16.11.2013 Views

Geological Survey of Denmark and Greenland Bulletin 19 ... - Geus

Geological Survey of Denmark and Greenland Bulletin 19 ... - Geus

Geological Survey of Denmark and Greenland Bulletin 19 ... - Geus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN <strong>19</strong> 2009<br />

Lithostratigraphy <strong>of</strong> the<br />

Cretaceous–Paleocene Nuussuaq Group,<br />

Nuussuaq Basin, West Greenl<strong>and</strong><br />

Gregers Dam, Gunver Krarup Pedersen, Martin Sønderholm,<br />

Helle H. Midtgaard, Lotte Melchior Larsen, Henrik Nøhr-Hansen<br />

<strong>and</strong> Asger Ken Pedersen<br />

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND<br />

MINISTRY OF CLIMATE AND ENERGY


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong> <strong>Bulletin</strong> <strong>19</strong><br />

Keywords<br />

Lithostratigraphy, Nuussuaq Group, Cretaceous, Paleocene, West Greenl<strong>and</strong>, Nuussuaq Basin.<br />

Cover illustration<br />

Sedimentary succession <strong>of</strong> the Nuussuaq Group at Paatuut on the south coast <strong>of</strong> Nuussuaq, one <strong>of</strong> the classical localities for sedimentological<br />

<strong>and</strong> palaeontological studies. The photograph shows deep incision <strong>of</strong> the Paleocene Quikavsak Formation into the Upper<br />

Cretaceous Atane Formation. The conspicuous red coloration is due to self-combustion <strong>of</strong> carbonaceous sediments. The upper part<br />

<strong>of</strong> the succession comprises volcanic rocks <strong>of</strong> the West Greenl<strong>and</strong> Basalt Group. The height <strong>of</strong> the mountains is c. 2000 m. Photo:<br />

Martin Sønderholm.<br />

Frontispiece: facing page<br />

View down into the narrow Paatuutkløften gorge on the southern coast <strong>of</strong> Nuussuaq, where coarse-grained, pale s<strong>and</strong>stones <strong>of</strong> the<br />

Paleocene Quikavsak Formation fill a major incised valley cut into interbedded mudstones <strong>and</strong> s<strong>and</strong>stones <strong>of</strong> the Cretaceous Atane<br />

Formation. Sea-fog <strong>of</strong>ten invades the coastal valleys but typically dissipates during the day. Photo: Finn Dalh<strong>of</strong>f.<br />

Chief editor <strong>of</strong> this series: Adam A. Garde<br />

Editorial board <strong>of</strong> this series: John A. Korstgård, <strong>Geological</strong> Institute, University <strong>of</strong> Aarhus; Minik Rosing, <strong>Geological</strong> Museum, University<br />

<strong>of</strong> Copenhagen; Finn Surlyk, Department <strong>of</strong> Geography <strong>and</strong> Geology, University <strong>of</strong> Copenhagen<br />

Scientific editor <strong>of</strong> this volume: Jon R. Ineson<br />

Editorial secretaries: Jane Holst <strong>and</strong> Esben W. Glendal<br />

Referees: J. Christopher Harrison (Canada), Robert Knox (UK) <strong>and</strong> T. Christopher R. Pulvertaft (<strong>Denmark</strong>)<br />

Illustrations: Jette Halskov<br />

Digital photographic work: Benny M. Schark<br />

Layout <strong>and</strong> graphic production: Annabeth Andersen<br />

Printers: Rosendahls . Schultz Grafisk a/s, Albertslund, <strong>Denmark</strong><br />

Manuscript submitted: 22 April 2008<br />

Final version approved: 1 September 2009<br />

Printed: 28 December 2009<br />

ISSN 1604-8156<br />

ISBN 978-87-7871-260-8<br />

Citation <strong>of</strong> the name <strong>of</strong> this series<br />

It is recommended that the name <strong>of</strong> this series is cited in full, viz. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong> <strong>Bulletin</strong>.<br />

If abbreviation <strong>of</strong> this volume is necessary, the following form is suggested: Geol. Surv. Den. Green. Bull. <strong>19</strong>, 171 pp.<br />

Available from<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong> (GEUS)<br />

Øster Voldgade 10, DK-1350 Copenhagen K, <strong>Denmark</strong><br />

Phone: +45 38 14 20 00, fax: +45 38 14 20 50, e-mail: geus@geus.dk<br />

or at<br />

www.geus.dk/publications/bull<br />

© De Nationale Geologiske Undersøgelser for Danmark og Grønl<strong>and</strong> (GEUS), 2009<br />

For the full text <strong>of</strong> the GEUS copyright clause, please refer to www.geus.dk/publications/bull


Contents<br />

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Previous work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

The period before <strong>19</strong>38 – the pioneers on the fossil floras . . . . . . . . . . . . . . . . . . . . .<br />

The Nûgssuaq Expeditions <strong>19</strong>38–<strong>19</strong>68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

The early hydrocarbon <strong>and</strong> coal-related studies <strong>19</strong>68–<strong>19</strong>82 . . . . . . . . . . . . . . . . . . . .<br />

Recent investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

<strong>Geological</strong> setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Nuussuaq Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Kome Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Slibestensfjeldet Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Upernivik Næs Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Atane Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Skansen Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Ravn Kløft Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Kingittoq Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Qilakitsoq Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Itivnera Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Itilli Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Anariartorfik Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Umiivik Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Kussinerujuk Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Aaffarsuaq Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Kangilia Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Annertuneq Conglomerate Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Oyster–Ammonite Conglomerate Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Quikavsak Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Tupaasat Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Nuuk Qiterleq Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Paatuutkløften Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Agatdal Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Eqalulik Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Abraham Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Atanikerluk Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Naujât Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Akunneq Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Pingu Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Umiussat Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Assoq Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Appendix: Place names <strong>and</strong> localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

5<br />

7<br />

9<br />

11<br />

11<br />

15<br />

17<br />

17<br />

21<br />

27<br />

36<br />

46<br />

49<br />

55<br />

64<br />

67<br />

71<br />

77<br />

80<br />

82<br />

89<br />

92<br />

96<br />

99<br />

104<br />

110<br />

112<br />

114<br />

118<br />

121<br />

123<br />

127<br />

133<br />

138<br />

139<br />

146<br />

149<br />

152<br />

154<br />

155<br />

159<br />

160<br />

169<br />

4


Abstract<br />

Dam, G., Pedersen, G.K., Sønderholm, M., Midtgaard, H.H., Larsen, L.M., Nøhr-<br />

Hansen, H. & Pedersen, A.K. 2009: Lithostratigraphy <strong>of</strong> the Cretaceous–Paleocene<br />

Nuussuaq Group, Nuussuaq Basin, West Greenl<strong>and</strong>.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong> <strong>Bulletin</strong> <strong>19</strong>, 171 pp.<br />

The Nuussuaq Basin is the only exposed Cretaceous–Paleocene sedimentary basin in West Greenl<strong>and</strong><br />

<strong>and</strong> is one <strong>of</strong> a complex <strong>of</strong> linked rift basins stretching from the Labrador Sea to northern Baffin<br />

Bay. These basins developed along West Greenl<strong>and</strong> as a result <strong>of</strong> the opening <strong>of</strong> the Labrador Sea<br />

in Late Mesozoic to Early Cenozoic times. The Nuussuaq Basin is exposed in West Greenl<strong>and</strong> between<br />

69°N <strong>and</strong> 72°N on Disko, Nuussuaq, Upernivik Ø, Qeqertarsuaq, Itsaku <strong>and</strong> Svartenhuk Halvø<br />

<strong>and</strong> has also been recorded in a number <strong>of</strong> shallow <strong>and</strong> deep wells in the region. The sediments<br />

are assigned to the more than 6 km thick Nuussuaq Group (new) which underlies the Palaeogene<br />

plateau basalts <strong>of</strong> the West Greenl<strong>and</strong> Basalt Group. The sediment thickness is best estimated from<br />

seismic data; in the western part <strong>of</strong> the area, seismic <strong>and</strong> magnetic data suggest that the succession<br />

is at least 6 km <strong>and</strong> possibly as much as 10 km thick. The exposed Albian–Paleocene part <strong>of</strong><br />

the succession testifies to two main episodes <strong>of</strong> regional rifting <strong>and</strong> basin development: an Early<br />

Cretaceous <strong>and</strong> a Late Cretaceous – Early Paleocene episode prior to the start <strong>of</strong> sea-floor spreading<br />

in mid-Paleocene time. This exposed section includes fan delta, fluviodeltaic, shelfal <strong>and</strong> deep<br />

marine deposits.<br />

The Nuussuaq Group is divided into ten formations, most <strong>of</strong> which have previously been only<br />

briefly described, with the exception <strong>of</strong> their macr<strong>of</strong>ossil content. In ascending stratigraphic order,<br />

the formations are: the Kome Formation, the Slibestensfjeldet Formation (new), the Upernivik<br />

Næs Formation, the Atane Formation (including four new members – the Skansen, Ravn Kløft,<br />

Kingittoq <strong>and</strong> Qilakitsoq Members – <strong>and</strong> one new bed, the Itivnera Bed), the Itilli Formation<br />

(new, including four new members: the Anariartorfik, Umiivik, Kussinerujuk <strong>and</strong> Aaffarsuaq<br />

Members), the Kangilia Formation (including the revised Annertuneq Conglomerate Member <strong>and</strong><br />

the new Oyster–Ammonite Conglomerate Bed), the Quikavsak Formation (new, including three<br />

new members: the Tupaasat, Nuuk Qiterleq <strong>and</strong> Paatuutkløften Members), the Agatdal Formation,<br />

the Eqalulik Formation (new, including the Abraham Member), <strong>and</strong> the Atanikerluk Formation<br />

(new, including five members: the Naujât, Akunneq (new), Pingu (new), Umiussat <strong>and</strong> Assoq (new)<br />

Members).<br />

Authors’ addresses<br />

G.D., DONG Energy, Agern Allé 24–26, DK-2970 Hørsholm, <strong>Denmark</strong>. E-mail: greda@dongenergy.dk<br />

G.K.P., Department <strong>of</strong> Geography <strong>and</strong> Geology, University <strong>of</strong> Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K,<br />

<strong>Denmark</strong>. E-mail: gunver@geol.ku.dk<br />

M.S., <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>. Present address: DONG Energy, Agern Allé 24–26, DK-2970 Hørsholm,<br />

<strong>Denmark</strong>. E-mail: mason@dongenergy.dk<br />

H.H.M., DONG Energy, Agern Allé 24–26, DK-2970 Hørsholm, <strong>Denmark</strong>. E-mail: helmi@dongenergy.dk<br />

L.M.L., <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>, Øster Voldgade 10, DK-1350 Copenhagen K, <strong>Denmark</strong>.<br />

E-mail: lml@geus.dk<br />

H.N.-H., <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>, Øster Voldgade 10, DK-1350 Copenhagen K, <strong>Denmark</strong>.<br />

E-mail: hnh@geus.dk<br />

A.K.P., Natural History Museum <strong>of</strong> <strong>Denmark</strong>, University <strong>of</strong> Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K,<br />

<strong>Denmark</strong>. E-mail: akp@snm.ku.dk<br />

5


Preface<br />

The onshore Cretaceous–Paleocene sedimentary succession<br />

<strong>of</strong> the Nuussuaq Basin in West Greenl<strong>and</strong> has been<br />

studied since the mid-1850s, mainly because <strong>of</strong> its<br />

extremely well-preserved macroplant <strong>and</strong> invertebrate<br />

fossils <strong>and</strong> the presence <strong>of</strong> coal. The early work suggested<br />

major age differences between the various lithological<br />

units, but as knowledge increased as a result <strong>of</strong> the investigations<br />

carried out from the late <strong>19</strong>30s to the late <strong>19</strong>60s,<br />

the time gaps gradually diminished. During this period,<br />

several more or less informal stratigraphic schemes evolved<br />

<strong>and</strong> were even used differently by different authors, causing<br />

confusion concerning the actual definition, the vertical<br />

<strong>and</strong> lateral extent, <strong>and</strong> the age <strong>of</strong> the lithological units.<br />

This confusion was not helped by the fact that spelling<br />

conventions regarding Greenl<strong>and</strong>ic place names changed<br />

considerably over time. No formal lithostratigraphy in<br />

the Nuussuaq Basin was defined, although Troelsen<br />

(<strong>19</strong>56) in his overview on stratigraphic units in Greenl<strong>and</strong><br />

treated the units he described as formal.<br />

In the early <strong>19</strong>90s, focus was again directed towards<br />

the region as an analogue for the <strong>of</strong>fshore basins <strong>of</strong> West<br />

Greenl<strong>and</strong>. The Danish State, <strong>and</strong> later the Greenl<strong>and</strong><br />

Government, provided substantial funding for studies that<br />

could counter the general assessment <strong>of</strong> the region as<br />

being only gas-prone. Both extensive acquisition <strong>of</strong> seismic<br />

data <strong>and</strong> substantial onshore field studies were initiated<br />

in the Nuussuaq Basin during this period under<br />

the auspices <strong>of</strong> the <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong> (from<br />

<strong>19</strong>95 the <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>,<br />

GEUS). During the following years, the Nuussuaq Basin<br />

evolved from being an analogue for the <strong>of</strong>fshore areas to<br />

being an exploration target in itself due to the finds <strong>of</strong><br />

widespread oil seeps in the basin resulting in the drilling<br />

<strong>of</strong> the first onshore exploration well in Greenl<strong>and</strong> in<strong>19</strong>96.<br />

This culminated in 2007 when petroleum exploration<br />

<strong>of</strong>fshore Disko took a major leap forward with the granting<br />

<strong>of</strong> seven new exploration licenses. It is therefore evident<br />

that a formal description <strong>of</strong> the thick <strong>and</strong> varied<br />

succession onshore is strongly needed in order to create<br />

a common reference for geoscientists working in the<br />

region.<br />

The authors have contributed to various extents in<br />

the completion <strong>of</strong> the manuscript. Gregers Dam, Gunver<br />

Krarup Pedersen <strong>and</strong> Martin Sønderholm have had dual<br />

roles as authors <strong>and</strong> compilers. They have provided original<br />

data on most <strong>of</strong> the formations, have written the introductory<br />

chapters <strong>and</strong> have supplied the majority <strong>of</strong> the<br />

figures. They have been responsible for the manuscript<br />

in all stages <strong>and</strong> have revised the manuscript in accordance<br />

with the comments from the referees. Helle H.<br />

Midtgaard has provided sedimentological logs <strong>and</strong> original<br />

observations on the Kome, Slibestensfjeldet <strong>and</strong><br />

Upernivik Næs Formations <strong>and</strong> on the Ravn Kløft<br />

Member <strong>of</strong> the Atane Formation. Henrik Nøhr-Hansen<br />

has examined numerous palynological slides <strong>and</strong> has provided<br />

data on the ages <strong>of</strong> most <strong>of</strong> the formations. Lotte<br />

Melchior Larsen <strong>and</strong> Asger Ken Pedersen have made it<br />

possible to correlate the siliciclastic sediments <strong>of</strong> the<br />

Atanikerluk Formation to the co-eval magmatic rocks,<br />

<strong>and</strong> have documented the areal extent <strong>of</strong> sedimentary <strong>and</strong><br />

volcanic rocks on maps <strong>and</strong> vertical sections.<br />

7


■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

70°W<br />

■<br />

■<br />

60°W 50°W<br />

■<br />

■<br />

■<br />

■<br />

200 km<br />

■<br />

■<br />

74°N<br />

■<br />

■<br />

■<br />

Melville<br />

Bay<br />

■ ■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■ ■<br />

■<br />

■<br />

■ ■ ■ ■<br />

Greenl<strong>and</strong><br />

Baffin<br />

Bay<br />

■ ■<br />

■<br />

■<br />

■<br />

■<br />

Greenl<strong>and</strong><br />

Possible oceanic crust or<br />

attenuated continental crust<br />

■<br />

■ ■<br />

S<br />

■<br />

■<br />

Mesozoic basin<br />

Palaeogene volcanic rocks<br />

■<br />

■<br />

70°N<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

N<br />

■<br />

Shallow or exposed<br />

continental basement<br />

Exploration wells<br />

■<br />

■<br />

■<br />

D<br />

■<br />

70°N<br />

Exploration wells <strong>19</strong>76–<strong>19</strong>77<br />

■ ■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Nuussuaq<br />

Basin<br />

■<br />

Faults<br />

C<br />

Davis<br />

Strait<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

66°N<br />

■<br />

■<br />

■<br />

■<br />

■<br />

66°N<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Labrador<br />

Sea<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

60°W 50°W<br />

■<br />

■<br />

■ ■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Fig. 1. Simplified geological map <strong>of</strong> West<br />

Greenl<strong>and</strong> (for location, see inset) showing<br />

the Nuussuaq Basin in its regional setting,<br />

broadly outlined by the red box. Based on<br />

Escher & Pulvertaft (<strong>19</strong>95), Chalmers &<br />

Pulvertaft (2001), Oakey (2005) <strong>and</strong><br />

Gregersen et al. (2007). C, Cape Dyer; D,<br />

Disko; N, Nuussuaq; S, Svartenhuk Halvø.<br />

8


Introduction<br />

The Nuussuaq Basin belongs to a complex <strong>of</strong> basins that<br />

were formed in the Early Cretaceous, extending from<br />

the Labrador Sea in the south to Melville Bay in the<br />

north (Fig. 1; Chalmers & Pulvertaft 2001). Due to local<br />

uplift during the Neogene, it is the only one <strong>of</strong> these<br />

basins that extends into the onshore area in West<br />

Greenl<strong>and</strong> where Upper Cretaceous – Paleocene sediments<br />

overlain by volcanic rocks can be studied in the<br />

Disko – Nuussuaq – Svartenhuk Halvø area. The Nuus -<br />

suaq Basin has therefore been used for many years as an<br />

analogue for the basins <strong>of</strong>fshore southern <strong>and</strong> central<br />

West Greenl<strong>and</strong>, the primary target for petroleum exploration.<br />

The former lithostratigraphy <strong>of</strong> the Nuussuaq Basin<br />

was established by researchers working with the classic<br />

flora <strong>and</strong> fauna <strong>of</strong> the Nuussuaq Basin, <strong>and</strong> definition<br />

<strong>of</strong> lithostratigraphical units was therefore to a large extent<br />

governed by fossil finds. This resulted in an incomplete<br />

lithostratigraphical scheme comprising some ill-defined<br />

units which were not true lithostratigraphic units.<br />

During the last two decades, the sedimentology, bio -<br />

stratigraphy, sequence stratigraphy <strong>and</strong> organic geo-<br />

55°W<br />

Hareøen<br />

70°N<br />

Maligaat<br />

Itilli<br />

Fig. 65<br />

Fig. 44<br />

Fig. 74<br />

Ilugissoq<br />

Alianaatsunnguaq<br />

Fig. 82<br />

Aaffarsuaq<br />

Ikorfat<br />

Fig. 113<br />

Naassat<br />

Nuuk Killeq<br />

Nuuk Qiterleq<br />

Tupaasat<br />

Fig. 22<br />

Paatuut<br />

Kussinerujuk<br />

Kuugannguaq Asuk<br />

Qorlortorsuaq<br />

FP93-3-1<br />

Qullissat<br />

Stordal<br />

Vaigat<br />

Qaarsut<br />

Fig. 21<br />

Ak<br />

EIQ<br />

Ataata Kuua<br />

Saqqaqdalen<br />

Uummannaq<br />

Atanikerluk<br />

Nuussuaq<br />

Fig. 40<br />

Saqqaq<br />

51° W<br />

55°W<br />

72°N<br />

71°N<br />

70°N<br />

Svartenhuk<br />

Halvø<br />

Ubekendt<br />

Ejl<strong>and</strong><br />

Qeqertarsuaq<br />

Fig. 73<br />

Disko<br />

Upernivik Ø<br />

Fig. 33<br />

Nuussuaq<br />

Vaigat<br />

51°W<br />

Inl<strong>and</strong><br />

Ice<br />

Disko<br />

Sorte Hak<br />

Pingu<br />

69°N<br />

Grønne Ejl<strong>and</strong><br />

50 km<br />

Aasiaat<br />

West Greenl<strong>and</strong> Basalt Group<br />

Uiffaq<br />

Skansen<br />

Assoq<br />

Fig. 124<br />

25 km<br />

Skarvefjeld<br />

Qeqertarsuaq<br />

Ilulissat<br />

Disko Bugt<br />

55°W 51°W<br />

Precambrian basement<br />

Nuussuaq Group<br />

Town<br />

Locality<br />

Fig. 2. Map <strong>of</strong> Disko <strong>and</strong> Nuussuaq showing the main localities <strong>and</strong> place names used in this paper. Frames <strong>and</strong> figure numbers indicate coverage<br />

<strong>of</strong> detailed maps <strong>and</strong> a seismic section. The pre-Quaternary geology is simplified from Escher (<strong>19</strong>71). The detailed maps <strong>of</strong> Upernivik<br />

Næs (Fig. 33) <strong>and</strong> Svartenhuk Halvø – Qeqertarsuaq (Fig. 73) are located on the regional map on the right. Ak, Akuliarusinnguaq; EIQ,<br />

Eqip Inaarsuata Qaqqaa.<br />

9


Fig. 3. Topographical map by Rink (1857) reproduced by Nordenskiöld (1871), showing the location <strong>of</strong> Kome, Atane <strong>and</strong> other named features<br />

given lithostratigraphic significance by Nordenskiöld.<br />

10


chemistry <strong>of</strong> the Nuussuaq Basin have been studied in<br />

detail by the <strong>Survey</strong> <strong>and</strong> the University <strong>of</strong> Copenhagen,<br />

<strong>and</strong> it is now possible to establish a modern, formal,<br />

lithostratigraphic framework for all the sedimentary units<br />

in the Nuussuaq Basin. As now defined, the individual<br />

Cretaceous – Early Paleocene formations are, to a large<br />

extent, genetic units bounded by unconformities. The<br />

new framework has been established with the least possible<br />

alteration <strong>of</strong> the earlier defined units in order to avoid<br />

confusion <strong>and</strong> to promote the overall underst<strong>and</strong>ing <strong>of</strong><br />

the basin. Therefore, the naming <strong>of</strong> units does not in all<br />

cases conform to the rules set out by the North American<br />

Commission on Stratigraphic Nomenclature (<strong>19</strong>83).<br />

Some <strong>of</strong> the old informal units were named according<br />

to their content <strong>of</strong> fossils or lithology; a few <strong>of</strong> these<br />

units have been retained due to the large collections <strong>of</strong><br />

fossils originating from them.<br />

The place names used herein are all in modern<br />

Greenl<strong>and</strong>ic orthography. However, previously defined<br />

lithostratigraphic units using older spelling have not been<br />

renamed. A complete list <strong>of</strong> place names used is given<br />

in both new <strong>and</strong> old orthography in the Appendix; their<br />

location is shown on Fig. 2.<br />

Previous work<br />

The period before <strong>19</strong>38 – the pioneers<br />

on the fossil floras<br />

The Cretaceous–Paleocene sediments <strong>of</strong> West Greenl<strong>and</strong><br />

have been known as far back as the time when the<br />

Norsemen in Greenl<strong>and</strong> visited this area <strong>and</strong> named a<br />

headl<strong>and</strong> ‘Eysunes’ from the Norse word ‘eisa’ (meaning<br />

glowing embers); this refers to the spontaneous combustion<br />

<strong>of</strong> organic-rich mudstones <strong>and</strong> coal that has<br />

taken place after l<strong>and</strong>slides at several localities along<br />

Vaigat, the strait between Disko <strong>and</strong> Nuussuaq (Fig. 2;<br />

Rosenkrantz <strong>19</strong>67; Henderson <strong>19</strong>69).<br />

Following re-colonisation in 1721, the coal seams<br />

along Vaigat again attracted much attention, <strong>and</strong> by the<br />

time the region had its first inspector in 1782 the Disko<br />

Bugt colonies had become self-sufficient in coal, as mentioned<br />

in Paul Egede’s ‘Efterretninger om Grönl<strong>and</strong>’<br />

(Steenstrup 1874). The early geological <strong>and</strong> geographical<br />

investigations <strong>of</strong> this region were reported by Giesecke<br />

(1806–13, in: Steenstrup <strong>19</strong>10), Rink (1853, 1857; Fig.<br />

3), Nordenskiöld (1871, 1872) <strong>and</strong> Brown (1875). An<br />

account <strong>of</strong> the later investigations up to <strong>19</strong>68 can be<br />

found in Rosenkrantz (<strong>19</strong>70).<br />

For many years it was plant fossils found in the limnic<br />

part <strong>of</strong> the succession that attracted the attention <strong>of</strong> geologists<br />

from all over the world. Brongniart (1831 p. 351)<br />

described the first species from Kome on northern<br />

Nuussuaq. In the following years, collections <strong>of</strong> plant<br />

fossils were made at several localities in the region, mainly<br />

from eastern Disko <strong>and</strong> Atanikerluk, which were described<br />

by Heer (1868). These descriptions aroused so much<br />

interest that a British expedition led by E. Whymper<br />

<strong>and</strong> R. Brown was sent out to collect new material in 1867<br />

(Heer 1870). The expedition <strong>of</strong> A.E. Nordenskiöld in<br />

1870 provided a much larger collection, <strong>and</strong> for the first<br />

time Upper Cretaceous strata were recognised (Heer<br />

1874a, b). Collections from an expedition in 1871 led<br />

by E.G.R. Nauckh<strong>of</strong>f were described by Heer (1880).<br />

Important new collections were made by K.J.V. Steenstrup<br />

during his expeditions in 1871–72 <strong>and</strong> 1878–80, <strong>and</strong><br />

members <strong>of</strong> Steenstrup’s expeditions discovered a number<br />

<strong>of</strong> new plant fossil localities on Disko, Nuussuaq,<br />

Upernivik Ø <strong>and</strong> Svartenhuk Halvø (Fig. 4). Steenstrup<br />

brought his collection back to Copenhagen in 1880 <strong>and</strong><br />

it was described by Heer (1882, 1883a, b). Heer (1883b)<br />

concluded from his studies, which now included more<br />

than 600 species (e.g. Fig. 5), that the plant fossils could<br />

be divided into three Cretaceous floras (the Kome, Atane<br />

<strong>and</strong> Patoot floras) <strong>and</strong> one flora <strong>of</strong> Tertiary age (the Upper<br />

Atanikerdluk flora).<br />

Later work on plant fossils from this area includes<br />

that <strong>of</strong> Seward (<strong>19</strong>24, <strong>19</strong>26), Miner (<strong>19</strong>32a, b; <strong>19</strong>35),<br />

Seward & Conway (<strong>19</strong>35, <strong>19</strong>39), Koch (<strong>19</strong>63, <strong>19</strong>64,<br />

<strong>19</strong>72a, b), <strong>and</strong> Boyd (<strong>19</strong>90, <strong>19</strong>92, <strong>19</strong>93, <strong>19</strong>94, <strong>19</strong>98a,<br />

b, c, 2000). The plant fossils from Upernivik Næs,<br />

described as being part <strong>of</strong> the Atane flora by Heer (1883b),<br />

were recognised as a separate flora (Upernivik Næs flora)<br />

by Koch (<strong>19</strong>64) <strong>and</strong> referred to as the Upernivik flora<br />

by Boyd (<strong>19</strong>98a, b, c, 2000).<br />

11


Fig. 4. The first geological map <strong>of</strong> the Nuussuaq Basin published by Steenstrup (1883b). Note that only the coastal areas were known as all<br />

travel was by boat. Steenstrup made several long journeys in an umiaq, a traditional open rowing boat <strong>of</strong> seal-skin with a crew <strong>of</strong> women.<br />

12


Fig. 5. Plant fossils from the Atane Formation at Atanikerluk illustrated in Flora Fossilis Arctica by Heer (1883b).<br />

13


Peak<br />

1580 m<br />

Peak<br />

1722 m<br />

Peak<br />

1010 m<br />

Ivissussat<br />

Qaqqaat<br />

Ataata<br />

Kuua<br />

Tupaasat<br />

Ivisaannguit<br />

Fig. 6. The south coast <strong>of</strong> Nuussuaq around the Ataata Kuua river delta (the large valley in the centre <strong>of</strong> the pr<strong>of</strong>ile) which is the type area <strong>of</strong><br />

the Nuussuaq Group. Upper panel: Part <strong>of</strong> modern section measured by multimodel photogrammetry using oblique aerial photographs (from<br />

A.K. Pedersen et al. <strong>19</strong>93). Lower panel: Part <strong>of</strong> a long section painted by Harald Moltke, who accompanied K.J.V. Steenstrup on his journey<br />

in 1898 (from Steenstrup <strong>19</strong>00). The 33 km long pr<strong>of</strong>ile extends a little more to the west than the map in Fig. 40. The pr<strong>of</strong>ile shows<br />

many <strong>of</strong> the characteristic features <strong>of</strong> the Nuussuaq Basin: Cretaceous sediments including the Atane Formation, up to 800 m (pale yellow);<br />

Paleocene incised valleys, marine <strong>and</strong> lacustrine mudstones (grey), <strong>and</strong> hyaloclastic foreset-bedded breccias overlain by subaerial lava flows<br />

above c. 800 m (red, blue, purple <strong>and</strong> grey, hyaloclastite breccias in pale colours, lava flows in deep colours). Outcrops <strong>of</strong> the Quikavsak Formation,<br />

including the type section, are shown in bright yellow below the summit Point 1580 m (upper panel).<br />

In spite <strong>of</strong> the fact that this part <strong>of</strong> Greenl<strong>and</strong> had been<br />

visited by a large number <strong>of</strong> expeditions with geological<br />

objectives, knowledge <strong>of</strong> the marine strata was rather<br />

poor until the Nûgssuaq Expeditions from <strong>19</strong>38 to <strong>19</strong>68,<br />

probably because the marine fossils were overshadowed<br />

by the very well-preserved plant fossils. Some marine<br />

fossils were collected in the latter part <strong>of</strong> the <strong>19</strong>th century<br />

by G.F. Pfaff, C.F.V. Henriksen <strong>and</strong> Greenl<strong>and</strong>ers<br />

from Niaqornat, <strong>and</strong> important collections were made<br />

by K.J.V. Steenstrup during his expeditions in 1871–72<br />

<strong>and</strong> 1878–80. Additional sampling was carried out by<br />

D. White <strong>and</strong> C. Schuchert in 1897 <strong>and</strong> by J.P.J. Ravn<br />

<strong>and</strong> A. Heim in <strong>19</strong>09.<br />

Steenstrup (1874) recognised the presence <strong>of</strong> marine<br />

strata within the Atane Formation <strong>of</strong> Nordenskiöld<br />

(1871) along the south coast <strong>of</strong> Nuussuaq (Figs 4, 6). The<br />

collection <strong>of</strong> marine fossils made by Steenstrup in<br />

1871–72 in this area was examined by Schlüter (1874<br />

pp. 30–31), who concluded that the marine strata in<br />

West Greenl<strong>and</strong> must be <strong>of</strong> Late Cretaceous age. This<br />

conclusion was supported by de Loriol (1883) who studied<br />

Steenstrup’s 1879 collection <strong>of</strong> marine faunas from<br />

the north coast <strong>of</strong> Nuussuaq <strong>and</strong> from Paatuut <strong>and</strong> Ataa<br />

on the south coast.<br />

The collection <strong>of</strong> Scaphites from Niaqornat, which<br />

was augmented considerably by Greenl<strong>and</strong>ers who accompanied<br />

Steenstrup on his expeditions <strong>of</strong> 1878–80, was<br />

examined by V. Madsen (1897) who referred the dominant<br />

species to the European Senonian Scaphites römeri<br />

d’Orb.<br />

In 1897, a geological expedition under the auspices<br />

<strong>of</strong> the United States National Museum in connection with<br />

the Peary Arctic Expedition collected fossils from the<br />

Cretaceous <strong>and</strong> Tertiary localities on Nuussuaq. Stanton<br />

(in: White & Schuchert 1898) was <strong>of</strong> the opinion that<br />

the collection <strong>of</strong> marine fossils from the north coast <strong>of</strong><br />

Nuussuaq included a number <strong>of</strong> characteristic Late<br />

Cretaceous types that could be equated to the Senonian<br />

14


Peak<br />

2010 m<br />

Peak<br />

<strong>19</strong>00 m Peak<br />

1760 m<br />

Peak<br />

1580 m<br />

Giesecke<br />

Monument<br />

Uppalluk<br />

<strong>of</strong> Europe, but he left the possibility open that some <strong>of</strong><br />

the faunas from the south coast <strong>of</strong> Nuussuaq could be<br />

Tertiary in age.<br />

Ravn (<strong>19</strong>18) arrived at the same conclusion as Schlüter,<br />

de Loriol <strong>and</strong> Stanton concerning the age <strong>of</strong> the marine<br />

strata in West Greenl<strong>and</strong>, namely that they are Senonian<br />

(Late Cretaceous). His study was based on old material<br />

stored in the Mineralogical Museum in Copenhagen <strong>and</strong><br />

collected by Pfaff, Henriksen <strong>and</strong> Steenstrup together<br />

with material collected in <strong>19</strong>09 by Ravn, <strong>and</strong> to a lesser<br />

extent by Heim, from Disko <strong>and</strong> Nuussuaq (Heim <strong>19</strong>10;<br />

Ravn <strong>19</strong>11). The work <strong>of</strong> Ravn (<strong>19</strong>18) was at that time<br />

the most thorough study <strong>of</strong> the marine fossils <strong>and</strong> many<br />

species were illustrated for the first time. According to<br />

Ravn (<strong>19</strong>18 p. 330) the occurrence <strong>of</strong> American Upper<br />

Cretaceous species in the Greenl<strong>and</strong> fauna suggested that<br />

a marine connection between West Greenl<strong>and</strong> <strong>and</strong> the<br />

central part <strong>of</strong> Canada <strong>and</strong> the United States possibly<br />

existed in Late Cretaceous time, particularly as no affinities<br />

with the American Coastal Plain Cretaceous fauna<br />

or the Cretaceous <strong>of</strong> East Greenl<strong>and</strong> were evident. Relying<br />

solely on Ravn’s results, Teichert (<strong>19</strong>39 p. 155) came to<br />

a similar conclusion, <strong>and</strong> in an accompanying map<br />

Teichert showed the transgression <strong>of</strong> the Late Cretaceous<br />

sea to West Greenl<strong>and</strong> to be from the north-west. Frebold<br />

(<strong>19</strong>34) described an Early Senonian fauna from East<br />

Greenl<strong>and</strong> <strong>and</strong> also made some remarks on the Senonian<br />

fauna from West Greenl<strong>and</strong>.<br />

The pioneering stratigraphic papers by Heer (1868,<br />

1870, 1874a, b, 1880, 1882, 1883a, b), Nordenskiöld<br />

(1871, 1872), <strong>and</strong> Steenstrup (1883b) resulted in the<br />

establishment <strong>of</strong> three pre-volcanic lithostratigraphic<br />

units (the Kome, Atane <strong>and</strong> Upper Atanikerdluk<br />

Formations) <strong>and</strong> four biostratigraphic units (the Kome,<br />

Atane, Patoot <strong>and</strong> Upper Atanikerdluk floras). The first<br />

geological map <strong>of</strong> the region also derives from this period<br />

(Fig. 4; Steenstrup 1883b).<br />

The Nûgssuaq Expeditions <strong>19</strong>38–<strong>19</strong>68<br />

In <strong>19</strong>38, the Danish Nûgssuaq Expeditions ushered in<br />

a new epoch in the study <strong>of</strong> the Cretaceous–Tertiary sediments<br />

in West Greenl<strong>and</strong>. One <strong>of</strong> the many objectives<br />

<strong>of</strong> these expeditions was the study <strong>of</strong> the marine strata<br />

on Nuussuaq <strong>and</strong> in other parts <strong>of</strong> the basalt region <strong>of</strong><br />

West Greenl<strong>and</strong> (Rosenkrantz <strong>19</strong>70) <strong>and</strong> to obtain a<br />

more precise age for the limnic beds <strong>and</strong> their famous<br />

floras.<br />

In <strong>19</strong>38 <strong>and</strong> <strong>19</strong>39, the two Nûgssuaq Expeditions led<br />

by A. Rosenkrantz <strong>and</strong> supported by the Carlsberg<br />

Foundation <strong>and</strong> the Royal Greenl<strong>and</strong> Trade Department<br />

(Den Kongelige Grønl<strong>and</strong>ske H<strong>and</strong>el) carried out studies<br />

in the Nuussuaq Basin. This work was continued<br />

after the Second World War under the auspices <strong>of</strong> the<br />

newly established <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong><br />

15


Fig. 7. Members <strong>of</strong> the Nûgssuaq<br />

Expedition in <strong>19</strong>49. Back row (from left):<br />

Johansi, Abraham Løvstrøm, Sonja Alfred<br />

Hansen, Andreas Tobiassen, Maggie Graff-<br />

Petersen. Front row (from left): Alfred<br />

Rosenkrantz, Kristian Schou, Bruno<br />

Thomsen, Christian Poulsen, Søren Floris<br />

<strong>and</strong> Eske Koch. Many <strong>of</strong> those in the<br />

photo accompanied Rosenkrantz on several<br />

expeditions. Rosenkrantz acknowledged<br />

the assistance <strong>of</strong> the hunters from<br />

Niaqornat, <strong>and</strong> Sonja Hansen’s discovery<br />

<strong>of</strong> the most fossiliferous lithology when he<br />

established the Andreas, Sonja <strong>and</strong><br />

Abraham Members <strong>of</strong> his Agatdal<br />

Formation.<br />

(Grønl<strong>and</strong>s Geologiske Undersøgelse, GGU). From <strong>19</strong>48<br />

to <strong>19</strong>68, 16 expeditions to the area (14 led by A.<br />

Rosenkrantz <strong>and</strong> two by S. Floris <strong>and</strong> K. Raunsgaard<br />

Pedersen) had to a greater or lesser degree been involved<br />

in the study <strong>of</strong> the marine strata. A summary <strong>of</strong> the expeditions<br />

<strong>and</strong> their results was given by Rosenkrantz (<strong>19</strong>70).<br />

More than 47 individuals participated in the work on the<br />

marine deposits during this 30-year period, some <strong>of</strong><br />

whom are seen in Fig. 7.<br />

These expeditions represented the first attempt to<br />

study systematically the marine Cretaceous–Tertiary sediments<br />

in West Greenl<strong>and</strong>. A new biostratigraphy was<br />

erected (Rosenkrantz <strong>19</strong>70 fig. 2) <strong>and</strong> it is thanks to the<br />

efforts <strong>of</strong> the members <strong>of</strong> the Nûgssuaq Expeditions that<br />

large collections <strong>of</strong> marine fossils were brought back to<br />

the <strong>Geological</strong> Museum in Copenhagen. The fossils from<br />

these outst<strong>and</strong>ing collections have since been described<br />

by many other workers:<br />

Ammonites <strong>and</strong> belemnites: Birkelund (<strong>19</strong>56, <strong>19</strong>65)<br />

Corals: Floris (<strong>19</strong>67, <strong>19</strong>72)<br />

Coccoliths: Perch-Nielsen (<strong>19</strong>73), Jürgensen & Mikkelsen<br />

(<strong>19</strong>74)<br />

Crustaceans: Collins & Wienberg Rasmussen (<strong>19</strong>92)<br />

Fish: Bendix-Almgreen (<strong>19</strong>69)<br />

Foraminifera: H.J. Hansen (<strong>19</strong>70)<br />

Gastropods <strong>and</strong> bivalves: Yen (<strong>19</strong>58), Kollmann & Peel<br />

(<strong>19</strong>83), Petersen & Vedelsby (2000)<br />

Leaves <strong>and</strong> fruits: Koch (<strong>19</strong>59, <strong>19</strong>63, <strong>19</strong>64)<br />

Ostracods: Szczechura (<strong>19</strong>71)<br />

Palynomorphs: K.R. Pedersen (<strong>19</strong>68)<br />

Wood: Mathiesen (<strong>19</strong>61)<br />

The gastropods were the subject <strong>of</strong> special study by<br />

Rosenkrantz, but at the time <strong>of</strong> his death in <strong>19</strong>74 only<br />

a fraction <strong>of</strong> the material had been published. A catalogue<br />

comprising the gastropod material left unpublished at<br />

Rosenkrantz’s death was published by Kollmann & Peel<br />

(<strong>19</strong>83) <strong>and</strong> represents the culmination <strong>of</strong> many years <strong>of</strong><br />

work by Rosenkrantz <strong>and</strong> the technicians <strong>and</strong> artists<br />

under his direction. A catalogue <strong>of</strong> 115 bivalve taxa from<br />

the Rosenkrantz collection has been published by Petersen<br />

& Vedelsby (2000). The gastropod family Psedolividae<br />

has been revised by Pacaud & Schnetler (<strong>19</strong>99). However,<br />

large parts <strong>of</strong> the collection including echinoderms, serpulids,<br />

bryozoans, nautiloids, cirripeds, brachiopods <strong>and</strong><br />

insects are still unpublished.<br />

Aspects <strong>of</strong> the stratigraphy <strong>of</strong> the Cretaceous–Tertiary<br />

sediments in the Disko – Nuussuaq – Svartenhuk Halvø<br />

area were published in a number <strong>of</strong> papers between <strong>19</strong>59<br />

<strong>and</strong> <strong>19</strong>76, in particular by Koch (<strong>19</strong>59, <strong>19</strong>63, <strong>19</strong>64),<br />

Koch & Pedersen (<strong>19</strong>60), Rosenkrantz & Pulvertaft<br />

(<strong>19</strong>69), H.J. Hansen (<strong>19</strong>70), Rosenkrantz (<strong>19</strong>70) <strong>and</strong><br />

Henderson et al. (<strong>19</strong>76). Some elements <strong>of</strong> the strati graphy<br />

presented in these papers are well established, especially<br />

the biostratigraphy <strong>of</strong> the marine Cretaceous based on<br />

ammonites collected in situ (Birkelund <strong>19</strong>65) <strong>and</strong> the<br />

lithostratigraphy <strong>of</strong> the non-marine Paleocene in southern<br />

Nuussuaq (Koch <strong>19</strong>59). However, other stratigraphic<br />

interpretations were based on very general descriptions<br />

<strong>and</strong> a number <strong>of</strong> undocumented statements <strong>and</strong> correlations.<br />

A shortcoming <strong>of</strong> the work on the sediments<br />

during the Nûgssuaq Expeditions was the lack <strong>of</strong> a formal<br />

correlative, regional framework for the marine <strong>and</strong><br />

non-marine Cretaceous strata.<br />

16


A lithostratigraphy for the marine Danian beds <strong>of</strong><br />

northern <strong>and</strong> central Nuussuaq was established by<br />

Rosenkrantz (in: Koch <strong>19</strong>63) <strong>and</strong> Rosenkrantz (<strong>19</strong>70).<br />

The Paleocene Kangilia <strong>and</strong> the Agatdal Formations were<br />

subdivided into members by Rosenkrantz (<strong>19</strong>70), but<br />

these subdivisions are not entirely satisfactory, <strong>and</strong><br />

Rosenkrantz’s correlation <strong>of</strong> the marine Paleocene across<br />

Nuussuaq at member level was not documented.<br />

As regards the marine Cretaceous, the situation was<br />

rather better thanks largely to the comprehensive work<br />

<strong>of</strong> Birkelund (<strong>19</strong>65). She demonstrated that the marine<br />

Cretaceous spanned the upper Turonian – Maastrichtian<br />

interval, <strong>and</strong> that the oldest marine strata are to be found<br />

on Svartenhuk Halvø.<br />

Two map sheets in GGU’s 1:500 000 map series covering<br />

the central part <strong>of</strong> West Greenl<strong>and</strong> were compiled<br />

during this period (A. Escher <strong>19</strong>71; J.C. Escher <strong>19</strong>85).<br />

The early hydrocarbon <strong>and</strong> coal-related<br />

studies <strong>19</strong>68–<strong>19</strong>82<br />

In the late <strong>19</strong>60s, the hydrocarbon potential <strong>of</strong> the basins<br />

<strong>of</strong>fshore Labrador <strong>and</strong> West Greenl<strong>and</strong> was recognised.<br />

In the early <strong>19</strong>70s, petroleum exploration started with<br />

the acquisition <strong>of</strong> a large number <strong>of</strong> seismic surveys <strong>and</strong><br />

culminated with the drilling <strong>of</strong> five exploration wells <strong>of</strong>fshore<br />

West Greenl<strong>and</strong> in <strong>19</strong>76 <strong>and</strong> <strong>19</strong>77 (Fig. 1; Rolle<br />

<strong>19</strong>85). In acknowledgement <strong>of</strong> the need for geological<br />

information, GGU <strong>and</strong> the petroleum industry studied<br />

the sedimentology, biostratigraphy <strong>and</strong> organic geochemistry<br />

<strong>of</strong> the onshore Cretaceous–Tertiary successions.<br />

However, these studies came to an abrupt end<br />

when all five wells drilled <strong>of</strong>fshore were declared to be<br />

dry <strong>and</strong> the industry left West Greenl<strong>and</strong>. The most<br />

important results <strong>of</strong> these studies were published by<br />

Henderson (<strong>19</strong>69, <strong>19</strong>73, <strong>19</strong>76), Sharma (<strong>19</strong>73), Elder<br />

(<strong>19</strong>75), Schiener (<strong>19</strong>75, <strong>19</strong>76), J.M. Hansen (<strong>19</strong>76),<br />

Henderson et al. (<strong>19</strong>76, <strong>19</strong>81), Schiener & Floris (<strong>19</strong>77)<br />

<strong>and</strong> Schiener & Leythaeuser (<strong>19</strong>78).<br />

During this phase <strong>of</strong> the work, the first overall facies<br />

pattern was established <strong>and</strong> a palaeogeographic reconstruction<br />

for the mid-Cretaceous was presented (Schiener<br />

<strong>19</strong>75, <strong>19</strong>77), but neither a basin model nor systematic<br />

biostratigraphy or lithostratigraphy were published,<br />

despite the great efforts <strong>of</strong> both GGU <strong>and</strong> the petroleum<br />

industry. However, unpublished reports by Ehman<br />

et al. (<strong>19</strong>76), Croxton (<strong>19</strong>76, <strong>19</strong>78a, b) <strong>and</strong> Ehman<br />

