layers <strong>for</strong> the wave scattering by periodic structures. SIAM J. Numer. <strong>An</strong>al. 41, (2003), 799-<br />

826.<br />

[9] Ph. Clement. Approximation by finite element functions using local regularization. RARIO<br />

<strong>An</strong>al. Numer. 9 (1975), 77-84.<br />

[10] F. Collino and P.B. Monk. The perfectly matched layer in curvilinear coordinates. SIAM J. Sci.<br />

Comput. 19 (1998), 2061-2090.


<strong>An</strong> <strong>Adaptive</strong> <strong>Uniaxial</strong> PML <strong>Method</strong> <strong>for</strong> <strong>Time</strong>-Harmonic Scattering Problems 137<br />

[11] D. Colton and R. Kress. Integral Equation <strong>Method</strong>s in Scattering Theory, John Wiley & Sons,<br />

New York, 1983.<br />

[12] T. Hohage, F. Schmidt and L. Zschiedrich. Solving time-harmonic scattering problems based<br />

on the pole condition. II: Convergence of the PML method. SIAM J. Math. <strong>An</strong>al. 35 (2003),<br />

547-560.<br />

[13] M. Lassas and E. Somersalo. On the existence and convergence of the solution of PML equations.<br />

Computing 60 (1998), 229-241.<br />

[14] M. Lassas and E. Somersalo. <strong>An</strong>alysis of the PML equations in general convex geometry. Proc.<br />

Roy. Soc. Eding. (2001), 1183-1207.<br />

[15] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University<br />

Press, Cambridge, 2000.<br />

[16] P. Monk. Finite Elements <strong>Method</strong>s <strong>for</strong> Maxwell Equations, Ox<strong>for</strong>d University Press, 2003.<br />

[17] A.H. Schatz. <strong>An</strong> observation concerning Ritz-Galerkin methods with indefinite bilinear <strong>for</strong>ms.<br />

Math. Comp. 28 (1974), 959-962.<br />

[18] F.L. Teixeira and W.C. Chew. Advances in the theory of perfectly matched layers. In: W.C.<br />

Chew et al, (eds.), Fast and Efficient Algorithms in Computational Electromagnetics, 283-<br />

346, Artech House, Boston, 2001.<br />

[19] E. Turkel and A. Yefet. Absorbing PML boundary layers <strong>for</strong> wave-like equations. Appl. Numer.<br />

Math. 27 (1998), 533-557.<br />

[20] G.N. Watson. A Treatise on The Theory of Bessel Functions, Cambridge, 1922.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!