(<strong>19</strong>77) <strong>and</strong> an unpublished thesis by J.M. Hansen (<strong>19</strong>80b)<br />

presented new stratigraphic divisions <strong>and</strong> correlations<br />

based on palynology. The reports <strong>of</strong> Ehman et al. <strong>and</strong><br />

Croxton dealt with the entire sedimentary succession <strong>of</strong><br />

the region, but only in rather general terms. In contrast,<br />

J.M. Hansen focussed on the marine Paleocene <strong>and</strong> presented<br />

a more detailed stratigraphic analysis. A sedimentological<br />

paper on the Lower Cretaceous fluviodeltaic<br />

sediments at Kuuk, on the north coast <strong>of</strong> Nuussuaq was<br />

published by Pulvertaft (<strong>19</strong>79). Three 1:100 000 map<br />

sheets were compiled during this period (Rosenkrantz et<br />

al. <strong>19</strong>74, <strong>19</strong>76; Pulvertaft <strong>19</strong>87).<br />

The first seismic lines in the Nuussuaq Basin were<br />

also acquired during this period (Sharma <strong>19</strong>73; Elder<br />

<strong>19</strong>75). According to the interpretations <strong>of</strong> these authors,<br />

the thickest succession <strong>of</strong> sediments is found along the<br />

north coast <strong>of</strong> Nuussuaq, where it amounts to 4 km, <strong>of</strong><br />

which 3 km are below sea level. Along southern Nuussuaq,<br />

the total thickness <strong>of</strong> sediments was estimated to be about<br />

3 km, <strong>of</strong> which 2 km were interpreted to occur below<br />

sea level.<br />

Following the ab<strong>and</strong>onment <strong>of</strong> the coal mine at<br />

Qullissat on the north-east coast <strong>of</strong> Disko in <strong>19</strong>72, a<br />

major study on the coals on Nuussuaq was initiated by<br />

GGU in <strong>19</strong>78 with support from the Danish Ministry<br />

<strong>of</strong> Commerce. The aim <strong>of</strong> the project was to produce<br />

detailed geological <strong>and</strong> technical information on the<br />

coal-bearing strata on the south coast <strong>of</strong> Nuussuaq, requisite<br />

information for a decision whether or not to invest<br />

in detailed exploration programmes (Shekhar et al. <strong>19</strong>82).<br />

Three stratigraphic boreholes were drilled <strong>and</strong> a total <strong>of</strong><br />

828 m <strong>of</strong> core was taken. More than 12 km <strong>of</strong> outcrop<br />

section was measured <strong>and</strong> numerous coal samples were<br />

analysed. Unfortunately, the results were disappointing<br />

<strong>and</strong> did not warrant further investigation; the results<br />

were never considered in more detail <strong>and</strong> were only documented<br />

in an internal project report (Shekhar et al.<br />

<strong>19</strong>82). Although the study provided a lot <strong>of</strong> new information<br />

on the coals <strong>and</strong> the sedimentary succession, this<br />

information was never synthesised.<br />

Recent investigations<br />

In the <strong>19</strong>80s, petroleum geological research at GGU was<br />

focussed on North <strong>and</strong> East Greenl<strong>and</strong> <strong>and</strong> only limited<br />

research was carried out in the Nuussuaq Basin, mainly<br />

by geologists from the universities <strong>of</strong> Copenhagen <strong>and</strong><br />

Aarhus (Johannessen & Nielsen <strong>19</strong>82; G.K. Pedersen<br />

<strong>19</strong>89; Boyd <strong>19</strong>90, <strong>19</strong>92, <strong>19</strong>93, <strong>19</strong>94, <strong>19</strong>98a, b, c, 2000).<br />

It was not until the start <strong>of</strong> GGU’s Disko Bugt Expeditions<br />

(<strong>19</strong>88–<strong>19</strong>92; Fig. 8) that extensive studies <strong>of</strong> the<br />

Cretaceous–Tertiary sedimentary <strong>and</strong> volcanic succession<br />

<strong>of</strong> the Nuussuaq Basin were initiated together with<br />

17


Fig. 8. Members <strong>of</strong> the Disko Bugt<br />

Expeditions in <strong>19</strong>92. Studies on the<br />

sediments <strong>of</strong> the Nuussuaq Basin were<br />

carried out from a base in Uummannaq.<br />

Participants (left to right): Ib Olsen, Søren<br />

Saxtorph, Gregers Dam, Eskild Schack<br />

Pedersen, Helle H. Midtgaard, Christian J.<br />

Bjerrum, Lotte Melchior Larsen, Asger Ken<br />

Pedersen, Stig Schack Pedersen, Martin<br />

Sønderholm, Christian Schack Pedersen,<br />

Gunver Krarup Pedersen <strong>and</strong> Flemming<br />

Getreuer Christiansen.<br />

studies on the adjacent Precambrian terrain <strong>and</strong> studies<br />

relevant for mineral exploration in the region (Kalsbeek<br />

& Christiansen <strong>19</strong>92, <strong>and</strong> references therein).<br />

During the first years <strong>of</strong> the Disko Bugt Expeditions,<br />

most <strong>of</strong> the research on sediments dealt with the mid-<br />

Cretaceous deltaic deposits <strong>of</strong> the Atane Formation <strong>and</strong><br />

the synvolcanic lacustrine deposits. It was carried out<br />

mainly by the University <strong>of</strong> Copenhagen <strong>and</strong> resulted in<br />

a number <strong>of</strong> case studies on sedimentology <strong>and</strong> palynostratigraphy<br />

(see below).<br />

The introduction <strong>of</strong> multimodel photogrammetry<br />

during this period (A.K. Pedersen & Dueholm <strong>19</strong>92) permitted<br />

detailed mapping <strong>of</strong> individual rock units (e.g.<br />

A.K. Pedersen et al. <strong>19</strong>93, 2002). This provided a framework<br />

for later correlation <strong>of</strong> the synvolcanic sediments<br />

<strong>and</strong> interpretation <strong>of</strong> their palaeogeography (e.g. A.K.<br />

Pedersen et al. <strong>19</strong>96; G.K. Pedersen et al. <strong>19</strong>98).<br />

From the onset <strong>of</strong> field studies in the <strong>19</strong>60s <strong>and</strong> the<br />

subsequent drilling <strong>of</strong> the five dry exploration wells in<br />

the mid-<strong>19</strong>70s, the lack <strong>of</strong> documented oil-prone source<br />

rocks in West Greenl<strong>and</strong> had been acknowledged as the<br />

main risk in relation to oil exploration in West Greenl<strong>and</strong>.<br />

In order to confront this problem, GGU initiated a reevaluation<br />

<strong>of</strong> the hydrocarbon potential. A systematic<br />

analysis <strong>of</strong> the Nuussuaq Basin was initiated in <strong>19</strong>90 as<br />

part <strong>of</strong> the Disko Bugt Expeditions including sedimentological,<br />

palynostratigraphical, source rock <strong>and</strong> diagenetic<br />

studies.<br />

At the same time, GGU reassessed some <strong>of</strong> the seismic<br />

data acquired during the early <strong>19</strong>70s <strong>of</strong>fshore West<br />

Greenl<strong>and</strong>, <strong>and</strong> it became evident that sedimentary basins<br />

which could contain oil <strong>and</strong> gas were much more extensive<br />

than had previously been supposed (Chalmers <strong>19</strong>89,<br />

<strong>19</strong>93). This was further substantiated when seismic traverses<br />

across the Labrador Sea acquired in <strong>19</strong>77 by<br />

Bundesanstalt für Geowissenschaften und Rohst<strong>of</strong>fe<br />

(BGR) were reprocessed <strong>and</strong> reinterpreted; from the<br />

reprocessed lines it could be seen that the continent–ocean<br />

boundary lies much farther from the Greenl<strong>and</strong> coast than<br />

previously supposed, opening up the possibility that<br />

prospective sedimentary basins exist in the deeper parts<br />

<strong>of</strong> Greenl<strong>and</strong> waters (Chalmers <strong>19</strong>91; Chalmers et al.<br />

<strong>19</strong>93). This resulted in government-funded acquisition<br />

<strong>of</strong> more than 6000 km <strong>of</strong> seismic data by GGU in<br />

<strong>19</strong>90–92 <strong>and</strong> a speculative survey <strong>of</strong> nearly 2000 km in<br />

<strong>19</strong>92, all in <strong>of</strong>fshore West Greenl<strong>and</strong>. In addition, more<br />

than 4000 km <strong>of</strong> seismic data in Melville Bay <strong>of</strong>fshore<br />

North-West Greenl<strong>and</strong> were acquired by the industry in<br />

<strong>19</strong>92. A licensing round was announced in West<br />

Greenl<strong>and</strong> in <strong>19</strong>93, but no applications were submitted,<br />

mainly due to the lack <strong>of</strong> a documented oil-prone source<br />

rock in West Greenl<strong>and</strong>.<br />

The perception <strong>of</strong> the prospectivity <strong>of</strong> the area was<br />

significantly enhanced, however, by the discovery <strong>of</strong> bitumen<br />

in vugs in basalts near the base <strong>of</strong> the lava pile in<br />

<strong>19</strong>92 <strong>and</strong> in a slim-core well (Marraat-1) in <strong>19</strong>93 (Chri -<br />

stiansen & Pulvertaft <strong>19</strong>94; Dam & Christiansen <strong>19</strong>94).<br />

Then, in <strong>19</strong>94, a 13 km long reflection seismic line<br />

acquired on the southern shore <strong>of</strong> Nuussuaq revealed<br />

that the base <strong>of</strong> the sedimentary basin is at least 5 km<br />

below sea level at this locality (Christiansen et al. <strong>19</strong>95).<br />

With these results, attention began to focus on the petroleum<br />

potential <strong>of</strong> the Nuussuaq Basin itself. After the original<br />

discoveries, oils <strong>and</strong> bitumen were found in surface<br />

outcrops over a wide area <strong>of</strong> western Nuussuaq <strong>and</strong> also<br />

on the north side <strong>of</strong> Disko <strong>and</strong> on the south-eastern corner<br />

<strong>of</strong> Svartenhuk Halvø (Christiansen et al. <strong>19</strong>98).<br />

Inspired by the early finds, grønArctic Energy Inc., a small<br />

18


to provide further funding for studies to overcome the<br />

disappointing outcome <strong>of</strong> the <strong>19</strong>92 licensing round.<br />

More field work was carried out on Disko, Nuussuaq <strong>and</strong><br />

Svartenhuk Halvø in the period between <strong>19</strong>94 <strong>and</strong> 2002.<br />

During the summer <strong>of</strong> <strong>19</strong>95, the <strong>Survey</strong> acquired more<br />

than 3700 km <strong>of</strong> seismic <strong>and</strong> gravity data, mainly in the<br />

fjords <strong>and</strong> sounds around Disko <strong>and</strong> Nuussuaq (Chri -<br />

stiansen et al. <strong>19</strong>96a), <strong>and</strong> a 1200 m deep stratigraphic<br />

slim-core hole (Umiivik-1) was drilled on Svartenhuk<br />

Halvø in <strong>19</strong>95 (Bate & Christiansen <strong>19</strong>96). Additional<br />

information was obtained using seismic <strong>and</strong> magnetic data<br />

from the <strong>19</strong>70s combined with an aeromagnetic survey<br />

flown over the area in <strong>19</strong>97 (Rasmussen et al. 2001).<br />

The most important results from these studies include:<br />

Fig. 9. The GRO#3 exploration well on western Nuussuaq drilled<br />

by the Canadian company grønArctic Inc. in <strong>19</strong>96. For location, see<br />

Fig. 65; the drilled succession is shown in Fig. 67. Photo: Kim Zinck-<br />

Jørgensen.<br />

Canadian company, held a concession in western Nuus -<br />

suaq from <strong>19</strong>94 to <strong>19</strong>98. During this period, the company<br />

drilled four slim-core wells (GANW#1, GANE#1,<br />

GANK#1 <strong>and</strong> GANT#1) <strong>and</strong> one conventional exploration<br />

well (GRO#3) to a depth <strong>of</strong> 2996 m (Fig. 9). The<br />

wells were drilled in areas where geological information<br />

on the sediments beneath the volcanic rocks was completely<br />

lacking, <strong>and</strong> they provided a large volume <strong>of</strong> new<br />

data that also tied the outcrop areas together. Detailed<br />

sedimentological, organic geochemical <strong>and</strong> palynostratigraphical<br />

analyses <strong>of</strong> the wells were carried out by<br />

the <strong>Survey</strong> <strong>and</strong> were published in numerous reports <strong>of</strong><br />

the ‘Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

Rapport’ series in <strong>19</strong>96–97. Many <strong>of</strong> the results have<br />

later been incorporated into <strong>and</strong> summarised in other publications.<br />

The positive results from the years <strong>19</strong>90–<strong>19</strong>94 encouraged<br />

the Government <strong>of</strong> Greenl<strong>and</strong> <strong>and</strong> the Danish State<br />

1) Interpretation <strong>of</strong> seismic <strong>and</strong> magnetic data, forward<br />

modelling <strong>of</strong> gravity pr<strong>of</strong>iles <strong>and</strong> a reappraisal <strong>of</strong> all<br />

available data on faults in the onshore areas (Chalmers<br />

et al. <strong>19</strong>99).<br />

2) Documentation <strong>of</strong> several oil types in surface oil seeps<br />

<strong>and</strong> wells <strong>and</strong> several possible source rock intervals<br />

<strong>and</strong> their possible correlation with Cenomanian–<br />

Turonian oils from the Central Western Interior Seaway<br />

in North America, or to Upper Jurassic-sourced oils<br />

from the Jeanne d’Arc Basin <strong>of</strong>fshore Newfoundl<strong>and</strong><br />

<strong>and</strong> in the North Sea (Bojesen-Koefoed et al. <strong>19</strong>99,<br />

2004, 2007; Christiansen et al. 2002).<br />

3) Documentation <strong>of</strong> wet gas in the Umiivik-1 well (Fig.<br />

73), suggesting the presence <strong>of</strong> a good, but overmature,<br />

Turonian source rock for condensate or oil (Dam<br />

et al. <strong>19</strong>98b).<br />

4) Establishment <strong>of</strong> a new biostratigraphic scheme for the<br />

Cretaceous <strong>and</strong> Paleocene onshore <strong>and</strong> <strong>of</strong>fshore deposits<br />

(Nøhr-Hansen <strong>19</strong>96; Nøhr-Hansen et al. 2002; Søn -<br />

derholm et al. 2003).<br />

5) Documentation <strong>of</strong> promising reservoir intervals in<br />

the turbidite succession <strong>and</strong> a quantitative log-interpretation<br />

<strong>of</strong> the upper part <strong>of</strong> the GRO#3 well (which<br />

was not tested prior to casing), suggesting high hydrocarbon<br />

saturations in s<strong>and</strong>stone units (Kristensen &<br />

Dam <strong>19</strong>97; Dam et al. <strong>19</strong>98d; Kierkegaard <strong>19</strong>98).<br />

6) Completion <strong>of</strong> the geological mapping <strong>of</strong> eastern<br />

Disko <strong>and</strong> south-east Nuussuaq (A.K. Pedersen et al.<br />

2000, 2001, 2007a, b). Extensive photogrammetrical<br />

work forms the basis <strong>of</strong> five geological pr<strong>of</strong>iles through<br />

the Nuussuaq Basin (1:20 000). These pr<strong>of</strong>iles document<br />

the sediments <strong>of</strong> the Nuussuaq Group <strong>and</strong> the<br />

overlying West Greenl<strong>and</strong> Basalt Group, including<br />

the relationships between the early volcanic rocks <strong>and</strong><br />

the synvolcanic sediments (A.K. Pedersen et al. <strong>19</strong>93,<br />

2002, 2003, 2005, 2006a, b).<br />

<strong>19</strong>


The onshore studies carried out since <strong>19</strong>88 have<br />

resulted in numerous publications, as summarised below:<br />

Biostratigraphy <strong>and</strong> palaeontology:<br />

Boyd (<strong>19</strong>90, <strong>19</strong>92, <strong>19</strong>93, <strong>19</strong>94, <strong>19</strong>98a, b, c, 2000),<br />

Hjortkjær (<strong>19</strong>91), Piasecki et al. (<strong>19</strong>92), Koppelhus<br />

& Pedersen (<strong>19</strong>93), Nøhr-Hansen (<strong>19</strong>93, <strong>19</strong>96, <strong>19</strong>97a,<br />

b, c), Nøhr-Hansen & Dam (<strong>19</strong>97), Dam et al. (<strong>19</strong>98b,<br />

c), Kennedy et al. (<strong>19</strong>99), Lanstorp (<strong>19</strong>99), Nøhr-<br />

Hansen & Sheldon (2000), Nøhr-Hansen et al. (2002),<br />

Sønderholm et al. (2003), G.K. Pedersen & Bromley<br />

(2006).<br />

Diagenesis:<br />

Preuss (<strong>19</strong>96), Stilling (<strong>19</strong>96), Kierkegaard (<strong>19</strong>98).<br />

Organic geochemistry:<br />

Christiansen et al. (<strong>19</strong>96b, <strong>19</strong>98, <strong>19</strong>99, 2000), Bojesen-<br />

Koefoed et al. (<strong>19</strong>97, <strong>19</strong>99, 2001, 2004, 2007), Nyt<strong>of</strong>t<br />

et al. (2000), G.K. Pedersen et al. (2006).<br />

Olsen (<strong>19</strong>91), Olsen & Pedersen (<strong>19</strong>91), G.K. Pedersen<br />

& Pulvertaft (<strong>19</strong>92), Dueholm & Olsen (<strong>19</strong>93), Olsen<br />

(<strong>19</strong>93), Dam & Sønderholm (<strong>19</strong>94), A.K. Pedersen<br />

et al. (<strong>19</strong>96), Midtgaard (<strong>19</strong>96a, b), Dam & Sønder -<br />

holm (<strong>19</strong>98), G.K. Pedersen et al. (<strong>19</strong>98), Dam et al.<br />

(<strong>19</strong>98a, 2000), Jensen (2000), Dam & Nøhr-Hansen<br />

(2001), Dam (2002), Nielsen (2003).<br />

Structural geology:<br />

Chalmers et al. (<strong>19</strong>99), J.G. Larsen & Pulvertaft (2000),<br />

Chalmers & Pulvertaft (2001), Marcussen et al. (2002),<br />

Bonow (2005), Japsen et al. (2005, 2006, 2009),<br />

Wilson et al. (2006), Bonow et al. (2006a, b, 2007).<br />

Well descriptions:<br />

Dam & Christiansen (<strong>19</strong>94), Christiansen et al. (<strong>19</strong>94a,<br />

<strong>19</strong>96c, <strong>19</strong>97), Bate & Christiansen (<strong>19</strong>96), Dam<br />

(<strong>19</strong>96a, b, c, <strong>19</strong>97), Dahl et al. (<strong>19</strong>97), Kristensen &<br />

Dam (<strong>19</strong>97), Nøhr-Hansen (<strong>19</strong>97a, b, c), Kierkegaard<br />

(<strong>19</strong>98), Ambirk (2000), Madsen (2000).<br />

Sedimentology:<br />

G.K. Pedersen & Jeppesen (<strong>19</strong>88), G.K. Pedersen<br />

(<strong>19</strong>89), Pulvertaft (<strong>19</strong>89a, b), Midtgaard (<strong>19</strong>91),<br />

20


DGR<br />

<strong>Geological</strong> setting<br />

As a result <strong>of</strong> the opening <strong>of</strong> the Labrador Sea in Late<br />

Mesozoic to Early Cenozoic times, a complex <strong>of</strong> linked<br />

rift basins stretching from the Labrador Sea to northern<br />

Baffin Bay developed along West Greenl<strong>and</strong> (Fig. 1;<br />

Chalmers & Pulvertaft 2001).<br />

Two main episodes <strong>of</strong> regional rifting <strong>and</strong> basin development<br />

during this time have been documented in the<br />

area: an episode <strong>of</strong> Early Cretaceous rifting, <strong>and</strong> a Late<br />

Cretaceous – Early Paleocene rift episode prior to the start<br />

<strong>of</strong> sea-floor spreading in mid-Paleocene time (Dam &<br />

Sønderholm <strong>19</strong>98; Dam et al. 2000; Chalmers &<br />

Pulvertaft 2001; Dam 2002; Sørensen 2006).<br />

The most extensive outcrops <strong>of</strong> Mesozoic–Palaeogene<br />

rocks in the entire Labrador Sea – Davis Strait – Baffin<br />

Bay region are those <strong>of</strong> the Nuussuaq Basin in the Disko<br />

– Nuussuaq – Svartenhuk Halvø area in central West<br />

Greenl<strong>and</strong>. This basin may be a southern extension <strong>of</strong><br />

the basin complex in the Melville Bay region (Fig. 1;<br />

Whittaker et al. <strong>19</strong>97); the <strong>of</strong>fshore area between 68° <strong>and</strong><br />

73°N is, however, covered by Palaeogene basalts <strong>and</strong> little<br />

is therefore known about the deeper-lying successions<br />

in this region. A small outcrop is known from Cape<br />

Dyer, eastern Baffin Isl<strong>and</strong> (Burden & Langille <strong>19</strong>90) <strong>and</strong><br />

outcrops <strong>of</strong> Cretaceous–Palaeogene sediments are also seen<br />

farther north in Arctic Canada on Bylot Isl<strong>and</strong> (Miall et<br />

al. <strong>19</strong>80; Miall <strong>19</strong>86; Harrison et al. <strong>19</strong>99) <strong>and</strong> on<br />

Ellesmere Isl<strong>and</strong> (Núñez-Betelu <strong>19</strong>94, Núñez-Betelu et<br />

al. <strong>19</strong>94a, b; Harrison et al. <strong>19</strong>99).<br />

During the Early Paleocene (Danian), the area <strong>of</strong>fshore<br />

southern West Greenl<strong>and</strong> was subjected to major<br />

uplift <strong>and</strong> erosion (Bonow et al. 2007). Sedimentation<br />

resumed in the Late Danian contemporaneously with<br />

the major episode <strong>of</strong> Paleocene volcanism in the<br />

Disko–Nuussuaq area <strong>and</strong> continued into the Holocene<br />

with a major hiatus spanning the Oligocene in the north<br />

<strong>and</strong> the mid-Eocene to mid-Miocene in the south<br />

(Dalh<strong>of</strong>f et al. 2003).<br />

56°W<br />

72°N<br />

71°N<br />

70°N<br />

69°N<br />

Svartenhuk<br />

Halvø<br />

Hareøen<br />

Nordfjord<br />

Mellemfjord<br />

50 km<br />

Ubekendt<br />

Ejl<strong>and</strong><br />

Uummannaq<br />

Fjord<br />

Itilli fault zone<br />

Disko<br />

KQ<br />

Qeqertarsuaq<br />

Vaigat<br />

53°W<br />

Upernivik<br />

Ø<br />

Aasiaat<br />

Uummannaq<br />

Nuussuaq<br />

Disko Bugt<br />

51°W<br />

Inl<strong>and</strong> Ice<br />

Ilulissat<br />

Grønne<br />

Ejl<strong>and</strong><br />

55°W 51°W<br />

Palaeogene intrusive<br />

complex<br />

?<br />

Ik<br />

Qeqertarsuaq<br />

?<br />

72°N<br />

71°N<br />

Extensional fault<br />

Fig. 10. Simplified geological map <strong>of</strong> the Nuussuaq Basin (after<br />

Chalmers et al. <strong>19</strong>99). Ik, Ikorfat fault zone; KQ, Kuu -<br />

gannguaq–Qunnilik Fault; DGR, Disko Gneiss Ridge. The<br />

<strong>of</strong>fshore geology is indicated by paler shades.<br />

Lower Palaeogene basalts<br />

Maastrichtian–Paleocene<br />

sediments<br />

Albian–Campanian<br />

sediments<br />

Precambrian basement<br />

Pre-volcanic fault<br />

Fault with lateral<br />

or alternating<br />

displacements<br />

21


Sea-level curve,<br />

relative to present<br />

Ma<br />

55.8<br />

Eoc<br />

Ypresian<br />

2<br />

Kanisut Mb<br />

58.7<br />

61.1<br />

65.5<br />

Palaeogene<br />

Paleocene<br />

Thanetian<br />

Sel<strong>and</strong>ian<br />

Danian<br />

Maastrichtian<br />

Eqalulik Fm<br />

Kangilia<br />

Fm<br />

1<br />

Agatdal<br />

Fm<br />

Kangilia<br />

Fm<br />

Ifsorisoq Mb<br />

Maligât Fm<br />

Vaigat Fm<br />

70.6<br />

83.5<br />

85.8<br />

88.6<br />

Cretaceous<br />

Upper<br />

Campanian<br />

Santonian<br />

Coniacian<br />

Turonian<br />

Itilli Fm<br />

Umiivik Mb<br />

Slope<br />

Itilli Fm<br />

Anariartorfik Mb<br />

Fault-controlled slope<br />

93.6<br />

Cenomanian<br />

undated<br />

sediments<br />

99.6<br />

Lower<br />

Albian<br />

Kuugannguaq–Qunnilik Fault<br />

112.0<br />

Lavas<br />

Hyaloclastites<br />

Deep marine s<strong>and</strong>stones<br />

<strong>and</strong> conglomerates<br />

Fluviatile <strong>and</strong> deltaic s<strong>and</strong>stones<br />

<strong>and</strong> conglomerates<br />

Deep marine thinly interbedded<br />

s<strong>and</strong>stones <strong>and</strong> mudstones<br />

Mudstone<br />

Coal<br />

Chaotic beds<br />

Turbidite channels<br />

Unconformity associated with<br />

submarine canyon incision<br />

Unconformity associated with<br />

valley incision<br />

Unconformity<br />

Tectonic phase<br />

Uplift<br />

Igneous activity<br />

22


TSS<br />

8<br />

Agatdal<br />

Fm Eqalulik Fm<br />

Kangilia<br />

Fm<br />

Itilli Fm<br />

Aaffarsuaq Mb<br />

Atane Fm<br />

Qilakitsoq Mb<br />

Deltaic Slope<br />

West Greenl<strong>and</strong> Basalt Group<br />

3 4 5 8<br />

?<br />

?<br />

8<br />

Quikavsak<br />

Fm<br />

Kangilia<br />

Fm<br />

Atane Fm<br />

Qilakitsoq Mb<br />

Deltaic<br />

Tupaasat valley<br />

Paatuutkløften valley<br />

Quikavsak Fm<br />

Atane Fm<br />

Kingittoq Mb<br />

Deltaic<br />

Atanikerluk Fm<br />

Itilli Fm<br />

Kussinerujuk Mb<br />

Atane Fm<br />

Kingittoq Mb<br />

6<br />

?<br />

Deltaic<br />

Slibestensfjeldet<br />

Fm<br />

Atane Fm<br />

Ravn Kløft Mb<br />

Kome Fm<br />

7<br />

Basement Alluvial / lacustrine / deltaic<br />

Kangilia<br />

Fm<br />

Itilli Fm<br />

Umiivik Mb<br />

undated<br />

sediments<br />

Upernivik Næs Fm<br />

?<br />

?<br />

?<br />

Basement<br />

Estuarine ? Distal submarine lobes<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Drift<br />

Syn-rift<br />

Post-rift<br />

Syn-rift<br />

1<br />

2<br />

6<br />

7<br />

3<br />

4<br />

5<br />

Fig. 11. Tectonic events <strong>and</strong> regional depositional units, based on Dam & Nøhr-<br />

Hansen (2001). TSS, tectonostratigraphic sequences; Eoc, Eocene. 1: GANT#1<br />

well; 2: GRO#3 well <strong>and</strong> Itilli valley area; 3: Agatdalen; 4: Ataata Kuua <strong>and</strong><br />

Paatuut; 5: Atanikerluk; 6: Kussinerujuk; 7: Slibestensfjeldet; 8: Umiivik-1 well<br />

<strong>and</strong> Itsaku. The chronostratigraphy <strong>and</strong> the sea-level curve were produced using<br />

TSCreator PRO v. 4.0.2 (2009; http://tscreator.org). Compare with Fig. 16. See<br />

text for further explanation.<br />

23


The Cretaceous–Paleocene sedimentary succession <strong>of</strong><br />

the Nuussuaq Basin onshore West Greenl<strong>and</strong> is best<br />

known from eastern Disko <strong>and</strong> Nuussuaq, with minor,<br />

<strong>and</strong> less well-known, outcrops in the northern part <strong>of</strong><br />

the region on Upernivik Ø, Qeqertarsuaq <strong>and</strong> Svartenhuk<br />

Halvø (Fig. 10). Seismic <strong>and</strong> other geophysical data indicate<br />

that the Mesozoic succession is at least 6 km <strong>and</strong><br />

possibly up to 10 km thick in the western part <strong>of</strong> the<br />

basin (Christiansen et al. <strong>19</strong>95; Chalmers et al. <strong>19</strong>99;<br />

Marcussen et al. 2002). The eastern part appears to have<br />

much shallower depths to basement (Chalmers et al.<br />

<strong>19</strong>99), <strong>and</strong> this part <strong>of</strong> the basin could represent thermal<br />

subsidence following the initial rifting episode<br />

(Chalmers et al. <strong>19</strong>99).<br />

The outcrops record a complex history <strong>of</strong> rifting, subsidence<br />

<strong>and</strong> uplift commencing with an earliest Cretaceous<br />

(or earlier) rift episode followed by a phase <strong>of</strong> thermal<br />

subsidence during the Cenomanian – Early Campanian<br />

(Fig. 11). Rifting resumed in the Early Campanian <strong>and</strong><br />

increased in the Maastrichtian – Early Paleocene (Dam<br />

& Sønderholm <strong>19</strong>98; Dam et al. 2000; Dam 2002),<br />

culminating during the Early Paleocene. The first phase<br />

<strong>of</strong> these later rift episodes was characterised by largescale<br />

normal faulting, whereas the later episodes were<br />

associated with continued extension <strong>and</strong> regional uplift<br />

(Dam & Sønderholm <strong>19</strong>98; Dam et al. <strong>19</strong>98a, 2000;<br />

Chalmers et al. <strong>19</strong>99). The late phases were accompanied<br />

by widespread igneous activity <strong>and</strong> extrusion <strong>of</strong> a<br />

thick succession <strong>of</strong> flood basalts (Fig. 12; A.K. Pedersen<br />

et al. 2006a, <strong>and</strong> references therein).<br />

The exposed part <strong>of</strong> the succession in the Nuussuaq<br />

Basin can be divided into eight tectonostratigraphic<br />

sequences (TSS; Fig. 11); the early rift episode includes<br />

two sequences <strong>and</strong> the late episode six sequences. These<br />

sequences are mainly related to tectonic events marking<br />

discrete basin-fill phases (Dam & Nøhr-Hansen 2001).<br />

TSS 1. The oldest sediments exposed in the Disko –<br />

Nuussuaq Basin represent a syn-rift episode <strong>of</strong> ?Aptian–<br />

Albian age represented by the Kome <strong>and</strong> Slibestensfjeldet<br />

Formations (Fig. 11). This rift episode is dominated by<br />

N–S extensional faults which, however, were also reactivated<br />

during later stages (L.M. Larsen & Pedersen<br />

<strong>19</strong>90; Chalmers et al. <strong>19</strong>99). The N–S trend is expressed<br />

particularly by the Disko Gneiss Ridge <strong>and</strong> this trend<br />

can be followed on western Nuussuaq in the Kuugan -<br />

nguaq–Qunnilik Fault (Figs 10, 12). The eastern boundary<br />

fault system has an overall NNW–SSE trend but is<br />

segmented with individual segments trending N–S or<br />

NW–SE (Fig. 10; Rosenkrantz & Pulvertaft <strong>19</strong>69;<br />

Chalmers et al. <strong>19</strong>99). The Kome Formation reflects an<br />

environment dominated by fluvial plains <strong>and</strong> local fan<br />

deltas amid basement highs. The Kome For mation is<br />

overlain locally by lacustrine deposits <strong>of</strong> the<br />

Slibestensfjeldet Formation.<br />

TSS 2. Following the early rifting episode there was a long<br />

period <strong>of</strong> thermal subsidence that spanned the late<br />

Albian/Cenomanian – Turonian – earliest Campanian.<br />

It was initiated by a major flooding surface represented<br />

by <strong>of</strong>fshore <strong>and</strong> deep marine deposits <strong>of</strong> the Itilli<br />

Formation to the north <strong>and</strong> west <strong>and</strong> by fluvio-deltaic<br />

<strong>and</strong> shallow marine deposits <strong>of</strong> the Atane <strong>and</strong> Upernivik<br />

Næs Formations to the east <strong>and</strong> south. The delta fanned<br />

out to the west <strong>and</strong> north-west from a point east <strong>of</strong> Disko<br />

(Figs 11, 12A; G.K. Pedersen & Pulvertaft <strong>19</strong>92). On<br />

Nuussuaq, the transition from shallow marine <strong>and</strong> fluviodeltaic<br />

deposition in the eastern part <strong>of</strong> the basin into<br />

deep marine deposition farther west was controlled by<br />

the N–S-trending Kuugannguaq–Qunnilik Fault that<br />

crosses Disko <strong>and</strong> Nuussuaq (Figs 10, 11, 12A). On<br />

Svartenhuk Halvø contemporaneous deep-water deposition<br />

in a slope setting is recorded by a thick distal turbidite<br />

succession assigned to the Itilli Formation (Dam<br />

<strong>19</strong>97). This unit includes marine anoxic shales <strong>of</strong> presumed<br />

Cenomanian–Turonian age, that are possibly the<br />

source for the marine Itilli oil type (Dam et al. <strong>19</strong>98b;<br />

Bojesen-Koefoed et al. <strong>19</strong>99).<br />

TSS 3. In earliest Campanian time a new tectonic episode<br />

was initiated that lasted from the Early Campanian to<br />

the Paleocene (Dam et al. 2000). The early phase <strong>of</strong> this<br />

rifting episode (TSS 3) is represented by the Aaffarsuaq<br />

Member <strong>of</strong> the Itilli Formation <strong>and</strong> lasted into the<br />

Maastrichtian. This phase is characterised by normal<br />

faulting, subsidence <strong>and</strong> syn-rift sedimentation. It resulted<br />

in the development <strong>of</strong> an angular unconformity, <strong>and</strong><br />

deltaic deposition gave way to catastrophic deposition<br />

in a footwall fan setting along N–S-trending normal<br />

faults. In the eastern part <strong>of</strong> the region, uplift resulted<br />

in significant erosion <strong>of</strong> previously deposited Atane<br />

Formation deposits, <strong>and</strong> it is therefore expected that turbidite<br />

s<strong>and</strong>stone bodies <strong>of</strong> regional extent are present in<br />

the deep-water facies in the <strong>of</strong>fshore basins to the west.<br />

Facing page:<br />

Fig. 12. Palaeogeographic reconstructions <strong>of</strong> the Nuussuaq Basin<br />

during A: the Cenomanian/Turonian – earliest Campanian (TSS<br />

2); B: the latest Maastrichtian (TSS 4); C: the Danian (TSS 5); D:<br />

the earliest Sel<strong>and</strong>ian; E: early Sel<strong>and</strong>ian volcanism, <strong>and</strong> F: early<br />

Sel<strong>and</strong>ian dammed lake phase. See text for further explanation.<br />

24


A<br />

Svartenhuk<br />

Halvø<br />

50 km<br />

B<br />

Hinterl<strong>and</strong><br />

Delta<br />

Slope<br />

Nuussuaq<br />

Basin floor<br />

Disko<br />

Volcanoes<br />

Lavas<br />

Fault<br />

C<br />

D<br />

E<br />

F<br />

25


TSS 4–6. In late Maastrichtian – early Paleocene times,<br />

the stress system in the region changed <strong>and</strong> extension took<br />

place along NW–SE- <strong>and</strong> N–S-trending faults. These<br />

form the present eastern limit <strong>of</strong> the basin <strong>and</strong> displaced<br />

<strong>and</strong> rotated the major N–S-trending blocks in the basin<br />

(e.g. Chalmers et al. <strong>19</strong>99). This trend is identical to several<br />

shear zones in the Precambrian basement east <strong>of</strong><br />

Disko Bugt, suggesting that these shear zones exerted an<br />

influence on later faulting <strong>and</strong> the trend <strong>of</strong> a possible major<br />

transfer fault situated in the Vaigat area (Dam 2002,<br />

Wilson et al. 2006). Major faulting also occurred along<br />

the NW–SE-trending faults <strong>and</strong> the rift blocks show evidence<br />

<strong>of</strong> major erosion before being covered by upper<br />

Maastrichtian – lower Paleocene marine sediments <strong>and</strong><br />

middle Paleocene volcanic rocks (e.g. Dam & Sønderholm<br />

<strong>19</strong>98; Dam et al. <strong>19</strong>98a). Birkelund (<strong>19</strong>65), Rosenkrantz<br />

& Pulvertaft (<strong>19</strong>69), J.M. Hansen (<strong>19</strong>80b) <strong>and</strong> Nøhr-<br />

Hansen (<strong>19</strong>96) noted that the Cretaceous faunas <strong>and</strong><br />

floras in the Nuussuaq Basin are similar to those <strong>of</strong> the<br />

North American Interior Seaway while there is an overwhelming<br />

European affinity in the Danian, suggesting<br />

that an important change in palaeogeography <strong>and</strong> palaeoceanography<br />

took place during the latest Cretaceous <strong>and</strong><br />

earliest Paleocene (Rosenkrantz & Pulvertaft <strong>19</strong>69; J.M.<br />

Hansen <strong>19</strong>80b; Nøhr-Hansen & Dam <strong>19</strong>97).<br />

Three major tectonic episodes have been recognised<br />

in the latest Maastrichtian – earliest Paleocene, each associated<br />

with incision <strong>of</strong> valley systems <strong>and</strong> development<br />

<strong>of</strong> submarine canyons. The first <strong>of</strong> these episodes (TSS 4)<br />

is <strong>of</strong> latest Maastrichtian age <strong>and</strong> is represented by the<br />

Kangilia Formation in which two major SE–NW-trending<br />

submarine canyons have been documented from outcrops<br />

(Figs 11, 12B). The second, earliest Paleocene<br />

episode (TSS 5) is represented by the Tupaasat <strong>and</strong> Nuuk<br />

Qiterleq Members <strong>of</strong> the Quikavsak Formation. It was<br />

associated with major uplift <strong>of</strong> the basin <strong>and</strong> fluvial valley<br />

incision into Early Paleocene fault scarps <strong>and</strong> was<br />

characterised by catastrophic deposition (Figs 11, 12C).<br />

The third episode (TSS 6) was associated with renewed<br />

uplift during the Early Paleocene, <strong>and</strong> valleys were incised<br />

into the old valley system (Paatuutkløften Member <strong>of</strong> the<br />

Quikavsak Formation). Crossing the Kuuganng uaq–<br />

Qunnilik Fault, the incised fluvial valleys pass westwards<br />

into a major submarine canyon system. The s<strong>and</strong>-dominated<br />

fill <strong>of</strong> this canyon system is referred to the marine<br />

Agatdal Formation, named after equivalent valley-fill<br />

sediments in central Nuussuaq. This episode was followed<br />

by very rapid subsidence. The incised valleys were<br />

eventually filled with transgressive estuarine <strong>and</strong> shoreface<br />

deposits before they were blanketed by <strong>of</strong>fshore tuffaceous<br />

mudstones referred to the Eqalulik Formation (Figs 11,<br />

12D) immediately prior to extrusion <strong>of</strong> picritic hyaloclastite<br />

breccias <strong>of</strong> the Vaigat Formation (Figs 11, 12E).<br />

The recurrent episodes <strong>of</strong> uplift <strong>and</strong> incision <strong>of</strong> submarine<br />

canyons <strong>and</strong> valleys in Atane Formation deposits in<br />

the eastern outcrop area resulted in major redistribution<br />

<strong>of</strong> s<strong>and</strong>stones into the deep-water environments to the<br />

west, <strong>and</strong> major turbidite s<strong>and</strong>stone bodies are thus suspected<br />

to be regionally present.<br />

TSS 7. Extrusion <strong>of</strong> the volcanic succession can be divided<br />

into two phases <strong>and</strong> is related to continental break-up<br />

in the Labrador Sea region (A.K. Pedersen et al. 2006a,<br />

<strong>and</strong> references therein). The first phase, <strong>of</strong> Sel<strong>and</strong>ian to<br />

Thanetian (late Paleocene) age, was dominated by extrusion<br />

<strong>of</strong> olivine-rich basalts <strong>and</strong> picrites (Figs 11, 12E) <strong>and</strong><br />

later by more evolved, plagioclase-phyric basalts (Vaigat<br />

<strong>and</strong> Maligât Formations <strong>of</strong> the West Greenl<strong>and</strong> Basalt<br />

Group). The first volcanism recorded in the Nuussuaq<br />

Basin took place in a marine environment <strong>and</strong> eruption<br />

centres were located in the westernmost part <strong>of</strong> the basin<br />

(Fig. 12E). Thick hyaloclastite fans <strong>of</strong> the Anaanaa <strong>and</strong><br />

Naujánguit Members prograded towards the east (Figs<br />

12F, 16). As the volcanic front moved eastwards, large<br />

lakes were formed between the volcanic front to the west<br />

<strong>and</strong> the cratonic crystalline basement to the east (Fig. 12F),<br />

giving rise to synvolcanic lacustrine deposits (Atanikerluk<br />

Formation).<br />

TSS 8. During the Eocene, magmatic activity in the<br />

Nuussuaq Basin resumed with an episode <strong>of</strong> intrusion<br />

<strong>of</strong> dyke swarms <strong>and</strong> extrusion <strong>of</strong> basalts <strong>and</strong> sparse comendite<br />

tuffs <strong>of</strong> the Kanísut Member. The volcanic succession<br />

was dissected by N–S-trending faults <strong>and</strong> a new<br />

NE–SW fault trend (the Itilli fault zone; Figs 10, 11).<br />

The tectonic activity probably waned during Late<br />

Palaeogene time, <strong>and</strong> during the Neogene the area was<br />

lifted by 1–2 km to its present elevation (Chalmers 2000;<br />

Bonow et al. 2007, <strong>and</strong> references therein; Japsen et al.<br />

2009).<br />

26


Nuussuaq Group<br />

new group<br />

History. The Nuussuaq Group comprises the pre- <strong>and</strong> synvolcanic<br />

Cretaceous–Paleocene sediments on a number<br />

<strong>of</strong> isl<strong>and</strong>s <strong>and</strong> peninsulas in West Greenl<strong>and</strong> between<br />

69° <strong>and</strong> 72°N (Fig. 10). Intrabasaltic sediments are not<br />

included in the Nuussuaq Group but in the overlying West<br />

Greenl<strong>and</strong> Basalt Group, with the local exception <strong>of</strong><br />

thin, intra-volcanic wedges <strong>of</strong> sediment that demonstrably<br />

interdigitate with prograding hyaloclastite breccias<br />

<strong>and</strong> lavas <strong>of</strong> the lowermost West Greenl<strong>and</strong> Basalt<br />

Group. Initial investigations <strong>of</strong> the geology date back to<br />

K.L. Giesecke, who described the area in detail around<br />

1810 (in: Steenstrup <strong>19</strong>10), Rink (1853, 1857) <strong>and</strong><br />

Nordenskiöld (1871); the latter erected three litho -<br />

stratigraphic units for the pre-volcanic sediment, separate<br />

from the intra-basaltic Ifsorisok Beds (Fig. 13; see<br />

section on ‘Previous work’ above). However, these units<br />

were not recognised by L. Koch (<strong>19</strong>29) in his exhaustive<br />

account <strong>of</strong> the stratigraphy <strong>of</strong> Greenl<strong>and</strong>. He referred<br />

all the sediments to one formation – the Nugsuak For -<br />

mation – but also predicted that “future investigations<br />

will doubtlessly result in a division <strong>of</strong> the beds which I<br />

have included in one formation, into several formations”<br />

(L. Koch <strong>19</strong>29 p. 258).<br />

A more detailed lithostratigraphical scheme was developed<br />

as a result <strong>of</strong> the work during the Nûgssuaq<br />

Expeditions <strong>19</strong>38–<strong>19</strong>68 (see section on ‘Previous work’<br />

above; Rosenkrantz <strong>19</strong>70). This was, however, rather<br />

incomplete <strong>and</strong> included units, especially at member<br />

level, that were not formally described (Fig. 13).<br />

Name. After the Nuussuaq peninsula, where the most<br />

extensive outcrops occur (Fig. 10).<br />

Type area. The south coast <strong>of</strong> Nuussuaq, where the most<br />

complete <strong>and</strong> best exposed sections <strong>of</strong> the Nuussuaq<br />

Group occur, e.g. at Atanikerluk, the coastal slopes at<br />

Paatuut, along the western slope <strong>of</strong> the Ataata Kuua river,<br />

<strong>and</strong> in river gorges in the southern part <strong>of</strong> the Itilli val-<br />

Nordenskiöld<br />

1871<br />

Sinnifiklagren*<br />

Ifsorisoklagren*<br />

Öfre<br />

Atanekerdluk-lagren<br />

Atanelagren<br />

(N. Atanekerdluklagren)<br />

Koch<br />

<strong>19</strong>29<br />

Nugsuak<br />

Formation<br />

Troelsen<br />

<strong>19</strong>56<br />

Sinnifik Fm*<br />

Ifsorisok Fm*<br />

Upper Atanikerdluk<br />

Fm<br />

Patoot Fm<br />

Atane Fm<br />

Rosenkrantz<br />

<strong>19</strong>70<br />

Agatdal Fm<br />

Kangilia Fm<br />

Marine Upper<br />

Cretaceous<br />

Henderson et al.<br />

<strong>19</strong>76<br />

Ifsorisok Fm*<br />

Vaigat<br />

Fm<br />

Maligât Fm<br />

Pautut Fm<br />

Komelagren Kome Fm Kome Fm<br />

U. Atanikerdluk<br />

Fm<br />

Agatdal Fm<br />

Kangilia Fm<br />

Marine Upper<br />

Cretaceous<br />

Atane Fm<br />

Upernivik Næs Fm<br />

Present paper<br />

Ifsorisok Mb*<br />

Maligât Fm<br />

Vaigat<br />

Atanikerluk Fm<br />

Fm<br />

Eqalulik Fm<br />

Agatdal<br />

Quikavsak<br />

Fm<br />

Fm<br />

Kangilia Fm<br />

Upernivik Næs Fm<br />

Itilli Fm<br />

Atane Fm<br />

Slibestensfjeldet Fm<br />

Kome Fm<br />

Nuussuaq Group WGBG<br />

* Intrabasaltic sediments<br />

Fig. 13. Comparison <strong>of</strong> former lithostratigraphical subdivisions <strong>and</strong> the scheme used in this paper. All pre-volcanic <strong>and</strong> the earliest synvolcanic<br />

sedimentary rocks <strong>of</strong> the Nuussuaq Basin constitute the Nuussuaq Group (new), which comprises 10 formations (new or revised). WGBG,<br />

West Greenl<strong>and</strong> Basalt Group.<br />

27


Quikavsak<br />

Formation<br />

Vaigat Formation<br />

Kangilia Formation<br />

b<br />

Atane Formation<br />

Kangilia Formation<br />

Atane Formation<br />

d<br />

d<br />

d<br />

Fig. 14. The western side <strong>of</strong> the Ataata Kuua river gorge, in the type area <strong>of</strong> the Nuussuaq Group; d, dolerite dyke, b, burnt mudstones. For<br />

location, see Fig. 40; for scale, see Fig. 15.<br />

South<br />

North<br />

700 m above sea level<br />

600<br />

Kangilia Formation, very poorly exposed<br />

500<br />

400<br />

300<br />

200<br />

200 m<br />

Quaternary cover<br />

Intrusion<br />

Eqalulik Formation<br />

Kangilia Formation<br />

Stream<br />

Vaigat Formation<br />

Atanikerluk Formation<br />

Quikavsak Formation<br />

Atane Formation<br />

Qilakitsoq Member<br />

Fig. 15. The western side <strong>of</strong> Ataata Kuua, in the type area <strong>of</strong> the Nuussuaq Group, illustrates two phases <strong>of</strong> incision. The marine mudstone<br />

<strong>and</strong> turbidite s<strong>and</strong>stones <strong>of</strong> the Kangilia Formation represent a late Maastrichtian submarine canyon incised into the Santonian deltaic Atane<br />

Formation; mudstones <strong>of</strong> the Kangilia Formation are shown in brown, s<strong>and</strong>stones <strong>and</strong> conglomerates in beige. The Danian Quikavsak<br />

Formation represents a fluvial system incised into the Kangilia Formation. Photogrammetrically measured section, from A.K. Pedersen et al.<br />

(2007b). Borehole GGU 247801 is located c. 600 m north <strong>of</strong> the outcrop shown here (Figs 40, 43).<br />

28


ley (Figs 2, 40, 65). The section along the west slope <strong>of</strong><br />

Ataata Kuua has been measured photogrammetrically<br />

(Figs 14, 15; A.K. Pedersen et al. 2007b).<br />

Distribution. The Nuussuaq Group outcrops in West<br />

Greenl<strong>and</strong> between 69° <strong>and</strong> 72°N on Disko, Nuussuaq,<br />

Upernivik Ø, Qeqertarsuaq, Itsaku <strong>and</strong> Svartenhuk Halvø<br />

<strong>and</strong> has also been recorded in a number <strong>of</strong> shallow <strong>and</strong><br />

deep wells in the region (Figs 2, 16, 17). Possible Palae -<br />

ogene sediments have previously been reported on<br />

Angiissat, the south-easternmost isl<strong>and</strong> <strong>of</strong> a group <strong>of</strong><br />

small isl<strong>and</strong>s in Disko Bugt named Grønne Ejl<strong>and</strong><br />

(Henderson et al. <strong>19</strong>76 p. 345).<br />

Differentiation <strong>of</strong> the Albian–Cenomanian Kome,<br />

Upernivik Næs <strong>and</strong> Atane Formations that form the<br />

lower part <strong>of</strong> the group can be difficult because these<br />

formations all include marginal marine deposits that are<br />

dominated by s<strong>and</strong>stones <strong>and</strong> have some sedimentary<br />

facies in common. For practical purposes, the Kome<br />

Formation is restricted to areas in northern Nuussuaq,<br />

east <strong>of</strong> Ikorfat, where alluvial sediments are in contact<br />

with basement. The Upernivik Næs Formation, which<br />

occurs north <strong>of</strong> Nuussuaq, comprises marginal marine<br />

sediments, while the fluviodeltaic Atane Formation is<br />

restricted to the Disko–Nuussuaq area.<br />

Thickness. Composite sections <strong>of</strong> outcrops <strong>and</strong> wells show<br />

thicknesses <strong>of</strong> up to c. 3 km for the Nuussuaq Group (Fig.<br />

17). In the western part <strong>of</strong> the area, seismic <strong>and</strong> magnetic<br />

data suggest that the Mesozoic sediments are at<br />

least 6 km <strong>and</strong> possibly as much as 10 km thick (Chri -<br />

stiansen et al. <strong>19</strong>95; Chalmers et al. <strong>19</strong>99). A seismic<br />

section across the Vaigat indicates that the non-marine<br />

Cretaceous section is at least 2500–3000 m thick (Fig.<br />

44; Marcussen et al. 2002).<br />

Lithology <strong>and</strong> depositional environment. The exposed part<br />

<strong>of</strong> the Nuussuaq Group consists entirely <strong>of</strong> siliciclastic<br />

sediments (Figs 16, 17). A reconnaissance study <strong>of</strong> the<br />

petrology <strong>of</strong> the Cretaceous <strong>and</strong> Paleocene s<strong>and</strong>stones<br />

revealed varying feldspar contents <strong>and</strong> three types <strong>of</strong><br />

cement: carbonates, silica <strong>and</strong> Fe-hydroxides. Based on<br />

differences in texture, Schiener (<strong>19</strong>75) suggested two<br />

provenance areas: the Archaean crystalline basement<br />

rocks (angular feldspar grains) <strong>and</strong> older sedimentary<br />

rocks that have been recycled (well-rounded quartz grains).<br />

Detrital zircon dating <strong>of</strong> the sediments indicates that<br />

most <strong>of</strong> the Cretaceous sediments were transported from<br />

areas with Archaean basement, whereas the Late<br />

Cretaceous <strong>and</strong> Paleocene sediments at Itsaku on<br />

Svartenhuk Halvø contain Proterozoic zircons, probably<br />

derived from the Prøven Igneous Complex (Scherstén &<br />

Sønderholm 2007). The basal Lower Cretaceous part <strong>of</strong><br />

the succession includes coarse-grained, syn-rift breccias<br />

<strong>and</strong> conglomerates that onlap basement highs <strong>and</strong> are<br />

overlain by s<strong>and</strong>stones, heteroliths <strong>and</strong> mudstones <strong>of</strong><br />

non-marine, mostly alluvial origin (Fig. 16). Slightly<br />

younger braided river s<strong>and</strong>stones interbedded with<br />

s<strong>and</strong>stones, heteroliths <strong>and</strong> mudstones deposited in tidal<br />

estuarine <strong>and</strong> coastal plain environments crop out on<br />

Upernivik Ø <strong>and</strong> Qeqertarsuaq <strong>and</strong> are referred to the<br />

Upernivik Næs Formation.<br />

On northern Nuussuaq, the Kome Formation is overlain<br />

by lacustrine mudstones <strong>and</strong> s<strong>and</strong>stones <strong>of</strong> the<br />

Slibestensfjeldet Formation. The Atane Formation un -<br />

conformably overlies the Slibestensfjeldet Formation <strong>and</strong><br />

possibly also the Kome Formation. The Atane Formation<br />

is dominated by coarsening-upward successions <strong>of</strong> mudstones<br />

<strong>and</strong> s<strong>and</strong>stones deposited in a deltaic <strong>and</strong> fluvial<br />

environment during the Albian to Santonian. Across the<br />

Kuugannguaq–Qunnilik Fault (Fig. 10), the deltaic sed-<br />

Next pages 32-33:<br />

Fig. 16. Stratigraphy <strong>and</strong> depositional settings <strong>of</strong> the formations <strong>and</strong><br />

members <strong>of</strong> the Nuussuaq Group. The sections are located in Fig.<br />

2 or in the detailed maps located in Fig. 2. Up., Uparuaq qusuitsut<br />

(Svartenhuk Halvø). Formations are shown on the left h<strong>and</strong> side <strong>of</strong><br />

the logs <strong>and</strong> members on the right h<strong>and</strong> side. The vertical axis <strong>of</strong><br />

the diagram indicates the approximate age <strong>of</strong> the lithostratigraphical<br />

units (data on ages are found in the selected numbered references<br />

below). Compare with Fig. 17.<br />

Stratigraphic abbreviations: A, Assoq Member (Atanikerluk Formation);<br />

Ak, Akunneq Member (Atanikerluk Formation); An, Anaanaa<br />

Member (Vaigat Formation); At, Atanikerluk Formation; AC,<br />

Annertuneq Conglomerate Member (Kangilia Formation); E, Eqalulik<br />

Formation; It, Itivnera Bed (Atane Formation); M, Maligât Formation;<br />

N, Naujât Member (Atanikerluk Formation); Na, Naujánguit Member<br />

(Vaigat Formation); NQ, Nuuk Qiterleq Member (Quivaksak<br />

Formation); O, Ordlingassoq Member (Vaigat Formation); OAC,<br />

Oyster–Ammonite Conglomerate Bed (Kangilia Formation); P,<br />

Pingu Member (Atanikerluk Formation); Pa, Paatuutkløften Member<br />

(Quikavsak Formation); RDM, Rinks Dal Member (Maligât<br />

Formation); Sv, Svartenhuk Formation; Tu, Tupaasat Member<br />

(Quikavsak Formation); U, Umiussat Member (Atanikerluk For -<br />

mation).<br />

References: 1, Birkelund (<strong>19</strong>65); 2, Boyd (<strong>19</strong>98 a); 3, Christiansen<br />

et al. (<strong>19</strong>99); 4, Christiansen et al. (2000); 5, Dam & Nøhr-Hansen<br />

(2001); 6, Dam et al. (<strong>19</strong>98b); 7, Dam et al. (<strong>19</strong>98c); 8, Dam et al.<br />

(2000); 9, Koch (<strong>19</strong>64); 10, Koppelhus & Pedersen (<strong>19</strong>93); 11,<br />

Lanstorp (<strong>19</strong>99); 12, J.G. Larsen & Pulvertaft (2000); 13, Nøhr-<br />

Hansen (<strong>19</strong>96); 14, Nøhr-Hansen et al. (2002); 15, Olsen & Pedersen<br />

(<strong>19</strong>91); 16, A.K. Pedersen (<strong>19</strong>85); 17, A.K. Pedersen et al. (2006b);<br />

18, Piasecki et al. (<strong>19</strong>92); <strong>19</strong>, Storey et al. (<strong>19</strong>98).<br />

29


Svartenhuk<br />

Halvø<br />

Upernivik Næs,<br />

Qeqertarsuaq<br />

North coast<br />

Nuussuaq<br />

Western<br />

Nuussuaq<br />

Central<br />

Nuussuaq<br />

Thanetian<br />

Umiivik<br />

Itsaku<br />

Sv<br />

Up.<br />

E <strong>of</strong> Ikorfat<br />

W <strong>of</strong> Ikorfat<br />

17<br />

Aaffarsuaq<br />

<strong>19</strong> 17<br />

Paleocene<br />

Sel<strong>and</strong>ian<br />

Danian<br />

Maastrichtian<br />

Campanian<br />

Kangilia<br />

4<br />

?<br />

Kangilia Vaigat<br />

Vaigat<br />

12<br />

E t<br />

15<br />

Itilli<br />

Umiivik<br />

1 6 1 7<br />

Kangilia<br />

O<br />

Na<br />

AC<br />

Itilli Kangilia Agatdal<br />

Vaigat<br />

E<br />

t<br />

Anariartorfik<br />

O<br />

Na<br />

An<br />

Vaigat<br />

E<br />

Itilli<br />

t<br />

Aaffarsuaq<br />

O<br />

Na<br />

It<br />

Upper Cretaceous<br />

Santonian<br />

Coniacian<br />

Itilli<br />

Umiivik<br />

3<br />

14<br />

Atane<br />

8 13<br />

Qilakitsoq<br />

Turonian<br />

1.5 km undated<br />

deep marine<br />

sediments<br />

Lower Cretaceous<br />

Cenomanian<br />

Albian<br />

Upernivik Næs<br />

4 12 4 9<br />

Contact<br />

to<br />

basement<br />

Upernivik Næs<br />

Slibestensfjeldet<br />

Atane<br />

Kome<br />

2<br />

Contact<br />

to<br />

basement<br />

Kingittoq<br />

Ravn Kløft<br />

t<br />

Volcanic rocks<br />

Subaerial lava flow<br />

Hyaloclastic breccia<br />

Coal<br />

Mudstone<br />

S<strong>and</strong>stone<br />

Conglomerate<br />

Macr<strong>of</strong>ossils<br />

Tuff<br />

3<br />

Key reference<br />

30


Central<br />

Nuussuaq<br />

Agatdalen<br />

South coast<br />

Nuussuaq<br />

Ataata Kuua<br />

Paatuut<br />

North coast<br />

Disko<br />

South coast<br />

Nuussuaq<br />

Eastern<br />

Disko<br />

South coast<br />

Disko<br />

Asuk Kingittoq<br />

Pingu Skansen,<br />

Atanikerluk<br />

Assoq<br />

Vaigat<br />

E<br />

t<br />

O<br />

Na<br />

M<br />

Vaigat<br />

At<br />

E<br />

t<br />

N<br />

RDM<br />

O<br />

M<br />

Vaigat<br />

16 <strong>19</strong><br />

RDM<br />

O<br />

Na<br />

M<br />

At<br />

t<br />

17<br />

A<br />

U<br />

N<br />

RDM<br />

M<br />

At<br />

17<br />

A<br />

U<br />

P<br />

Ak<br />

RDM<br />

M<br />

At<br />

A<br />

17 18<br />

RDM<br />

Agatdal<br />

Quikavsak<br />

Pa<br />

NQ<br />

Tu<br />

Quikavsak<br />

Tu<br />

Kangilia<br />

13 14<br />

OAC<br />

Kangilia<br />

5<br />

Atane<br />

Itilli<br />

Aaffarsuaq<br />

8 13<br />

Qilakitsoq<br />

Atane<br />

Qilakitsoq<br />

Alluvial fan<br />

Lake<br />

Fluvial channel<br />

Flood plain<br />

Delta plain<br />

2 15 16<br />

Itilli<br />

Atane<br />

Kingittoq Kussinerujuk<br />

Atane<br />

Kingittoq<br />

Atane<br />

Skansen<br />

Atane<br />

Skansen<br />

Delta front<br />

Estuary<br />

Marine shoreface<br />

Contact<br />

to<br />

basement<br />

11<br />

10<br />

10<br />

Marine shelf<br />

Marine slope<br />

Marine slope channel<br />

31


Upernivik Næs<br />

EItilli<br />

Svartenhuk<br />

Halvø<br />

7<br />

13 12 15 14<br />

GRO#3<br />

11 9 8<br />

Upernivik Næs<br />

Qeqertarsuaq<br />

Itsaku Umiivik GANK#1 Kangilia Agatdalen<br />

Tunoqqu<br />

Aaffarsuaq<br />

K<br />

Upernivik Næs<br />

Vaigat<br />

Itilli<br />

Kakilisaat<br />

Nerutusoq<br />

Vaigat<br />

Agatdal<br />

Kangilia<br />

Anaanaa<br />

Vaigat<br />

E<br />

Itilli<br />

Kangilia<br />

Na<br />

Vaigat<br />

E<br />

Ag<br />

K<br />

I<br />

Atane<br />

O<br />

Naujanguit<br />

Qilakitsoq<br />

E<br />

Vaigat<br />

Atane<br />

Itilli<br />

Ordlingassoq<br />

Naujanguit<br />

Qilakitsoq<br />

500 m<br />

Fig. 17. Simplified logs showing the distribution <strong>and</strong> thickness <strong>of</strong> the formations <strong>of</strong> the Nuussuaq Group. Members are only indicated for<br />

the Atane Formation <strong>and</strong> for the volcanic formations. In most areas, the lower boundary <strong>of</strong> the Nuussuaq Group is not seen, <strong>and</strong> the thicknesses<br />

indicated for the formations are therefore minimum values. Note that the marginal marine deposits (Kome, Slibestensfjeldet, Upernivik<br />

Næs <strong>and</strong> Atane Formations) are thick on Disko, eastern Nuussuaq <strong>and</strong> northwards to Qeqertarsuaq. Deep marine deposits (Itilli, Kangilia<br />

<strong>and</strong> Agatdal Formations) are thickest on western <strong>and</strong> northern Nuussuaq <strong>and</strong> on Svartenhuk Halvø. At localities 1, 3, 5 <strong>and</strong> 6, the mudstones<br />

<strong>of</strong> the Atanikerluk Formation are interbedded with volcaniclastic breccias or subaqueous lava flows that have chemical compositions characteristic<br />

<strong>of</strong> the Vaigat <strong>and</strong> Maligât Formations. Na, Naujánguit Member; O, Ordlingassoq Member; RDM, Rinks Dal Member; WGBG, West<br />

Greenl<strong>and</strong> Basalt Group. Compare with Fig. 16.<br />

32


3<br />

10 4<br />

6 5 Qorlortorssuaq Slibestensfjeldet Kingittoq<br />

Ataata Kuua Paatuut Asuk<br />

Atanikerluk<br />

2<br />

Pingu<br />

1<br />

Skansen<br />

Assoq<br />

Vaigat<br />

At<br />

E<br />

Q<br />

K<br />

Atane<br />

Ordlingassoq<br />

Qilakitsoq<br />

Vaigat<br />

At<br />

Q<br />

Atane<br />

Ordlingassoq<br />

Qilakitsoq<br />

At<br />

Atane Vaigat<br />

I<br />

Naujanguit Ordlingassoq<br />

Kingittoq<br />

Vaigat<br />

E<br />

I<br />

Atane<br />

O<br />

Naujanguit<br />

Ravn Kløft Kingittoq<br />

Maligât<br />

Atanikerluk<br />

Q<br />

Atane<br />

Kingittoq Rinks Dal<br />

Atane Atanikerluk Maligât<br />

Skansen RDM<br />

Atane Atanikerluk Maligât<br />

Skansen RDM<br />

Slibestensfj.<br />

53°<br />

72°<br />

Maligât Formation<br />

WGBG<br />

Vaigat Formation<br />

Atanikerluk Formation (At)<br />

Eqalulik Formation (E)<br />

Agatdal Formation (Ag)<br />

Quikavsak Formation (Q)<br />

Kangilia Formation (K)<br />

Itilli Formation (I)<br />

Kome<br />

71°<br />

70°<br />

Svartenhuk<br />

Halvø<br />

7<br />

15<br />

14<br />

13<br />

11<br />

Qeqertarsuaq<br />

Upernivik<br />

Næs<br />

8<br />

12<br />

10<br />

9<br />

6<br />

5<br />

3 4<br />

Nuussuaq<br />

Atane Formation<br />

Upernivik Næs Formation<br />

Disko<br />

2<br />

Slibestensfjeldet Formation<br />

Kome Formation<br />

50 km<br />

1<br />

1<br />

69°<br />

Palaeogene volcanics<br />

Precambrian basement<br />

Cretaceous–Paleocene<br />

sediments<br />

33


iments <strong>of</strong> the Atane Formation pass westwards into<br />

marine, fault-controlled slope deposits. These sediments<br />

are referred to the Itilli Formation, <strong>of</strong> Cenomanian to<br />

Maastrichtian age, <strong>and</strong> comprise mainly homogeneous<br />

mudstones, thinly interbedded mudstones <strong>and</strong> s<strong>and</strong>stones,<br />

<strong>and</strong> turbidite channel s<strong>and</strong>stones. In the Aaffarsuaq<br />

valley, an angular unconformity separates the deltaic<br />

Atane Formation from Campanian turbidite deposits <strong>of</strong><br />

the Itilli Formation (Dam et al. 2000).<br />

Major uplift during the Maastrichtian resulted in incision<br />

<strong>of</strong> underlying units; submarine canyon incision is<br />

seen at several localities on Nuussuaq, viz. at Ataata Kuua,<br />

at Kangilia, in Agatdalen <strong>and</strong> west <strong>of</strong> the Kuuganng -<br />

uaq–Qunnilik Fault (Fig. 15, see Plate 3). At these localities,<br />

the valley <strong>and</strong> canyon fill consists <strong>of</strong> successions <strong>of</strong><br />

homogeneous s<strong>and</strong>stones <strong>and</strong> conglomerates, in many<br />

instances resulting from catastrophic gravity flow deposition.<br />

Intercalated mudstones represent deposition from<br />

turbidity currents. These deposits are referred to the<br />

Kangilia Formation. Renewed uplift during the Danian<br />

generated new incision <strong>and</strong> fluvial to tidal valley deposits<br />

separated by lacustrine sediments filled the fluvial valleys.<br />

The lacustrine deposits comprise thin coarseningupward<br />

successions composed <strong>of</strong> mudstones <strong>and</strong> s<strong>and</strong> -<br />

stones with in situ <strong>and</strong> drifted tree trunks. These sed i -<br />

ments are referred to the Quikavsak Formation (Dam<br />

2002). The pre-volcanic phase culminated with major<br />

subsidence <strong>of</strong> the basin <strong>and</strong> deposition <strong>of</strong> s<strong>and</strong>stones<br />

from sediment gravity flows (the Agatdal Formation).<br />

During this period, the Disko area was characterised by<br />

sedimentary bypass.<br />

The next phase <strong>of</strong> Nuussuaq Group sedimentation<br />

coincided with submarine volcanism west <strong>of</strong> Nuussuaq.<br />

The oldest rocks <strong>of</strong> the West Greenl<strong>and</strong> Basalt Group are<br />

hyaloclastic breccias <strong>of</strong> the Vaigat Formation (Hald &<br />

Pedersen <strong>19</strong>75; A.K. Pedersen <strong>19</strong>85; A.K. Pedersen et al.<br />

<strong>19</strong>93, <strong>19</strong>96, 2002, 2006b; G.K. Pedersen et al. <strong>19</strong>98).<br />

The contemporaneous siliciclastic marine sediments<br />

com prise mudstones, thinly interbedded s<strong>and</strong>stones <strong>and</strong><br />

mudstones <strong>and</strong> chaotic beds. Volcaniclastic s<strong>and</strong>stones<br />

<strong>and</strong> conglomerates deposited from turbidity currents are<br />

common in this part <strong>of</strong> the succession. The marine syn-<br />

Vaigat Formation<br />

Itilli Formation<br />

E<br />

Atane Formation<br />

Slibestensfjeldet Formation<br />

Kome Formation<br />

Precambrian<br />

Fig.18. The sediments onlapping <strong>and</strong> overlying the basement high at Ikorfat on the north coast <strong>of</strong> Nuussuaq (view towards the south) represent<br />

the base <strong>of</strong> the Nuussuaq Group. The basal sediments are represented by the Kome Formation overlain by the Slibestensfjeldet <strong>and</strong><br />

Atane Formations. The highest peak is c. 2000 m a.s.l.; for location, see Fig. 22. E, Eqalulik Formation.<br />

34


volcanic sediments are referred to the Eqalulik Formation<br />

from the latest Danian (Nøhr-Hansen et al. 2002). As the<br />

Early Paleocene volcanic breccias <strong>of</strong> the Vaigat For mation<br />

(West Greenl<strong>and</strong> Basalt Group) prograded eastwards from<br />

sources west <strong>of</strong> the present coastline, the formerly marine<br />

basin was dammed <strong>and</strong> large lakes formed on eastern<br />

Nuussuaq <strong>and</strong> Disko. The lakes were filled from the west<br />

by hyaloclastite breccias while siliciclastic sedimentation<br />

continued from the south-east. These sediments are re -<br />

ferred to the Atanikerluk Formation <strong>and</strong> consist <strong>of</strong> shales<br />

with thin tuff beds <strong>and</strong> fine-grained s<strong>and</strong>stones deposited<br />

in two coarsening-upward successions.<br />

the Nuussuaq Group span the Albian to the Upper<br />

Danian – Sel<strong>and</strong>ian. Brackish-water dinocysts from sediments<br />

onlapping the basement indicate a pre-Late Albian<br />

age, <strong>and</strong> this is supported by the scarcity <strong>of</strong> angiosperms<br />

Quaternary<br />

m<br />

30<br />

40<br />

FP93-3-1<br />

Fossils. A rich flora <strong>and</strong> fauna from the group has been<br />

described. The fauna numbers several hundred species<br />

including bivalves, gastropods, nautiloids, ammonites,<br />

belemnites, echinoderms, cirripeds, brachiopods, corals,<br />

decapod crustaceans, serpulids, fish, ostracods,<br />

foraminifera, bryozoans <strong>and</strong> insects. Fossil invertebrates<br />

are best known from the Itilli, Kangilia <strong>and</strong> Agatdal<br />

Formations. The rich flora comprises more than 600<br />

species <strong>of</strong> plant leaves, wood, fruits, spores, pollen <strong>and</strong><br />

din<strong>of</strong>lagellate cysts (hereafter named dinocysts). Well-preserved<br />

plant fossils are mainly found in the Kome, Atane,<br />

Quikavsak, Agatdalen <strong>and</strong> Atanikerluk Formations (for<br />

summary <strong>of</strong> studies, see section on ‘Previous work’ above).<br />

Dinocysts form the basis <strong>of</strong> biostratigraphy <strong>and</strong> correlation<br />

in recent studies.<br />

Atane Formation<br />

50<br />

60<br />

70<br />

80<br />

90<br />

Boundaries. The lower boundary <strong>of</strong> the group is only<br />

exposed on the north coast <strong>of</strong> Nuussuaq at Kuuk, Vest -<br />

erfjeld, Talerua <strong>and</strong> Ikorfat (Fig. 18), on the east coast<br />

<strong>of</strong> Itsaku <strong>and</strong> on Svartenhuk Halvø where the group<br />

overlies metamorphic basement that locally is strongly<br />

weathered. The boundary was also penetrated in the<br />

FP93-3-1 borehole on northern Disko where the Atane<br />

Formation overlies a basement high (Fig. <strong>19</strong>).<br />

The upper boundary with the West Greenl<strong>and</strong> Basalt<br />

Group is diachronous (Hald & Pedersen <strong>19</strong>75; A.K.<br />

Pedersen et al. <strong>19</strong>93). During the Paleocene, volcanic<br />

breccias <strong>of</strong> the Vaigat Formation prograded eastwards<br />

from <strong>of</strong>fshore sources <strong>and</strong> isolated the formerly marine<br />

basin in eastern Nuussuaq <strong>and</strong> Disko, eventually onlapping<br />

the Precambrian basement east <strong>of</strong> the Ikorfat fault<br />

zone (L.M. Larsen & Pedersen <strong>19</strong>92; A.K. Pedersen et<br />

al. <strong>19</strong>96, 2002; G.K. Pedersen et al. <strong>19</strong>98).<br />

<strong>Geological</strong> age. Dating <strong>of</strong> the exposed <strong>and</strong> drilled parts<br />

<strong>of</strong> the basin is mainly based on ammonites, corals,<br />

foraminifera, coccoliths, spores, pollen, dinocysts <strong>and</strong><br />

macr<strong>of</strong>lora fossils. The fossils indicate that outcrops <strong>of</strong><br />

Precambrian gneiss<br />

100<br />

110<br />

120<br />

130<br />

Strongly weathered surface<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

Fig. <strong>19</strong>. Detailed sedimentological log <strong>of</strong> the Atane Formation overlying<br />

weathered gneiss basement in the the FP93-3-1 core in the<br />

Kuugannguaq valley on north-west Disko. The well dips 60° <strong>and</strong><br />

driller’s depths are shown. The stratigraphic thickness <strong>of</strong> the Atane<br />

Formation is c. 50 m; the sediments are not referred to a member.<br />

For location, see Fig. 2. Depositional environments are indicated by<br />

colours in the left column <strong>of</strong> the log (see Plate 1).<br />

35


in the Ikorfat flora (Boyd <strong>19</strong>98a, b, c, 2000). In the<br />

Umiivik-1 well, the oldest dateable marine dinocysts are<br />

<strong>of</strong> Turonian age; these were recorded 800 m above the<br />

base <strong>of</strong> the well (Dam et al. <strong>19</strong>98b). In the GRO#3 well,<br />

the oldest dateable dinocysts are <strong>of</strong> Coniacian age <strong>and</strong><br />

were recorded 1500 m above the base (Christiansen et<br />

al. <strong>19</strong>99). Consequently, the deeper parts <strong>of</strong> these wells<br />

may have penetrated successions older than Albian.<br />

Age-specific biomarker data from oil seeps at several<br />

outcrops <strong>of</strong> the Nuussuaq Group suggest that source<br />

rocks <strong>of</strong> Aptian–Albian <strong>and</strong> Cenomanian–Turonian age<br />

are present in the Nuussuaq Basin (Bojesen-Koefoed et<br />

al. 2004, 2007).<br />

40 Ar/ 39 Ar dating <strong>of</strong> the volcanic rocks coeval with the<br />

upper levels <strong>of</strong> the Nuussuaq Group (the Vaigat Formation<br />

<strong>and</strong> the Rinks Dal Member <strong>of</strong> the Maligât Formation)<br />

indicates an age <strong>of</strong> 60.4 ± 0.5 Ma for these rocks (Storey<br />

et al. <strong>19</strong>98). This age has been recalculated to 60.8 ± 0.5<br />

Ma based on recalibration <strong>of</strong> the Fish Canyon Tuff st<strong>and</strong>ard<br />

(Skaarup & Pulvertaft 2007).<br />

Correlation. The Nuussuaq Group is coeval with the Cre -<br />

taceous Hassel <strong>and</strong> Kanguk Formations <strong>and</strong> the uppermost<br />

Cretaceous–Oligocene Eureka Sound Group <strong>of</strong> the<br />

Canadian Arctic Isl<strong>and</strong>s (e.g. Miall et al. <strong>19</strong>80; Miall<br />

<strong>19</strong>86; Burden & Langille <strong>19</strong>90; Harrison et al. <strong>19</strong>99).<br />

It constitutes an onshore analogue to the Cretace -<br />

ous–Paleocene basins <strong>of</strong>fshore West Greenl<strong>and</strong> (Rolle<br />

<strong>19</strong>85; Chalmers & Pulvertaft 2001; Dalh<strong>of</strong>f et al. 2003;<br />

Sørensen 2006; Gregersen et al. 2007) <strong>and</strong> to the<br />

Cretaceous Bjarni, Markl<strong>and</strong> <strong>and</strong> Cartwright Formations<br />

<strong>of</strong>fshore eastern Canada in the Davis Strait <strong>and</strong> Labrador<br />

Sea (Balkwill et al. <strong>19</strong>90; Government <strong>of</strong> Newfoundl<strong>and</strong><br />

<strong>and</strong> Labrador 2000; Sønderholm et al. 2003).<br />

Subdivision. The Nuussuaq Group is subdivided into the<br />

Kome, Slibestensfjeldet, Upernivik Næs, Atane, Itilli,<br />

Kangilia, Quikavsak, Agatdal, Eqalulik <strong>and</strong> Atanikerluk<br />

Formations (Figs 13, 17).<br />

Kome Formation<br />

redefined formation<br />

History. The geology <strong>of</strong> the Kuuk area was described by<br />

Giesecke in 1811 (diary entry for 18 June; in: Steenstrup<br />

<strong>19</strong>10). He mentioned that the coal seams provided fuel<br />

for ‘Kolonien Omenak’, now the town <strong>of</strong> Uummannaq<br />

(Fig. 20). A 0.7−1.3 m thick coal seam was exposed <strong>and</strong><br />

exploited until 1832 (Rink 1857). The Mineralogical<br />

Museum in Copenhagen received 21 samples <strong>of</strong> “shale<br />

with remains <strong>and</strong> imprints <strong>of</strong> different fossil plants, especially<br />

ferns” collected near Kome (Rink 1855 p. 214). Heer<br />

(1883b) described an Early Cretaceous fossil flora from<br />

the north coast <strong>of</strong> Nuussuaq that he termed the Kome<br />

flora. According to Nordenskiöld (1871), several <strong>of</strong> these<br />

fossils had been collected by Rink <strong>and</strong> were sent to Heer<br />

from the Mineralogical Museum in Copenhagen.<br />

The Kome Formation was defined in the area between<br />

Kuuk <strong>and</strong> Ikorfat by Nordenskiöld (1871 p. 1040) <strong>and</strong><br />

described as follows (translated by the authors): “The<br />

Komelagren [Kome Formation] constitutes the older<br />

part <strong>of</strong> the Cretaceous, according to Heer (1868). The<br />

name designates a sedimentary, coal-bearing formation<br />

exposed at various localities between Kuuk <strong>and</strong> Ikorfat<br />

along the coast <strong>of</strong> Nuussuaq, south-west <strong>of</strong> Uummannaq.<br />

The name originates from the outcrop which has the<br />

most important coal bed <strong>and</strong> where Giesecke <strong>and</strong> Rink<br />

most likely collected plant fossils. These beds [Komelag -<br />

ren, the Kome Formation] are not restricted to Kuuk, but<br />

are found, except where interrupted by gneiss highs,<br />

along the entire coastal section between Kuuk <strong>and</strong> Ikorfat”<br />

(Figs 2, 21, 22). Nordenskiöld (1871) proposed a stratigraphy<br />

with a geographically restricted Lower Cretaceous<br />

Kome Formation overlain by the Upper Cretaceous Atane<br />

Formation which also covered southern Nuussuaq <strong>and</strong><br />

northern Disko. Gry (<strong>19</strong>40) interpreted the boundary<br />

between the Kome <strong>and</strong> the Atane Formations as an un -<br />

conformity.<br />

Koch (<strong>19</strong>64) described the Kome Formation as occurring<br />

almost continuously between Kuuk <strong>and</strong> Ikorfat,<br />

interrupted only between Angiarsuit <strong>and</strong> Ujarattoorsuaq<br />

where younger Upper Cretaceous deposits are downfaulted<br />

(Figs 21, 22). He suggested that the beds that<br />

unconformably overlie the Kome Formation on the north<br />

coast <strong>of</strong> Nuussuaq could be equivalent to the Atane For -<br />

mation or, alternatively, to the Upernivik Næs Formation.<br />

Schiener (<strong>19</strong>77) did not find convincing evidence for<br />

an unconformity within the section at Ikorfat <strong>and</strong> concluded<br />

that the majority <strong>of</strong> the sediments were deposited<br />

during the Early Cretaceous. He implied that the Atane<br />

Formation is absent on northern Nuussuaq east <strong>of</strong> the<br />

Ikorfat fault zone (Fig. 10).<br />

In the Kuuk area, the Kome Formation was interpreted<br />

to comprise fluviodeltaic deposits (Pulvertaft<br />

<strong>19</strong>79) that were suggested to form part <strong>of</strong> the Atane<br />

Formation by G.K. Pedersen & Pulvertaft (<strong>19</strong>92). In<br />

contrast, Midtgaard (<strong>19</strong>96b) distinguished five sedimentary<br />

units in the area between Ikorfat <strong>and</strong> Qaarsut<br />

<strong>and</strong> the lowest <strong>of</strong> these is here assigned to the Kome<br />

Formation.<br />

36


Fig. 20. View from Uummannaq towards<br />

the coal-bearing deposits <strong>of</strong> the Kome<br />

Formation at Kuuk on the north coast <strong>of</strong><br />

Nuussuaq. The coal was being mined as<br />

early as the 18th century for use in Uum -<br />

mannaq. View foreshortened due to the<br />

use <strong>of</strong> a telescopic lens. For location, see<br />

Figs 2, 21.<br />

Name. In his descriptions <strong>of</strong> the coal seams on northern<br />

Nuussuaq that provided fuel for ‘Kolonien Omenak’<br />

(the town <strong>of</strong> Uummannaq), Giesecke in 1811(in:<br />

Steenstrup <strong>19</strong>10) spelled the name either ‘Koome’ or<br />

‘Kook’. Thalbitzer (<strong>19</strong>10) explained ‘Koome’ as casus<br />

locativus <strong>of</strong> ‘Kook’, e.g. ‘in or at Kook’. The spelling<br />

‘Kome’ was used by Rink (1857) <strong>and</strong> Heer (1882, 1883b).<br />

Rink (1853 p. 175) wrote: “The settlement <strong>of</strong> Kome lies<br />

at the mouth <strong>of</strong> the large valley Tuëparsoït [now Tua -<br />

passuit, Fig. 21]. Between this <strong>and</strong> Sarfarfik a broad open<br />

valley is found. This contains a small river (Kook) thus<br />

the name <strong>of</strong> the site, where it reaches the shore” (translation<br />

from Danish by the authors). The site is shown as<br />

Kook, Kûk or Kuuk on newer maps (Fig. 21).<br />

Distribution. The Kome Formation is presently known<br />

from the coastal area on the north coast <strong>of</strong> Nuussuaq<br />

between Kuuk <strong>and</strong> Ikorfat (Figs 21, 22). Gry (<strong>19</strong>40,<br />

<strong>19</strong>42) briefly described sediments onlapping the basement<br />

on Itsaku (Fig. 73) <strong>and</strong> referred these to the Kome<br />

Formation on the basis <strong>of</strong> plant fossils from the lower<br />

part <strong>of</strong> the sedimentary succession. These sediments were<br />

tentatively referred to the Atane Formation by Chri -<br />

stiansen et al. (2000) <strong>and</strong> J.G. Larsen & Pulvertaft (2000)<br />

on the basis <strong>of</strong> sedimentological similarities. In the present<br />

paper they are referred to the Upernivik Næs<br />

Formation. East <strong>of</strong> Saqqaqdalen on southern Nuussuaq<br />

(Fig. 2), outcrops <strong>of</strong> fluvial pebbly s<strong>and</strong>stones overlying<br />

the basement are preserved in a small down-faulted area<br />

(Pulvertaft <strong>19</strong>89a, b) <strong>and</strong> are tentatively assigned to the<br />

Kome Formation.<br />

Type section. The type section is at Majorallattarfik, immediately<br />

west <strong>of</strong> the Kuuk delta (Figs 21, 23). The base <strong>of</strong><br />

the type section is located at 70°38.60´N, 52°21.83´W.<br />

Reference sections. Reference sections have been measured<br />

at Slibestensfjeldet <strong>and</strong> Ikorfat (Midtgaard <strong>19</strong>96b) (Fig.<br />

22). These sections illustrate the marked lateral <strong>and</strong> stratigraphic,<br />

lithological changes in the formation from<br />

stacked conglomerates to coarsening-upward, fine-grained<br />

s<strong>and</strong>stones <strong>and</strong> mudstones (Figs 24, 25).<br />

Thickness. The thickness <strong>of</strong> the Kome Formation varies<br />

from c. 25 m at Vesterfjeld to more than 150 m between<br />

Talerua <strong>and</strong> Ikorfat, <strong>and</strong> 140 m at Majorallattarfik near<br />

Kuuk (Figs 21, 22).<br />

Lithology. The basal part <strong>of</strong> the Kome Formation overlies<br />

<strong>and</strong> onlaps Precambrian basement at Kuuk, Talerua<br />

<strong>and</strong> Ikorfat. The basement rocks are in places weathered<br />

to a depth <strong>of</strong> 35 m (Heim <strong>19</strong>10; Gry <strong>19</strong>42; Pulvertaft<br />

<strong>19</strong>79; Midtgaard <strong>19</strong>96b). The uppermost part <strong>of</strong> the<br />

basement consists almost exclusively <strong>of</strong> quartz grains<br />

within a powdery matrix <strong>of</strong> kaolinite. The gneiss has a<br />

greenish colour probably due to alteration <strong>of</strong> biotite to<br />

chlorite (Heim <strong>19</strong>10; Pulvertaft <strong>19</strong>79). The basal sediments<br />

are typically one <strong>of</strong> three main facies: (1) poorly<br />

sorted s<strong>and</strong>stones, rich in kaolinite <strong>and</strong> devoid <strong>of</strong> sedimentary<br />

structures, (2) diamictites, with blocks <strong>of</strong> vein<br />

quartz in a s<strong>and</strong>y clay matrix, or (3) unsorted conglomerates<br />

with poorly rounded quartz boulders <strong>and</strong> slabs <strong>of</strong><br />

silty mudstones (Fig. 26; Gry <strong>19</strong>42; Schiener <strong>19</strong>77;<br />

Pulvertaft <strong>19</strong>79). At Talerua (between Vesterfjeld <strong>and</strong><br />

37


1600<br />

600<br />

Ikorfat), the basal sediments are breccias with large clasts<br />

comprising both gneiss with weathered feldspars <strong>and</strong><br />

carbonaceous mudstones (Fig. 25A). At Ikorfat, breccias<br />

with angular gneiss clasts are overlain by a conglomerate<br />

bed, a few metres thick, comprising subangular<br />

clasts <strong>of</strong> quartz <strong>and</strong> intensely kaolinised feldspars. The<br />

diamictites <strong>and</strong> poorly sorted conglomerates are not seen<br />

above the basement highs. The poorly sorted, coarsegrained<br />

deposits are overlain by thin conglomerates,<br />

cross-bedded, locally channellised, coarse-grained s<strong>and</strong>stones,<br />

mudstones <strong>and</strong> thin discontinuous coal beds (Fig.<br />

25). Root horizons are frequent <strong>and</strong> the mudstones commonly<br />

contain abundant comminuted plant debris (Fig.<br />

25; Schiener <strong>19</strong>77; Pulvertaft <strong>19</strong>79; Midtgaard <strong>19</strong>96b).<br />

Fine-grained s<strong>and</strong>stones with wave-ripples forming coarsening-upward<br />

successions occur in the upper part <strong>of</strong> the<br />

formation <strong>and</strong> are common in the Ikorfat area. The topmost<br />

bed <strong>of</strong> the Kome Formation is a bleached, crumbly<br />

mudstone with abundant root-casts overlain by a coal bed<br />

(Fig. 25C; Midtgaard <strong>19</strong>96b).<br />

2 km<br />

Quaternary cover<br />

Vaigat Formation<br />

Vaigat Formation<br />

Tunoqqu Member<br />

Kome Formation<br />

200<br />

Sarfâgfik<br />

Precambrian<br />

70°40′<br />

Kuutsiaq<br />

600<br />

400<br />

Sarfaaffiip Kuussinersua<br />

400<br />

200<br />

14<br />

8<br />

15<br />

11<br />

Ice<br />

Sea/lake<br />

Fault<br />

Inferred base <strong>of</strong><br />

Cretaceous sediments<br />

Ab<strong>and</strong>oned settlement<br />

Majorallattarfik<br />

Kûk<br />

800<br />

Kuuk<br />

17<br />

15<br />

800<br />

1000<br />

1200<br />

Tuapassuit<br />

1000<br />

1400<br />

52°25′<br />

70°35′<br />

1000<br />

Fig. 21. <strong>Geological</strong> map <strong>of</strong> the area around<br />

Kuuk (from Pulvertaft <strong>19</strong>79). Majorallat -<br />

tarfik is the type locality <strong>of</strong> the Kome<br />

Formation. The sediments overlie weathered<br />

basement <strong>and</strong> are well exposed. For<br />

location, see Fig. 2.<br />

38


In the Kuuk area, the sediments overlying the coarsegrained,<br />

basal deposits consist <strong>of</strong> three facies associations:<br />

A, B <strong>and</strong> C (Figs 24, 27, 28). Association A is<br />

dominant <strong>and</strong> consists mainly <strong>of</strong> trough cross-bedded,<br />

erosionally based s<strong>and</strong>stones in shoe-string or irregular<br />

tabular bodies up to 5 m thick (Figs 24, 28). The s<strong>and</strong>stones<br />

are coarse-grained, <strong>of</strong>ten gravelly, with angular<br />

clasts, <strong>and</strong> is poorly sorted. It contains slightly to moderately<br />

kaolinised feldspars <strong>and</strong> kaolinite cement.<br />

Fragments <strong>of</strong> coalified wood <strong>and</strong> fine-grained plant debris<br />

are common. The orientation <strong>of</strong> shoe-string bodies <strong>and</strong><br />

dip direction <strong>of</strong> foresets indicates transport from the<br />

south-east. The s<strong>and</strong>stones alternate with dark laminated<br />

silty mudstones containing much coalified plant debris,<br />

thin lenses <strong>of</strong> lustrous, coalified, woody tissue <strong>and</strong> thin<br />

coal seams (Fig. 24; Pulvertaft <strong>19</strong>79). Association B consists<br />

<strong>of</strong> distinctive coarsening-upward successions <strong>of</strong> mudstones,<br />

cross-laminated siltstones, s<strong>and</strong>stones <strong>and</strong> locally<br />

thin layers <strong>of</strong> gravelly s<strong>and</strong>stones (Figs 24, 27). Association<br />

C is dominated by tabular cross-bedded, medium-grained,<br />

moderately well-sorted subarkosic s<strong>and</strong>stones with pebble<br />

lags <strong>of</strong> quartz or chert. Comminuted coalified plant<br />

debris <strong>and</strong> mica are common in the s<strong>and</strong>stones. Foresets<br />

dips are to the north-west. Cross-laminated, fine-grained<br />

53°00’<br />

52°45’<br />

2 km<br />

30<br />

25<br />

Ikorfat<br />

25<br />

Kussinikassaq<br />

Angiarsuit<br />

Nipitartukassaat<br />

Ujarattoorsuup Killia<br />

Ujarattoorsuaq<br />

Ujarattoorsuup Kangilia<br />

Siorartartarfik<br />

30<br />

D<br />

20<br />

B<br />

Talerua<br />

A<br />

C<br />

70°45’<br />

J.P.J. Ravn Kløft<br />

Slibestensfjeldet<br />

Ikorfat<br />

Qaqqarsui<br />

Aarrusap<br />

Kussinersua<br />

Airport<br />

28<br />

Qaarsut<br />

Vesterfjeld<br />

Qaarsut Kussinersuat<br />

Østerfjeld<br />

Quaternary cover<br />

Vaigat Formation<br />

Vaigat Formation<br />

Tunoqqu Member<br />

Intrusion<br />

Eqalulik Formation<br />

Itilli Formation<br />

Atane Formation<br />

Kingittoq Member<br />

Atane Formation<br />

Ravn Kløft Member<br />

Atane Formation<br />

Undivided, west <strong>of</strong> Ikorfat<br />

Slibestensfjeldet Formation<br />

Umiivik Member<br />

Kome Formation<br />

Precambrian<br />

Ice<br />

Sea/lake<br />

Fault<br />

Strike <strong>and</strong> dip <strong>of</strong> strata<br />

Fig. 22. Detailed geological map <strong>of</strong> the north coast <strong>of</strong> Nuussuaq, from Qaarsut to Ikorfat. The locations <strong>of</strong> the four sedimentological logs<br />

(A–D) in Fig. 25 are indicated. Contour interval 200 m. Modified from Rosenkrantz et al. (<strong>19</strong>74) <strong>and</strong> Midtgaard (<strong>19</strong>96b). For location, see<br />

Fig. 2.<br />

39


Kome Formation<br />

Precambrian<br />

basement<br />

m<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

clay<br />

silt<br />

vf f m c vc<br />

s<strong>and</strong><br />

Fig. 23. Type section <strong>of</strong> the Kome Formation at Majorallattarfik,<br />

immediately west <strong>of</strong> Kuuk, redrawn from Croxton (<strong>19</strong>78a, b). The<br />

uppermost c. 20 m <strong>of</strong> the formation are poorly exposed <strong>and</strong> are not<br />

shown on the log. Note that the facies illustrated in detail in Fig. 24<br />

recur here in a thicker succession. For location, see Fig. 21; for a possible<br />

correlation between Kuuk <strong>and</strong> Slibestensfjeldet, see Fig. 29;<br />

for legend, see Plate 1.<br />

s<strong>and</strong>stones overlying the medi um-grained s<strong>and</strong>stones<br />

form a minor part <strong>of</strong> the association. Wave-generated<br />

sedimentary structures or mud-draped foresets indicating<br />

tidal influence have not been seen (Pulvertaft <strong>19</strong>79).<br />

Facies association C occurs at the top <strong>of</strong> the sections at<br />

Kuuk <strong>and</strong> Majorallattarfik (Fig. 28; T.C.R. Pulvertaft,<br />

personal communication 2008).<br />

Fossils. The Kome Formation contains macr<strong>of</strong>ossil plants<br />

referred to the Kome flora (Heer 1883a). The genera in<br />

the Kome flora were revised by K.R. Pedersen (<strong>19</strong>76). A<br />

separate Ikorfat flora has been distinguished by Boyd<br />

(<strong>19</strong>98a, b, c, 2000) in the Ikorfat area <strong>and</strong> is suggested<br />

to be slightly older than or contemporaneous with the<br />

Kome flora (Boyd <strong>19</strong>98a, b, c, 2000).<br />

Samples <strong>of</strong> mudstones collected by Croxton (<strong>19</strong>78a,<br />

b, section C20) at Majorallattarfik near the top <strong>of</strong> the<br />

section at Kuuk contain a poor assemblage <strong>of</strong> brackishwater<br />

dinocysts, spores <strong>and</strong> pollen. Few specimens <strong>of</strong><br />

the dinocyst Vesperopsis nebulosa occur in the lower part,<br />

whereas few specimens <strong>of</strong> Nyktericysta davisii <strong>and</strong> Pseudoceratium<br />

interiorense occur in the upper part. The presence<br />

<strong>of</strong> the spore Cicatricososporites auritus may indicate<br />

a Middle to Late Albian age, whereas the absence <strong>of</strong> the<br />

pollen Rugubivesiculites rugosus indicates a pre-Late Albian<br />

age. The presence <strong>of</strong> Nyktericysta davisii may indicate a<br />

younger age, as at other localities this species first occurs<br />

in the overlying Ravn Kløft Member (Atane Formation).<br />

Samples <strong>of</strong> mudstones collected by Midtgaard (<strong>19</strong>96b)<br />

from the upper part <strong>of</strong> the Kome Formation reference<br />

section at Slibestensfjeldet (Fig. 25C) also contain Ves -<br />

peropsis nebulosa <strong>and</strong> common Pseudoceratium interiorense<br />

<strong>and</strong>, in common with the Kuuk section, the pollen<br />

Rugubivesiculites rugosus is absent.<br />

Assemblages dominated by Pseudoceratium interiorense<br />

are known from the Slibestensfjeldet Formation, whereas<br />

assemblages dominated by Nyktericysta davisii first occur<br />

in the Ravn Kløft Member <strong>of</strong> the Atane Formation<br />

between Vesterfjeld <strong>and</strong> Ikorfat (Fig. 29). Croxton (<strong>19</strong>78a,<br />

b) noted the absence <strong>of</strong> angiosperm pollen <strong>and</strong> the presence<br />

<strong>of</strong> spores such as Cicatricosisporites, Gleicheniidites,<br />

Pilosisporites <strong>and</strong> Vitreisporites, indicating an early to mid-<br />

Cretaceous age.<br />

Depositional environment. The diamictites <strong>and</strong> poorly<br />

sorted conglomerates in close association with the basement<br />

highs are interpreted as mass-flow deposits (Figs<br />

25, 29); talus cones <strong>and</strong> alluvial fans filled the topographic<br />

lows on the basement surface with immature<br />

sediments (Midtgaard <strong>19</strong>96b). The lack <strong>of</strong> mass-flow<br />

deposits above the basement highs suggests that the ini-<br />

40


m<br />

m<br />

15<br />

14<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

Lithology <strong>and</strong> structures<br />

S<strong>and</strong>stone/pebbly<br />

s<strong>and</strong>stone, structureless<br />

Laminated s<strong>and</strong>stone<br />

Cross-bedded s<strong>and</strong>stone<br />

Ripple cross-laminated s<strong>and</strong>stone<br />

Convolute lamination<br />

Burrows<br />

Coalified wood fragments<br />

Coal<br />

Laminated mudstone/siltstone<br />

Weakly laminated mudstone<br />

Depositional environment<br />

4<br />

3<br />

4<br />

Fluvial channel<br />

Flood plain<br />

Facies association A<br />

<strong>of</strong> Pulvertaft (<strong>19</strong>79)<br />

3<br />

Delta front<br />

Facies association B<br />

2<br />

2<br />

1<br />

0<br />

mud<br />

s<strong>and</strong> gravel<br />

1<br />

0<br />

mud<br />

s<strong>and</strong> gravel<br />

Fig. 24. Reference section <strong>of</strong> the Kome Formation at<br />

Kuuk. The log to the left is representative <strong>of</strong> facies association<br />

A, while association B is seen from 3.1–9.3 m in<br />

the log to the right (from Pulvertaft <strong>19</strong>79). For location,<br />

see Fig. 21; for legend, see Plate 1.<br />

41


m<br />

40<br />

A B C<br />

m<br />

36<br />

Slibestensfjeldet<br />

Fm<br />

m<br />

38<br />

30<br />

30<br />

30<br />

Kome Formation<br />

20<br />

Kome Formation<br />

20<br />

Kome Formation<br />

20<br />

★<br />

10<br />

10<br />

10<br />

★<br />

0<br />

mud<br />

s<strong>and</strong><br />

gravel<br />

0<br />

mud<br />

s<strong>and</strong><br />

gravel<br />

0<br />

mud<br />

s<strong>and</strong><br />

gravel<br />

Section base 20 m above sea level (a.s.l.)<br />

2 m a.s.l.<br />

242 m a.s.l.<br />

Fig.25. Reference sections <strong>of</strong> the Kome Formations illustrating abrupt facies change <strong>and</strong> numerous horizons with rootlets. A <strong>and</strong> B are from<br />

the lower part <strong>of</strong> the formation <strong>and</strong> C <strong>and</strong> D are from the uppermost part <strong>of</strong> the formation. Sections C <strong>and</strong> D also show the overall decrease<br />

in grain-size towards the west. The boundary between the Kome Formation <strong>and</strong> the overlying Slibestensfjeldet Formation is shown in section<br />

C. From Midtgaard (<strong>19</strong>96b). For legend, see Plate 1; for location, see Fig. 22.<br />

42


Kome Formation<br />

m<br />

40<br />

30<br />

20<br />

D<br />

tial relief was levelled out as sediments accumulated <strong>and</strong><br />

buried the highs. The alluvial fans were succeeded by<br />

fan deltas representing both subaerial <strong>and</strong> subaqueous<br />

deposition; the latter increases towards Ikorfat (Fig. 25D).<br />

The sparse dinocyst assemblage indicates that the water<br />

was intermittently brackish.<br />

The coarse s<strong>and</strong>stones <strong>of</strong> facies association A at Kuuk<br />

are interpreted as fluvial deposits. Their low textural <strong>and</strong><br />

mineralogical maturity together with palaeocurrent indicators<br />

point to derivation directly from a weathered basement<br />

to the south-east, without reworking en route, <strong>and</strong><br />

to rapid sedimentation. The dark mudstones are interpreted<br />

as overbank deposits <strong>of</strong> a floodplain environment<br />

or deposition in shallow lakes. The mudstones <strong>of</strong> facies<br />

association B are interpreted as having been deposited<br />

from suspension in bodies <strong>of</strong> st<strong>and</strong>ing water, presumably<br />

interdistributary bays or lakes (Fig. 23, 24). Sedimentary<br />

structures in the s<strong>and</strong>stones <strong>of</strong> facies association C suggest<br />

deposition from a s<strong>and</strong>y braided river flowing from<br />

the south, <strong>and</strong> the higher textural <strong>and</strong> mineralogical<br />

maturity <strong>of</strong> the s<strong>and</strong>stones indicates more protracted<br />

fluvial transport (Pulvertaft <strong>19</strong>79). The palaeosol that caps<br />

the Kome Formation represents a widespread regressive<br />

event (Figs 25C, 30; Midtgaard <strong>19</strong>96b).<br />

10<br />

0<br />

mud<br />

290 m a.s.l.<br />

s<strong>and</strong><br />

gravel<br />

Boundaries. The Kome Formation overlies an undulating<br />

Precambrian gneiss topography, filling valleys or<br />

depressions (Henderson et al. <strong>19</strong>76; Schiener <strong>19</strong>77;<br />

Pulvertaft <strong>19</strong>79; Midtgaard <strong>19</strong>96b). The lower boundary<br />

<strong>of</strong> the formation is exposed at Kuuk, Ikorfat <strong>and</strong><br />

Talerua (Figs 2, 21, 22). In the coastal cliffs <strong>of</strong> northern<br />

Nuussuaq, the relief on the gneiss surface can be seen to<br />

exceed 225 m (Fig. 22). At Vesterfjeld, the basement is<br />

weathered to a depth <strong>of</strong> 30 m with a gradual downward<br />

transition into unaltered gneiss. In western Disko<br />

(Stordal), the Precambrian basement is exposed, locally<br />

with a 5−10 m thick weathered cap (A.K. Pedersen &<br />

Ulff-Møller <strong>19</strong>80). In other exposures, the gneiss is relatively<br />

unweathered (Schiener <strong>19</strong>77; Midtgaard <strong>19</strong>96b).<br />

The lower boundary <strong>of</strong> the Kome Formation thus displays<br />

a variety <strong>of</strong> basement−sediment transitions.<br />

The upper boundary <strong>of</strong> the Kome Formation is a<br />

sharp lithological boundary that varies very little laterally<br />

(Figs 25C, 30). It is placed on top <strong>of</strong> a palaeosol<br />

horizon <strong>and</strong> was interpreted as a sequence boundary by<br />

Midtgaard (<strong>19</strong>96b). Previous workers, e.g. Nordenskiöld<br />

(1871), Gry (<strong>19</strong>42) <strong>and</strong> Midtgaard (<strong>19</strong>96b), have considered<br />

the Kome Formation to be overlain by the Atane<br />

Formation on Nuussuaq. We propose that the new<br />

Slibestensfjeldet Formation separates the Kome <strong>and</strong> Atane<br />

43


Slibestensfjeldet Formation<br />

Kome Formation<br />

Precambrian<br />

Fig. 26. Contact between Precambrian basement <strong>and</strong> the Kome Formation at Talerua. The sediments onlap the relief on the basement surface.<br />

The height <strong>of</strong> the coastal cliff is c. 30 m. For location, see Fig. 22.<br />

Formations in the area between Ikorfat <strong>and</strong> Slibe -<br />

stensfjeldet.<br />

<strong>Geological</strong> age. Various fossils contribute to the determination<br />

<strong>of</strong> the geological age <strong>of</strong> the Kome Formation.<br />

Plant macr<strong>of</strong>lora suggests a Barremian to Aptian age<br />

(Heer 1882; K.R. Pedersen <strong>19</strong>68). The Ikorfat flora suggests<br />

an Early to Middle Albian age (Boyd <strong>19</strong>98a, b, c,<br />

2000). Based on spores <strong>and</strong> pollen as well as scarce<br />

dinocysts, Ehman et al. (<strong>19</strong>76) suggested a Late Albian<br />

to Early Cenomanian age, whereas Croxton (<strong>19</strong>78a, b)<br />

interpreted the sediments to be older than Middle Albian.<br />

In this study, the spores, pollen <strong>and</strong> brackish-water<br />

dinocysts are considered suggestive <strong>of</strong> a pre-Late Albian<br />

age. Consequently, the Kome Formation is suggested to<br />

be <strong>of</strong> albian age.<br />

Correlation. It has previously been stated by Troelsen<br />

(<strong>19</strong>56) <strong>and</strong> Rosenkrantz (<strong>19</strong>70) that the sediments<br />

exposed on the north coast <strong>of</strong> Nuussuaq, east <strong>of</strong> the<br />

Ikorfat fault zone, are older than the fluviodeltaic<br />

Cretaceous sediments known from the rest <strong>of</strong> the Nuus -<br />

Fig. 27. The type locality <strong>of</strong> the Kome<br />

Formation at Majorallattarfik showing<br />

outcrop <strong>of</strong> facies association B (see text for<br />

explanation). Person for scale (circled) is<br />

st<strong>and</strong>ing on delta front deposits (see also<br />

Fig. 24, right-h<strong>and</strong> column). For location,<br />

see Fig. 21. Photo: T.C.R. Pulvertaft.<br />

44


Fig. 28. Reference locality <strong>of</strong> the Kome Formation at Kuuk showing<br />

outcrop <strong>of</strong> facies associations A <strong>and</strong> C (see text for explanation,<br />

see also Fig. 29). For location, see Fig. 21. Photo: T.C.R. Pulvertaft.<br />

C<br />

A<br />

suaq Basin. However, Lanstorp (<strong>19</strong>99) suggested a Middle<br />

to Late Albian age for the Atane Formation at Tartunaq<br />

(south-east Nuussuaq), thereby shortening (or removing)<br />

the time gap between the Kome <strong>and</strong> Atane Formations.<br />

Nevertheless, the Kome Formation is retained as a discrete<br />

lithostratigraphic unit characterised by the onlap<br />

relationship to the basement, the coarse-grained conglomeratic<br />

character <strong>and</strong> the significant lateral facies<br />

changes (Fig. 25). These features indicate a depositional<br />

environment that was markedly different from that which<br />

produced the cyclic, aggradational Atane Formation.<br />

In the Kuuk area, the mudstones <strong>of</strong> association B <strong>and</strong><br />

the s<strong>and</strong>stones <strong>of</strong> association C (Pulvertaft <strong>19</strong>79), referred<br />

here to the Kome Formation, may correlate laterally with<br />

the Slibestensfjeldet <strong>and</strong> Atane Formations, respectively,<br />

farther to the north-west (Fig. 29). Thus, the mudstones<br />

<strong>of</strong> association B (Fig. 24) <strong>and</strong> the mudstone-dominated<br />

unit <strong>of</strong> the type section (40–80 m in Fig. 23) are thought<br />

to represent proximal correlatives <strong>of</strong> the Slibestensfjeldet<br />

Formation. The s<strong>and</strong>stones <strong>of</strong> association C display an<br />

erosional base <strong>and</strong> occur towards the top <strong>of</strong> the exposed<br />

sections (Fig. 29). This unit contains chert pebbles, a<br />

characteristic feature <strong>of</strong> the Atane Formation <strong>and</strong> particularly<br />

the fluvial s<strong>and</strong>stones <strong>of</strong> the Ravn Kløft Member<br />

<strong>of</strong> the Atane Formation (see below). It is tentatively suggested,<br />

therefore, that the erosional base <strong>of</strong> the s<strong>and</strong>stones<br />

in facies association C may correlate with the<br />

erosional boundary between the Slibestensfjeldet <strong>and</strong><br />

Atane Formations, i.e. that the uppermost Kome<br />

Formation in the Kuuk area correlates with the lowermost<br />

Atane Formation to the north-west (Fig. 29).<br />

SE<br />

NW<br />

Ikorfat fault zone<br />

Vaigat Fm<br />

Eqalulik Fm<br />

Itilli Fm<br />

C<br />

Kome Fm<br />

A<br />

★<br />

B<br />

?<br />

?<br />

Atane Fm<br />

Kingittoq Mb<br />

★<br />

★<br />

Slibestensfjeldet Fm<br />

Ravn Kløft Mb<br />

Kome Fm<br />

Kome Fm<br />

Kuuk<br />

Qaarsut<br />

Pseudoceratium interiorense<br />

Talerua<br />

★ Nyktericysta davisii<br />

Ikorfat<br />

Kangilia Fm<br />

Fig. 29. Schematic pr<strong>of</strong>ile (scale arbitrary) along the north coast <strong>of</strong> Nuussuaq between Kuuk <strong>and</strong> Ikorfat showing correlation <strong>of</strong> the litho -<br />

stratigraphic units. The sediment outcrops are bounded to the east by the basin boundary fault <strong>and</strong> to the west by the Ikorfat fault zone. The<br />

occurrence <strong>of</strong> two species <strong>of</strong> din<strong>of</strong>lagellate cysts is shown. These species are known from other localities in the Nuussuaq Basin. For location<br />

<strong>of</strong> outcrops, see Figs 21, 22; A, B, C, facies associations discussed in the text. Pale red indicates Precambrian basement.<br />

45


Slibestensfjeldet Formation<br />

new formation<br />

History. The Slibestensfjeldet Formation has previously<br />

been described as Unit 2, an informal lithological unit<br />

in the Slibestensfjeldet–Ikorfat area (Midtgaard <strong>19</strong>96b).<br />

Name. After the prominent mountain <strong>of</strong> Slibestensfjeldet<br />

on the north coast <strong>of</strong> Nuussuaq (Fig. 22).<br />

Distribution. The Slibestensfjeldet Formation is known<br />

only from the north coast <strong>of</strong> Nuussuaq between Vesterfjeld<br />

<strong>and</strong> Ikorfat (Fig. 22; Midtgaard <strong>19</strong>96b). The formation<br />

is not known to be preserved north <strong>of</strong> Nuussuaq, but it<br />

is expected to continue southwards, for some distance,<br />

in the subsurface. The extent <strong>of</strong> the formation west <strong>of</strong><br />

the Ikorfat fault is not known.<br />

Type section. The type section is at Kussinikassaq where<br />

the formation is thickest (Figs 22, 30), immediately east<br />

<strong>of</strong> the basement high at Ikorfat beginning at an altitude<br />

<strong>of</strong> c. 60 m a.s.l. The base <strong>of</strong> the type section is located<br />

at 70°46.20´N, 53°03.37´W.<br />

Reference sections. Reference sections are found at<br />

Vesterfjeld, c. 860 m a.s.l., <strong>and</strong> in two gullies on Slibe -<br />

stensfjeldet c. 1 km east <strong>of</strong> Talerua, beginning at an altitude<br />

<strong>of</strong> c. 320 m a.s.l. (Fig. 30).<br />

Thickness. The Slibestensfjeldet Formation increases in<br />

thickness from 90 m at Vesterfjeld to c. 200 m at Kus -<br />

sinikassaq (Figs 22, 30).<br />

Lithology. A considerable lateral change in lithology characterises<br />

the Slibestensfjeldet Formation from Vesterfjeld<br />

to Ikorfat, a distance <strong>of</strong> approximately 10 km (Fig. 30;<br />

Midtgaard <strong>19</strong>96b). At the type section, the formation is<br />

dominated by mudstones, interbedded with 0.2–2 m<br />

thick s<strong>and</strong>stone beds, which are structureless, parallel<br />

laminated, cross-laminated or hummocky cross-stratified<br />

(Figs 30, 31, 32). The mudstones contain c. 5% carbon,<br />

almost entirely <strong>of</strong> organic origin, traces <strong>of</strong> pyrite are<br />

restricted to a thin coal bed, <strong>and</strong> the calculated carbon/<br />

sulphur (C/S) ratios are c. 100. The s<strong>and</strong>stone interbeds<br />

in the c. 200 m thick mudstone unit become increasingly<br />

common upwards. At the top <strong>of</strong> this coarsening-upward<br />

succession is a medium-grained s<strong>and</strong>stone unit 5 m thick,<br />

showing steeply dipping foresets; this facies is restricted<br />

to the areas west <strong>of</strong> the Talerua fault. In the east, the formation<br />

is dominated by s<strong>and</strong>stones interbedded with<br />

thin mudstones <strong>and</strong> conglomerate beds. Laminated black<br />

mudstones with s<strong>and</strong> streaks are abruptly overlain by<br />

very fine- to fine-grained, well-sorted s<strong>and</strong>stones dominated<br />

by horizontal lamination <strong>and</strong> hummocky crossstratification,<br />

whereas low-angle cross-bedding <strong>and</strong> wave<br />

ripple cross-lamination are subordinate (Midtgaard<br />

<strong>19</strong>96a). The s<strong>and</strong>stones are <strong>of</strong>ten slightly bioturbated.<br />

Thin conglomerate beds composed <strong>of</strong> well-rounded clasts<br />

<strong>and</strong> showing erosional bases <strong>and</strong> wave-rippled tops, recur<br />

throughout the formation (Midtgaard <strong>19</strong>96a).<br />

Fossils. The mudstones contain an assemblage <strong>of</strong> brackish-water<br />

dinocysts dominated by Pseudoceratium interiorense<br />

whereas the pollen Rugubivesiculites rugosus is<br />

absent (Figs 29, 30). Plant macr<strong>of</strong>ossils from the lowermost<br />

part <strong>of</strong> the formation are referred to the Ikorfat<br />

flora, which has been assigned to the Early–Middle Albian<br />

(Boyd <strong>19</strong>98a, b, c, 2000).<br />

Depositional environment. The widely distributed <strong>and</strong><br />

thick coal bed at the base <strong>of</strong> the Slibestensfjeldet Formation<br />

indicates accumulation <strong>of</strong> peat under a slowly rising<br />

ground-water table. The overlying fine-grained, wave-rippled<br />

s<strong>and</strong>stones are interpreted as lake shoreline deposits<br />

<strong>and</strong> indicate an increasing rate <strong>of</strong> water level rise, which<br />

continued to the deposition <strong>of</strong> mudstones at depths<br />

below wave-base. In the mudstones, the C/S ratios <strong>of</strong> c.<br />

100 <strong>and</strong> the stratigraphical position between the fluvial<br />

Kome <strong>and</strong> the fluvial Ravn Kløft Member indicate that<br />

the Slibestensfjeldet Formation was deposited in a large<br />

<strong>and</strong> deep lake. The overall, coarsening-upward, vertical<br />

facies succession is interpreted to record the infill <strong>of</strong> the<br />

lake <strong>and</strong> progradation <strong>of</strong> the shoreline. The presence <strong>of</strong><br />

dinocysts, which are interpreted as brackish-water forms,<br />

suggests that the lake was connected to a coastal lagoon.<br />

The lake increased in depth from east to west, <strong>and</strong><br />

wave-influenced, relatively shallow-water facies are only<br />

known from Vesterfjeld <strong>and</strong> Slibestensfjeldet. The conglomerate<br />

beds represent transgressive lags created by<br />

wave erosion <strong>and</strong> winnowing. The nearshore s<strong>and</strong>stones<br />

accu - mulated in large complex bedforms overprinted<br />

by wave-ripples (Midtgaard <strong>19</strong>96a). The upper part <strong>of</strong><br />

the Slibe stensfjeldet Formation locally developed as a<br />

Facing page:<br />

Fig. 30. Type section <strong>of</strong> the Slibestensfjeldet Formation at Kus sini -<br />

kassaq; reference sections <strong>of</strong> the formation at Vesterfjeld <strong>and</strong><br />

Slibestensfjeldet. Note the marked increase in thickness towards the<br />

west (Kussinikassaq). All logs are from the north coast <strong>of</strong> Nuussuaq<br />

(Fig. 22). For legend, see Plate 1; GD, Gilbert Delta; Ps, palaeosol.<br />

46


Vaigat Fm<br />

Vesterfjeld<br />

Slibestensfjeldet<br />

Kussinikassaq<br />

Slibestensfjeldet Formation Atane Formation<br />

Ravn Kløft Member<br />

Slibestensfjeldet Formation<br />

Ravn Kløft Member<br />

mud<br />

GD<br />

s<strong>and</strong> pebbles<br />

Slibestensfjeldet Formation<br />

Ravn Kløft Member<br />

GD<br />

c. 50 m not shown<br />

m<br />

20<br />

10<br />

Kome Fm<br />

mud<br />

Ps<br />

s<strong>and</strong> pebbles<br />

0<br />

Kome Fm<br />

mud<br />

Ps<br />

s<strong>and</strong> pebbles<br />

47


Fig. 31. Mudstones with thin s<strong>and</strong>stone beds in the lower part <strong>of</strong> the Slibestensfjeldet Formation at Kussinikassaq, near Ikorfat. For location,<br />

see Fig. 22.<br />

Atane Formation<br />

Ravn Kløft Member<br />

Slibestensfjeldet Formation<br />

Fig. 32. The upper part <strong>of</strong> the Slibestensfjeldet Formation in its type locality at Kussinikassaq, where heterolithic s<strong>and</strong>stone bodies with wavegenerated<br />

sedimentary structures (see also Midtgaard <strong>19</strong>96 a, b) are overlain by lower shoreface s<strong>and</strong>stones (see Fig. 30) <strong>and</strong> locally by Gilbert<br />

delta foreset beds. The Slibestensfjeldet Formation is erosionally overlain (dashed line) by the fluvial Ravn Kløft Member <strong>of</strong> the Atane<br />

Formation. The height <strong>of</strong> the section is c. 100 m. For location, see Fig. 22.<br />

48


Gilbert delta in the Ikorfat area (Figs 30, 32; Midtgaard<br />

<strong>19</strong>96b). The extent <strong>of</strong> the lake or lagoon west <strong>of</strong> Ikorfat<br />

is not known. It may be speculated that subsidence along<br />

the Ikorfat Fault affected the development <strong>of</strong> the lake.<br />

Boundaries. The lower boundary <strong>of</strong> the Slibestensfjeldet<br />

Formation is sharp <strong>and</strong> varies very little laterally; it is placed<br />

at the base <strong>of</strong> a 20−110 cm thick, continuous coal bed<br />

that overlies a palaeosol (Fig. 30).<br />

The upper boundary <strong>of</strong> the Slibestensfjeldet Formation<br />

with the Atane Formation is defined by an abrupt contact<br />

between shoreface s<strong>and</strong>stones or Gilbert delta s<strong>and</strong>stones<br />

<strong>and</strong> coarse-grained, pebbly fluvial s<strong>and</strong>stones <strong>of</strong><br />

the Ravn Kløft Member (Figs 30, 32). The boundary has<br />

been interpreted either as a minor angular unconformity<br />

(Gry <strong>19</strong>40; Koch <strong>19</strong>64) or as the conformable, yet erosional<br />

base <strong>of</strong> a channel (Ehman et al. <strong>19</strong>76; Schiener <strong>19</strong>77;<br />

Croxton <strong>19</strong>78a, b; Midtgaard <strong>19</strong>96b). Midtgaard (<strong>19</strong>96b)<br />

interpreted the boundary as a sequence boundary.<br />

<strong>Geological</strong> age. Based on plant macr<strong>of</strong>ossils referred to the<br />

Ikorfat flora, the Slibestensfjeldet Formation has been<br />

assigned an Early to Middle Albian age (Boyd <strong>19</strong>98a).<br />

The dinocysts suggest a Late Albian age (Ehman et al.<br />

<strong>19</strong>76; Croxton <strong>19</strong>78a, b) or more likely a pre-Late Albian<br />

age (this study).<br />

Correlation. The Slibestensfjeldet Formation in the<br />

Slibestensfjeldet outcrops may correlate with coarsening-upward<br />

successions in the Kome Formation at Kuuk<br />

(Fig. 29). Outcrops connecting these two areas are, however,<br />

not present.<br />

Upernivik Næs Formation<br />

revised formation<br />

History. The sedimentary outcrops at Upernivik Næs were<br />

described by Steenstrup (1883b) who noted that the coalbearing<br />

sediments have a thickness <strong>of</strong> at least 860 m. The<br />

lithology was not considered different from the coalbearing<br />

successions known from Nuussuaq <strong>and</strong> Disko.<br />

The macr<strong>of</strong>ossil plants collected at Upernivik Næs by<br />

Steenstrup were referred to the Atane flora by Heer<br />

(1883b). In contrast, Seward (<strong>19</strong>26) compared them to<br />

the Kome flora. Koch (<strong>19</strong>64) considered the fossil flora<br />

from Upernivik Ø as difficult to interpret due to similarities<br />

to both the Kome <strong>and</strong> the Atane floras <strong>and</strong> suggested<br />

that the Upernivik Ø flora could occupy an<br />

intermediate position. Troelsen (<strong>19</strong>56) did not recognise<br />

the Upernivik Næs Formation, which was later<br />

described by Koch (<strong>19</strong>64).<br />

Name. The formation is named after Upernivik Næs on<br />

the south-western corner <strong>of</strong> the isl<strong>and</strong> <strong>of</strong> Upernivik Ø<br />

(Figs 2, 33).<br />

Distribution. The formation is known from Upernivik<br />

Ø. The marginal marine sediments on the isl<strong>and</strong> <strong>of</strong><br />

Qeqertarsuaq <strong>and</strong> on Itsaku are here referred to the<br />

Upernivik Næs Formation (Figs 2, 73; Ødum & Koch<br />

<strong>19</strong>55, Christiansen et al. 2000; J.G. Larsen & Pulvertaft<br />

2000).<br />

Type section. The type section is located on the south-western<br />

corner <strong>of</strong> Upernivik Ø, along a large stream that<br />

flows out on the south coast <strong>of</strong> the isl<strong>and</strong> c. 2.5 km east<br />

<strong>of</strong> Upernivik Næs (Figs 33–35). The base <strong>of</strong> the type<br />

section is located at 71°09.88´N, 52°54.52´W.<br />

Reference section. A reference section is exposed in a coastal<br />

cliff on western Qeqertarsuaq (Figs 2, 36, 73).<br />

Thickness. The formation is c. 1600 m thick at Upernivik<br />

Næs, where the strata generally dip c. 15° towards the<br />

north-east (Henderson & Pulvertaft <strong>19</strong>87). Croxton<br />

(<strong>19</strong>78b) measured a 1310 m long section (termed the<br />

C9 section) along the southern coast <strong>of</strong> Upernivik Næs;<br />

this section coincides with the type section in its upper<br />

part. In the type section, the formation is exposed up to<br />

c. 500 m a.s.l. (Fig. 33).<br />

Lithology. The section at Upernivik Næs is dominated<br />

by s<strong>and</strong>stones; mudstones constitute only a minor part<br />

(Figs 34, 35). On Qeqertarsuaq, s<strong>and</strong>stone-dominated<br />

successions are locally overlain by clast-supported conglomerates,<br />

in which the clasts are dominantly from the<br />

metamorphic rocks <strong>of</strong> the widely exposed Karrat Group<br />

(Fig. 37; Henderson & Pulvertaft <strong>19</strong>87). The formation<br />

has been studied at a reconnaissance level by Midtgaard<br />

(<strong>19</strong>96b), who divided the sediments <strong>of</strong> the formation into<br />

four facies associations.<br />

Facies association A. Coarse-grained, poorly sorted<br />

s<strong>and</strong>stones constitute up to 34 m thick composite depositional<br />

units (Fig. 38). Some <strong>of</strong> these are distinctly fining<br />

upwards. Basal channel lags contain pebbles <strong>of</strong><br />

crystalline rocks <strong>and</strong> locally also mudstone clasts, logs <strong>and</strong><br />

carbonaceous debris. The s<strong>and</strong>stones are cross-bedded with<br />

most palaeocurrent directions towards the western quadrant.<br />

S<strong>of</strong>t-sediment deformation structures are common.<br />

49


■■<br />

Facies association B. Well-sorted, fine- to mediumgrained<br />

s<strong>and</strong>stones with abundant mudstone clasts characterise<br />

the association. Siltstone <strong>and</strong> mudstone beds<br />

<strong>and</strong> laminae form an important component <strong>and</strong> in places<br />

are heterolithic <strong>and</strong> ripple-cross laminated. The s<strong>and</strong>stones<br />

are dominated by planar or trough cross-bedding<br />

that indicates palaeocurrents to the north. Some s<strong>and</strong>stones<br />

have mud-draped foresets <strong>and</strong> show bundled lamination<br />

(Fig. 39). The mud-dominated heteroliths <strong>and</strong><br />

mudstones contain much comminuted plant debris; bioturbation<br />

varies from moderate to intense (Fig. 39).<br />

Facies association C. S<strong>and</strong>stones interbedded with mudstones<br />

constitute 3−8 m thick successions. The s<strong>and</strong>stones<br />

range from very fine- to very coarse-grained, the<br />

beds are erosionally based <strong>and</strong> pinch out laterally. They<br />

are cross-laminated, cross-bedded or locally horizontally<br />

stratified. The tops <strong>of</strong> the s<strong>and</strong>stone beds are moderately<br />

bioturbated. The mudstones are black, fissile <strong>and</strong> s<strong>and</strong>streaked,<br />

<strong>and</strong> sometimes contain abundant plant debris<br />

<strong>and</strong> vitrinite lenses. S<strong>and</strong>stone dykes are common, <strong>and</strong><br />

gentle folding indicates that they were intruded before<br />

or during compaction.<br />

Facies association D. Coarsening-upward successions<br />

comprising black fissile mudstones, mudstones with<br />

s<strong>and</strong>stone lenses, mud-draped ripple cross-laminated,<br />

fine-grained s<strong>and</strong>stones, <strong>and</strong> trough cross-bedded s<strong>and</strong>stones<br />

with comminuted plant debris (Midtgaard <strong>19</strong>96b).<br />

These deposits constitute only a minor part <strong>of</strong> the section<br />

shown in Fig. 34.<br />

Fossils. The Upernivik Næs Formation contains angio -<br />

sperm plants referred to the Upernivik Næs flora (or<br />

Upernivik flora), which is interpreted as intermediate in<br />

age between the Kome flora <strong>and</strong> the Atane flora (Koch<br />

<strong>19</strong>64; Boyd <strong>19</strong>98a). Macr<strong>of</strong>ossil plants from Qeqertarsuaq<br />

correspond to species known from outcrops at Upernivik<br />

Næs <strong>and</strong> Atanikerluk (Ødum & Koch <strong>19</strong>55). Few palynomorphs<br />

have been recorded from Croxton’s (<strong>19</strong>78b)<br />

C9 section through coastal exposures <strong>and</strong> the type section<br />

at Upernivik Næs. The presence <strong>of</strong> a few specimens<br />

<strong>of</strong> the pollen Rugubivesiculites rugosus throughout the<br />

section indicate a Middle Albian to Turonian age, <strong>and</strong><br />

the co-occurrence with a few specimens <strong>of</strong> the dinocysts<br />

Nyktericysta davisii <strong>and</strong> Quantouendinium dictyophorum<br />

in the lower part <strong>of</strong> the section suggests correlation to<br />

the lower part <strong>of</strong> the Atane Formation (?Ravn Kløft<br />

Member). A large specimen <strong>of</strong> the dinocyst Nyktericysta<br />

davisii has been recorded from the middle part <strong>of</strong> the C9<br />

section. Similar forms are common in sediments on<br />

Qeqertarsuaq (Christiansen et al. 2000) <strong>and</strong> from a single<br />

fully marine sample from the Atane Formation at<br />

Ikorfat dated as Early Turonian. The sediments in facies<br />

20<br />

■■ ■■ ■■ ■■<br />

30<br />

■■<br />

■■ ■■<br />

1760<br />

<strong>19</strong>39<br />

71°12'<br />

Fig. 33. <strong>Geological</strong> map <strong>of</strong> Upernivik Næs<br />

on the south-western tip <strong>of</strong> Upernivik Ø.<br />

The type section <strong>of</strong> the Upernivik Næs<br />

Formation is located in the ravine 2.5 km<br />

east <strong>of</strong> Upernivik Næs. Slightly modified<br />

from Henderson & Pulvertaft (<strong>19</strong>87). For<br />

location, see Fig. 2. The contour interval is<br />

200 m.<br />

20–25<br />

740<br />

10<br />

Upernivik Næs<br />

20<br />

18<br />

22<br />

16<br />

10 15<br />

■■ ■■<br />

Glacier<br />

Sea/lake<br />

53° 2 km<br />

Upernivik Næs Formation<br />

with conglomerate<br />

■■<br />

Dolerite/basalt<br />

71°09'<br />

Fault (ticks on downthrow side)<br />

Facing page:<br />

Fig. 34. Type section <strong>of</strong> the Upernivik Næs<br />

Formation; from Midtgaard (<strong>19</strong>96b). Notice<br />

the presence <strong>of</strong> tidal deposits. For legend, see<br />

Plate 1; for location, see Fig. 33.<br />

50


150<br />

300<br />

450<br />

100<br />

250<br />

400<br />

m<br />

550<br />

50<br />

200<br />

350<br />

500<br />

?<br />

?<br />

0<br />

clay<br />

si s<strong>and</strong> gravel<br />

clay si s<strong>and</strong> gravel<br />

clay si s<strong>and</strong> gravel<br />

clay si s<strong>and</strong> gravel<br />

51


Precambrian Karrat Group<br />

Upernivik Næs Formation<br />

Fig. 35. Type locality <strong>of</strong> the Upernivik Næs Formation. The central peak is c. 1700 m high. For location, see Fig. 33.<br />

association B contain trace fossils such as Skolithos, Are -<br />

nicolites, Conichnus, Planolites, Rhizocorallium <strong>and</strong><br />

Pelecypodichnus (Midtgaard <strong>19</strong>96b).<br />

Depositional environment. The s<strong>and</strong>stones <strong>of</strong> facies association<br />

A are interpreted to have been deposited in braided<br />

fluvial channels. The scarcity <strong>of</strong> interbedded floodplain<br />

or levee facies suggests that the channels were migrating<br />

laterally. The abundant s<strong>of</strong>t-sediment deformation structures<br />

suggest synsedimentary tectonic activity.<br />

The heterolithic, burrowed s<strong>and</strong>stones (facies association<br />

B) are interpreted to have been deposited in an<br />

estuarine environment – in tidal channels, tidal point bars,<br />

tidal deltas, tidal flats, bay mudstones, <strong>and</strong> on the shoreface<br />

as transgressive lags. The palaeocurrents are interpreted<br />

to reflect longshore tidal transport.<br />

The interbedded s<strong>and</strong>stones <strong>and</strong> mudstones (facies<br />

association C) are thought to represent a coastal plain environment<br />

<strong>and</strong> include lagoonal, mudflat <strong>and</strong> marsh<br />

deposits, crevasse splay deposits <strong>and</strong> deposits in small<br />

channels. The scarcity <strong>of</strong> rootlets <strong>and</strong> the presence <strong>of</strong><br />

trace fossils suggest brackish-water conditions. Intrusion<br />

<strong>of</strong> the s<strong>and</strong>stone dykes may have been triggered by earthquakes.<br />

The coarsening-upward successions (facies association<br />

D) are interpreted as deltaic deposits. The lack <strong>of</strong><br />

wave-generated sedimentary structures in facies association<br />

D in the Upernivik Ø section indicates deposition<br />

in a low-energy environment, probably an interdistributary<br />

bay or the inner part <strong>of</strong> an estuary, i.e. a bayhead<br />

delta (Midtgaard <strong>19</strong>96b). Higher-energy facies on Qe -<br />

qertarsuaq <strong>and</strong> Itsaku suggest the influence <strong>of</strong> waves <strong>and</strong><br />

storms on the delta deposits (J.G. Larsen & Pulvertaft<br />

2000).<br />

Boundaries. The lower boundary <strong>of</strong> the Upernivik Næs<br />

Formation is not exposed in the type section nor in the<br />

reference section. Conglomerates with large clasts <strong>of</strong> both<br />

weathered <strong>and</strong> fresh basement rocks have been reported<br />

close to the boundary fault at Upernivik Næs (Fig. 33),<br />

from a small outcrop on the north-western part <strong>of</strong><br />

Upernivik Ø (Henderson & Pulvertaft <strong>19</strong>87 fig. 46),<br />

from Qeqertarsuaq <strong>and</strong> from Itsaku (Rosenkrantz &<br />

52


Fig. 36. Outcrop <strong>of</strong> the Upernivik Næs<br />

Formation on Qeqertarsuaq; for location,<br />

see Fig. 73. Reddish-brown intrusions<br />

cross-cut (right) <strong>and</strong> cap the sediments.<br />

Pulvertaft <strong>19</strong>69). The boundary between the Kome <strong>and</strong><br />

the Upernivik Næs Formations is at present not known.<br />

The upper boundary <strong>of</strong> the formation is an erosional<br />

contact with the Kangilia Formation on Itsaku <strong>and</strong> with<br />

Quaternary deposits on Upernivik Næs <strong>and</strong> Qeqertarsuaq.<br />

<strong>Geological</strong> age. The Upernivik Næs flora contains angio -<br />

sperm plants, which suggests a greater similarity to the<br />

Atane flora than to the Kome flora (Koch <strong>19</strong>64). Koch<br />

recommended, however, that until the Cretaceous floras<br />

are thoroughly revised, the Upernivik Næs flora should<br />

Fig. 37. Clast-supported conglomerate <strong>of</strong> the Upernivik Næs Formation on Qeqertarsuaq. Hammer for scale; for location, see Fig. 73.<br />

53


Fig. 38. Channellised s<strong>and</strong>stones <strong>of</strong> the Upernivik Næs Formation in the lower part <strong>of</strong> the type section. Thickness <strong>of</strong> s<strong>and</strong>stone unit is approximately<br />

10 m. For location, see Fig. 33.<br />

be eliminated from the discussion <strong>of</strong> the age <strong>of</strong> the Kome<br />

<strong>and</strong> Atane Formations <strong>and</strong> treated as an independent<br />

problem (Koch <strong>19</strong>64 p. 540).<br />

Rosenkrantz (<strong>19</strong>70) suggested that the Upernivik Næs<br />

flora is <strong>of</strong> Albian−Turonian age. Boyd (<strong>19</strong>98a) suggested<br />

that the Upernivik Næs flora is contemporaneous with<br />

his Ravn Kløft flora which he referred to the Middle–Late<br />

Albian <strong>and</strong> earliest Cenomanian. The poor palynological<br />

assemblage indicates a Late Albian to Early Turonian<br />

age (Croxton <strong>19</strong>78a, b; this study).<br />

Fig. 39. Detail <strong>of</strong> tidally influenced<br />

deposits <strong>of</strong> the Upernivik Næs Formation<br />

in the lower part <strong>of</strong> the type section.<br />

Person for scale; for location, see Fig. 33.<br />

54


Correlation. The Upernivik Næs flora was suggested to<br />

be coeval with the Ravn Kløft flora by Boyd (<strong>19</strong>98a). This<br />

suggests a correlation between the Upernivik Næs<br />

Formation <strong>and</strong> the Ravn Kløft Member <strong>of</strong> the Atane<br />

Formation (Figs 13, 16).<br />

Atane Formation<br />

redefined formation<br />

History. Nordenskiöld (1871) erected the Atane Formation<br />

(Atanelagren), naming it after the now-ab<strong>and</strong>oned settlement<br />

<strong>of</strong> Atane (now Ataa, Figs 3, 40). He described<br />

the unit to be more shaly than both the underlying Kome<br />

Formation <strong>and</strong> the overlying Upper Atanikerdluk For -<br />

mation, <strong>and</strong> interpreted the Atane Formation as freshwater<br />

deposits. He referred the formation to the Upper<br />

Cretaceous, following Heer (1868), with a distribution<br />

on southern Nuussuaq (between Atanikerluk <strong>and</strong> Ataa),<br />

northern Disko (at Qullissat) <strong>and</strong> at Kuuk on northern<br />

Nuussuaq (at altitudes above 250–300 m). Outcrops<br />

with coal seams were visited by Steenstrup (1874), who<br />

noted the occurrence <strong>of</strong> marine invertebrates in mud stones<br />

between the coal seams at Paatuut <strong>and</strong> Nuuk Qiterleq.<br />

The Atane Formation normally appears as a striped<br />

white, grey <strong>and</strong> black s<strong>and</strong>y <strong>and</strong> shaly unit rich in coalified<br />

plant fossils (Fig. 41) that formed the basis <strong>of</strong> the<br />

classic studies by Heer (1868, 1870, 1874a, b, 1880,<br />

1883a, b). However, self-combustion <strong>of</strong> the mudstones<br />

has locally produced brick-red, hard <strong>and</strong> fissile burnt<br />

slabs (Fig. 42) in which fossils are excellently preserved<br />

as impressions. Burnt mudstones are fairly common in<br />

the Paatuut (formerly spelled Patoot, Pâtût or Pautût) <strong>and</strong><br />

Kingittoq areas, <strong>and</strong> they were included in the regional<br />

collection that Steenstrup sent to O. Heer (Steenstrup<br />

1883a, b). Based on their colour, Heer treated the samples<br />

<strong>of</strong> burnt mudstones from Paatuut as lithostratigraphically<br />

different from those containing the Atane<br />

flora. Thereby a Patoot Formation (i.e. the sediments<br />

comprising the Patoot flora) was introduced <strong>and</strong> subsequently<br />

treated as a formal unit (Troelsen <strong>19</strong>56).<br />

Steenstrup (1883c) objected to Heer’s interpretation <strong>of</strong><br />

a stratigraphic boundary between the unburnt <strong>and</strong> the<br />

burnt mudstones from Paatuut since he had observed that<br />

the burnt mudstones are laterally equivalent to the normal,<br />

unburnt sediments.<br />

Steenstrup (1883a) suggested that all the Cretaceous<br />

sediments from Svartenhuk Halvø to Disko should be<br />

enclosed in one lithostratigraphic unit. He envisaged the<br />

depositional environment <strong>of</strong> the horizontally bedded<br />

mudstones <strong>and</strong> s<strong>and</strong>stones as shallow marine on account<br />

<strong>of</strong> his collections <strong>of</strong> invertebrates (bivalves <strong>and</strong> echinoids),<br />

although the well-preserved plant remains indicated<br />

deposition close to vegetated areas (Steenstrup<br />

1883a p. 48).<br />

The Early Cretaceous to Miocene age proposed by<br />

Heer for the coal-bearing deposits in West Greenl<strong>and</strong><br />

was discussed by A. Heim <strong>and</strong> J.P.J. Ravn, who both suggested<br />

that Heer’s interpretation spans too long a period.<br />

Instead they interpreted all the sediments as Upper<br />

Cretaceous to Eocene (Heim <strong>19</strong>10), more specifically the<br />

Kome flora as Albian, the Atane flora as Cenomanian,<br />

the Patoot flora as Senonian <strong>and</strong> the Atanikerdluk flora<br />

as Eocene (Ravn <strong>19</strong>18 p. 320). Ravn (<strong>19</strong>18) envisaged<br />

the plant bearing sediments as having been deposited in<br />

a fresh- to brackish-water environment, in which the<br />

rate <strong>of</strong> deposition equalled the rate <strong>of</strong> subsidence. The<br />

inoceramids provided evidence <strong>of</strong> marine conditions <strong>and</strong><br />

Ravn therefore concluded that at times subsidence<br />

exceeded deposition <strong>and</strong> marine environments were<br />

established. Furthermore, he observed no changes in the<br />

style <strong>of</strong> sedimentation during the Cretaceous <strong>and</strong> inferred<br />

that deposition had occurred continuously, presumably<br />

within a restricted period <strong>and</strong> consequently at relatively<br />

high rates <strong>of</strong> sediment accumulation.<br />

Troelsen (<strong>19</strong>56) maintained the distinction between<br />

the Kome, Atane <strong>and</strong> Patoot Formations, quoting descriptions<br />

by Nordenskiöld (1871) <strong>and</strong> Heer (1883b). These<br />

authors suggested that the Kome <strong>and</strong> Atane Formations<br />

are separated by a slight angular unconformity (Troelsen<br />

<strong>19</strong>56).<br />

Koch (<strong>19</strong>64) regarded the Pautût Formation (sensu<br />

Heer 1883b) as an artificial unit. Henderson et al. (<strong>19</strong>76<br />

fig. 303) quoted the lithostratigraphy <strong>of</strong> Troelsen (<strong>19</strong>56),<br />

but stressed that the Kome, Atane <strong>and</strong> Pautût formations<br />

lacked formal stratigraphic definition <strong>and</strong> referred<br />

all the fluvial <strong>and</strong> deltaic Cretaceous sediments on Disko<br />

<strong>and</strong> southern to central Nuussuaq to the Atane Formation.<br />

Ehman et al. (<strong>19</strong>76) used the term Atane Formation<br />

informally for the Cretaceous non-marine deposits <strong>and</strong><br />

found that the sediments range in age from Albian through<br />

Santonian.<br />

G.K. Pedersen & Pulvertaft (<strong>19</strong>92) referred all nonmarine<br />

Cretaceous sediments on Disko <strong>and</strong> Nuussuaq<br />

to the Atane Formation. They claimed (p. 263) that the<br />

term Atane Formation “had outlived the other formation<br />

names that have been used in the past for the different<br />

isolated outcrops <strong>of</strong> Cretaceous non-marine strata<br />

in West Greenl<strong>and</strong>”. Based on the data available at that<br />

time, G.K. Pedersen & Pulvertaft (<strong>19</strong>92 p. 263) interpreted<br />

these strata as “belonging to the same deposi-<br />

55


21’<br />

45’<br />

18’<br />

15’<br />

30’<br />

Uppall<br />

Giesec<br />

Monum<br />

Ivissussat<br />

Qaqqaat<br />

247701<br />

247901<br />

A t a a t a<br />

53°W<br />

247801<br />

Ippigaarsukkløften<br />

1010<br />

K u u a<br />

Paatuut<br />

Paatuutkløften<br />

21’<br />

Ivissussat<br />

Ivisaannguit<br />

Ataa<br />

53°<br />

18’<br />

70°15’N<br />

45’<br />

12’<br />

Fig. 40. <strong>Geological</strong> map <strong>of</strong> the south coast <strong>of</strong> Nuussuaq from Saqqaqdalen to Ivisaannguit, simplified from A.K. Pedersen et al. (2007b). The<br />

type localities <strong>of</strong> the Atane, Quikavsak <strong>and</strong> Atanikerluk Formations are all found within this area. The wells GGU 247701, GGU 247801<br />

<strong>and</strong> GGU 247901 indicated on the map were drilled to obtain technical information on the coal-bearing strata <strong>of</strong> the Atane Formation.<br />

Contour interval is 200 m; for location, see Fig. 2.<br />

Maligât Formation<br />

Vaigat Formation<br />

Q<br />

Atane Formation<br />

volcanic scree<br />

125 m<br />

Atane<br />

Formation<br />

Fig. 41. Typical outcrop <strong>of</strong> the Atane Formation at Paatuut on southern Nuussuaq. Note the prominent cyclic alternation <strong>of</strong> lithologies. For<br />

location, see Fig. 40. Q, Quikavsak Formation; compare with Fig. 14.<br />

56


12’<br />

09’<br />

15’<br />

06’<br />

03’<br />

Saqqaqdalen<br />

Umiusat<br />

Qallorsuaq<br />

Keglen<br />

Naajaat<br />

Kingittoq<br />

Iviangernat<br />

Aasivik<br />

Tartunaq<br />

09’<br />

Vaigat<br />

Nunngarut<br />

52°30’W<br />

06’<br />

Qallunnguaq<br />

Atanikerluk<br />

03’<br />

Aqqullugiaq<br />

Quikassaap Kuua<br />

Qeqertaq<br />

Takisut<br />

5 km<br />

15’<br />

70°N 70°<br />

Quaternary cover<br />

Maligât Formation<br />

Vaigat Formation<br />

Intrusion<br />

Atanikerluk Formation<br />

Quikavsak Formation<br />

Kangilia Formation<br />

Atane Formation<br />

Qilakitsoq Member<br />

Atane Formation<br />

Kingittoq Member<br />

Atane Formation<br />

Undivided<br />

Undifferentiated<br />

pre-Quaternary deposits<br />

Precambrian<br />

Ice<br />

Sea/lake<br />

Borehole<br />

Ab<strong>and</strong>oned settlement<br />

tional system <strong>and</strong> the same age interval, so that no more<br />

than one formation name seems at present to be required<br />

for the entire non-marine Cretaceous <strong>of</strong> the area”. Later,<br />

from sedimentological studies, Midtgaard (<strong>19</strong>96b) argued<br />

for the continued distinction between the Atane, Kome<br />

<strong>and</strong> Upernivik Næs Formations, as well as for the new<br />

Slibestensfjeldet Formation. Boyd (<strong>19</strong>93) considered,<br />

mostly on floral evidence, that the sediments at Paatuut<br />

should not be included in the Atane Formation. He<br />

therefore retained the Pautût flora <strong>and</strong> the Pautût<br />

Formation (Boyd <strong>19</strong>93 p. 253). There are, however, no<br />

lithological or sedimentological arguments for retaining<br />

the Pautût Formation <strong>of</strong> Troelsen (<strong>19</strong>56) or Boyd (<strong>19</strong>93),<br />

<strong>and</strong> we therefore recommend that it be ab<strong>and</strong>oned <strong>and</strong><br />

included in the Atane Formation.<br />

Name. From a former settlement Ataa (old spellings<br />

Atane, Atâ) on the south coast <strong>of</strong> Nuussuaq immediately<br />

west <strong>of</strong> Ataata Kuua (Figs 2, 3, 40; Nordenskiöld<br />

1871 plate XXI). Today only ruins <strong>of</strong> a few turf houses<br />

are seen at Ataa.<br />

Distribution. The Atane Formation is restricted to Disko<br />

<strong>and</strong> Nuussuaq. It comprises the lowermost exposed<br />

deposits on eastern Disko <strong>and</strong> southern <strong>and</strong> central<br />

Nuussuaq. Marginally marine successions <strong>of</strong> Albi an–<br />

Cenomanian age in the northern parts <strong>of</strong> the Nuussuaq<br />

Basin are referred to the Upernivik Næs Formation.<br />

Exposures <strong>of</strong> the Atane Formation are found east <strong>of</strong><br />

the Disko Gneiss Ridge <strong>and</strong> east <strong>of</strong> the Kuugan -<br />

nguaq–Qunnilik Fault (Fig. 10; Chalmers et al. <strong>19</strong>99).<br />

On northern Nuussuaq, the Atane Formation is present<br />

east <strong>of</strong> the Ikorfat fault zone where it overlies the<br />

Slibestensfjeldet Formation (Fig. 22; Midtgaard <strong>19</strong>96b).<br />

The distribution <strong>of</strong> the Atane Formation west <strong>of</strong> the<br />

outcrop area is little known. There are, however, no sedimentological<br />

data from the Atane Formation to indicate<br />

that the Disko Gneiss Ridge formed a morphological<br />

element during deposition <strong>of</strong> the formation. Finds <strong>of</strong><br />

s<strong>and</strong>stone xenoliths with chert pebbles in lava flows on<br />

western Disko have been suggested to be derived from<br />

the Atane Formation (Chalmers et al. <strong>19</strong>99). The xenoliths<br />

could, however, also have been derived from the<br />

Itilli Formation, which occurs on western Nuussuaq.<br />

Type section. The type section <strong>of</strong> the formation is the<br />

cored well GGU 247801 (70°<strong>19</strong>.87´N, 52°55.18´W) in<br />

the gorge <strong>of</strong> the Ataata Kuua river (Figs 14, 40) where<br />

these sediments were first described by Nordenskiöld<br />

(1871). The next geologist on the site was K.J.V. Steen -<br />

strup. He noted in 1872 that the description given by<br />

Nordenskiöld did not match the outcrop <strong>and</strong> that the<br />

57


Fig. 42. Well-exposed outcrop at<br />

Paatuut showing the self-combusted<br />

burnt shales (red) that grade into the<br />

typical black-<strong>and</strong>-white unburnt<br />

sediments <strong>of</strong> the Atane Formation<br />

(Qilakitsoq Member). Height <strong>of</strong><br />

section is approximately 50 m. For<br />

location, see Fig. 40.<br />

burnt shales<br />

geographical position was inaccurate (Steenstrup 1874).<br />

He suggested that Nordenskiöld had measured the type<br />

section <strong>of</strong> the Atane Formation south-east <strong>of</strong> the Ataa<br />

river, at “the northern end <strong>of</strong> the Patoot gorges” (Steen -<br />

strup 1883b p. 64). Later Rosenkrantz (<strong>19</strong>70 p. 422)<br />

stated that: “... the type locality Atâ, 14 km south-east<br />

<strong>of</strong> the old village Atâ on the south coast <strong>of</strong> Nûgssuaq, is<br />

rather close to Pautût..”, but in Henderson et al. (<strong>19</strong>76)<br />

the type locality <strong>of</strong> the Atane Formation was again given<br />

at Atâ (Ataata Kuua). The exposures along the western<br />

<strong>and</strong> eastern slopes <strong>of</strong> the Ataata Kuua gorge constitute<br />

a long, well-exposed section through the Atane Formation,<br />

<strong>and</strong> this has been measured photogrammetrically (Fig.<br />

15; A.K. Pedersen et al. 2007b). The sedimentological<br />

log representing the type section (Fig. 43) was measured<br />

in the continuously cored borehole GGU 247801, which<br />

reached a depth <strong>of</strong> 566 m below terrain (76 m below sea<br />

level).<br />

Reference sections. Skansen, J.P.J. Ravn Kløft, Kingittoq<br />

<strong>and</strong> Qilakitsoq provide well-exposed reference sections<br />

for the Atane Formation (Figs 48, 51, 53, 60). The two<br />

continuously cored boreholes GGU 247701 <strong>and</strong> GGU<br />

247901, both from the Paatuut area, are reference boreholes<br />

for the Atane Formation. They comprise strata<br />

from the Qilakitsoq Member <strong>and</strong> have been described<br />

in detail by Ambirk (2000).<br />

Thickness. The Atane Formation occurs in a number <strong>of</strong><br />

fault blocks (J.M. Hansen <strong>19</strong>80b; Chalmers et al. <strong>19</strong>99;<br />

Marcussen et al. 2001, 2002). The faults are, however,<br />

rarely exposed <strong>and</strong> although they have been recognised<br />

on seismic pr<strong>of</strong>iles acquired in Vaigat <strong>and</strong> Uummannaq<br />

Fjord (Marcussen et al. 2002), it has not been possible<br />

to determine their throw. Furthermore the lower boundary<br />

<strong>of</strong> the formation is very rarely exposed. Therefore<br />

the thickness <strong>of</strong> the Atane Formation can only be given<br />

as an estimate.<br />

The thickest exposed sections occur at Ivissussat on<br />

the south coast <strong>of</strong> Nuussuaq (700 m) <strong>and</strong> at Qilakitsoq<br />

on central Nuussuaq (800 m). Seismic data from the<br />

south coast <strong>of</strong> Nuussuaq show an unconformity at a<br />

depth <strong>of</strong> 1.5−2 km that has been suggested to represent<br />

the base <strong>of</strong> the Atane Formation (Christiansen et al.<br />

<strong>19</strong>95; Chalmers et al. <strong>19</strong>99). A seismic line across Vaigat<br />

indicates a minimum thickness <strong>of</strong> 3000 m for the Atane<br />

Formation (Fig. 44; Marcussen et al. 2001, 2002).<br />

Lithology. The Atane Formation comprises mudstones, heteroliths,<br />

s<strong>and</strong>stones <strong>and</strong> coal beds; the relative proportion<br />

<strong>of</strong> the lithologies varies regionally. The formation is<br />

characterised by aggradation <strong>of</strong> 10–40 m thick depositional<br />

cycles, which <strong>of</strong>ten coarsen upwards (Fig. 45).<br />

The s<strong>and</strong>stones are typically fine- to medium-grained,<br />

well sorted or heterolithic, with various types <strong>of</strong> cross-<br />

Facing page:<br />

Fig. 43. Type section <strong>of</strong> the Atane Formation (<strong>and</strong> reference section<br />

for the Qilakitsoq Member) from Ataata Kuua, borehole GGU<br />

247801. This core documents the stratigraphic interval known from<br />

the well-exposed section in the Ataata Kuua river gorge <strong>and</strong> extends<br />

this section down to 76 m below sea level. Tr, transgressive s<strong>and</strong>stones.<br />

For legend see Plate 1; for location, see Fig. 40.<br />

58


m<br />

0<br />

GGU 247801<br />

200<br />

400<br />

247815 ★<br />

★<br />

50<br />

250<br />

450<br />

Tr<br />

Tr<br />

100<br />

Tr<br />

300<br />

★<br />

500<br />

★<br />

Tr<br />

150<br />

350<br />

Tr<br />

550<br />

★<br />

Tr<br />

vf f m c vc<br />

clay silt s<strong>and</strong> pebbles<br />

vf f m c vc<br />

clay silt s<strong>and</strong> pebbles<br />

vf f m c vc<br />

clay silt s<strong>and</strong> pebbles<br />

59


TWT (msec)<br />

0<br />

500<br />

SP 750<br />

500 250 0<br />

S<br />

Quaternary sediments<br />

N<br />

Fig. 44. Seismic section across the Vaigat<br />

(for location, see Fig. 2; sea level is at<br />

TWT=0). The submarine section continues<br />

into exposures <strong>of</strong> the formation up to<br />

200–400 m a.s.l. on both sides <strong>of</strong> Vaigat<br />

indicating a minimum thickness <strong>of</strong> the<br />

Atane Formation <strong>of</strong> 3000 m (from<br />

Marcussen et al. 2002). SP, seismic shot<br />

points.<br />

1000<br />

Cretaceous<br />

sediments<br />

c. 0.5 km<br />

1500<br />

1 km<br />

bedding, numerous s<strong>of</strong>t-sediment deformation structures<br />

<strong>and</strong> local bioturbation. The s<strong>and</strong>stones consist <strong>of</strong><br />

quartz, variably kaolinised feldspars, fragments <strong>of</strong> older<br />

quartz-rich sedimentary rocks, <strong>and</strong> small amounts <strong>of</strong><br />

mica <strong>and</strong> other detrital minerals together with comminuted<br />

plant debris. Trace fossils are locally abundant.<br />

The s<strong>and</strong>stones are cemented by carbonate or clay minerals<br />

but are generally friable. Pervasive cementation is<br />

only patchily developed. The s<strong>and</strong>stones have sheet or<br />

ribbon geometries.<br />

The mudstones are weakly laminated, typically silty,<br />

with kaolinite as the dominant clay mineral accompanied<br />

by a little mica. The mudstones fall into two groups:<br />

(1) mudstones ranging from silt-streaked mudstone to<br />

df<br />

d<br />

dp<br />

ts<br />

dp<br />

ch<br />

df<br />

ch<br />

Fig. 45. Outcrop <strong>of</strong> the Atane Formation<br />

in the Paatuut area showing the four<br />

depositional environments characterising<br />

the Atane Formation: delta front (df), delta<br />

plain (dp), fluvial or distributary channel<br />

(ch) <strong>and</strong> transgressive shoreface deposits<br />

(ts). The delta front deposits form<br />

coarsening-upward units, indicated by<br />

triangular symbols. The dashed lines trace<br />

the bases <strong>of</strong> delta front mudstones. The<br />

sedimentary succession is cut by a dyke (d).<br />

The thickness <strong>of</strong> the section is c. 120 m;<br />

for location, see Fig. 40.<br />

60


wave-rippled s<strong>and</strong> streaked mudstone to heterolithic<br />

s<strong>and</strong>stone, <strong>and</strong> (2) mudstones with plant debris, ranging<br />

from carbonaceous mudstone to clayey coal.<br />

The coal beds are interbedded with carbonaceous<br />

mudstones, s<strong>and</strong>-streaked mudstones <strong>and</strong> heterolithic<br />

cross-laminated s<strong>and</strong>stones with local root horizons. The<br />

coal beds are typically less than 0.8 m thick. In several<br />

horizons, coal balls are observed, <strong>and</strong> silicified wood fragments<br />

are common. The coals belong to the ‘b<strong>and</strong>ed<br />

coal’ type dominated by the lithotypes vitrain <strong>and</strong> clarain.<br />

Macerals <strong>of</strong> the vitrinite group are <strong>of</strong>ten well preserved<br />

owing to the prevailing low rank <strong>of</strong> the coal. Detailed<br />

study <strong>of</strong> the organic particles <strong>and</strong> their geochemistry<br />

permit a distinction between fresh- <strong>and</strong> brackish-water<br />

environments <strong>of</strong> coal deposition (Shekhar et al. <strong>19</strong>82;<br />

Bojesen-Koefoed et al. 2001; G.K. Pedersen et al. 2006).<br />

The Atane Formation is characterised by depositional<br />

cycles that are typically 10–40 m thick (Figs 41, 46).<br />

The simplest cycles are seen on eastern Disko where they<br />

consist <strong>of</strong> 10–30 m thick s<strong>and</strong>stone sheets separated by<br />

c. 5 m thick units <strong>of</strong> mudstone <strong>and</strong> coal beds. On southern<br />

<strong>and</strong> central Nuussuaq, the cycles range in thickness<br />

from 5–15 m up to 40 m. They include coarseningupward<br />

units beginning with mudstones at the base passing<br />

up into heterolithic mudstones, then heterolithic<br />

s<strong>and</strong>stones with hummocky cross-stratification <strong>and</strong> ripple<br />

cross-lamination <strong>and</strong> finally into cross-bedded s<strong>and</strong>stones,<br />

<strong>of</strong>ten with coal debris. The typical coarseningupward<br />

cycle is capped by carbonaceous mudstones with<br />

thin s<strong>and</strong>stone or coal beds (Pedersen & Pulvertaft <strong>19</strong>92<br />

fig. 5). Bioturbated s<strong>and</strong>stones form part <strong>of</strong> many cycles.<br />

In the Paatuut area, 32 such cycles have been identified<br />

(Olsen <strong>19</strong>91; Dueholm & Olsen <strong>19</strong>93).<br />

Fossils. The fossils <strong>of</strong> the Atane Formation comprise<br />

macr<strong>of</strong>lora, spores <strong>and</strong> pollen, dinocysts, <strong>and</strong> invertebrate<br />

fossils (Heer 1868, 1870, 1874a, b, 1880, 1883a,<br />

b; Ravn <strong>19</strong>18; Koch <strong>19</strong>64; Birkelund <strong>19</strong>65; Ehman et<br />

al. <strong>19</strong>76; Croxton <strong>19</strong>78a, b; Boyd <strong>19</strong>90, <strong>19</strong>92, <strong>19</strong>93,<br />

<strong>19</strong>94, <strong>19</strong>98a, b; Olsen & Pedersen <strong>19</strong>91; Koppelhus &<br />

Pedersen <strong>19</strong>93; McIntyre <strong>19</strong>94a, b, c; Nøhr-Hansen<br />

<strong>19</strong>96; Lanstorp <strong>19</strong>99; Dam et al. 2000).<br />

Macr<strong>of</strong>ossil plants from the Atane Formation are<br />

referred to three floras. The Ravn Kløft flora is characterised<br />

by angiosperms <strong>and</strong> conifers, <strong>and</strong> has few species<br />

in common with the Atane flora (Boyd <strong>19</strong>98a, b). The<br />

Atane flora is a mixture <strong>of</strong> older Cretaceous species<br />

together with well-differentiated angiosperm species representative<br />

<strong>of</strong> many families (Koch <strong>19</strong>64; K.R. Pedersen<br />

<strong>19</strong>76). The Paatuut flora is dominated by conifer <strong>and</strong><br />

angiosperm leaf species, <strong>and</strong> has many species in common<br />

with the Atane flora as well as numerous endemic<br />

species (Koch <strong>19</strong>64; Boyd <strong>19</strong>92, <strong>19</strong>93, <strong>19</strong>94).<br />

Spores <strong>and</strong> pollen occur in most mudstone samples<br />

from the Atane Formation, although <strong>of</strong>ten the preservation<br />

is poor or the number <strong>of</strong> identifiable specimens is low.<br />

Regional studies <strong>of</strong> the spore <strong>and</strong> pollen assemblages<br />

have been carried out by Ehman et al. (<strong>19</strong>76) <strong>and</strong> Croxton<br />

(<strong>19</strong>76, <strong>19</strong>78a, b). The latter distinguished two stratigraphically<br />

important assemblages, the first without<br />

angiospermous (tricolpate) grains (supposed to be<br />

Cenomanian or older), the second with angiospermous<br />

grains but lacking both Aquilapollenites <strong>and</strong> complex triporate<br />

grains. The second assemblage was proposed to<br />

be older than Late Campanian (Croxton <strong>19</strong>78a p. 76).<br />

A large number <strong>of</strong> samples from the Cretaceous were<br />

examined on a reconnaissance basis by McIntyre (<strong>19</strong>94a,<br />

b, c, personal communication <strong>19</strong>97) whereas Koppelhus<br />

& Pedersen (<strong>19</strong>93) <strong>and</strong> Lanstorp (<strong>19</strong>99) studied fewer<br />

sections in greater detail.<br />

Marine dinocysts were described from central Nuussuaq<br />

(Ilugissoq, Qilakitsoq, Tunoqqu, southern part <strong>of</strong> Agat -<br />

dalen) <strong>and</strong> from southern Nuussuaq (Paatuut, Ataata<br />

Kuua, Nuuk Qiterleq <strong>and</strong> Nuuk Killeq) by Nøhr-Hansen<br />

(<strong>19</strong>96), Croxton (<strong>19</strong>78a, b), McIntyre (<strong>19</strong>94a, b, c, personal<br />

communication <strong>19</strong>97) <strong>and</strong> Dam et al. (2000).<br />

Brackish-water dinocysts <strong>of</strong> Late Albian to Cenomanian<br />

age have been described from northern Nuussuaq (Figs<br />

29, 30; Nøhr-Hansen in Sønderholm et al. (2003), Asuk<br />

<strong>and</strong> in the F93-3-1 core from Kuugannguaq, northern<br />

Disko.<br />

A sparse fauna <strong>of</strong> marine invertebrates (echinoids <strong>and</strong><br />

bivalves) is known from southern <strong>and</strong> central Nuussuaq<br />

including Sphenoceramus patootensis, Sphenoceramus pinniformis,<br />

<strong>and</strong> Oxytoma tenuicostata (Ravn <strong>19</strong>18; Olsen<br />

& Pedersen <strong>19</strong>91). Ammonites from a single horizon at<br />

Alianaatsunnguaq were referred to the Scaphites ventricosus<br />

– Inoceramus involutus Zone by Birkelund (<strong>19</strong>65);<br />

the Atane Formation in Agatdalen has yielded Baculites<br />

codyensis (Reeside) <strong>and</strong> radially ribbed inoceramids <strong>of</strong><br />

the steenstrupi species-group, an assemblage referred to<br />

the Clioscaphites montanensis Zone (Birkelund <strong>19</strong>65;<br />

Dam et al. 2000). Ammonites from the Atane Formation<br />

occur as redeposited fossils in the Itilli Formation on<br />

central Nuussuaq (Dam et al. 2000). Clioscaphites saxitonianus<br />

septentrionalis (Birkelund) has been described<br />

from Ilugissoq, <strong>and</strong> at Tunoqqo Clioscaphites sp. aff. saxitonianus<br />

(McLearn) occurs together with a single Scaphites<br />

cf. Svartenhukensis (Birkelund <strong>19</strong>65; Dam et al. 2000).<br />

Although Koch (<strong>19</strong>64) suggested that the marine fossils<br />

are restricted to a few horizons, Olsen & Pedersen<br />

(<strong>19</strong>91) reported that the marine fossils recur through<br />

61


Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

Tr<br />

50 m<br />

Tr<br />

c. 2 km c. 1 km<br />

Tr<br />

Tr<br />

Fig. 46. Simplified sedimentological logs from the Ivissussat–Paatuut area; colours depict depositional environments, see Plate 1. The logs<br />

document the cyclic depositional pattern <strong>and</strong> local variations in thickness <strong>and</strong> lateral changes <strong>of</strong> facies. Individual phases <strong>of</strong> delta progradation<br />

may be correlated over short distances between neighbouring sections. The resulting high-resolution lithostratigraphy has only local significance.<br />

For legend, see Plate 1; Tr, Transgressive s<strong>and</strong>. For location, see Fig. 40.<br />

62


the formation in the marine mudstones at the base <strong>of</strong> the<br />

delta front cycles. Boyd (<strong>19</strong>93) also reported marine<br />

invertebrates from several stratigraphic horizons.<br />

Trace fossils are locally abundant <strong>and</strong> include Dac -<br />

tyoloidites ottoi, Ophiomorpha nodosa, O. irregulaire,<br />

Taenidium serpentinum, Planolites isp., Teichichnus isp.,<br />

Thalassinoides isp., Diplocraterion isp., Skolithos isp.<br />

(Fürsich & Bromley <strong>19</strong>85; G.K. Pedersen & Rasmussen<br />

<strong>19</strong>89; Bojesen-Koefoed et al. 2001; G.K. Pedersen &<br />

Bromley 2006, Bromley & G.K. Pedersen 2008).<br />

Depositional environment. The Atane Formation is interpreted<br />

as having been deposited in a major delta system,<br />

<strong>and</strong> four depositional environments are distinguished: the<br />

prograding marine delta front, fluvial or distributary<br />

channels <strong>of</strong> the delta plain, lakes <strong>and</strong> swamps <strong>of</strong> the delta<br />

plain, <strong>and</strong> the marine shoreface.<br />

The coarsening-upward successions <strong>of</strong> mudstones,<br />

heteroliths <strong>and</strong> fine-grained s<strong>and</strong>stones are interpreted<br />

as delta front deposits. In some successions, they include<br />

interdistributary bay deposits (J.M.Hansen <strong>19</strong>76; Midt -<br />

gaard & Olsen, <strong>19</strong>89; Midtgaard <strong>19</strong>91; Olsen <strong>19</strong>91;<br />

Olsen & Pedersen <strong>19</strong>91; G.K. Pedersen & Pulvertaft<br />

<strong>19</strong>92; Dueholm & Olsen <strong>19</strong>93, Nielsen 2003) (Figs 45,<br />

46). They are interpreted to have resulted from progradation<br />

<strong>of</strong> shelf deltas sensu Elliott (<strong>19</strong>89). Olsen (<strong>19</strong>93)<br />

described channel mouth complexes from the uppermost<br />

part <strong>of</strong> many delta front cycles at Paatuut.<br />

The fluvial s<strong>and</strong>stone sheets on eastern Disko are<br />

interpreted as s<strong>and</strong>y braided river deposits (Johannessen<br />

& Nielsen <strong>19</strong>82; Koppelhus & Pedersen <strong>19</strong>93; Bruun<br />

2006). These may constitute the multi-storey fill <strong>of</strong> fluvial<br />

valleys on south-east Nuussuaq (Jensen 2000; Jensen<br />

& Pedersen in press). Fluvial s<strong>and</strong>stones with ribbon<br />

geometry are interpreted as slightly sinuous distributary<br />

channel deposits (Olsen <strong>19</strong>91, <strong>19</strong>93). The carbonaceous<br />

mudstones, s<strong>and</strong>stones <strong>and</strong> coal seams are interpreted as<br />

freshwater lake or swamp deposits on the delta plain<br />

(Midtgaard <strong>19</strong>91; Olsen & Pedersen <strong>19</strong>91; G.K. Pedersen<br />

& Pulvertaft <strong>19</strong>92; Koppelhus & Pedersen <strong>19</strong>93; Nielsen<br />

2003; Møller 2006; G.K. Pedersen et al. 2006). This<br />

facies association is interpreted as representing the vertical<br />

aggradation <strong>of</strong> a subaerial to shallow limnic, upper<br />

<strong>and</strong> lower delta plain. The thin beds <strong>of</strong> s<strong>and</strong> with marine<br />

trace fossils are interpreted as transgressive s<strong>and</strong> sheets,<br />

the erosional base <strong>of</strong> which constitutes a ravinement surface<br />

(Midtgaard <strong>19</strong>91; Olsen & Pedersen <strong>19</strong>91; G.K.<br />

Pedersen & Rasmussen <strong>19</strong>89).<br />

Olsen (<strong>19</strong>91) <strong>and</strong> Dueholm & Olsen (<strong>19</strong>93) documented<br />

32 cycles <strong>of</strong> delta progradation in the Paatuut<br />

area <strong>and</strong> comparable numbers <strong>of</strong> delta cycles are known<br />

from the Qilakitsoq area. J.M. Hansen (<strong>19</strong>76) observed<br />

that the deltaic cycles in a vertical section at any locality<br />

show a remarkable similarity, indicating an aggradational<br />

stacking pattern. Correlation <strong>of</strong> individual deltaic<br />

cycles is only possible between closely spaced outcrops<br />

(Fig. 46), but lateral changes in depositional environment<br />

within the Atane Formation may be demonstrated<br />

on a larger scale (Fig. 16).<br />

Boundaries. On Disko, the Atane Formation overlies a<br />

basement high in the FP-93-3-1 well (Fig. <strong>19</strong>). On<br />

Nuussuaq, the base <strong>of</strong> the Atane Formation is exposed<br />

along the north coast where the formation erosively overlies<br />

the Slibestensfjeldet Formation between Ikorfat <strong>and</strong><br />

Vesterfjeld (Figs 30, 32). The boundary has been interpreted<br />

either as a minor angular unconformity (Gry <strong>19</strong>40;<br />

Koch <strong>19</strong>64) or as a conformable, erosional base <strong>of</strong> a channel<br />

(Ehman et al. <strong>19</strong>76; Schiener <strong>19</strong>77; Croxton <strong>19</strong>78a,<br />

b; Midtgaard <strong>19</strong>96b). Midtgaard (<strong>19</strong>96b) interpreted<br />

the unconformity as a sequence boundary (Fig. 32).<br />

The upper boundary <strong>of</strong> the Atane Formation is a<br />

marked erosional unconformity (see Fig. 16). On eastern<br />

Disko <strong>and</strong> Nuussuaq, it is overlain by fluvial <strong>and</strong><br />

lacustrine Paleocene deposits <strong>of</strong> the Atanikerluk For -<br />

mation. On northern Disko, the Atane Formation is erosively<br />

truncated by the Itilli Formation at Kussinerujuk<br />

<strong>and</strong> Asuk <strong>and</strong> by the volcanic Vaigat Formation at<br />

Naajannguit (Hald & Pedersen <strong>19</strong>75; A.K. Pedersen<br />

<strong>19</strong>85). Along the south coast <strong>of</strong> Nuussuaq, the Atane<br />

Formation is unconformably overlain by the marine<br />

Kangilia Formation (Dam et al. 2000), by incised valley<br />

fills <strong>of</strong> the Quikavsak Formation (Dam et al. <strong>19</strong>98a;<br />

Dam & Sønderholm <strong>19</strong>98; Dam et al. 2000; Dam 2002),<br />

<strong>and</strong> by the Eqalulik Formation. In the Aaffarsuaq valley<br />

the Atane Formation is unconformably overlain by the<br />

Itilli Formation (Dam et al. 2000) with rare ammonites<br />

(Birkelund <strong>19</strong>65). West <strong>of</strong> Ilugissoq (central Nuussuaq),<br />

the upper boundary <strong>of</strong> the Atane Formation is not<br />

exposed.<br />

On northern Nuussuaq, the upper boundary <strong>of</strong> the<br />

formation can only be seen between Vesterfjeld <strong>and</strong><br />

Ikorfat but is generally poorly exposed. Directly east <strong>of</strong><br />

the Ikorfat fault zone, the Atane Formation is overlain<br />

by mudstones with Late Campanian to Maastrichtian<br />

ammonites (Birkelund <strong>19</strong>65), referred to the Itilli For -<br />

mation. Between Vesterfjeld <strong>and</strong> Ikorfat, the Atane For -<br />

mation is overlain by the Eqalulik Formation or by<br />

volcanic rocks <strong>of</strong> the Vaigat Formation (Figs. 22, 29;<br />

A.K. Pedersen et al. <strong>19</strong>96, 2006b).<br />

63


<strong>Geological</strong> age. The scarcity <strong>of</strong> marine fossils combined<br />

with the long range <strong>of</strong> many terrestrial plants, spores<br />

<strong>and</strong> pollen makes it difficult to determine the age <strong>of</strong> the<br />

Atane Formation with precision; for this purpose not<br />

only the presence but also the abundance <strong>of</strong> palynomorphs<br />

is important. The age <strong>of</strong> the formation is bracketed by<br />

the palynomorphs or plant macr<strong>of</strong>ossils in the underlying<br />

Kome <strong>and</strong> Slibestensfjeldet Formations <strong>and</strong> by<br />

dinocysts <strong>and</strong> ammonites in the overlying Itilli Formation<br />

on central <strong>and</strong> northern Nuussuaq (Fig. 16).<br />

The oldest parts <strong>of</strong> the Atane Formation are Albi an–<br />

Cenomanian <strong>and</strong> Early Turonian <strong>and</strong> occur on Disko,<br />

on southern Nuussuaq at Kingittoq <strong>and</strong> eastwards, <strong>and</strong><br />

on northern Nuussuaq around J.P.J. Ravn Kløft (Croxton<br />

<strong>19</strong>78a, b; Koppelhus & Pedersen <strong>19</strong>93; McIntyre <strong>19</strong>94a,<br />

b, c, personal communication <strong>19</strong>97; Boyd <strong>19</strong>98a, b;<br />

Lanstorp <strong>19</strong>99; this study). Sediments <strong>of</strong> Albian–Ceno -<br />

manian to Turonian age have been reported from Asuk,<br />

<strong>and</strong> at Kussinerujuk the Atane Formation is overlain by<br />

the Cenomanian Kussinerujuk Member <strong>of</strong> the Itilli<br />

Formation (McIntyre <strong>19</strong>94a, b; Bojesen-Koefoed et al.<br />

2007). The presence <strong>of</strong> Coniacian deposits is based on<br />

the occurrence <strong>of</strong> Scaphites ventricosus at Aliana atsun -<br />

nguaq (Birkelund <strong>19</strong>65). The youngest parts <strong>of</strong> the formation<br />

are <strong>of</strong> Late Santonian to earliest Campanian age<br />

<strong>and</strong> occur on southern <strong>and</strong> central Nuussuaq (Paatuut,<br />

Qilakitsoq, Agatdalen; Olsen & Pedersen <strong>19</strong>91; Boyd<br />

<strong>19</strong>92, <strong>19</strong>93, <strong>19</strong>94; Nøhr-Hansen <strong>19</strong>96; D.J. McIntyre,<br />

personal communication <strong>19</strong>97; Dam et al. 2000). These<br />

sediments are dated from ammonites (Clioscaphites montanensis<br />

Zone), dinocysts <strong>and</strong> macroplant fossils (Birke -<br />

lund <strong>19</strong>65; Boyd <strong>19</strong>92, <strong>19</strong>93, <strong>19</strong>94; Nøhr-Hansen <strong>19</strong>96;<br />

Dam et al. 2000). Coniacian to Early Santonian am mo -<br />

nites in the Itilli Formation on central Nuussuaq overlying<br />

the Atane Formation indicate that the latter is<br />

Santonian or older in this area (Birkelund <strong>19</strong>65; Dam<br />

et al. 2000).<br />

Correlation. The Atane Formation is in part coeval with<br />

the marginally marine Upernivik Næs Formation north<br />

<strong>of</strong> Nuussuaq, <strong>and</strong> with the lower part <strong>of</strong> the deep marine<br />

Itilli Formation on Nuussuaq (west <strong>of</strong> the Kuugan -<br />

nguaq−Qunnilik Fault) <strong>and</strong> on Svartenhuk Halvø (Figs<br />

13, 16).<br />

Subdivision. The Atane Formation is divided into four<br />

members: the Albian–Cenomanian Skansen Member<br />

<strong>and</strong> Ravn Kløft Member, the Albian to Lower Turonian<br />

Kingittoq Member, <strong>and</strong> the Upper Turonian to Santonian<br />

– lowermost Campanian Qilakitsoq Member, which<br />

includes the ?lower Campanian Itivnera Bed.<br />

Skansen Member<br />

new member<br />

History. The Skansen Member includes the sediments<br />

referred to the Atane Formation on southern <strong>and</strong> eastern<br />

Disko. The coal beds at Skansen were visited by<br />

Giesecke in 1807 <strong>and</strong> 1811 (in: Steenstrup <strong>19</strong>10). He<br />

described the alternation between s<strong>and</strong>stones <strong>and</strong> coal<br />

beds, <strong>and</strong> noted that spherical concretions (Kieskugeln)<br />

are frequent in the s<strong>and</strong>stones. The history <strong>of</strong> coal mining<br />

at Skansen was summarised by K.J.V. Steenstrup,<br />

who also measured a geological pr<strong>of</strong>ile <strong>of</strong> the coastal cliff<br />

at Skansen (Steenstrup 1874 plate VIII).<br />

Name. The name is taken from the former settlement<br />

Skansen (old spelling Sk<strong>and</strong>sen) or Aamaruutissat, on the<br />

south coast <strong>of</strong> Disko (Fig. 124). The name ‘Skansen’<br />

(meaning rampart or palisade) originates from a thick <strong>and</strong><br />

very prominent sill <strong>of</strong> columnar jointed basalt, named<br />

Innaarsuit in Greenl<strong>and</strong>ic.<br />

Distribution. The Skansen Member crops out on southern<br />

<strong>and</strong> eastern Disko (Figs 124, 132; A.K. Pedersen et<br />

al. 2000, 2001, 2003). The sediments are exposed in<br />

stream sections along the coast <strong>and</strong> in the inl<strong>and</strong> valleys<br />

such as Kv<strong>and</strong>alen <strong>and</strong> Laksedalen. The Skansen Member<br />

is not known from wells <strong>and</strong> its distribution outside the<br />

area <strong>of</strong> outcrop is unknown. The Cretaceous sediments<br />

recorded in seismic sections in Disko Bugt south <strong>and</strong><br />

east <strong>of</strong> Disko (Chalmers et al. <strong>19</strong>99) presumably in part<br />

belong to the Skansen Member.<br />

Type section. The type section <strong>of</strong> the Skansen Member is<br />

on the south-facing slope behind the settlement <strong>of</strong> Skansen<br />

(Figs 47, 48, 124). The sedimentology <strong>and</strong> palynology<br />

<strong>of</strong> this section have been studied in some detail (Koppelhus<br />

& Pedersen <strong>19</strong>93; Bruun 2006; Møller 2006a, b). The<br />

base <strong>of</strong> the type section is located at 69°26.40´N,<br />

52°26.32´W.<br />

Reference sections. Reference sections are found at<br />

Illunnguaq (Koppelhus & Pedersen <strong>19</strong>93) <strong>and</strong> Pingu<br />

(Fig. 132).<br />

Thickness. Only the upper 470 m <strong>of</strong> the Skansen Member<br />

are exposed. However, geophysical data indicate that sediments<br />

with a thickness <strong>of</strong> c. 2 km are present east <strong>of</strong> Disko<br />

(Chalmers et al. <strong>19</strong>99), suggesting that the Skansen<br />

Member may reach a considerable thickness in the subsurface.<br />

64


d<br />

d<br />

Fig. 47. Type locality <strong>of</strong> the Skansen Member <strong>of</strong> the Atane Formation at Skansen, southern Disko (for location, see Fig. 124). The Skansen<br />

Member is dominated by fluvial s<strong>and</strong>stones, interbedded with fine-grained floodplain deposits <strong>and</strong> thin coal seams. The peak is at 470 m<br />

a.s.l. <strong>and</strong> the sediments are cut by several dykes (d).<br />

Lithology. The Skansen Member is dominated by white<br />

to yellow s<strong>and</strong>stones with sheet geometry, intercalated<br />

with coal seams, mudstones <strong>and</strong> heteroliths rich in plant<br />

debris arranged in a cyclic depositional pattern (Figs 47,<br />

49). Sixteen cycles are recognised, typically 20–30 m<br />

thick (Bruun 2006). The s<strong>and</strong>stones consist <strong>of</strong> quartz,<br />

more or less kaolinised feldspars, fragments <strong>of</strong> older<br />

quartz-rich sedimentary rocks, <strong>and</strong> small amounts <strong>of</strong><br />

mica <strong>and</strong> other detrital minerals together with comminuted<br />

plant debris. The s<strong>and</strong>stones are generally friable,<br />

since carbonate or clay mineral cement is only<br />

locally developed. The s<strong>and</strong>stones are medium- to coarsegrained,<br />

in places with pebbly channel lags <strong>of</strong> intraformational<br />

mudstones, coal clasts or pebbles <strong>of</strong> chert <strong>and</strong><br />

Ordovician limestone (A.K. Pedersen & Peel <strong>19</strong>85). They<br />

are dominantly cross bedded or structureless (Fig. 49),<br />

but commonly show s<strong>of</strong>t-sediment deformation structures.<br />

S<strong>and</strong>stone sheets with a width: thickness ratio in<br />

excess <strong>of</strong> 15 are characteristic. The interbedded finegrained<br />

sediments are dark grey to black due to the ubiquitous<br />

presence <strong>of</strong> comminuted plant debris. Facies vary<br />

rapidly both vertically <strong>and</strong> laterally between heterolithic,<br />

cross laminated s<strong>and</strong>, mudstone with plant debris, massive<br />

brownish mudstone <strong>and</strong> coal beds, most <strong>of</strong> which<br />

are less than 1 m thick. Locally, root horizons or rare tree<br />

stumps are present. The coal beds are c. 0.5 m thick, <strong>and</strong><br />

the coals are subbituminous, with up to 20% siliciclastic<br />

particles <strong>and</strong> very little pyrite. The coals are dominated<br />

by huminite which originates from wood <strong>and</strong> plant tissue<br />

rich in cellulose (Møller 2006a, b).<br />

Fossils. Macr<strong>of</strong>lora, spores <strong>and</strong> pollen are known from the<br />

Skansen Member (Heer 1883a, b; Seward <strong>19</strong>26; Miner<br />

<strong>19</strong>32a, b, <strong>19</strong>35; Ehman et al. <strong>19</strong>76; Croxton <strong>19</strong>78a, b;<br />

Koppelhus & Pedersen <strong>19</strong>93). The plant fossils from six<br />

localities (Innanguit, Killusat, Skansen, Pingu, Ujara -<br />

sussuk, Illukunnguaq) were referred to the Atane flora<br />

by Heer (1883b p. 93). Assemblages <strong>of</strong> palynomorphs<br />

65


m<br />

130<br />

m<br />

Fig. 48. Type section <strong>of</strong> the Skansen<br />

Member; note the dominance <strong>of</strong> fluvial<br />

channel deposits, (see also Figs 47 <strong>and</strong> 49).<br />

Base <strong>of</strong> section is at c. 120 m a.s.l. For<br />

legend, see Plate 1.<br />

110<br />

50<br />

250<br />

0<br />

200<br />

mud<br />

s<strong>and</strong><br />

180<br />

mud<br />

s<strong>and</strong><br />

have been studied at reconnaissance level at Marraat<br />

(southern Disko) <strong>and</strong> Skansen (Ehman et al. <strong>19</strong>76), at<br />

Kuuk Quamasoq <strong>and</strong> Pingu (Croxton <strong>19</strong>78a, b; D.J.<br />

McIntyre, personal communication 2003) <strong>and</strong> in more<br />

detail at Skansen <strong>and</strong> Illunnguaq (Koppelhus & Pedersen<br />

<strong>19</strong>93) (Fig. 124).<br />

Depositional environment. The s<strong>and</strong>stone sheets in the<br />

Skansen Member are interpreted as s<strong>and</strong>y braided river<br />

deposits. The sediment transport directions on eastern<br />

Disko vary from north-north-west at Pingu to southwest<br />

at Gule Ryg <strong>and</strong> Skansen (G.K. Pedersen & Pulvertaft<br />

<strong>19</strong>92 fig. 6), suggesting the presence <strong>of</strong> a huge alluvial<br />

cone with its apex east <strong>of</strong> Disko. Apparently, the Disko<br />

Gneiss Ridge did not affect the depositional pattern <strong>of</strong><br />

the Skansen Member (Johannessen & Nielsen <strong>19</strong>82;<br />

G.K. Pedersen & Jeppesen <strong>19</strong>88; Koppelhus & Pedersen<br />

<strong>19</strong>93; Bruun 2006).<br />

The carbonaceous mudstones, s<strong>and</strong>stones <strong>and</strong> coal<br />

seams are interpreted as freshwater lake or swamp deposits<br />

representing the vertical aggradation <strong>of</strong> a subaerial to<br />

shallow, limnic floodplain to upper delta plain. The<br />

66


Fig. 49. Cross-bedded medium- to coarsegrained<br />

fluvial s<strong>and</strong>stones <strong>of</strong> the Skansen<br />

Member at Skansen. Note the intraformational<br />

conglomerate (C) composed <strong>of</strong><br />

mudstone <strong>and</strong> coal clasts (lower part <strong>of</strong><br />

photo), <strong>and</strong> the thin interval <strong>of</strong> carbonaceous<br />

mudstone (floodplain deposits; fp)<br />

in the upper part.<br />

fp<br />

c. 20 m<br />

C<br />

spores <strong>and</strong> pollen represent vegetation dominated by<br />

conifers <strong>and</strong> ferns; there are no indications – neither<br />

palynological evidence nor the presence <strong>of</strong> pyrite – to suggest<br />

marine or brackish-water conditions (G.K. Pedersen<br />

& Pulvertaft <strong>19</strong>92; Koppelhus & Pedersen <strong>19</strong>93; Møller<br />

2006).<br />

Boundaries. The lower boundary <strong>of</strong> the Skansen Member<br />

is not exposed. The upper boundary is an erosional<br />

unconformity overlain by the Paleocene Atanikerluk<br />

Formation. At Pingu, the Skansen Member is overlain<br />

by fluvial s<strong>and</strong> <strong>of</strong> the Akunneq Member (Figs 16, 132),<br />

while it is overlain by lacustrine mudstones <strong>of</strong> the Assoq<br />

Member at Tuapaat on southern Disko. The presence <strong>of</strong><br />

late Cenomanian or Turonian strata at the top <strong>of</strong> the<br />

Illunnguaq section was suggested by Koppelhus &<br />

Pedersen (<strong>19</strong>93), but was not confirmed by examination<br />

<strong>of</strong> additional samples. The upper boundary <strong>of</strong> the<br />

Skansen Member corresponds to the upper boundary <strong>of</strong><br />

the Atane Formation in the area where the Skansen<br />

Member occurs.<br />

<strong>Geological</strong> age. The Skansen Member is dated on the<br />

basis <strong>of</strong> spores <strong>and</strong> pollen. At its type locality, a mid-<br />

Cenomanian age seems most likely, with a maximum<br />

age range <strong>of</strong> Late Albian to Cenomanian for the palynomorph<br />

assemblages from this member (Croxton <strong>19</strong>78a,<br />

b; Ehman et al. <strong>19</strong>76; Koppelhus & Pedersen <strong>19</strong>93).<br />

Correlation. The fluvial Skansen Member is laterally<br />

equivalent to the deltaic Kingittoq Member on northern<br />

Disko (between Qullissat <strong>and</strong> Kussinerujuk), <strong>and</strong><br />

on southern Nuussuaq (between Atanikerluk <strong>and</strong><br />

Kingittoq) (Fig. 16). The Skansen Member also correlates<br />

with the fluviodeltaic Ravn Kløft Member on northeastern<br />

Nuussuaq <strong>and</strong> in part at least with the Upernivik<br />

Næs Formation on Upernivik Ø. Palynomorphs are not<br />

preserved in the lower part <strong>of</strong> the Itilli Formation on<br />

Svartenhuk Halvø <strong>and</strong> on western Nuussuaq, which precludes<br />

firm correlation between the Skansen Member<br />

<strong>and</strong> the Itilli Formation (Figs 13, 16).<br />

Ravn Kløft Member<br />

new member<br />

History. The Ravn Kløft Member is part <strong>of</strong> the Cretaceous<br />

succession overlying the Slibestensfjeldet Formation on<br />

north-eastern Nuussuaq. These sediments have previously<br />

been referred to the Atane Formation (Nordenskiöld<br />

1871; Gry <strong>19</strong>42; Midtgaard <strong>19</strong>96b) or to the Upernivik<br />

Næs Formation (Rosenkrantz <strong>19</strong>70; Henderson et al.<br />

<strong>19</strong>76).<br />

Name. The member is named after the gorge J.P.J. Ravn<br />

Kløft where it forms impressive outcrops (Fig. 50A, B).<br />

J.P.J. Ravn studied the geology <strong>of</strong> the Nuussuaq Basin<br />

in <strong>19</strong>09, with focus on the marine invertebrates from the<br />

region (Ravn <strong>19</strong>18).<br />

Distribution. The Ravn Kløft Member is known from outcrops<br />

along the north coast <strong>of</strong> Nuussuaq between Ikorfat<br />

67


A<br />

Kingittoq<br />

Member<br />

Ravn Kløft<br />

Member<br />

c. 60 m<br />

B<br />

Fig. 50. A: Type locality <strong>of</strong> the Ravn Kløft Member on the west-facing slopes <strong>of</strong> the J.P.J. Ravn Kløft gorge on Slibestensfjeldet. Note the very<br />

thick fluvial s<strong>and</strong>stone bodies at the top <strong>of</strong> the Ravn Kløft Member that can be traced westwards to Ikorfat. The Ravn Kløft Member is overlain<br />

by the Kingittoq Member (Atane Formation). For location, see Fig. 22. B: Large-scale cross-bedding in s<strong>and</strong>stones <strong>of</strong> the thick, amalgamated<br />

fluvial channel deposits at the top <strong>of</strong> the Ravn Kløft Member at Ravn Kløft (c. 395 m in Fig. 51A). The height <strong>of</strong> the exposure is c. 3 m.<br />

68


<strong>and</strong> Qaarsut (Fig. 22). Its wider distribution is not known<br />

due to lack <strong>of</strong> exposures.<br />

Type section. The eastern slope <strong>of</strong> J.P.J. Ravn Kløft constitutes<br />

the type section (Figs 22, 51A). The base <strong>of</strong> the<br />

type section is located at 70°45.18´N, 52°55.08´W.<br />

Reference sections. Reference sections are found in stream<br />

exposures just east <strong>of</strong> Ikorfat, at Slibestensfjeldet <strong>and</strong> at<br />

Vesterfjeld (Figs 22, 51B, 52).<br />

Thickness. The thickness <strong>of</strong> the Ravn Kløft Member is<br />

about 450 m in the type section, thinning both towards<br />

the east <strong>and</strong> the west (Midtgaard <strong>19</strong>96b). The basal pebbly<br />

s<strong>and</strong>stone varies in thickness from less than 2 m to<br />

a maximum <strong>of</strong> 56 m. The overlying deposits are c. 400<br />

m thick in J.P.J. Ravn Kløft.<br />

Lithology. A variety <strong>of</strong> lithologies <strong>and</strong> sedimentary facies<br />

are present in the Ravn Kløft Member. The member is<br />

tripartite, comprising a lower pebbly s<strong>and</strong>stone unit, a<br />

middle unit <strong>of</strong> mudstones, heteroliths <strong>and</strong> fine-grained<br />

s<strong>and</strong>stones with coarsening-upward or fining-upward<br />

depositional patterns, <strong>and</strong> an upper unit <strong>of</strong> thick-bedded<br />

medium- to coarse-grained s<strong>and</strong>stones interbedded<br />

with mudstones <strong>and</strong> heteroliths (Fig. 50B; Midtgaard<br />

<strong>19</strong>96b). The lower unit (c. 35–62 m on Fig. 51A) includes<br />

a c. 3 m thick conglomeratic s<strong>and</strong>stone with rounded pebbles<br />

<strong>and</strong> large clasts <strong>of</strong> coaly mudstone, fossil wood <strong>and</strong><br />

mudstone, interpreted as a channel lag. This is overlain<br />

by pebbly coarse-grained s<strong>and</strong>stones with large-scale<br />

cross-bedding, followed by coal-bearing mudstones with<br />

beds consisting <strong>of</strong> small Scaidopityoides leaves (Midtgaard<br />

<strong>19</strong>96b). The cross-bedding indicates unidirectional northward<br />

sediment transport.<br />

The middle unit (c. 62–340 m on Fig. 51A) comprises<br />

a variety <strong>of</strong> facies. Coarsening-upward successions<br />

comprise laminated mudstones, heterolithic s<strong>and</strong>stones<br />

<strong>and</strong> hummocky cross-stratified s<strong>and</strong>stones, which locally<br />

are capped by trough cross-bedded s<strong>and</strong>stones, mudstones<br />

with root horizons <strong>and</strong> thin coal beds. Wave-ripple<br />

crests are oriented ESE–WNW. Comminuted car -<br />

bonaceous debris is abundant. Fining-upward successions<br />

comprise medium- to coarse-grained, well-sorted<br />

s<strong>and</strong>stones with cross-bedding, double mud-drapes, <strong>and</strong><br />

abundant reactivation surfaces. They are overlain by heteroliths<br />

with current <strong>and</strong> wave ripple cross-lamination<br />

followed by black, laminated mudstones. Synaeresis<br />

cracks are common.<br />

The upper unit (c. 340–400 m on Fig. 51A) <strong>of</strong> the<br />

Ravn Kløft Member consists <strong>of</strong> thick, erosively based<br />

bodies <strong>of</strong> greyish s<strong>and</strong>stone alternating with dark heterolithic<br />

mudstone. The s<strong>and</strong>stones are fine- to coarsegrained<br />

or conglomeratic, <strong>and</strong> dominantly cross-bedded.<br />

Foresets are <strong>of</strong>ten oversteepened <strong>and</strong> large-scale s<strong>of</strong>t-sediment<br />

deformation structures are very common (Fig.<br />

52). Composite s<strong>and</strong>stone bodies may be up to 60 m thick<br />

(Fig. 50), <strong>and</strong> may extend laterally for at least 8 km. The<br />

cross-bedding indicates sediment transport to the<br />

NE–N–NW. The s<strong>and</strong>stone bodies alternate with thinly<br />

interbedded rippled s<strong>and</strong>stones, laminated mudstones<br />

<strong>and</strong> heteroliths containing abundant rootlets <strong>and</strong> plant<br />

fossils, thin coal beds <strong>and</strong> palaeosols at certain levels.<br />

Fossils. A brackish-water dinocyst assemblage dominated<br />

by Nyktericysta davisii has been identified in a number<br />

<strong>of</strong> the mudstone beds. The pollen Rugubivesiculites rugosus<br />

has its first stratigraphical occurrence within the member<br />

(Fig. 29).<br />

Depositional environment. The lower unit <strong>of</strong> the Ravn<br />

Kløft Member is interpreted as a basal fluvial valley-fill<br />

conglomerate overlain by fluvial s<strong>and</strong>stones deposited<br />

by unidirectional northward-flowing currents. The middle<br />

units are interpreted as interbedded deltaic <strong>and</strong> tidal<br />

estuarine deposits, <strong>and</strong> wave-ripple crestlines suggest an<br />

ESE–WNW-oriented coastline. The overlying single to<br />

multi-storey s<strong>and</strong>stone bodies represent a variety <strong>of</strong> fluvial<br />

styles from slightly sinuous single channels to braided<br />

rivers with multiple channels <strong>and</strong> northward palaeocurrents.<br />

The presence <strong>of</strong> rootlets, vitrinite lenses <strong>and</strong> local<br />

coal beds in the floodplain s<strong>and</strong>stones <strong>and</strong> mudstones<br />

indicates the existence <strong>of</strong> a range <strong>of</strong> sub-environments<br />

from subaerial floodplain to shallow-water swamps or<br />

ponds adjacent to the fluvial channels. The fluvial s<strong>and</strong>stones<br />

show an increasing tendency up-section to amalgamate<br />

<strong>and</strong> form thick, multi-storey s<strong>and</strong>stone sheets<br />

(Midtgaard <strong>19</strong>96b).<br />

Boundaries. The lower boundary <strong>of</strong> the Ravn Kløft<br />

Member is the same as for the Atane Formation. The<br />

thickness variation <strong>of</strong> the lower fluvial s<strong>and</strong>stones <strong>of</strong> the<br />

Ravn Kløft Member suggests that the base had a relief<br />

<strong>of</strong> nearly 55 m on a regional scale (Midtgaard <strong>19</strong>96b).<br />

The upper boundary is placed at the top <strong>of</strong> a c. 60 m<br />

thick, amalgamated multi-storey fluvial s<strong>and</strong>stone sheet<br />

which is abruptly overlain by a succession <strong>of</strong> interbedded<br />

mudstones, heteroliths, s<strong>and</strong>stones <strong>and</strong> thin coal<br />

seams referred to the Kingittoq Member (Fig. 50).<br />

<strong>Geological</strong> age. Based on the palynomorphs, the Ravn<br />

Kløft Member is assigned a Late Albian – Early Ceno -<br />

69


A<br />

m<br />

B<br />

m<br />

150<br />

300<br />

Atane Formation<br />

Ravn Kløft Member<br />

100<br />

50<br />

Ravn Kløft Member<br />

250<br />

200<br />

Ravn Kløft Member Kingittoq Member<br />

450<br />

400<br />

100<br />

Atane Formation<br />

Ravn Kløft Member<br />

50<br />

Kingittoq Member<br />

Ravn Kløft Member<br />

250<br />

200<br />

Slibestensfjeldet Formation<br />

0<br />

350<br />

mud s<strong>and</strong> mud s<strong>and</strong> mud s<strong>and</strong> mud s<strong>and</strong> mud s<strong>and</strong><br />

Slibestensfjeldet Fm<br />

150<br />

0<br />

Fig. 51. A: Type section <strong>of</strong> the Ravn Kløft Member at J.P.J. Ravn Kløft. B: Reference section at Ikorfat. The thick s<strong>and</strong>stone beds at the top<br />

<strong>of</strong> the member are overlain by the Kingittoq Member. For legend, see Plate 1; for location, see Fig. 22.<br />

70


Fig. 52. Two closely spaced sections<br />

through the Ravn Kløft Member showing<br />

the rapid lateral facies changes especially <strong>of</strong><br />

the fluvial channel deposits. The sections<br />

correspond approximately to the interval<br />

255–285 m in Fig. 51A. For legend, see<br />

Plate 1; for location, see Fig. 22.<br />

SE<br />

m<br />

30<br />

Tidal–estuarine<br />

m<br />

30<br />

NW<br />

20<br />

20<br />

Lacustrine<br />

10<br />

10<br />

Fluvial<br />

valley<br />

fill<br />

0<br />

mud<br />

s<strong>and</strong><br />

gravel<br />

base 495 m a.sl.<br />

0<br />

mud s<strong>and</strong> gravel<br />

40 m<br />

manian age (Ehman et al. <strong>19</strong>76; Croxton <strong>19</strong>78a, b; this<br />

study). A distinct macr<strong>of</strong>lora (the Ravn Kløft flora) <strong>of</strong><br />

Middle Albian to Early Cenomanian age was established<br />

by Boyd (<strong>19</strong>98a, b, c, 2000); this flora was broadly contemporaneous<br />

with the Upernivik Næs flora <strong>of</strong> Rosen -<br />

krantz (<strong>19</strong>70).<br />

Correlation. The Ravn Kløft Member is laterally equivalent<br />

to the Skansen Member in southern <strong>and</strong> eastern<br />

Disko <strong>and</strong> the older parts <strong>of</strong> the Kingittoq Member on<br />

central <strong>and</strong> southern Nuussuaq <strong>and</strong> northern Disko. The<br />

Ravn Kløft Member is possibly coeval with the lower<br />

part <strong>of</strong> the Itilli Formation on western Nuussuaq <strong>and</strong><br />

Svartenhuk Halvø <strong>and</strong> with parts <strong>of</strong> the Upernivik Næs<br />

Formation on Upernivik Ø (Fig. 16).<br />

Kingittoq Member<br />

new member<br />

History. The Kingittoq Member includes the sediments<br />

referred to the Atane Formation on northern Disko,<br />

south-eastern Nuussuaq, as well as some <strong>of</strong> those on<br />

northern Nuussuaq.<br />

71


160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

330<br />

320<br />

310<br />

300<br />

290<br />

280<br />

270<br />

260<br />

250<br />

240<br />

230<br />

220<br />

210<br />

200<br />

<strong>19</strong>0<br />

180<br />

170<br />

m<br />

490<br />

480<br />

470<br />

460<br />

450<br />

440<br />

430<br />

420<br />

410<br />

400<br />

390<br />

380<br />

370<br />

360<br />

350<br />

340<br />

0<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

Fig. 53. Type section <strong>of</strong> the Kingittoq Member <strong>of</strong> the Atane Formation at Kingittoq, south coast <strong>of</strong> Nuussuaq (for location, see Fig. 40). Note<br />

the higher proportion <strong>of</strong> delta channel deposits compared to the Qilakitsoq Member (Fig. 60). Compare with Figs 54 <strong>and</strong> 55 to appreciate<br />

the facies variations within the member. Marine dinocysts are only found in a few <strong>of</strong> the delta front units. For legend, see Plate 1.<br />

Name. The member is named from the coastal slopes at<br />

Kingittoq on the south coast <strong>of</strong> Nuussuaq, where it is<br />

well exposed (Fig. 40).<br />

Distribution. The Kingittoq Member is known from outcrops<br />

on southern Nuussuaq from Saqqaqdalen to<br />

Kingittoq, on northern Disko from Qullissat to<br />

Kussinerujuk, <strong>and</strong> on northern Nuussuaq from Vesterfjeld<br />

to Ikorfat (Figs 2, 22, 40, 50A).<br />

72


Type section. The type section <strong>of</strong> the Kingittoq Member<br />

is exposed in the slopes at Kingittoq on southern Nuussuaq<br />

(Figs 40, 53, 59). The base <strong>of</strong> the type section is located<br />

at 70°09.77´N, 52°31.38´W.<br />

m<br />

Reference sections. Reference sections are found in the<br />

upper reaches <strong>of</strong> J.P.J. Ravn Kløft <strong>and</strong> at Asuk (Figs 54,<br />

55).<br />

Thickness. The thickness <strong>of</strong> the Kingittoq Member is not<br />

known, but it probably exceeds 1 km. In the area <strong>of</strong> the<br />

type section, more than 600 m are exposed (A.K. Pedersen<br />

et al. 2007a), c. 450 m are exposed at Kuussinerujuk <strong>and</strong><br />

up to 150 m are exposed above the Ravn Kløft Member<br />

on northern Nuussuaq.<br />

Lithology. On southern Nuussuaq, the Kingittoq Member<br />

is characterised by 10−25 m thick depositional cycles,<br />

which comprise coarsening-upward successions <strong>of</strong> mudstones,<br />

heteroliths <strong>and</strong> well-sorted s<strong>and</strong>stones (Figs<br />

53–58). Complex s<strong>and</strong>stone sheets, up to 40 m thick,<br />

are <strong>of</strong>ten overlain by carbonaceous heterolithic mudstones<br />

with thin coal beds <strong>and</strong> constitute fining-upward<br />

successions (Figs 53, 59). In the Atanikerluk area, the complex<br />

s<strong>and</strong>stone sheets constitute c. 40% <strong>of</strong> the section<br />

(Nielsen 2003) whereas their proportion is higher in<br />

Saqqaqdalen (Shekhar et al. <strong>19</strong>82) <strong>and</strong> at Kussinerujuk<br />

(Pulvertaft & Chalmers <strong>19</strong>90). The member is characterised<br />

by aggradational stacking <strong>of</strong> the depositional<br />

cycles (Figs 57, 58).<br />

The s<strong>and</strong>stones are pale, friable, medium- to coarsegrained,<br />

in places with pebbly channel lags <strong>of</strong> intraformational<br />

mudstone or coal clasts, <strong>and</strong> are either crossbedded<br />

or structureless, commonly with s<strong>of</strong>t-sediment<br />

deformation structures (Midtgaard <strong>19</strong>91; Olsen <strong>19</strong>91;<br />

G.K. Pedersen & Pulvertaft <strong>19</strong>92; Jensen 2000; Nielsen<br />

2003; G.K. Pedersen et al. 2006). The mudstones are grey,<br />

silty, carbonaceous, at several localities with high C/S<br />

ratios, <strong>and</strong> are weakly laminated (Nielsen 2003). The<br />

mineralogy is similar to that in the rest <strong>of</strong> the Atane<br />

Formation. The coal beds are interbedded with mudstones<br />

with plant debris, s<strong>and</strong> streaked mudstones <strong>and</strong><br />

cross laminated s<strong>and</strong>. Root horizons are seen locally, but<br />

preserved tree stumps are rare. A few <strong>of</strong> the coal beds have<br />

been studied in detail (Shekhar et al. <strong>19</strong>82; Bojesen-<br />

Koefoed et al. 2001; G.K. Pedersen et al. 2006). Coars -<br />

ening-upward successions <strong>of</strong> grey mudstones, wave-rippled<br />

heterolithic s<strong>and</strong>stones <strong>and</strong> fine-grained s<strong>and</strong>stones with<br />

swaley <strong>and</strong> hummocky cross stratification are especially<br />

well developed at Asuk (Fig. 56). The sedimentary structures<br />

are enhanced by drapes <strong>of</strong> comminuted plant (coal)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

mud s<strong>and</strong> gravel<br />

Fig. 54. Reference section <strong>of</strong> the Kingitoq Member at J.P.J. Ravn Kløft<br />

(for location, see Fig. 22). Note the predominance <strong>of</strong> delta plain<br />

facies deposited in shallow lakes, small channels <strong>and</strong> interdistributary<br />

bays. See also Fig. 51A. Base <strong>of</strong> section at c. 650 m a.s.l. For legend,<br />

see Plate 1.<br />

73


m<br />

m<br />

140<br />

130<br />

Itilli Formation<br />

Kussinerujuk Member<br />

20<br />

10<br />

0<br />

120<br />

Tr<br />

vf f m c vc<br />

clay silt s<strong>and</strong><br />

110<br />

Atane Formation<br />

Kingittoq Member<br />

100<br />

90<br />

80<br />

70<br />

Tr<br />

Fig. 55. Reference section <strong>of</strong> the Kingittoq<br />

Member at Asuk, north coast <strong>of</strong> Disko (for<br />

location, see Fig. 2). The section is domi -<br />

nated by stacked delta front deposits <strong>and</strong><br />

intervals assigned to the delta plain facies<br />

association are thin. Note that only one<br />

thin coal seam is present (44 m). See also<br />

Figs 56, 57 <strong>and</strong> 80. At this locality, the<br />

member is clearly more influenced by<br />

marine deposition than at Kingittoq (Fig.<br />

53). Tr, transgressive s<strong>and</strong>stones. For<br />

legend, see Plate 1.<br />

60<br />

Tr<br />

Tr<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

vf f m c vc<br />

clay silt s<strong>and</strong><br />

Tr<br />

Tr<br />

Tr<br />

debris. Marine fossils are found locally <strong>and</strong> bioturbation<br />

is generally slight. Thin beds <strong>of</strong> well-sorted, structureless<br />

s<strong>and</strong>stone are seen at Kingittoq, whereas similar<br />

beds at Asuk show erosional bases <strong>and</strong> contain numerous<br />

trace fossils, <strong>of</strong> which Ophiomorpha nodosa is prominent<br />

(Fig. 55).<br />

Fossils. Plant macr<strong>of</strong>ossils, spores <strong>and</strong> pollen are known<br />

from the Kingittoq Member (Heer 1883a, b; Seward<br />

<strong>19</strong>26; Ehman et al. <strong>19</strong>76; Croxton <strong>19</strong>78a, b; Lanstorp<br />

<strong>19</strong>99). Heer (1883b) described plant fossils collected<br />

from four outcrops <strong>of</strong> the Kingittoq Member (Qullissat,<br />

Asuk, Qallunnguaq, <strong>and</strong> Atanikerluk) <strong>and</strong> referred these<br />

to the Atane flora <strong>and</strong> the Patoot flora.<br />

Marine dinocysts are known from the Kingittoq<br />

Member (D.J. McIntyre, personal communication <strong>19</strong>97)<br />

<strong>and</strong> finds <strong>of</strong> rare individuals <strong>of</strong> three marine invertebrates,<br />

Nucula cancellata, Nucula sp., <strong>and</strong> Lucina occidentalis,<br />

were reported from Kingittoq (Ravn <strong>19</strong>18). The<br />

trace fossils Ophiomorpha nodosa, Taenidium serpentinum,<br />

Teichichnus rectus, Thalassinoides isp. occur locally in the<br />

Kingittoq Member.<br />

74


Fig. 56. Delta front succession <strong>of</strong> the<br />

Kingittoq Member at Asuk (27–35 m in<br />

Fig. 55). Note the upward increase in<br />

frequency <strong>and</strong> thickness <strong>of</strong> s<strong>and</strong>stone beds.<br />

The well-sorted s<strong>and</strong>stones with hummocky<br />

<strong>and</strong> swaley cross-stratification (S)<br />

are indicative <strong>of</strong> a high-energy depositional<br />

environment. The mudstone (M) at the<br />

top <strong>of</strong> the section is interpreted as an<br />

interdistributary bay deposit. For location,<br />

see Fig. 2.<br />

M<br />

S<br />

delta front<br />

Depositional environment. The Kingittoq Member is interpreted<br />

to represent fluvial to deltaic deposits <strong>and</strong> is<br />

referred to four facies associations: the channel <strong>and</strong> delta<br />

plain associations (dominant), the delta front or mouth<br />

bar association (subordinate) <strong>and</strong> the transgressive s<strong>and</strong><br />

sheet association (rare) (Midtgaard <strong>19</strong>91; G.K. Pedersen<br />

& Pulvertaft <strong>19</strong>92; Dam et al. 2000; Jensen 2000; Nielsen<br />

2003; G.K. Pedersen et al. 2006). The cross-bedded,<br />

medium- to coarse-grained s<strong>and</strong>stones are interpreted<br />

as fluvial channel deposits. The sedimentary structures<br />

frequently indicate downstream accretion on bars <strong>and</strong> rare<br />

development <strong>of</strong> point bars, indicating that the fluvial<br />

channels were mostly braided. The complex sheets <strong>of</strong><br />

coarse-grained s<strong>and</strong>stones are interpreted as having been<br />

deposited as the multi-storey fill <strong>of</strong> fluvial valleys (Jensen<br />

2000; Jensen & Pedersen in press).<br />

The carbonaceous mudstones, s<strong>and</strong>stones <strong>and</strong> coal<br />

beds are interpreted to represent the vertical aggradation<br />

<strong>of</strong> subaerial to freshwater lacustrine or swamp deposits.<br />

The high C/S ratios indicate that deposition occurred in<br />

freshwater environments on the upper delta plain (G.K.<br />

Pedersen & Pulvertaft <strong>19</strong>92; Nielsen 2003). The coal<br />

beds are interpreted as the in situ accumulations <strong>of</strong> plant<br />

remains in freshwater environments (Bojesen-Koefoed et<br />

al. 2001; G.K. Pedersen et al. 2006). This facies association<br />

is subordinate at Asuk.<br />

The coarsening-upward heteroliths are interpreted as<br />

delta front or mouth bar deposits formed during progradation<br />

<strong>of</strong> shelf deltas (G.K. Pedersen & Pulvertaft <strong>19</strong>92;<br />

Bojesen-Koefoed et al. 2001; Nielsen 2003; G.K. Pedersen<br />

et al. 2006). This facies association is dominant at Asuk.<br />

The thin beds <strong>of</strong> s<strong>and</strong> with marine trace fossils are interpreted<br />

as transgressive s<strong>and</strong> sheets (Midtgaard <strong>19</strong>91).<br />

The erosive base constitutes a ravinement surface. In the<br />

Kingittoq Member, the transgressive s<strong>and</strong> sheets are best<br />

developed at Asuk. The Kingittoq Member is dominated<br />

by stacked upper delta plain deposits in the Atanikerluk<br />

area <strong>and</strong> at Qullissat, <strong>and</strong> by lower delta plain <strong>and</strong> stacked<br />

delta front deposits at Asuk.<br />

Boundaries. The lower boundary <strong>of</strong> the Kingittoq Member<br />

is exposed on northern Nuussuaq where the Kingittoq<br />

Member overlies the Ravn Kløft Member (Fig. 50). Here<br />

the boundary is a drowning surface which separates the<br />

fluvial s<strong>and</strong>stones from the overlying delta plain deposits.<br />

In the rest <strong>of</strong> the Nuussuaq Basin, the lower boundary<br />

is not exposed.<br />

The upper boundary, corresponding generally to the<br />

upper boundary <strong>of</strong> the Atane Formation in the outcrop<br />

area <strong>of</strong> the member, is everywhere an erosional unconformity<br />

overlain by the Itilli, Quikavsak, Atanikerluk<br />

<strong>and</strong> Vaigat Formations (Fig. 16). On the north coast <strong>of</strong><br />

75


delta front<br />

ts<br />

channel<br />

channel<br />

25 m<br />

delta front<br />

ts<br />

delta front<br />

delta front<br />

ts<br />

ts<br />

Fig. 57. The Kingittoq Member at Asuk showing thick fluvial channel deposits overlying coarsening-upward delta front successions capped<br />

by transgressive shoreface s<strong>and</strong>stones (ts). For location, see Fig. 2 <strong>and</strong> Fig. 55: 44–83 m.<br />

Nuussuaq, the upper boundary <strong>of</strong> the Kingittoq Member<br />

is generally poorly exposed due to l<strong>and</strong>slides <strong>and</strong> rock<br />

glaciers, but east <strong>of</strong> Ikorfat it is overlain by small outcrops<br />

<strong>of</strong> Campanian–Maastrichtian mudstone (the Itilli For -<br />

mation) <strong>and</strong> Paleocene tuffaceous mudstone (the Eqalulik<br />

Formation) (Birkelund <strong>19</strong>65; A.K. Pedersen et al. 2006b)<br />

(Fig. 22).<br />

channel<br />

delta plain<br />

delta front<br />

channel<br />

delta plain<br />

delta front<br />

delta plain<br />

channel<br />

delta front<br />

delta plain<br />

channel<br />

30 m<br />

Fig 58. Outcrop <strong>of</strong> the Kingittoq Member<br />

on the eastern slope <strong>of</strong> the Qallunnguaq<br />

valley (for location, see Fig. 40). Delta<br />

plain facies constitute a large proportion<br />

<strong>of</strong> the succession <strong>and</strong> delta front deposits<br />

are thin <strong>and</strong> fine-grained suggesting lowenergy<br />

depositional environments (lower<br />

delta plain with swamps, shallow lakes <strong>and</strong><br />

interdistributary bays (Nielsen 2003)). The<br />

channel s<strong>and</strong>stone at the top <strong>of</strong> the photo -<br />

graph is the lowermost fluvial unit in a<br />

multi-storey s<strong>and</strong>stone body studied by<br />

Jensen (2000) <strong>and</strong> Jensen & Pedersen (in<br />

press).<br />

76


Fig. 59. The Kingittoq Member at King -<br />

ittoq, see 310–465 m in Fig. 53. Most<br />

fluvial channels are braided, but a point<br />

bar succession is seen in the centre <strong>of</strong> the<br />

photo with inclined accretionary surfaces<br />

(indicated by dotted line); ch, fluvial<br />

channel; df, delta front. For location, see<br />

Fig 40.<br />

Atanikerluk Formation<br />

sill<br />

Atane Formation<br />

df<br />

ch<br />

ch<br />

<strong>Geological</strong> age. The geological age <strong>of</strong> the Kingittoq Member<br />

ranges from Albian (Tartunaq) to Cenomanian (Atani -<br />

kerluk, Saqqaqdalen, Kingittoq, Kussinerujuk, Asuk <strong>and</strong><br />

Ravn Kløft) <strong>and</strong> into Early Turonian (Saqqaqdalen,<br />

Kingittoq <strong>and</strong> Asuk). The deposits are dated on the basis<br />

<strong>of</strong> spores, pollen <strong>and</strong> marine dinocysts (Croxton <strong>19</strong>78a,<br />

b; Lanstorp <strong>19</strong>99; McIntyre <strong>19</strong>94a, personal communication<br />

<strong>19</strong>97; this study).<br />

Correlation. The Kingittoq Member is coeval with the<br />

Skansen Member (eastern Disko); the Kingittoq Member<br />

<strong>of</strong> southern Nuussuaq may be equivalent the Ravn Kløft<br />

Member on northern Nuussuaq (Fig. 16). The Kingittoq<br />

Member correlates with the Upernivik Næs Formation<br />

on Upernivik Ø, <strong>and</strong> possibly to the lower part <strong>of</strong> the<br />

Itilli Formation <strong>of</strong> western Nuussuaq <strong>and</strong> Svartenhuk<br />

Halvø.<br />

Qilakitsoq Member<br />

new member<br />

History. The Qilakitsoq Member includes sediments<br />

referred to the Atane Formation on southern <strong>and</strong> central<br />

Nuussuaq, <strong>and</strong> sediments formerly referred to the now<br />

ab<strong>and</strong>oned Pautût (or Patoot) Formation (see above<br />

under history <strong>of</strong> the Atane Formation).<br />

Name. The name is derived from the Qilakitsoq stream,<br />

a tributary to the Kuussuaq river which flows through<br />

the Aaffarsuaq valley on central Nuussuaq (Fig. 82).<br />

Distribution. The Qilakitsoq Member is the sole representative<br />

<strong>of</strong> the Atane Formation in central Nuussuaq <strong>and</strong><br />

parts <strong>of</strong> southern Nuussuaq. Outcrops are found from<br />

Agatdalen to Ilugissoq along the north slope <strong>of</strong> the<br />

Aaffarsuaq Valley <strong>and</strong> along the south coast from Paatuut<br />

to Alianaatsunnguaq (Figs 2, 40, 82).<br />

Type section. The type section <strong>of</strong> the Qilakitsoq Member<br />

is along the Qilakitsoq stream on central Nuussuaq (Figs<br />

60, 82). The base <strong>of</strong> the type section is located at<br />

70°27.97´N, 53°27.13´W.<br />

Reference sections. Reference sections are found at Nuuk<br />

Killeq <strong>and</strong> Ataata Kuua (type section <strong>of</strong> the Atane<br />

Formation; Fig. 43). Two continuously cored boreholes<br />

from the Paatuut area (GGU 247701 <strong>and</strong> GGU 247901)<br />

provide reference sections <strong>of</strong> the Qilakitsoq Member <strong>and</strong><br />

have been described in detail by Ambirk (2000).<br />

Thickness. The type section documents a minimum thickness<br />

<strong>of</strong> 480 m, but correlation with nearby sections shows<br />

that at least 820 m are exposed in the Qilakitsoq area,<br />

<strong>and</strong> c. 600 m are known from the well at Ataata Kuua<br />

together with nearby outcrops (Fig. 43; A.K. Pedersen<br />

et al. 2007b).<br />

Lithology. The Qilakitsoq Member is characteristically<br />

cyclic, individual cycles typically passing up from mudstones<br />

through heteroliths, well-sorted s<strong>and</strong>stones, coarser<br />

grained s<strong>and</strong>stones with ribbon geometry, <strong>and</strong> finally<br />

into carbonaceous mudstones with coal beds overlain by<br />

thin sheets <strong>of</strong> bioturbated s<strong>and</strong>stone (Fig. 60; Midtgaard<br />

77


m<br />

480<br />

160<br />

470<br />

150<br />

310<br />

460<br />

140<br />

300<br />

450<br />

130<br />

290<br />

440<br />

120<br />

280<br />

430<br />

110<br />

270<br />

420<br />

100<br />

260<br />

410<br />

90<br />

250<br />

400<br />

80<br />

240<br />

390<br />

70<br />

230<br />

380<br />

60<br />

220<br />

370<br />

50<br />

210<br />

360<br />

40<br />

200<br />

350<br />

30<br />

<strong>19</strong>0<br />

340<br />

20<br />

180<br />

330<br />

10<br />

170<br />

320<br />

0<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

Fig. 60. Type section <strong>of</strong> the Qilakitsoq Member (Atane Formation) on the western side <strong>of</strong> the Qilakitsoq stream, central Nuussuaq. Note the<br />

higher proportion <strong>of</strong> delta front deposits compared to the Kingittoq Member (Fig. 53). For location, see Fig. 82; for legend, see Plate 1.<br />

<strong>19</strong>91; Olsen <strong>19</strong>91, <strong>19</strong>93; G.K. Pedersen & Pulvertaft<br />

<strong>19</strong>92; Boyd <strong>19</strong>93; Dueholm & Olsen <strong>19</strong>93; Ambirk<br />

2000; Dam et al. 2000). The coarsening-upward successions<br />

are typically 5−25 m thick but may reach up to<br />

c. 70 m (Fig. 61). They can be traced laterally through<br />

closely spaced outcrops for up to 8 km in the Paatuut<br />

area (Fig. 46; Olsen <strong>19</strong>91, <strong>19</strong>93; Dueholm & Olsen<strong>19</strong>93)<br />

<strong>and</strong> also in the Qilakitsoq area.<br />

The mudstones at the base <strong>of</strong> the coarsening-upward<br />

units are dark grey, silty <strong>and</strong> weakly laminated, <strong>and</strong> may<br />

contain marine fossils (Olsen & Pedersen <strong>19</strong>91; Nøhr-<br />

Hansen <strong>19</strong>96). These grade up into s<strong>and</strong> streaked mudstones<br />

<strong>and</strong> heterolithic s<strong>and</strong>stones, where wave-ripples<br />

<strong>and</strong> swaley- <strong>and</strong> hummocky cross-stratification are<br />

enhanced by drapes <strong>of</strong> comminuted plant debris (Fig. 60,<br />

33–50 m). The successions are frequently topped by<br />

medium-grained, trough cross-bedded s<strong>and</strong>stones (Fig.<br />

60, 145-158 m). Bioturbation may locally be very intense<br />

<strong>and</strong> totally obscure primary structures.<br />

78


sh<br />

L<br />

sh<br />

ch<br />

delta front<br />

Vaigat Formation<br />

Atane<br />

Formation<br />

65 m<br />

Fig. 61. Outcrop <strong>of</strong> the Qilakitsoq Member on the western slope <strong>of</strong><br />

gully immediately west <strong>of</strong> Qilakitsoq. The member is dominated by<br />

stacked delta front successions. The outcrop corresponds to the interval<br />

200–380 m in Fig. 60; ch, channel; L, lagoon; sh, shoreface.<br />

Note that the uppermost delta front succession is abnormally thick<br />

at this locality. For location, see Fig. 82.<br />

Other s<strong>and</strong>stones are pale, friable, medium- to coarsegrained,<br />

in places with channel lags <strong>of</strong> pebbles or intraformational<br />

clasts <strong>of</strong> mudstone <strong>and</strong> coal. These s<strong>and</strong>stones<br />

are cross bedded or structureless, commonly with s<strong>of</strong>tsediment<br />

deformation structures. They form single-storey<br />

s<strong>and</strong>stone ribbons with a width:thickness ratio as low as<br />

6 <strong>and</strong> a sinuosity <strong>of</strong> 1.2 (Olsen <strong>19</strong>93) (Fig. 60: 0–11 m).<br />

Successions <strong>of</strong> carbonaceous heteroliths interbedded<br />

with cross laminated s<strong>and</strong>, s<strong>and</strong> streaked mudstones,<br />

mudstones with plant debris <strong>and</strong> coal seams occur in all<br />

outcrops <strong>of</strong> the Qilakitsoq Member. Their dark grey to<br />

black colour reflects the abundance <strong>of</strong> comminuted plant<br />

debris. Locally, root horizons or rare tree stumps are present.<br />

Numerous coal beds at Paatuut <strong>and</strong> Ataa are more<br />

than 0.8 m thick. Concretions <strong>and</strong> ‘coal balls’ are observed<br />

in several horizons, as well as silicified wood. Dirt b<strong>and</strong>s<br />

in coal beds are common, mainly consisting <strong>of</strong> carbonaceous<br />

mudstones (Fig. 60: 20–32 m).<br />

Sheets <strong>of</strong> structureless or strongly bioturbated s<strong>and</strong>stone<br />

with an erosional base occur in most outcrops <strong>of</strong><br />

the Qilakitsoq Member. They range from thin (c. 0.05<br />

m) fine-grained s<strong>and</strong>stones to thick (c. 3 m) mediumto<br />

coarse-grained s<strong>and</strong>stones. Upwards, these s<strong>and</strong>stones<br />

may pass gradually into mudstones (Fig. 60, 180–182 m).<br />

Fossils. Plant macr<strong>of</strong>ossils, spores <strong>and</strong> pollen are known<br />

from the Qilakitsoq Member (Heer 1883a, b; Seward<br />

<strong>19</strong>26; Ehman et al. <strong>19</strong>76; Croxton <strong>19</strong>78a, b; Boyd <strong>19</strong>90,<br />

<strong>19</strong>92, <strong>19</strong>93, <strong>19</strong>94). Heer (1883b) described plant fossils<br />

collected from three outcrops <strong>of</strong> the Qilakitsoq<br />

Member (Alianaatsunnguaq, Ataa, <strong>and</strong> Paatuut) <strong>and</strong><br />

referred these to the Atane <strong>and</strong> Patoot floras. Boyd (<strong>19</strong>92,<br />

<strong>19</strong>93) recognised three or more floral communities<br />

(nearshore lacustrine, backswamp, levee <strong>and</strong> riparian<br />

vegetation) in the fossil flora from the Paatuut area (the<br />

Paatuut flora).<br />

Marine dinocysts have been identified in samples from<br />

the Qilakitsoq Member (D.J. McIntyre, personal communications<br />

<strong>19</strong>97, <strong>19</strong>99; Nøhr-Hansen <strong>19</strong>96). The<br />

sparse marine invertebrates include ammonites (Clioscaphites<br />

saxitonianus septentrionalis (Birkelund), Clioscaphites<br />

sp. aff. saxitonianus (McLearn), Scaphites ventricosus,<br />

Scaphites cf. Svartenhukensis, <strong>and</strong> Baculites codyensis<br />

(Reeside)) (Birkelund <strong>19</strong>65; Dam et al. 2000); bivalves<br />

(Sphenoceramus patootensis, S. pinniformis, Oxytoma<br />

tenuicostata) <strong>and</strong> echinoderms (Ravn <strong>19</strong>18; Olsen &<br />

Pedersen <strong>19</strong>91; Boyd <strong>19</strong>93).<br />

Trace fossils are common in the Qilakitsoq <strong>and</strong> Nuuk<br />

Killeq areas. Burrows such as Planolites isp., Teichichnus<br />

isp., Dactyolidites ottoi, <strong>and</strong> Helminthopsis horizontalis<br />

occur in the coarsening-upward successions, whereas<br />

Ophiomorpha nodosa <strong>and</strong> O. irregulaire are seen in the<br />

s<strong>and</strong>stone sheets (Fig. 62; G.K. Pedersen & Rasmussen<br />

<strong>19</strong>89; Dam et al. 2000; G.K. Pedersen & Bromley 2006).<br />

The trace fossil assemblages indicate the presence <strong>of</strong> both<br />

suspension <strong>and</strong> deposit feeders.<br />

Depositional environment. The Qilakitsoq Member is<br />

interpreted as being constructed <strong>of</strong> aggradational deltaic<br />

deposits referred to four facies associations: the marine<br />

delta front association, the distributary channel association,<br />

the delta plain association <strong>and</strong> the transgressive s<strong>and</strong><br />

sheet association (Midtgaard <strong>19</strong>91; Olsen <strong>19</strong>91, <strong>19</strong>93;<br />

G.K. Pedersen & Pulvertaft <strong>19</strong>92; Dueholm & Olsen<br />

<strong>19</strong>93; Dam et al. 2000).<br />

79


Fig. 62. The trace fossil Ophiomorpha<br />

irregulare is characteristic <strong>of</strong> transgressive<br />

shoreface s<strong>and</strong>stones in the Qilakitsoq<br />

Member, especially at Qilakitsoq <strong>and</strong><br />

Nuuk Killeq. For location, see Fig. 2.<br />

The marine delta front association comprises coarsening-upward<br />

units where mudstones with marine fossils<br />

deposited below storm-wave base are overlain by<br />

heterolithic mudstones <strong>and</strong> s<strong>and</strong>stones which pass up<br />

into shallower water facies. These units are interpreted<br />

as the result <strong>of</strong> delta front progradation <strong>of</strong> shelf deltas.<br />

The distributary channel association consists <strong>of</strong> crossbedded,<br />

medium- to coarse-grained s<strong>and</strong>stones, which<br />

are interpreted as having been deposited within almost<br />

straight to slightly sinuous fluvial channels (Olsen <strong>19</strong>91,<br />

<strong>19</strong>93). Small fluvial channels are included in the delta<br />

plain association, which is characterised by carbonaceous<br />

mudstones, s<strong>and</strong>stones <strong>and</strong> coal beds, interpreted as having<br />

formed through vertical aggradation <strong>of</strong> subaerial to<br />

freshwater lacustrine or swamp deposits on the lower<br />

<strong>and</strong> upper delta plain. The coal beds are interpreted as<br />

the in situ accumulations <strong>of</strong> plant remains in both fresh<strong>and</strong><br />

brackish-water environments. The transgressive s<strong>and</strong><br />

sheet association includes thin beds <strong>of</strong> s<strong>and</strong> with erosive<br />

bases <strong>and</strong> <strong>of</strong>ten with numerous marine trace fossils, indicating<br />

deposition on a marine shoreface (G.K. Pedersen<br />

& Rasmussen <strong>19</strong>89; Midtgaard <strong>19</strong>91; Olsen <strong>19</strong>91; Olsen<br />

& Pedersen <strong>19</strong>91; G.K. Pedersen & Pulvertaft <strong>19</strong>92;<br />

G.K. Pedersen & Bromley 2006). The erosional bases represent<br />

ravinement surfaces.<br />

Boundaries. The lower boundary <strong>of</strong> the Qilakitsoq<br />

Member is not exposed. The upper boundary, which<br />

corresponds to the upper boundary <strong>of</strong> the Atane For -<br />

mation, is everywhere an erosional unconformity. Dif -<br />

ferent units overlie the member throughout the region;<br />

these include the Itilli, Kangilia, Quikavsak <strong>and</strong><br />

Atanikerluk Formations as well as volcanic rocks <strong>of</strong> the<br />

Vaigat Formation (Fig. 16).<br />

<strong>Geological</strong> age. The geological age <strong>of</strong> the Qilakitsoq<br />

Member is Middle Turonian to Santonian at Ataata Kuua,<br />

Coniacian at Alianaatsunnguaq (Birkelund <strong>19</strong>65), San -<br />

tonian − earliest Campanian at Paatuut, Nuuk Killeq<br />

<strong>and</strong> on central Nuussuaq (Koch <strong>19</strong>64; Boyd <strong>19</strong>90, <strong>19</strong>92;<br />

Olsen & Pedersen <strong>19</strong>91; G.K. Pedersen & Pulvertaft<br />

<strong>19</strong>92; Nøhr-Hansen <strong>19</strong>96; D.J. McIntyre, personal communication<br />

<strong>19</strong>97). Stable carbon isotopes in wood fragments<br />

suggest a Middle to Late Santonian age (Ambirk<br />

2000).<br />

Correlation. The Qilakitsoq Member correlates with part<br />

<strong>of</strong> the Itilli Formation (western Nuussuaq <strong>and</strong> Svartenhuk<br />

Halvø).<br />

Subdivision. The Qilakitsoq Member includes the Itivnera<br />

Bed in the Aaffarsuaq valley near Tunoqqu.<br />

Itivnera Bed<br />

revised bed<br />

History. The Itivnera beds were described by Dam et al.<br />

(2000) as fluvial s<strong>and</strong>stones incised into the top <strong>of</strong> the<br />

Qilakitsoq Member (Atane Formation) at two widely<br />

separated localities: Itivnera <strong>and</strong> Ataata Kuua (Figs 40,<br />

82). The erosional, lower boundary was interpreted as a<br />

sequence boundary. At Itivnera, the fluvial deposits are<br />

80


Fig. 63. Type locality <strong>of</strong> the Itivnera Bed in<br />

central Nuussuaq (for location, see Fig.<br />

82). The bed comprises three channellised<br />

s<strong>and</strong>stone units up to 38 m thick that cut<br />

down into Santonian deltaic deposits <strong>of</strong> the<br />

Qilakitsoq Member (Atane Formation).<br />

The Itivnera Bed is overlain by submarine<br />

fan deposits <strong>of</strong> the Itilli Formation<br />

(Aaffarsuaq Member). The s<strong>and</strong>stone cliffs<br />

are about 16 m high <strong>and</strong> the spacing<br />

between the valleys is less than 100 m (see<br />

Dam et al. 2000).<br />

m<br />

15<br />

10<br />

5<br />

0<br />

cl si s<strong>and</strong> pb<br />

Fig. 64. Type section <strong>of</strong> the Itivnera Bed. Neither the base nor the<br />

top <strong>of</strong> the fluvial s<strong>and</strong>stone unit is exposed (from Dam et al. 2000).<br />

For legend, see Plate 1; for location, see Fig. 82.<br />

overlain by deep marine deposits belonging to the<br />

Aaffarsuaq Member <strong>of</strong> the Itilli Formation. At Ataata<br />

Kuua, a valley incised into the Atane Formation is filled<br />

by turbidite mudstones, s<strong>and</strong>stones <strong>and</strong> conglomerates<br />

referred to the late Maastrichtian to earliest Paleocene<br />

Kangilia Formation; the Itilli Formation is not present<br />

at Ataata Kuua (Figs 14, 15, 16). The Qilakitsoq Member<br />

here is <strong>of</strong> Turonian–Santonian age. Fine-grained organicrich<br />

sediments preserved in the top <strong>of</strong> a small fluvial<br />

channel contain palynomorphs indicating a Coniacian<br />

age.<br />

The fluvial channel deposits at Ataata Kuua that were<br />

previously referred to as Itivnera beds are now assigned<br />

to the Qilakitsoq Member on the basis <strong>of</strong> photogrammetric<br />

mapping (A.K. Pedersen et al. 2007b) <strong>and</strong> dating<br />

<strong>of</strong> the fine-grained channel fill, which lies within the<br />

age range <strong>of</strong> the Qilakitsoq Member at this locality. The<br />

presence <strong>of</strong> Early Campanian fluvial deposits at Ataata<br />

Kuua cannot be demonstrated.<br />

The Itivnera beds sensu Dam et al. (2000) constituted<br />

the basal part <strong>of</strong> the Itilli Formation. In the present paper,<br />

this unit is restricted to the cemented channel s<strong>and</strong>stones<br />

at Itivnera which are defined here as the Itivnera Bed <strong>of</strong><br />

the Qilakitsoq Member.<br />

Name. The strata are named after the saddle feature<br />

named Itivnera between Nalluarissat <strong>and</strong> Tunoqqu (Fig.<br />

82). The name was derived from a nearby locality shown<br />

on the geodetic map from <strong>19</strong>66 (Geodætisk Institut<br />

<strong>19</strong>66); the spelling has not been changed to modern<br />

Greenl<strong>and</strong>ic orthography because the locality is not<br />

shown on later geodetic maps.<br />

81


Type section. The strata exposed on the south-facing slope<br />

<strong>of</strong> Nalluarissat between Aaffarsuaq <strong>and</strong> Kangersooq, just<br />

west <strong>of</strong> Itivnera, are designated as the type section (Figs<br />

63, 64). The type section is located at 70°29.50´N,<br />

53°08.87´W.<br />

Distribution. The bed has only been recognised on the<br />

south-facing slope <strong>of</strong> Nalluarissat between Aaffarsuaq<br />

<strong>and</strong> Kangersooq (Fig. 82).<br />

Thickness. The bed is up to 38 m thick <strong>and</strong> confined to<br />

lensoid bodies up to 100 m wide.<br />

Lithology. The bed consists <strong>of</strong> cross-bedded coarse-grained<br />

s<strong>and</strong>stones, arranged in fining-upward successions form<br />

lensoid bodies arranged like pearls on a string (Figs 63,<br />

64). Basement pebble conglomerates are locally present.<br />

The sediments between the cemented s<strong>and</strong>stone bodies<br />

are covered by scree (Dam et al. 2000).<br />

Fossils. Macr<strong>of</strong>ossils have not been found.<br />

Depositional environment. The s<strong>and</strong>stones <strong>of</strong> the Itivnera<br />

Bed were deposited in fluvial channels (Dam et al. 2000).<br />

Boundaries. The Itivnera Bed erosively overlies deltaic<br />

deposits <strong>of</strong> the Qilakitsoq Member (Atane Formation).<br />

In the type section, the fluvial s<strong>and</strong>stones are succeeded<br />

by turbiditic mudstones <strong>and</strong> s<strong>and</strong>stones <strong>of</strong> the Aaffarsuaq<br />

Member (Itilli Formation). The lower boundary is no<br />

longer interpreted as a sequence boundary because there<br />

is insufficient evidence that a sea-level fall preceded the<br />

rise in sea level that marks the transition to the deep-water<br />

deposits <strong>of</strong> the Aaffarsuaq Member.<br />

<strong>Geological</strong> age. At Nalluarissat, just west <strong>of</strong> Itivnera, the<br />

Qilakitsoq Member is Late Santonian in age, <strong>and</strong> at<br />

Tunoqqu, immediately east <strong>of</strong> Itivnera, the Aaffarsuaq<br />

Member is <strong>of</strong> Early to Middle Campanian age (Nøhr-<br />

Hansen <strong>19</strong>96). Deposition <strong>of</strong> the fluvial s<strong>and</strong>stone bodies<br />

at Itivnera is therefore well constrained to the Early<br />

Campanian.<br />

Formation is here extended to include the unnamed<br />

Upper Turonian to Campanian marine strata on<br />

Svartenhuk Halvø <strong>and</strong> Nuussuaq (cf. Birkelund <strong>19</strong>65;<br />

Henderson et al. <strong>19</strong>76; J.G. Larsen & Pulvertaft 2000).<br />

Furthermore, on northern Disko at Kussinerujuk <strong>and</strong><br />

Asuk, outcrops previously correlated with the Paleocene<br />

Kangilia Formation (J.M. Hansen <strong>19</strong>80b; Pulvertaft &<br />

Chalmers <strong>19</strong>90) are here assigned to the Itilli Formation<br />

(see below). The Itivnera beds <strong>of</strong> the Itilli Formation<br />

(Dam et al. 2000) are, however, now redefined as the<br />

Itivnera Bed <strong>of</strong> the Qilakitsoq Member (Atane For -<br />

mation).<br />

On Itsaku (Svartenhuk Halvø), the ?Upper Campa -<br />

nian/Maastrichtian to Paleocene succession has been suggested<br />

to be equivalent either to both the Itilli <strong>and</strong> Kangilia<br />

Formations (i.e. Campanian to Paleocene) or to the<br />

Kangilia Formation alone (i.e. upper Maastrichtian to<br />

Paleocene), based on correlation <strong>of</strong> two major conglomerate<br />

horizons with tectonic events recognised on<br />

Nuussuaq (J.G. Larsen & Pulvertaft 2000). Based on<br />

zircon provenance data, this succession is here assigned<br />

to the Kangilia Formation (see below).<br />

Name. After Itilli, a major valley transecting Nuussuaq<br />

from north-west <strong>of</strong> Marraat on the south coast to west<br />

<strong>of</strong> Niaqornat on the north coast (Figs 2, 65).<br />

Distribution. The Itilli Formation is exposed in the Itilli<br />

valley (Fig. 65) <strong>and</strong> on the north coast <strong>of</strong> Nuussuaq in<br />

the ravines between Ikorfat <strong>and</strong> Niaqornat (Fig. 74)<br />

where it has been drilled in the shallow wells GGU<br />

400705, GGU 400706, <strong>and</strong> GGU 400407 (Chri stiansen<br />

et al. <strong>19</strong>94a), <strong>and</strong> the formation is probably also present<br />

in the FP94-11-02, FP94-11-04 <strong>and</strong> FP94-11-05 wells<br />

(Dam & Nøhr-Hansen <strong>19</strong>95). It is also well exposed on<br />

central Nuussuaq along the slopes <strong>of</strong> the valley <strong>of</strong><br />

Aaffarsuaq between Qilakitsoq <strong>and</strong> Tunoqqu, along the<br />

slopes <strong>of</strong> the valley Kangersooq (Fig. 82), <strong>and</strong> in the valley<br />

<strong>of</strong> Agatdalen including the shallow well GGU 400702<br />

(Fig. 113; Nøhr-Hansen <strong>19</strong>96; Dam et al. 2000). On<br />

Disko, the formation is exposed at Asuk <strong>and</strong> Kussinerujuk.<br />

Itilli Formation<br />

new formation<br />

History. The strata exposed in river sections in the Itilli<br />

valley on western Nuussuaq were informally assigned to<br />

the Itilli formation by J.M. Hansen (<strong>19</strong>80b). The Itilli<br />

Facing page:<br />

Fig. 65. Map <strong>of</strong> the southern part <strong>of</strong> the Itilli valley showing outcrops<br />

<strong>of</strong> the Itilli Formation (Anariartorfik Member) <strong>and</strong> the Eqalulik<br />

Formation <strong>and</strong> location <strong>of</strong> the wells Marraat-1, GANW#1, GANE#1,<br />

GANK#1 GRO#3 <strong>and</strong> FP94-9-01. Based on Rosenkrantz et al.<br />

(<strong>19</strong>74) <strong>and</strong> Hald (<strong>19</strong>76). Contour interval 200 m. For location, see<br />

Fig. 2.<br />

82


782<br />

Quaternary cover<br />

54°<br />

888<br />

Maligât Formation<br />

Vaigat Formation<br />

FP94-9-01<br />

Eqalulik Formation<br />

Undifferentiated Cretaceous–<br />

Paleocene deposits<br />

Itilli Formation<br />

Ice<br />

1084<br />

Sermersalik<br />

Qaasersut<br />

1088<br />

Sea/lake<br />

Fault<br />

Well<br />

l e<br />

U k a<br />

r s a lik<br />

I l u<br />

g i s<br />

s o<br />

r s u<br />

a q<br />

795<br />

P i n g u n n g u u p K u u a<br />

I t i l l i<br />

A n<br />

a<br />

r<br />

i<br />

a<br />

t o<br />

k<br />

r f i<br />

830<br />

Gassøen<br />

Marraat Killit<br />

1136<br />

GANW#1<br />

Vaigat<br />

Marraat-1<br />

70°30’<br />

Niaqornaarsuk<br />

Kuussuaq<br />

Eqalulik<br />

GANE#1<br />

GANK#1<br />

5 km<br />

GRO#3<br />

Contour interval 200 m<br />

Nuusaq<br />

83


The Itilli Formation is also exposed in the eastern part<br />

<strong>of</strong> the Svartenhuk Halvø area (Fig. 73; J.G. Larsen &<br />

Pulvertaft 2000) where it was cored in the Umiivik-1<br />

well (Dam et al. <strong>19</strong>98b).<br />

On Nuussuaq, the lower part <strong>of</strong> the formation (Early<br />

Campanian <strong>and</strong> older) is only present west <strong>of</strong> the<br />

Kuugannguaq–Qunnilik Fault (Chalmers et al. <strong>19</strong>99<br />

fold-out 2) where it is exposed in the Itilli valley area. In<br />

this area, the formation was cored in the FP94-9-01 (Fig.<br />

65; Madsen 2000) <strong>and</strong> GANT #1 wells (Fig. 74; Dam<br />

<strong>19</strong>96a).<br />

Type section. The type section <strong>of</strong> the Itilli Formation is<br />

located in the southern part <strong>of</strong> the Itillli valley along the<br />

Pingunnguup Kuua river <strong>and</strong> its tributaries, Ukalersalik<br />

<strong>and</strong> Anariatorfik (Figs 65, 66, Plate 2). The type section<br />

was described briefly by J.M. Hansen (<strong>19</strong>76, <strong>19</strong>80a) <strong>and</strong><br />

in detail by Dam & Sønderholm (<strong>19</strong>94). Neither the base<br />

nor the top <strong>of</strong> the formation is exposed in the type section.<br />

The base <strong>of</strong> the type section is located at 70°36.35´N,<br />

54°13.79´W.<br />

Reference sections. Reference sections showing the lower<br />

boundary with the Atane Formation are exposed at<br />

Kussinerujuk <strong>and</strong> Asuk on the north coast <strong>of</strong> Disko (Figs<br />

55, 77) <strong>and</strong> in the Aaffarsuaq valley on central Nuussuaq<br />

(Fig. 83). The upper boundary towards the Kangilia<br />

Formation is located on the north coast <strong>of</strong> Nuussuaq<br />

around Kangilia (Figs 72, 74, 87; Birkelund <strong>19</strong>65;<br />

Rosenkrantz <strong>19</strong>70; Henderson et al. <strong>19</strong>76). The upper<br />

boundary towards the Eqalulik Formation is exposed at<br />

Qilakitsoq on central Nuussuaq (Figs 82, 83).<br />

Well reference sections are available from the fully<br />

cored boreholes FP94-9-01 (Madsen 2000), Umiivik-1<br />

(Dam <strong>19</strong>97), <strong>and</strong> GANT#1 (Dam <strong>19</strong>96a). The formation<br />

was drilled but not cored in the GRO#3 well (Fig.<br />

67; Kristensen & Dam <strong>19</strong>97). For details on these wells,<br />

see below under description <strong>of</strong> members.<br />

Thickness. The formation is more than 1400 m thick at<br />

the type locality where the base <strong>and</strong> top <strong>of</strong> the formation<br />

are not exposed (Plate 2). In the nearby GRO#3 well,<br />

the formation is more than 2000 m thick (Fig. 67). The<br />

formation thins dramatically eastwards across the<br />

m<br />

800<br />

750<br />

700<br />

650<br />

600<br />

550<br />

500<br />

Not exposed (dyke)<br />

Not exposed<br />

Fig. 66. Exp<strong>and</strong>ed sedimentological log showing a representative<br />

portion <strong>of</strong> the Itilli Formation in the type section along the<br />

Pingunnguup Kuua river; the entire section, at a smaller scale, is<br />

shown in Plate 2. For legend, see Plate 1; for location, see Fig. 65.<br />

From Dam & Sønderholm (<strong>19</strong>94).<br />

470<br />

mud<br />

s<strong>and</strong><br />

pebbles<br />

84


Kuugannguaq–Qunnilik Fault <strong>and</strong> is only 240 m thick<br />

along the northern slopes <strong>of</strong> the Aaffarsuaq valley between<br />

Qilakitsoq <strong>and</strong> Tunoqqu. At Kangilia, on the north coast<br />

<strong>of</strong> Nuussuaq, the formation is at least 250 m thick (Fig.<br />

87), <strong>and</strong> the nearby GANT#1 well penetrated 645 m <strong>of</strong><br />

the formation without reaching the base <strong>of</strong> the formation.<br />

On Svartenhuk Halvø, the drilled <strong>and</strong> cored part<br />

<strong>of</strong> the formation is 960 m thick (excluding twenty-two<br />

Paleocene dolerite intrusions with a total thickness <strong>of</strong><br />

240.2 m), but the base <strong>of</strong> the formation was not reached<br />

(Fig. 75). At Kussinerujuk on the north coast <strong>of</strong> Disko,<br />

the measured part <strong>of</strong> the formation is 42 m thick (Fig.<br />

77; Pulvertaft & Chalmers <strong>19</strong>90).<br />

Series Stage Strat.<br />

Paleocene<br />

Danian<br />

Vaigat Fm<br />

Eqalulik<br />

Fm<br />

Agatdal Fm<br />

m<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

GRO#3<br />

0<br />

GR<br />

300<br />

240<br />

DTC<br />

40<br />

Submarine<br />

canyon<br />

Lithology. In the type section, the Itilli Formation comprises<br />

mudstones, thinly interbedded s<strong>and</strong>stones <strong>and</strong><br />

mudstones, chaotic beds, amalgamated beds <strong>of</strong> coarsegrained<br />

to very coarse-grained s<strong>and</strong>stone, <strong>and</strong> giant-scale<br />

cross-bedded s<strong>and</strong>stones (Figs 66, 68, 69, 70, Plate 2; Dam<br />

& Sønderholm <strong>19</strong>94). These lithological contrasts are<br />

reflected in the blocky pattern in the petrophysical logs<br />

<strong>of</strong> the GRO#3 well (Fig. 67; Kristensen & Dam <strong>19</strong>97).<br />

In the Aaffarsuaq area, the Itilli Formation comprises<br />

mudstones, thinly interbedded s<strong>and</strong>stones <strong>and</strong> mudstones,<br />

<strong>and</strong> amalgamated s<strong>and</strong>stone <strong>and</strong> conglomerate<br />

units together with chaotic beds comparable to those in<br />

the Itilli valley (Dam et al. 2000). The main differences<br />

between the Itilli <strong>and</strong> Aaffarsuaq areas are that most <strong>of</strong><br />

the channellised amalgamated s<strong>and</strong>stone <strong>and</strong> conglomerate<br />

units in Aaffarsuaq are separated from the underlying<br />

deposits by major erosional surfaces or minor<br />

angular unconformities <strong>and</strong> that they are generally coarsergrained<br />

than their Itilli counterparts. Furthermore, the<br />

chaotic beds in Aaffarsuaq occur at many levels in the<br />

section <strong>and</strong> are not restricted to a position immediately<br />

underlying a channellised s<strong>and</strong>stone unit, <strong>and</strong> the<br />

interbedded s<strong>and</strong>stone <strong>and</strong> mudstone units <strong>of</strong>ten show<br />

an overall thinning-upward trend.<br />

The amalgamated s<strong>and</strong>stone <strong>and</strong> conglomerate units<br />

<strong>of</strong> the Aaffarsuaq area consist <strong>of</strong> very coarse- to mediumgrained<br />

s<strong>and</strong>stone <strong>and</strong> conglomerate beds grading upward<br />

into thinly interbedded s<strong>and</strong>stones <strong>and</strong> mudstones. These<br />

coarse-grained units are up to 50 m thick, extend laterally<br />

beyond the extent <strong>of</strong> outcrop (several hundred metres)<br />

Upper Cretaceous<br />

No palynomorphs recorded due to thermal influence<br />

Campanian lower Maastricht. upper Maastricht.<br />

Con.<br />

Kangilia Fm<br />

Itilli Formation<br />

Anariartorfik Member<br />

800<br />

900<br />

1000<br />

1100<br />

1200<br />

1300<br />

1400<br />

1500<br />

1600<br />

1700<br />

1800<br />

<strong>19</strong>00<br />

2000<br />

2100<br />

2200<br />

2300<br />

2400<br />

2500<br />

2600<br />

2700<br />

2800<br />

Submarine<br />

canyon<br />

Slope<br />

2900<br />

Fig. 67. Lithological log <strong>of</strong> the GRO#3 well interpreted from petrophysical<br />

data. GR, Spectral gamma-ray log; DTC, Sonic log; Con.,<br />

Coniacian; Maastricht., Maastrichtian; Strat., lithostratigraphy;<br />

T.D., total depth. Modified from Christiansen et al. (<strong>19</strong>99). For<br />

location, see Fig. 65.<br />

3000<br />

T.D.: 2996 m<br />

Hyaloclastite<br />

Intrusion<br />

Mudstone<br />

S<strong>and</strong>stone<br />

85


Fig. 68. Outcrop <strong>of</strong> the Itilli Formation in<br />

the type locality in the Anariartorfik gorge<br />

showing amalgamated s<strong>and</strong>stones <strong>and</strong><br />

thinly interbedded s<strong>and</strong>stones <strong>and</strong> mud -<br />

stones (prominent s<strong>and</strong>stone unit is<br />

approxi mately 30 m thick). Anariartorfik<br />

section 930–1010 m (Plate 2). For<br />

location, see Fig. 65.<br />

Fig. 69. Thinly interbedded s<strong>and</strong>stones <strong>and</strong><br />

mudstones <strong>of</strong> the Itilli Formation in the<br />

Anariartorfik section (1070–1150 m; Plate<br />

2). For location, see Fig. 65.<br />

Fig. 70. Amalgamated s<strong>and</strong>stones <strong>of</strong> the<br />

Itilli Formation (Anariartorfik Member)<br />

deposited from turbidity currents in slope<br />

channels overlying contorted mudstones<br />

(at river level). Pingunnguup Kuua section<br />

460–510 m (Plate 2). The amalgamated<br />

s<strong>and</strong>stone unit is approximately 30 m thick<br />

<strong>and</strong> is cut by a dyke. For location, see Fig. 65.<br />

86


<strong>and</strong> include clasts <strong>of</strong> intraformational mudstone, s<strong>and</strong>stone<br />

(probably derived from the underlying Atane For -<br />

mation), redeposited concretions <strong>and</strong> basement lithologies.<br />

On the north coast <strong>of</strong> Nuussuaq <strong>and</strong> on Svartenhuk<br />

Halvø, the formation is dominated by mudstones, thinly<br />

interbedded s<strong>and</strong>stones <strong>and</strong> mudstones, <strong>and</strong> bioturbated<br />

thinly interbedded s<strong>and</strong>stones <strong>and</strong> mudstones. These<br />

lithologies are arranged in coarsening-upward successions<br />

10–50 m thick (Fig. 75).<br />

At Kussinerujuk on the north coast <strong>of</strong> Disko, the formation<br />

consists <strong>of</strong> s<strong>and</strong>stones <strong>and</strong> conglomerates with<br />

angular cobbles <strong>and</strong> boulders <strong>of</strong> mudstone, s<strong>and</strong>stone,<br />

or interbedded s<strong>and</strong>stone <strong>and</strong> mudstone. Other clasts consist<br />

<strong>of</strong> rounded pebbles <strong>of</strong> quartz <strong>and</strong> clay ironstone (Fig.<br />

77; Pulvertaft & Chalmers <strong>19</strong>90, fig. 6). At Asuk, the<br />

formation consists <strong>of</strong> a basal s<strong>and</strong>stone or conglomerate<br />

bed succeeded by s<strong>and</strong>-streaked mudstones (Fig. 55).<br />

Fossils. Ammonites, belemnites, inoceramid bivalves (Fig.<br />

71) <strong>and</strong> rare crustaceans <strong>and</strong> corals are present in the<br />

formation at several localities on Nuussuaq <strong>and</strong><br />

Svartenhuk Halvø (Birkelund <strong>19</strong>65; Rosenkrantz <strong>19</strong>70;<br />

Dam et al. 2000). However, most <strong>of</strong> these are not found<br />

in situ in the outcrops <strong>and</strong> may furthermore be reworked<br />

intraformationally or derived from older deposits.<br />

Dinocysts, spores <strong>and</strong> pollen occur throughout in small<br />

numbers but cannot be determined neither in the lower<br />

part <strong>of</strong> the Umiivik-1 <strong>and</strong> GRO#3 wells nor from the<br />

outcrops in the Itilli valley. Burrows are occasionally present<br />

at the top <strong>of</strong> s<strong>and</strong>stone beds. Details <strong>of</strong> fossil contents<br />

are presented under the description <strong>of</strong> individual<br />

members.<br />

Depositional environment. The Itilli Formation was primarily<br />

deposited in slope <strong>and</strong> submarine fan environments.<br />

In the type area the amalgamated s<strong>and</strong>stones were<br />

deposited in slope channels initiated during sea level<br />

lowst<strong>and</strong>s whereas the mudstones <strong>and</strong> the thinly interbedded<br />

s<strong>and</strong>stones <strong>and</strong> mudstones were deposited in interchannel<br />

slope areas (Dam & Sønderholm <strong>19</strong>94). Details<br />

on the depositional environment are presented under<br />

the description <strong>of</strong> individual members.<br />

Boundaries. On the north coast <strong>of</strong> Nuussuaq, the Itilli<br />

Formation overlies the Atane Formation in a small <strong>and</strong><br />

poorly exposed section at high altitude immediately east<br />

<strong>of</strong> the Ikorfat Fault (Fig. 22; A.K. Pedersen et al. 2006b).<br />

The boundary with the underlying Atane Formation is<br />

well exposed on central Nuussuaq along the northern slope<br />

<strong>of</strong> the Aaffarsuaq valley between Qilakitsoq <strong>and</strong> Tunoqqu<br />

(Fig. 82; Nøhr-Hansen <strong>19</strong>96; Dam et al. 2000) <strong>and</strong> on<br />

northern Disko at Kussinerujuk <strong>and</strong> Asuk (Fig. 2). In<br />

Aaffarsuaq, the lower boundary is placed at the unconformity<br />

between the Santonian deltaic deposits <strong>of</strong> the<br />

Atane Formation <strong>and</strong> the first turbidite s<strong>and</strong>stone or<br />

mudstone deposits <strong>of</strong> the Campanian Aaffarsuaq Member<br />

(Fig. 83). At Kussinerujuk <strong>and</strong> Asuk, the lower boundary<br />

is an erosional unconformity between the deltaic<br />

deposits <strong>of</strong> the Atane Formation <strong>and</strong> the slope deposits<br />

<strong>of</strong> the Itilli Formation (Figs 55, 77, 78, 79).<br />

The upper boundary is well exposed on northern<br />

Nuussuaq where it is defined at a major unconformity<br />

with the upper Maastrichtian – Lower Paleocene Anner -<br />

tuneq Conglomerate Member <strong>of</strong> the Kangilia Formation<br />

(Figs 72, 76, 87). However, in areas outside the distri -<br />

bution <strong>of</strong> the Annertuneq Conglomerate Member, there<br />

28 cm<br />

Fig. 71. Giant inoceramid bivalves on top<br />

<strong>of</strong> a turbidite s<strong>and</strong>stone bed <strong>of</strong> the Itilli<br />

Formation (Aaffarsuaq Member) in the<br />

second ravine east <strong>of</strong> Qilakitsoq. For<br />

location, see Fig. 82.<br />

87


Kangilia<br />

Formation<br />

Fig. 72. Unconformity between the Itilli<br />

Formation (Umiivik Member) <strong>and</strong> the<br />

overlying Kangilia Formation with the<br />

resistant pale-weathering Annertuneq<br />

Conglomerate Member at the base. North<br />

coast <strong>of</strong> Nuussuaq, at Annertuneq. Base <strong>of</strong><br />

conglomerate is at c. 300 m a.s.l. For<br />

location, see Fig. 74.<br />

Itilli<br />

Formation<br />

is no lithological contrast at the boundary between the<br />

Itilli <strong>and</strong> Kangilia Formations <strong>and</strong> in these areas bio -<br />

stratigraphic data may be essential for the distinction<br />

between the Turonian to lower Maastrichtian Itilli<br />

Formation <strong>and</strong> the mainly Danian Kangilia Formation.<br />

On Svartenhuk Halvø, the formation is overlain by hyaloclastite<br />

<strong>of</strong> the Vaigat Formation or, as observed on the<br />

east slope <strong>of</strong> Firefjeld, by a conglomeratic unit that may<br />

be correlated with either the Agatdal Formation or with<br />

the Quikavsak Formation. The upper boundary <strong>of</strong> the<br />

Itilli Formation is not exposed on northern Disko.<br />

On the north coast <strong>of</strong> Nuussuaq <strong>and</strong> in the GANT#1<br />

<strong>and</strong> GRO#3 wells, the Itilli Formation is unconformably<br />

overlain by the Kangilia Formation (Figs 67, 72, 87).<br />

Along the Aaffarsuaq valley, the upper boundary is<br />

ambiguous <strong>and</strong> can be difficult to identify. East <strong>of</strong><br />

Qilakitsoq, however, Campanian deposits <strong>of</strong> the Itilli<br />

Formation are overlain by a Paleocene conglomerate/s<strong>and</strong>stone<br />

unit referred to the Eqalulik Formation (Fig.<br />

83) thus indicating a major unconformity. At Nassaat,<br />

a tributary on the south-eastern side <strong>of</strong> Agatdalen, the<br />

presence <strong>of</strong> Upper Santonian mudstones with Sphenoceramus<br />

was reported by Rosenkrantz (<strong>19</strong>70); this succession<br />

is now referred to the Itilli Formation. At this<br />

locality, the mudstones are overlain by pebbly s<strong>and</strong>stones<br />

<strong>and</strong> bituminous mudstones, a unit that referred to the<br />

Agatdal Formation by Rosenkrantz (<strong>19</strong>70 fig. 4c) but to<br />

the Upper Atanikerdluk Formation (Quikavsak Formation<br />

<strong>of</strong> this paper) by Koch (<strong>19</strong>59 fig. 37). No new data are<br />

available from this outcrop.<br />

<strong>Geological</strong> age. A ?Late Turonian to early Maastrichtian<br />

age range for the formation is indicated by the ammonite<br />

fauna (Fig. 16). Palynomorph data are generally in accordance<br />

with the ammonite data, but local discrepancies<br />

occur, probably due to redeposition <strong>of</strong> ammonites from<br />

the underlying deposits.<br />

At Asuk <strong>and</strong> Kussinerujuk on northern Disko, the<br />

Itilli Formation is <strong>of</strong> Cenomanian–Turonian age (Fig. 16;<br />

Bojesen-Koefoed et al. 2007) whereas on Svartenhuk<br />

Halvø, the formation is <strong>of</strong> Turonian to Early Campanian<br />

age (Fig. 16; Nøhr-Hansen <strong>19</strong>96, unpublished data;<br />

Dam et al. <strong>19</strong>98b). Strata <strong>of</strong> Campanian age referred to<br />

the Hilli Formation are also exposed on Nuussuaq (Itilli,<br />

Aaffarsuaq, Agatdalen; Birkelund <strong>19</strong>65; Sønderholm et<br />

al. 2003). The Maastrichtian part <strong>of</strong> the formation is<br />

only known from Kangilia <strong>and</strong> Aaffarsuaq (Birkelund<br />

<strong>19</strong>65; Rosenkrantz <strong>19</strong>70; Nøhr-Hansen <strong>19</strong>96) <strong>and</strong> has<br />

been dated in the GRO#3 well (Sønderholm et al. 2003).<br />

Detailed information on the age <strong>of</strong> the various members<br />

is found in the description <strong>of</strong> the members below.<br />

Correlation. The pre-Early Campanian part <strong>of</strong> the formation<br />

is coeval with the Atane <strong>and</strong> Upernivik Næs For -<br />

mations (Fig. 16).<br />

Subdivision. Four members are recognised, the<br />

Anariartorfik, Umiivik, Kussinerujuk, <strong>and</strong> Aaffarsuaq<br />

Members, <strong>of</strong> which the Anariartorfik Member is found<br />

only west <strong>of</strong> the Kuugannguaq–Qunnilik Fault. The<br />

Anariartorfik Member consists <strong>of</strong> interbedded turbidite<br />

channel s<strong>and</strong>stones <strong>and</strong> mudstones deposited in a faultcontrolled<br />

slope environment. The Umiivik Member is<br />

the northernmost representative <strong>of</strong> the Itilli Formation.<br />

It is finer grained than the Anariartorfik Member, <strong>and</strong><br />

dominated by major coarsening-upward successions<br />

88


deposited in a base-<strong>of</strong>-slope <strong>and</strong> basin-floor fan environment.<br />

Both the Anariartorfik <strong>and</strong> Umiivik Members<br />

record deposition from probably the Cenomanian to the<br />

Maastrichtian. The Kussinerujuk Member is only exposed<br />

on northern Disko at Asuk <strong>and</strong> Kussinerujuk <strong>and</strong> represents<br />

a Cenomanian transgressive event on top <strong>of</strong> the<br />

Atane Formation. The Aaffarsuaq Member crops out<br />

east <strong>of</strong> the Kuugannguaq–Qunnilik Fault on central<br />

Nuussuaq <strong>and</strong> comprises a relatively thin wedge <strong>of</strong> Lower<br />

to Middle Campanian strata that are distinctly different<br />

from the Anariartorfik Member with regard to their large<br />

content <strong>of</strong> intraformational clasts, the overall lack <strong>of</strong><br />

fine-grained mudstones <strong>and</strong> the lenticular shapes <strong>of</strong> the<br />

thinly interbedded s<strong>and</strong>stone <strong>and</strong> mudstone units. The<br />

sediments <strong>of</strong> the Aaffarsuaq Member were deposited in<br />

a deep marine, channellised footwall fan system.<br />

Anariartorfik Member<br />

new member<br />

History. Strata referred here to the Anariartorfik Member<br />

were described informally as the Itilli Formation by J.M.<br />

Hansen (<strong>19</strong>80b). Detailed studies <strong>of</strong> strata assigned to<br />

the Anariartorfik Member were published by Dam &<br />

Sønderholm (<strong>19</strong>94) <strong>and</strong> Madsen (2000).<br />

Name. The member is named after the Anariartorfik valley<br />

leading into the Itilli valley (Fig. 65).<br />

Distribution. The Anariartorfik Member is exposed in the<br />

Itilli valley <strong>and</strong> is present in the subsurface west <strong>of</strong> the<br />

Kuuganguaq–Qunnilik Fault in the western part <strong>of</strong><br />

Nuussuaq (Fig. 11).<br />

Type section. The type section is the same as for the Itilli<br />

Formation in the southern part <strong>of</strong> the Itilli valley (Figs<br />

65, 66, Plate 2). The base <strong>of</strong> the type section is located<br />

at 70°36.35´N, 54°13.79´W.<br />

Reference sections. Well-exposed reference sections are<br />

located in the northern part <strong>of</strong> the Itilli valley <strong>and</strong> in the<br />

adjoining Tunorsuaq valley (Figs 2, 65, 74).<br />

The member was cored in the FP94-9-01 borehole<br />

between 32 <strong>and</strong> 522 m in the central part <strong>of</strong> the Itilli valley<br />

(Fig. 65; Madsen 2000); the cores are stored at GEUS<br />

in Copenhagen. The member was drilled but not cored<br />

in the GRO#3 well between 959 m <strong>and</strong> 2996 m (Figs<br />

65, 67; Kristensen & Dam <strong>19</strong>97).<br />

Thickness. The member has a thickness (including intrusions)<br />

<strong>of</strong> at least 2037 m in the GRO#3 well. Approxi -<br />

mately 1400 m are exposed in two incomplete sections<br />

in the Itilli valley (Fig. 65, Plate 2).<br />

Lithology. In the type section, the Anariartorfik Member<br />

is dominated by mudstones <strong>and</strong> thinly interbedded s<strong>and</strong>stones<br />

<strong>and</strong> mudstones, chaotic beds, amalgamated beds<br />

<strong>of</strong> coarse-grained to very coarse-grained s<strong>and</strong>stones, <strong>and</strong><br />

giant-scale cross-bedded s<strong>and</strong>stones (Figs 66, 68, 69, 70,<br />

Plate 2; Dam & Sønderholm <strong>19</strong>94). These lithological<br />

contrasts create a characteristic blocky pattern in the<br />

petrophysical log <strong>of</strong> the GRO#3 well (Fig. 67; Kristensen<br />

& Dam <strong>19</strong>97).<br />

The mudstones are dark grey to black, show parallel<br />

lamination <strong>and</strong> occur in intervals up to 15 m thick in<br />

the type section. Persistent layers <strong>of</strong> early diagenetic<br />

ankerite concretions occur in most mudstone intervals.<br />

The thinly interbedded s<strong>and</strong>stone <strong>and</strong> mudstone units<br />

comprise laterally extensive graded laminae <strong>and</strong> beds <strong>of</strong><br />

fine- to very coarse-grained s<strong>and</strong>stone capped by parallel-laminated<br />

mudstones; this facies forms successions<br />

several tens <strong>of</strong> metres in thickness (Plate 2). The s<strong>and</strong>stone<br />

beds range in thickness from less than 1 cm to 80<br />

cm, have flat, locally scoured bases <strong>and</strong> show normal<br />

grading; the beds may be structureless near their base or<br />

may be parallel- or cross-laminated throughout. The<br />

s<strong>and</strong> stone beds are laterally persistent at outcrop scale<br />

(> 100 m) <strong>and</strong> there is generally no systematic variation<br />

in thickness. Convolute bedding <strong>and</strong> slump structures<br />

are common. Early diagenetic ankerite concretions are<br />

common in the mudstone units.<br />

The chaotic beds are up to 30 m thick <strong>and</strong> consist <strong>of</strong><br />

contorted, laminated mudstone, thinly interbedded s<strong>and</strong>stone<br />

<strong>and</strong> mudstone, <strong>and</strong> homogenised mudstone with<br />

scattered s<strong>and</strong> grains, reworked early diagenetic ankerite<br />

concretions, semi-indurated mudstone <strong>and</strong> s<strong>and</strong>stone<br />

clasts <strong>and</strong> occasional basement clasts. The chaotic beds<br />

invariably underlie a thick unit <strong>of</strong> amalgamated s<strong>and</strong>stone<br />

beds <strong>and</strong> are <strong>of</strong>ten associated with s<strong>and</strong>stone dykes (Fig.<br />

66, Plate 2).<br />

The amalgamated s<strong>and</strong>stone beds form up to 50 m<br />

thick channel-shaped bodies that can be followed for<br />

1–2 km along strike (Figs 66, 68, 70, Plate 2). The s<strong>and</strong>stone<br />

units are erosionally based <strong>and</strong> locally show welldeveloped<br />

flute casts <strong>and</strong> channel-shaped scours at the<br />

base. The s<strong>and</strong>stone units may show a thinning-upward<br />

trend <strong>and</strong> have a gradational or sharp, but non-erosional<br />

contact to the overlying interbedded s<strong>and</strong>stone <strong>and</strong> mudstone<br />

units. Internally, the s<strong>and</strong>stone units are dominated<br />

by amalgamated, normally graded, medium-grained<br />

89


■<br />

■<br />

■<br />

■<br />

■<br />

54°<br />

Quaternary cover<br />

Svartenhuk Formation<br />

Uparuaqqusuitsut<br />

Vaigat Formation<br />

Intrusion<br />

■<br />

400709<br />

Kangiusap Im a<br />

Eqalulik Formation<br />

400708<br />

■<br />

■<br />

■<br />

Quikavsak/Agatdal Formation<br />

■<br />

■<br />

■<br />

■ ■<br />

■<br />

■<br />

■<br />

Firefjeld<br />

■<br />

■<br />

400712<br />

■<br />

■ ■<br />

■<br />

■<br />

Umiiviup Kangerlua<br />

■<br />

Umiivik-1<br />

400710<br />

400711<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Itsaku<br />

■ ■<br />

■<br />

Fig. 37<br />

Fig. 36<br />

Qeqertarsuaq<br />

■<br />

66<br />

■<br />

■<br />

■<br />

■<br />

Kangilia Formation<br />

Itilli Formation<br />

Umiivik Member<br />

Upernivik Næs<br />

Formation<br />

Precambrian basement<br />

Ice<br />

Sea/lake<br />

Normal fault<br />

(tick on downthrow side)<br />

Major fault with variable sense<br />

<strong>of</strong> movement through time<br />

Monoclinal flexure<br />

■ ■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Karrat<br />

Fjord<br />

71°30'<br />

Drill hole<br />

■ ■<br />

■ ■<br />

■ ■<br />

■<br />

■<br />

10 km<br />

Fig. 73. <strong>Geological</strong> map <strong>of</strong> the south-eastern part <strong>of</strong> Svartenhuk Halvø <strong>and</strong> the west coast <strong>of</strong> Qeqertarsuaq showing the location <strong>of</strong> the<br />

Umiivik-1 well (type section <strong>of</strong> the Umiivik Member <strong>of</strong> the Itilli Formation) <strong>and</strong> the position <strong>of</strong> shallow wells drilled by GGU in <strong>19</strong>92 (GGU<br />

400708–400712). Reference sections <strong>of</strong> the Upernivik Næs Formation on Qeqertarsuaq are indicated (see Figs 36, 37). For location, see Fig. 2.<br />

Modified from J.G. Larsen & Grocott (<strong>19</strong>91) <strong>and</strong> J.G. Larsen & Pulvertaft (2000).<br />

to pebbly, very coarse-grained s<strong>and</strong>stone beds (0.1–3.5<br />

m thick) or, less commonly, show planar <strong>and</strong> trough<br />

cross-bedding. The graded beds have planar, erosional<br />

bases <strong>and</strong> can be followed laterally for more than 140 m<br />

without major variations in thickness (Figs 66, 68, 70).<br />

Angular mudstone clasts, ranging from a few millimetres<br />

to 45 cm across <strong>and</strong> rounded basement pebbles up<br />

to 8 cm across are common in the graded beds. In some<br />

cases, the uppermost part <strong>of</strong> the graded s<strong>and</strong>stone beds<br />

show well-developed parallel lamination, with parting lineation<br />

<strong>and</strong> tool marks, trough cross-bedding, low-angle<br />

cross-bedding <strong>and</strong> climbing ripple lamination. The graded<br />

s<strong>and</strong>stone beds are commonly separated by thin mudstone<br />

beds or units <strong>of</strong> thinly interbedded mudstone <strong>and</strong><br />

s<strong>and</strong>stone.<br />

Giant-scale cross-bedded s<strong>and</strong>stone units occur as<br />

channel-shaped bodies at a few levels in the type section.<br />

The units comprise 7–15 m thick low-angle, crossbedded<br />

sets dominated by coarse- to medium-grained<br />

s<strong>and</strong>stone; the sets can be followed for approximately<br />

150 m in a dip direction. At one locality, a single set fills<br />

out a large channel-shaped erosional depression that is<br />

approximately 300 m wide (Plate 2 at 800 m; Dam &<br />

Sønderholm <strong>19</strong>94).<br />

Fossils. Macr<strong>of</strong>ossils have not been found in this member,<br />

but burrows are locally present at the top <strong>of</strong> the<br />

s<strong>and</strong>stone beds. They include common Ophiomorpha<br />

isp., Thalassinoides isp., escape burrows, <strong>and</strong> rare Helminthopsis<br />

isp. (Dam & Sønderholm <strong>19</strong>94). Identifiable<br />

palynomorphs are very rare in the area <strong>of</strong> the type sec-<br />

90


VK<br />

53°30’ 53°15’<br />

Niaqornat<br />

Tupersuartaa<br />

Hamiteskløft<br />

Iterlaa<br />

Serfat<br />

Niaqorsuaq<br />

FP94-11-05<br />

22<br />

18 400707 Annertuneq<br />

Saviaqqat<br />

Kangilia<br />

400706<br />

FP94-11-04<br />

FP94-11-02<br />

400705<br />

3<br />

70°45’<br />

U i n g a<br />

j a a<br />

Tunorsuaq<br />

DR<br />

r s u a q<br />

1290<br />

6<br />

5<br />

Danienkløft<br />

GANT#1<br />

Quaternary cover<br />

Ice<br />

Tunorsuaq<br />

Vaigat Formation<br />

Sea/lake<br />

Intrusion<br />

Strike <strong>and</strong> dip <strong>of</strong> strata<br />

Eqalulik Formation<br />

Drill hole<br />

Kangilia Formation<br />

with AC Member<br />

Itilli Formation,<br />

Umiivik Member<br />

Ab<strong>and</strong>oned settlement<br />

2500 m<br />

Fig. 74. <strong>Geological</strong> map <strong>of</strong> the north coast <strong>of</strong> Nuussuaq showing outcrops <strong>of</strong> the Itilli <strong>and</strong> Kangilia Formations. The wells FP94-11-02, -04 <strong>and</strong> -05 are located near Serfat. The<br />

shallow wells drilled by GGU in <strong>19</strong>92 (GGU 400705–400707) are located at Annertuneq. The GANT#1 well is in the Tunorsuaq valley. DR, Danienrygge; AC, Annertuneq<br />

Conglomerate Member. Contour interval is 200 m. For location, see Fig. 2. Modified from Rosenkrantz et al. <strong>19</strong>74.<br />

91


tion, but are abundant in the cuttings from the middle<br />

<strong>and</strong> upper part <strong>of</strong> the GRO#3 well (Nøhr-Hansen <strong>19</strong>97c).<br />

Depositional environment. Deposition <strong>of</strong> the Anariartorfik<br />

Member took place in a fault-controlled slope environment<br />

(Dam & Sønderholm <strong>19</strong>94). Most <strong>of</strong> the channellised<br />

amalgamated turbidite s<strong>and</strong>stone beds were<br />

deposited from high-density turbidity currents in confined<br />

low-sinuosity channels, although a few examples<br />

<strong>of</strong> giant-scale, cross-bedded s<strong>and</strong>stones are interpreted as<br />

the products <strong>of</strong> lateral accretion in me<strong>and</strong>ering slope<br />

channels.<br />

The thinly interbedded s<strong>and</strong>stones <strong>and</strong> mudstones<br />

are interpreted as having been deposited from traction<br />

currents <strong>and</strong> from fall-out processes associated with various<br />

sedimentation stages within waning low-density<br />

currents. The lateral continuity <strong>and</strong> the lack <strong>of</strong> systematic<br />

vertical thickness variations in the thinly interbedded<br />

s<strong>and</strong>stones <strong>and</strong> mudstones suggest that these deposits<br />

were not confined by channel-levee systems, but most<br />

likely represent interchannel slope deposits.<br />

Where present, the chaotic beds always underlie undisturbed<br />

channel s<strong>and</strong>stones. This suggests that the channels<br />

were initially excavated by retrogressive slumping <strong>of</strong><br />

unstable sediments on the slope followed by channel<br />

excavation by scouring (Dam & Sønderholm <strong>19</strong>94).<br />

Boundaries. The lower <strong>and</strong> upper boundaries <strong>of</strong> the<br />

Anariartorfik Member are not exposed. The upper boundary<br />

was drilled in the GRO#3 well but not cored (Fig.<br />

67). An erosional unconformity between the Anariartorfik<br />

Member <strong>and</strong> the overlying Kangilia Formation was suggested<br />

by Kristensen & Dam (<strong>19</strong>97).<br />

<strong>Geological</strong> age. Palynomorphs in the GRO#3 well indicate<br />

a ?Coniacian/Santonian – early Maastrichtian age<br />

for the uppermost c. 525 m <strong>of</strong> the Anariartorfik Member.<br />

In the lowermost 1510 m <strong>of</strong> the well, the organic material<br />

is degraded due to thermal maturation <strong>and</strong> this part<br />

<strong>of</strong> the formation cannot be dated (Nøhr-Hansen <strong>19</strong>97c).<br />

Umiivik Member<br />

new member<br />

History. Outcrops <strong>of</strong> marine Upper Cretaceous strata<br />

referred to the Umiivik Member on Svartenhuk Halvø<br />

<strong>and</strong> northern Nuussuaq have only been briefly described<br />

by earlier workers since their main focus was on the collection<br />

<strong>of</strong> fossils (Rosenkrantz et al. <strong>19</strong>42; Birkelund<br />

<strong>19</strong>56, <strong>19</strong>65; Rosenkrantz <strong>19</strong>70). Later studies in connection<br />

with mapping by the <strong>Geological</strong> <strong>Survey</strong> <strong>and</strong><br />

drilling <strong>of</strong> stratigraphic wells in the Umiivik area <strong>of</strong><br />

Svartenhuk Halvø have been reported by Christiansen<br />

(<strong>19</strong>93), Dam et al. (<strong>19</strong>98b), Christiansen et al. (2000)<br />

<strong>and</strong> J.G. Larsen & Pulvertaft (2000). On northern<br />

Nuussuaq, extensive stratigraphic studies have been carried<br />

out at Annertuneq <strong>and</strong> Kangilia (Christiansen et al.<br />

<strong>19</strong>92; Christiansen <strong>19</strong>93; Christiansen et al. <strong>19</strong>94) <strong>and</strong><br />

at Serfat in connection with drilling <strong>of</strong> mineral exploration<br />

wells (Dam & Nøhr-Hansen <strong>19</strong>95).<br />

Name. The member is named after the stretch <strong>of</strong> shore<br />

located south-east <strong>of</strong> Firefjeld in the inner part <strong>of</strong> the<br />

Umiiviup Kangerlua bay, eastern Svartenhuk Halvø (Fig.<br />

73).<br />

Distribution. On Svartenhuk Halvø, the Umiivik Member<br />

is locally exposed in the north-western part <strong>of</strong> the peninsula<br />

(Fig. 2), <strong>and</strong> more extensively in the low-lying coastal<br />

outcrops around the bay <strong>of</strong> Umiiviup Kangerlua, <strong>and</strong> c.<br />

5 km north-west <strong>of</strong> the south-eastern corner <strong>of</strong> the peninsula<br />

(Fig. 73). On Nuussuaq, exposures are found along<br />

the north coast between Niaqornat <strong>and</strong> Ikorfat <strong>and</strong> in<br />

the Tunorsuaq valley (Figs 2, 74).<br />

On Svartenhuk Halvø, the member has been cored in<br />

five shallow wells (GGU 400708–712; Christiansen<br />

<strong>19</strong>93; Christiansen et al. <strong>19</strong>94a) <strong>and</strong> in the deep Umiivik-<br />

1 well (Fig. 73; Christiansen et al. <strong>19</strong>94; Nøhr-Hansen<br />

<strong>19</strong>96; Christiansen et al. <strong>19</strong>97; Dam <strong>19</strong>97; Nøhr-Hansen<br />

<strong>19</strong>97a; Dam et al. <strong>19</strong>98b).<br />

On the north coast <strong>of</strong> Nuussuaq the member has been<br />

penetrated in six shallow boreholes: GGU 400705–707<br />

<strong>and</strong> FP4-11-02, FP94-11-04 <strong>and</strong> FP94-11-05 (Chri -<br />

stiansen et al. <strong>19</strong>94; Dam & Nøhr-Hansen <strong>19</strong>95), <strong>and</strong><br />

in the deep GANT#1 well (Fig. 74; Christiansen et al.<br />

<strong>19</strong>96c; Dam <strong>19</strong>96a; Dahl et al. <strong>19</strong>97; Nøhr-Hansen<br />

<strong>19</strong>97b; Kierkegaard <strong>19</strong>98).<br />

Type section. The most complete section <strong>of</strong> the member<br />

is available in the Umiivik-1 core drilled on the southern<br />

shore <strong>of</strong> Umiiviup Kangerlua on Svartenhuk Halvø<br />

(GGU 439301; Figs 73, 75). Neither the base nor the<br />

top <strong>of</strong> the member is, however, seen in this well. The cores<br />

are stored at GEUS in Copenhagen. The Umiivik-1 well<br />

is located at 71°36.70´N, 54°02.52´W.<br />

Reference sections. The best-exposed outcrops <strong>of</strong> the<br />

Umiivik Member are found below the Kangilia Formation<br />

(Annertuneq Conglomerate Member) at Annertuneq<br />

<strong>and</strong> Kangilia on the north coast <strong>of</strong> Nuussuaq (Figs 72,<br />

92


Umiivik-1<br />

m<br />

Overburden<br />

★<br />

★<br />

No palynomorphs recorded due to thermal influence from igneous intrusions<br />

900<br />

1000<br />

1100<br />

★<br />

★ ★<br />

★ ★<br />

★<br />

★<br />

★<br />

?Upper Turonian<br />

500<br />

600<br />

700<br />

★<br />

★<br />

Upper Coniacian<br />

Upper Turonian – ?Upper Coniacian<br />

100<br />

200<br />

300<br />

★<br />

★<br />

★<br />

★<br />

★<br />

Upper Turonian<br />

★<br />

400<br />

★<br />

1200<br />

clay si vf<br />

fmcvc<br />

s<strong>and</strong><br />

800<br />

clay si<br />

vf fmcvc<br />

clay si vf fmcvc<br />

s<strong>and</strong><br />

s<strong>and</strong><br />

★<br />

Fig. 75. Sedimentological log showing type section <strong>of</strong> the Umiivik Member (Itilli Formation) in the Umiivik-1 well. For location, see Fig.<br />

73; for legend, see Plate 1. Modified from Dam et al. (<strong>19</strong>98b).<br />

87). At Annertuneq, the GGU cores 400705–707 were<br />

drilled to supplement the outcrop studies (Fig. 74;<br />

Christiansen et al. <strong>19</strong>94). In the GANT#1 well, the interval<br />

from 255.8 m to 900.6 m (Fig. 76) is assigned to the<br />

Umiivik Member (Dam <strong>19</strong>96a). The cores are stored at<br />

GEUS in Copenhagen.<br />

Thickness. The total thickness <strong>of</strong> the Umiivik Member<br />

is unknown, but in the Umiivik-1 well on Svartenhuk<br />

Halvø it is at least 960 m thick (excluding a total <strong>of</strong> 22<br />

dolerite intrusions with a cumulative thickness <strong>of</strong> 240.2<br />

m). In the slopes behind the Umiivik-1 drill site, approximately<br />

185 m <strong>of</strong> poorly exposed mudstone is present<br />

below the base <strong>of</strong> the hyaloclastic volcanic rocks <strong>of</strong> the<br />

Vaigat Formation – this part <strong>of</strong> the succession is partly<br />

penetrated by the cores 400710–711 (Fig. 73; Christiansen<br />

et al. <strong>19</strong>94). In the GANT#1 well, on northern Nuussuaq,<br />

620 m have been cored (excluding intrusions).<br />

Lithology. The Umiivik Member is dominated by black<br />

mudstones intercalated with laminae <strong>and</strong> thin beds <strong>of</strong><br />

s<strong>and</strong>stone; carbonate concretions are common (Figs 75,<br />

93


310<br />

610<br />

m<br />

GANT#1<br />

Overburden<br />

350<br />

50<br />

650<br />

400<br />

100<br />

700<br />

Itilli Formation<br />

Umiivik Member<br />

750<br />

Itilli Formation<br />

Umiivik Member<br />

450<br />

500<br />

Kangilia Formation<br />

Annertuneq Conglomerate Member<br />

150<br />

200<br />

800<br />

550<br />

250<br />

850<br />

Itilli Formation<br />

Umiivik Member<br />

600<br />

300<br />

900<br />

clay si vf f mcvc f mc<br />

s<strong>and</strong> pebbles<br />

clay si vf f mcvc f mc<br />

s<strong>and</strong> pebbles<br />

clay si vf f mcvc f mc<br />

s<strong>and</strong> pebbles<br />

94


76). Heavily bioturbated interbedded s<strong>and</strong>stones <strong>and</strong><br />

mudstones, chaotic beds, <strong>and</strong> structureless, muddy s<strong>and</strong>stones<br />

also occur. Indistinct thickening- <strong>and</strong> coarseningupward<br />

cycles, 2–85 m thick, can be seen in the Umii -<br />

vik-1, FP94-11-02 <strong>and</strong> FP94-11-04 wells (Fig. 75; Dam<br />

& Nøhr-Hansen <strong>19</strong>95). A cobble conglomerate composed<br />

<strong>of</strong> lithified s<strong>and</strong>stone clasts in a mudstone matrix is<br />

exposed in stream gullies on the south side <strong>of</strong> Uparu -<br />

aqqusuitsut on north-eastern Svartenhuk Halvø (Fig.<br />

73; Christiansen et al. 2000).<br />

In the GANT#1 core, chaotic beds, muddy s<strong>and</strong>stones<br />

<strong>and</strong> s<strong>and</strong>y mudstones alternate with thick, sharpbased<br />

fining-upward successions (Fig. 76; Dam <strong>19</strong>96a).<br />

The fining-upward successions consist <strong>of</strong> amalgamated<br />

s<strong>and</strong>stone beds grading upward into thinly interbedded<br />

s<strong>and</strong>stones <strong>and</strong> mudstones. Thin coarsening-upward successions<br />

also occur. The amalgamated s<strong>and</strong>stones consist<br />

<strong>of</strong> normally graded, medium- to coarse-grained<br />

s<strong>and</strong>stone beds with scattered basement pebbles <strong>and</strong><br />

mudstone intraclasts. The s<strong>and</strong>stone beds are generally<br />

structureless, but parallel <strong>and</strong> cross-lamination occurs<br />

towards the top <strong>of</strong> some beds. A thin mudstone layer usually<br />

caps the s<strong>and</strong>stone beds.<br />

The thinly interbedded s<strong>and</strong>stones <strong>and</strong> mudstones<br />

consist <strong>of</strong> sharp-based, graded laminae <strong>and</strong> beds <strong>of</strong> finegrained<br />

to very coarse-grained s<strong>and</strong>stone alternating with<br />

black parallel-laminated mudstones. The s<strong>and</strong>stones are<br />

well-sorted <strong>and</strong> may show parallel <strong>and</strong> cross-lamination;<br />

small mudstone rip-up clasts frequently occur throughout<br />

the s<strong>and</strong>stone beds.<br />

Fossils. Ammonites from the Umiivik Member have been<br />

described from several localities on Svartenhuk Halvø<br />

<strong>and</strong> include Scaphites mariasensis umivikensis (Birkelund),<br />

Scaphites preventricosus svartenhukensis (Birke lund),<br />

Clioscaphites sp. aff. saxitonianus (McLearn), Scaphites<br />

cobbani (Birkelund), Scaphites rosenkrantzi (Birkelund),<br />

Scaphites cf. corvensis (Cobban), Clioscaphites saxitonianus<br />

septentrionalis (Birkelund), ammonites <strong>of</strong> the genus<br />

Haresiceras <strong>and</strong> inoceramids <strong>of</strong> the steenstrupi group<br />

(Birkelund <strong>19</strong>65). Belemnites from Svartenhuk Halvø<br />

Facing page:<br />

Fig. 76. Sedimentological log <strong>of</strong> the Umiivik Member (Itilli Formation)<br />

<strong>and</strong> the Annertuneq Conglomerate Member (Kangilia Formation)<br />

in the GANT#1 well. For location, see Fig. 74; for legend, see Plate<br />

1. Modified from Dam (<strong>19</strong>96a).<br />

include Actinocamax cf. primus (Arkhangelsky) <strong>and</strong><br />

Actinocamax sp. (Birkelund <strong>19</strong>56). Unidentified teleost<br />

fish remains have also been found in strata yielding<br />

Coniacian ammonites (Bendix-Almgreen <strong>19</strong>69).<br />

Ammonites occur at several localities along the north<br />

coast <strong>of</strong> Nuussuaq in the Umiivik Member, including<br />

Pseudophyllites skoui (Birkelund), Scaphites (Hoploscaphites),<br />

S. (H.) greenl<strong>and</strong>icus (Donovan), S. (H.) ravni (Birkelund),<br />

<strong>and</strong> S. (H.) ikorfatensis (Birkelund). The belemnites<br />

Actinocamax groenl<strong>and</strong>icus (Birkelund) <strong>and</strong> Actinocamax<br />

aff. groenl<strong>and</strong>icus (Birkelund), <strong>and</strong> an indeterminate solitary<br />

corallum have also been collected (Birkelund <strong>19</strong>56,<br />

<strong>19</strong>65; Floris <strong>19</strong>72).<br />

Dinocysts are abundant in the Umiivik Member (Dam<br />

& Nøhr-Hansen <strong>19</strong>95; Nøhr-Hansen <strong>19</strong>96, <strong>19</strong>97a;<br />

Dam et al. <strong>19</strong>98b).<br />

Depositional environment. The Umiivik Member records<br />

deposition from low-density <strong>and</strong> high-density turbidity<br />

currents, debris flows, slumping <strong>and</strong> fall-out from suspension.<br />

Deposition <strong>of</strong> the mudstones <strong>and</strong> intercalated<br />

mudstones <strong>and</strong> s<strong>and</strong>stones took place in a base-<strong>of</strong>-slope<br />

<strong>and</strong> basin-floor fan environment. The succession in the<br />

GANT#1 well, which is situated close to the Kuugan -<br />

guaq–Qunnilik Fault, reflects a fault-controlled base-<strong>of</strong>slope<br />

environment with major <strong>and</strong> minor distributary<br />

feeder channels, small turbidite lobes <strong>and</strong> interdistributary<br />

channel areas.<br />

Boundaries. The Umiivik Member unconformably overlies<br />

the Atane Formation on the north coast <strong>of</strong> Nuussuaq<br />

in a small <strong>and</strong> poorly exposed section at high altitude<br />

immediately east <strong>of</strong> the Ikorfat Fault (Fig. 22; A.K.<br />

Pedersen et al. 2006b).<br />

West <strong>of</strong> the Ikorfat Fault, the lower boundary <strong>of</strong> the<br />

Umiivik Member is not exposed <strong>and</strong> has not been drilled.<br />

On northern Nuussuaq, the member is unconformably<br />

overlain by the Kangilia Formation (Figs 72, 74, 87). At<br />

most localities on Svartenhuk Halvø, it is unconformably<br />

overlain by Paleocene hyaloclastic rocks <strong>of</strong> the Vaigat<br />

Formation (Fig. 73). At Firefjeld, however, a thin Paleo -<br />

cene conglomeratic unit that may be correlated with<br />

either the Agatdal Formation or the Quikavsak Formation<br />

is present between the Umiivik Member <strong>and</strong> the volcanic<br />

succession.<br />

<strong>Geological</strong> age. The age <strong>of</strong> the Umiivik Member is based<br />

on dinocyst <strong>and</strong> ammonite data (Birkelund <strong>19</strong>65; Nøhr-<br />

Hansen <strong>19</strong>96, <strong>19</strong>97a). The ammonites from Svartenhuk<br />

Halvø indicate a ?Late Turonian – Early Campanian age<br />

for the Umiivik Member in this area (Fig. 16). Dinocysts<br />

95


from the Umiivik-1 well indicate a ?Late Turonian – Late<br />

Coniacian age for the uppermost 659 m <strong>of</strong> the well;<br />

below this palynomorphs are not preserved due to severe<br />

alteration <strong>of</strong> the mudstones by the Paleocene dolerite<br />

intrusions. It is likely, however, that the core includes<br />

Cenomanian–Turonian strata (Nøhr-Hansen <strong>19</strong>97a;<br />

Dam et al. <strong>19</strong>98b). Dinocysts from outcrops <strong>and</strong> from<br />

the three shallow wells (GGU 400710, 400711, 400712)<br />

along the southern shore <strong>of</strong> Umiiviup Kangerlua on<br />

Svartenhuk Halvø indicate a Santonian to Early Cam -<br />

panian age (Nøhr-Hansen <strong>19</strong>96).<br />

On the north coast <strong>of</strong> Nuussuaq, the ammonites indicate<br />

the presence <strong>of</strong> Upper Campanian <strong>and</strong> Maastrichtian<br />

strata which is in accordance with palynostratigraphic dating<br />

(Birkelund <strong>19</strong>65; Nøhr-Hansen <strong>19</strong>96).<br />

m<br />

50<br />

40<br />

Solifluction, volcanic scree<br />

Poorly exposed<br />

Kussinerujuk Member<br />

new member<br />

History. On northern Disko at Kussinerujuk <strong>and</strong> Asuk,<br />

local outcrops <strong>of</strong> conglomerate, s<strong>and</strong>stone <strong>and</strong> mudstone<br />

unconformably overlying the Atane Formation<br />

have previously been correlated with the Paleocene<br />

Kangilia Formation (J.M. Hansen <strong>19</strong>80b; Pulvertaft &<br />

Chalmers <strong>19</strong>90). Later, these beds were included in the<br />

Asuup Innartaa Member <strong>of</strong> the Danian Quikavsak<br />

Formation (Dam 2002). On the basis <strong>of</strong> new biostratigraphic<br />

data, however, these are here assigned to the<br />

Kussinerujuk Member <strong>of</strong> Cenomanian–Turonian age<br />

(Bojesen-Koefoed et al. 2007).<br />

Name. The member is named after Kussinerujuk on the<br />

north coast <strong>of</strong> Disko, where it is exposed in narrow gorges<br />

(Fig. 2).<br />

Distribution. The member is only known from the north<br />

coast <strong>of</strong> Disko around Kussinerujuk <strong>and</strong> Asuk.<br />

Type section. The type section <strong>of</strong> the member is in the<br />

ravines at Kussinerujuk (Figs 2, 77, 78). The type section<br />

is located at 70°13.10´N, 53°27.68´W.<br />

Itilli Formation<br />

Kussinerujuk Member<br />

Atane Formation<br />

Kingittoq Member<br />

30<br />

20<br />

10<br />

Fig. 77. Type section <strong>of</strong> the Kussinerujuk Member (Itilli Formation)<br />

at Kussinerujuk, north coast <strong>of</strong> Disko. For location, see Fig. 2; for<br />

legend, see Plate 1. Base <strong>of</strong> section is c. 450 m a.s.l.<br />

0<br />

vf f m c vc<br />

clay silt s<strong>and</strong><br />

pebbles,<br />

cobbles<br />

96


Fig. 78. Type locality <strong>of</strong> the Kussinerujuk<br />

Member (Itilli Formation) at Kussinerujuk.<br />

Note the basal erosional boundary with the<br />

Atane Formation beneath; the uppermost<br />

depositional unit underlying the Kingittoq<br />

Member is a dark grey, delta front<br />

mudstone. The Kussinerujuk Member is<br />

dominated by mud-clast conglomerates<br />

with a matrix <strong>of</strong> s<strong>and</strong> (see Fig. 77). For<br />

location, see Fig. 2.<br />

Itilli Fm<br />

Kussinerujuk Mb<br />

Atane Fm<br />

Kingittoq Mb<br />

3 m<br />

Reference sections. Reference sections are found in the<br />

coastal cliffs east <strong>of</strong> Asuk (Figs 55, 79). The lithologies<br />

here differ from those <strong>of</strong> the type section but are locally<br />

affected by complicated deformation resulting from l<strong>and</strong>slides<br />

obscuring the stratigraphic relationships (Bojesen-<br />

Koefoed et al. 2007).<br />

Thickness. At Kussinerujuk the measured part <strong>of</strong> the formation<br />

is at least 42 m thick (Fig. 77; see also Pulvertaft<br />

& Chalmers <strong>19</strong>90) but the member may be up to a couple<br />

<strong>of</strong> hundred metres thick.<br />

Lithology. The Kussinerujuk Member comprises thinly<br />

interbedded mudstones <strong>and</strong> s<strong>and</strong>stones, <strong>and</strong> mudstone<br />

clast conglomerates, first described by Pulvertaft &<br />

Chalmers (<strong>19</strong>90 fig. 6).<br />

At Kussinerujuk the member consists <strong>of</strong> mud-clast<br />

conglomerates <strong>of</strong> varying thicknesses, with angular clasts<br />

<strong>of</strong> cobble to boulder size, interbedded with medium- to<br />

coarse-grained s<strong>and</strong>stone (Fig. 77). In some conglomerate<br />

beds, the clasts are imbricated whereas other conglomerates<br />

appear to be disorganised. Pebble-sized clasts<br />

consist <strong>of</strong> rounded quartz <strong>and</strong> clay ironstone while angular<br />

cobbles <strong>and</strong> boulders consist <strong>of</strong> mudstone, s<strong>and</strong>stone,<br />

or interbedded s<strong>and</strong>stone <strong>and</strong> mudstone.<br />

At Asuk, the Atane Formation is overlain by mudstones<br />

<strong>and</strong> s<strong>and</strong>stones that are referred to the Kussinerujuk<br />

Member. These sediments occur in three separate outcrops.<br />

The westernmost <strong>of</strong> these is seen in Fig. 79, the<br />

central outcrop is seen in Fig. 80, <strong>and</strong> the eastern is seen<br />

in the coastal cliff adjacent to the huge alluvial fan at<br />

Qorlortorsuaq. The western outcrop is overlain by volcanic<br />

breccias <strong>and</strong> lavas <strong>of</strong> the Asuk Member (lower part<br />

<strong>of</strong> the Vaigat Formation; Bojesen-Koefoed et al. 2007).<br />

The volcanic rocks are part <strong>of</strong> a major l<strong>and</strong>slide, <strong>and</strong> the<br />

complicated relationships seen in Fig. 79 suggest that<br />

the sediments at this locality are also affected by sliding;<br />

their stratigraphic relationships with the central <strong>and</strong> eastern<br />

outcrops are thus uncertain.<br />

A simplified sedimentological log from the central<br />

outcrop is shown in Fig. 55. Here a basal conglomerate<br />

<strong>of</strong> mudstone <strong>and</strong> s<strong>and</strong>stone clasts in a matrix <strong>of</strong> coarsegrained<br />

s<strong>and</strong> erosionally overlies the Atane Formation <strong>and</strong><br />

is succeeded by parallel-laminated s<strong>and</strong>stones interbedded<br />

with s<strong>and</strong>-streaked mudstones (Figs 55, 80).<br />

The western, l<strong>and</strong>slipped outcrops comprise a unit <strong>of</strong><br />

parallel-laminated, s<strong>and</strong>-streaked mudstone, locally with<br />

small-scale load structures (Fig. 81A). Other units consist<br />

<strong>of</strong> strongly erosional, channellised s<strong>and</strong>stones that cut<br />

into mudstones (Fig. 81 B); thicker s<strong>and</strong>stone beds are<br />

fine- to medium-grained <strong>and</strong> show parallel lamination<br />

<strong>and</strong> ripple cross-lamination. Other s<strong>and</strong>stone beds are<br />

structureless <strong>and</strong> have erosional bases with sole-marks.<br />

Fossils. Brackish to marine dinocysts occur in the member<br />

<strong>and</strong> are relatively abundant at Asuk (McIntyre <strong>19</strong>94a,<br />

b) noted that rich pollen <strong>and</strong> spore assemblages dominated<br />

by bisaccate conifer pollen are present in the type<br />

section whereas dinocysts are very rare.<br />

Depositional environment. The Kussinerujuk Member<br />

records a transgressive event on top <strong>of</strong> a variably incised<br />

97


E<br />

W<br />

Vaigat Formation<br />

Asuk Member<br />

Atane Formation<br />

Kingittoq Member<br />

Itilli Formation<br />

Kussinerujuk Member<br />

Fig. 79. Outcrops <strong>of</strong> the Itilli Formation at the western end <strong>of</strong> the coastal cliff section at Asuk. Outcrops <strong>of</strong> the Atane Formation are seen farthest<br />

to the east (left); for detail, see Fig. 57. The pale s<strong>and</strong>stones (centre-left) are impregnated with hydrocarbons (see Bojesen-Koefoed et al.<br />

2007).The dark grey mudstones in the centre <strong>of</strong> the photograph are referred to the Kussinerujuk Member as are the s<strong>and</strong>stones to the west.<br />

The dark-weathering rocks cropping out above these s<strong>and</strong>stones are referred to the volcanic Asuk Member (Vaigat Formation). These volcanic<br />

rocks are part <strong>of</strong> a major l<strong>and</strong>slide, <strong>and</strong> the complicated structural relationships between the pale s<strong>and</strong>stones <strong>and</strong> the mudstones <strong>of</strong> the<br />

Itilli Formation suggest that the coastal exposures may be affected by l<strong>and</strong>slides. The height <strong>of</strong> the cliff is c. 30 m. For location, see Fig. 2.<br />

surface capping the Atane Formation east <strong>of</strong> the<br />

Kuuganguaq–Qunnilik Fault. The genetic relationships<br />

between the two outcrop areas <strong>of</strong> the member are, however,<br />

poorly understood. The conglomerates at the type<br />

locality at Kussinerujuk were deposited from channellised<br />

sediment gravity flows at unknown water depths possibly<br />

generated by slope failure in a deeply incised channel.<br />

Farther east, at Asuk <strong>and</strong> Qorlortorsuaq, the mudstonedominated<br />

succession is tentatively interpreted to be<br />

deposited in a marine environment during transgression.<br />

Deposition occurred below storm wave base on a<br />

gently sloping sea floor from low-energy unconfined turbidity<br />

currents or distal storm-generated flows.<br />

Boundaries. The lower boundary, as exposed at<br />

Kussinerujuk, Asuk <strong>and</strong> Qorlortorsuaq (Fig. 2), is an<br />

erosional unconformity where mudstones or mud-clast<br />

conglomerates sharply overlie deltaic s<strong>and</strong>stones <strong>of</strong> the<br />

Atane Formation (Kingittoq Member; Figs 16, 55, 77).<br />

The upper boundary is not exposed, but is probably an<br />

erosional unconformity overlain by Paleocene hyaloclastite<br />

breccias <strong>of</strong> the Vaigat Formation.<br />

<strong>Geological</strong> age. Spores, pollen <strong>and</strong> dinocysts indicate a<br />

Cenomanian to Late Turonian age for the member at<br />

Kussinerujuk (McIntyre <strong>19</strong>94a, b; this study). Dinocysts<br />

indicate a Cenomanian age at Asuk (Fig. 16; Bojesen-<br />

Koefoed et al. 2007).<br />

Itilli Fm<br />

Kussinerujuk Mb<br />

Atane Fm<br />

Kingittoq Mb<br />

Fig. 80. Erosional unconformity between<br />

the Atane Formation <strong>and</strong> the Itilli Forma -<br />

tion (see Fig. 55) in the coastal cliff east <strong>of</strong><br />

Asuk. The coastal cliff is c. 30 high. For<br />

location, see Fig. 2.<br />

98


A<br />

B<br />

Itilli Formation<br />

Kussinerujuk Member<br />

Fig. 81. A: Silt-streaked mudstone with small-scale load structures in the Kussinerujuk Member (Itilli Formation) at Asuk. Lens cap for scale.<br />

B: L<strong>and</strong>-slipped deposits <strong>of</strong> erosionally based s<strong>and</strong>stones interbedded with mudstones at Asuk are assigned to the Kussinerujuk Member <strong>of</strong><br />

the Itilli Formation. Encircled persons for scale; for location, see Fig. 2.<br />

Correlation. The Kussinerujuk Member is coeval with<br />

parts <strong>of</strong> the Umiivik <strong>and</strong> Anariartorfik Members <strong>of</strong> the<br />

Itilli Formation.<br />

Aaffarsuaq Member<br />

new member<br />

History. The un-named Upper Cretaceous marine s<strong>and</strong>stones<br />

<strong>and</strong> shales exposed on central Nuussuaq that were<br />

informally referred to the Aaffarsuaq member by Dam<br />

et al. (2000), are mainly known for the remarkable discoveries<br />

in <strong>19</strong>52 <strong>of</strong> huge specimens <strong>of</strong> Upper Santonian<br />

– Lower Campanian inoceramid (Sphenoceramus) bivalve<br />

shells (Fig. 71; Rosenkrantz <strong>19</strong>70).<br />

Name. The member is named after the Aaffarsuaq valley<br />

on central Nuussuaq (Fig. 82).<br />

Distribution. The member is found on central Nuussuaq<br />

where it is well exposed along the south-facing slopes <strong>of</strong><br />

Aaffarsuaq between Qilakitsoq <strong>and</strong> Tunoqqu. Minor<br />

exposures are present in a stream section on the northfacing<br />

slope <strong>of</strong> Aaffarsuaq, south <strong>of</strong> Nalluarissat, in<br />

Kangersooq (Fig. 82) <strong>and</strong> in Turritelladal at Scaphites -<br />

næsen, <strong>and</strong> in Agatdalen where the Teltbæk fault crosses<br />

the Agatdalen river (Figs 82, 113; Dam et al. 2000).<br />

Type section. The type section is located in the second ravine<br />

east <strong>of</strong> Qilakitsoq on the northern slopes <strong>of</strong> Aaffarsuaq<br />

(Figs 82, 83). The base <strong>of</strong> the type section is located at<br />

70°28.70´N, 53°21.97´W.<br />

Reference sections. Well-exposed reference sections occur<br />

in ravines on the northern side <strong>of</strong> Aaffarsuaq along<br />

Nalluarissat, between Qilakitsoq <strong>and</strong> Tunoqqu (Fig. 82).<br />

Thickness. In the main outcrop area, the thickness <strong>of</strong> the<br />

member decreases eastward from c. 250 m in the type<br />

section to 65 m at Tunoqqu.<br />

Lithology. The Aaffarsuaq Member is characterised by<br />

amalgamated s<strong>and</strong>stone <strong>and</strong> rip-up mudstone <strong>and</strong> s<strong>and</strong>stone<br />

clast conglomerate units alternating with thinly<br />

interbedded s<strong>and</strong>stones <strong>and</strong> mudstones, dark, s<strong>and</strong>streaked<br />

mudstones, <strong>and</strong> chaotic beds <strong>of</strong> homogeneous<br />

mudstone commonly cut by s<strong>and</strong>stone dykes <strong>and</strong> synsedimentary<br />

faults (Figs 83, 84, 85, 86; Dam et al. 2000).<br />

The amalgamated s<strong>and</strong>stone <strong>and</strong> conglomerate units<br />

<strong>of</strong> the Aaffarsuaq Member consist <strong>of</strong> very coarse- to<br />

medium-grained s<strong>and</strong>stone <strong>and</strong> conglomerate beds grading<br />

upwards into thinly interbedded s<strong>and</strong>stones <strong>and</strong><br />

mudstones. These coarse-grained units are up to 50 m<br />

thick <strong>and</strong> extend laterally beyond the extent <strong>of</strong> outcrop<br />

(several hundred metres) or occasionally form lenticular<br />

bodies. Individual beds have planar erosional bases <strong>and</strong><br />

internally show normal grading. Beds are from


500<br />

500<br />

Itivnera<br />

Agatdalen<br />

400<br />

Quaternary cover<br />

Ice<br />

400<br />

Vaigat Formation<br />

Sea/lake<br />

70°32'<br />

400<br />

Eqalulik Formation<br />

Abraham Member<br />

Itilli Formation,<br />

Aaffarsuaq Member<br />

500<br />

Kangersooq<br />

Atane Formation<br />

Qilakitsoq Member<br />

Strike <strong>and</strong> dip <strong>of</strong> strata<br />

Contour in metres<br />

1600<br />

1600<br />

900<br />

Tunoqqu<br />

800<br />

700<br />

1400<br />

600<br />

500<br />

400<br />

1400<br />

70°31'<br />

300<br />

12<br />

8<br />

8<br />

5<br />

IB<br />

Nalluarissat<br />

8<br />

10<br />

13<br />

20<br />

79<br />

17<br />

30<br />

24<br />

27<br />

21<br />

Ravine 1<br />

Ravine 2<br />

Ravine 3<br />

Ravine 4<br />

Qilakitsoq<br />

1000<br />

800<br />

700<br />

600<br />

500<br />

53°25' 53°20' 53°15' 53°10'<br />

53°05' 53°00'<br />

73°30'<br />

2 km<br />

Aaffarsuaq<br />

200<br />

400<br />

300<br />

Fig. 82. <strong>Geological</strong> map <strong>of</strong> the north side <strong>of</strong> the Aaffarsuaq valley between Qilakitsoq <strong>and</strong> Agatdalen. The type section <strong>of</strong> the Qilakitsoq Member (Atane Formation) is located along Qilakitsoq,<br />

<strong>and</strong> the type section <strong>of</strong> the Aaffarsuaq Member (Itilli Formation) is located in Ravine 2. IB, type section <strong>of</strong> the Itivnera Bed. Contour interval is 100 m in the sedimentary outcrops, 200 m in<br />

the Vaigat Formation. Modified from Rosenkrantz et al. (<strong>19</strong>74).<br />

100


160<br />

140<br />

120<br />

100<br />

Vaigat Formation<br />

Eqalulik Fm<br />

Abraham Mb<br />

m<br />

320<br />

300<br />

280<br />

Volcaniclastic<br />

sediments<br />

Not exposed<br />

Not exposed<br />

Itilli Formation<br />

Aaffarsuaq Member<br />

80<br />

260<br />

240<br />

60<br />

Itilli Formation<br />

Aaffarsuaq Member<br />

220<br />

40<br />

200<br />

20<br />

180<br />

Atane Fm<br />

Qilakitsoq Mb<br />

0<br />

mud<br />

vf f m c vc f m c<br />

s<strong>and</strong> pebbles<br />

mud<br />

vf f m c vc f m c<br />

s<strong>and</strong> pebbles<br />

Fig. 83.Type section <strong>of</strong> the Aaffarsuaq Member (Itilli Formation), second ravine east <strong>of</strong> Qilakitsoq, compare with Fig. 85. For location, see<br />

Fig. 82; for legend, see Plate 1. Modified from Dam et al. (2000).<br />

101


Aaffarsuaq Mb<br />

Itilli Fm<br />

Fig. 84. Unconformity between Santonian<br />

deltaic deposits <strong>of</strong> the Atane Formation<br />

(Qilakitsoq Member) <strong>and</strong> Campanian<br />

turbidite s<strong>and</strong>stones <strong>and</strong> conglomerates <strong>of</strong><br />

the Aaffarsuaq Member (Itilli Formation).<br />

East-side <strong>of</strong> Tunoqqu. For location, see<br />

Fig. 82.<br />

Qilakitsoq Mb<br />

Atane Fm<br />

to more than 5 m thick <strong>and</strong> are commonly separated by<br />

thin mudstone beds (Figs 83, 85). The s<strong>and</strong>stones are<br />

mostly structureless, whereas the conglomerates show<br />

considerable lateral variation, are poorly sorted, <strong>and</strong><br />

always have a coarse-grained s<strong>and</strong>y matrix. Both matrix<strong>and</strong><br />

clast-supported conglomerates occur. The clasts consist<br />

<strong>of</strong> intraformational mudstone, s<strong>and</strong>stone (probably<br />

derived from the underlying Atane Formation), concretions<br />

<strong>and</strong> basement lithologies (Dam et al. 2000).<br />

The amalgamated s<strong>and</strong>stone <strong>and</strong> conglomerate units<br />

are overlain by thinly interbedded s<strong>and</strong>stone <strong>and</strong> mudstone<br />

units with either a gradational or a sharp contact.<br />

These units are up to 30 m thick <strong>and</strong> show a general thinning-<br />

<strong>and</strong> fining-upward trend (Figs 83, 85). They consist<br />

<strong>of</strong> laterally persistent, normally-graded,


Fig. 85. Mudstones <strong>and</strong> conglomeratic s<strong>and</strong>stones <strong>of</strong> the upper part <strong>of</strong> the Aaffarsuaq Member (Itilli Formation) in the type section in the<br />

second ravine east <strong>of</strong> Qilakitsoq, see Fig. 83, c. 175–300 m. For location, see Fig. 82.<br />

observed in the Anariartorfik Member, suggesting that<br />

downslope failure could also be associated with seismic<br />

activity (Dam et al. 2000).<br />

<strong>Geological</strong> age. The ammonites at Scaphitesnæsen indicate<br />

an Early Campanian age (Baculites obtusus Zone) for<br />

the Aaffarsuaq Member. The mudstones are generally<br />

almost barren <strong>of</strong> palynomorphs but a rich flora is locally<br />

Fig. 86. Conglomerate at the top <strong>of</strong> the<br />

type section <strong>of</strong> the Aaffarsuaq Member<br />

(Itilli Formation); note the predominance<br />

<strong>of</strong> sedimentary clasts. Ruler is 120 cm<br />

long. For location, see Fig. 82.<br />

103


present that suggest an Early–Middle Campanian age<br />

for the member (Nøhr-Hansen <strong>19</strong>96; Dam et al. 2000).<br />

Boundaries. The lower boundary is an angular unconformity.<br />

Tilted strata <strong>of</strong> the deltaic Qilakitsoq Member<br />

(Atane Formation) were truncated during the transgression<br />

recorded by the Aaffarsuaq Member (Dam et al.<br />

2000). Along the Aaffarsuaq valley, the Aaffarsuaq<br />

Member is unconformably overlain by Paleocene hyaloclastites<br />

<strong>of</strong> the Vaigat Formation (A.K. Pedersen et al.<br />

2002). However, in two ravines along Aaffarsuaq, it is<br />

overlain by Paleocene mudstones <strong>and</strong> volcaniclastic s<strong>and</strong>stones<br />

referred to the Eqalulik Formation (Figs 82, 83,<br />

see below).<br />

Kangilia Formation<br />

revised formation<br />

History. The Kangilia Formation was established by<br />

Rosenkrantz (<strong>19</strong>70) to encompass the Danian (Lower<br />

Paleocene) conglomerate-based, marine mudstone-dominated<br />

succession that overlies Upper Cretaceous mudstones<br />

(Itilli Formation <strong>of</strong> this paper) with an angular<br />

unconformity on northern <strong>and</strong> central Nuussuaq. Based<br />

largely on the content <strong>of</strong> fossils, he divided the formation<br />

into four members, from base to top: the Conglo -<br />

merate Member, a conspicuous coarse-grained, clastsupported<br />

conglomerate unit, c. 50 m thick, the Fossil<br />

Wood Member, comprising black mudstones with a<br />

s<strong>and</strong>stone unit in the lower part, c. 425 m thick, the<br />

Thyasira Member consisting <strong>of</strong> s<strong>and</strong>stones <strong>and</strong> black<br />

mudstones with tuff beds, c. 35 m thick <strong>and</strong> the Propeamussium<br />

Member made up <strong>of</strong> black mudstones, locally<br />

with intercalated s<strong>and</strong>stones, c.100 m thick.<br />

Without providing details, Rosenkrantz (in Henderson<br />

<strong>19</strong>69 fig. 4) included the entire 300 m thick mudstonedominated<br />

succession at Ataata Kuua (near Atâ) in the<br />

Kangilia Formation. Furthermore, the distribution <strong>of</strong><br />

the Kangilia Formation was shown in a schematic section<br />

through the Nuussuaq Basin that was presented by<br />

Henderson et al. (<strong>19</strong>76 fig. 303). The two upper members<br />

<strong>of</strong> the formation were also reported from Alianaat -<br />

sunnguaq, Tupaasat <strong>and</strong> Ataa on the south coast <strong>of</strong><br />

Nuussuaq (Rosenkrantz <strong>19</strong>70).<br />

The Kangilia Formation including the basal conglomeratic<br />

member (Annertuneq Conglomerate Member)<br />

is formally defined here. The ‘Oyster-Ammonite Conglo -<br />

merate’ (Birkelund <strong>19</strong>65) is formally defined as the<br />

Oyster–Ammonite Conglomerate Bed. The Fossil Wood,<br />

Thyasira <strong>and</strong> Propeamussium Members are ab<strong>and</strong>oned.<br />

The strata previously assigned to the latter two are now<br />

included in the new Eqalulik Formation (see below). On<br />

central Nuussuaq, Dam et al. (2000) mapped a unit in<br />

the Kangilia Formation that was informally termed the<br />

Danienrygge member; this unit is not formally recognised<br />

here.<br />

On Itsaku, Svartenhuk Halvø, J.G. Larsen & Pulvertaft<br />

(2000) suggested that the poorly dated ?Upper Cam -<br />

panian/Maastrichtian to Paleocene succession may be<br />

equivalent either to both the Itilli <strong>and</strong> Kangilia Formations<br />

(i.e. Campanian to Paleocene) or to the Kangilia For -<br />

mation alone (i.e. upper Maastrichtian to Paleocene),<br />

on account <strong>of</strong> a tentative correlation <strong>of</strong> two major conglomerate<br />

horizons with two discrete tectonic events<br />

recognised on Nuussuaq. Zircon provenance data show<br />

that the detrital zircon population <strong>of</strong> this succession has<br />

a distinct <strong>and</strong> narrow age range peaking at 1870 Ma<br />

whereas ages <strong>of</strong> zircons in the underlying sediments <strong>of</strong><br />

the Upernivik Næs Formation show a greater spread with<br />

a distinct peak at 2750 Ma (Scherstén & Sønderholm<br />

2007). Since there was only one major change in zircon<br />

provenance in the section involving a shift to a unique,<br />

single point source at the boundary between the Upernivik<br />

Næs <strong>and</strong> the overlying deposits, the suggestion is that only<br />

one tectonic event is recorded in the section. The entire<br />

?Upper Campanian/Maastrichtian to Paleocene succession<br />

on Itsaku may thus be assigned to the Kangilia<br />

Formation.<br />

Name. After the headl<strong>and</strong> <strong>of</strong> Kangilia on the north coast<br />

<strong>of</strong> Nuussuaq (Fig. 74).<br />

Distribution. The formation is exposed at Ataata Kuua,<br />

Ivisaannguit, Tupaasat, Nuuk Killeq <strong>and</strong> Alianaats -<br />

unnguaq on the south coast <strong>of</strong> Nuussuaq (Figs 2, 6, 40;<br />

A.K. Pedersen et al. <strong>19</strong>93), in the northern part <strong>of</strong> Agat -<br />

dalen on central Nuussuaq (Fig. 113), in the Tunorsuaq<br />

valley on western Nuussuaq (where it has also been drilled<br />

in the GANT#1 well) <strong>and</strong> along the north coast <strong>of</strong><br />

Nuussuaq (Fig. 74), <strong>and</strong> on Itsaku on eastern Svartenhuk<br />

Halvø (Fig. 73). The formation has been drilled on western<br />

Nuussuaq in the GRO#3 well (Fig. 65).<br />

Type section. The exposures at Kangilia on the north coast<br />

<strong>of</strong> Nuussuaq are designated as the type section (Figs 87,<br />

88). The base <strong>of</strong> the type section is located at 70°44.90´N,<br />

53°25.33´W.<br />

Reference sections. Well-exposed reference sections occur<br />

at Annertuneq (Fig. 72; Nøhr-Hansen & Dam <strong>19</strong>97),<br />

104


Fig. 87. Type section <strong>of</strong> the Kangilia<br />

Formation at Kangilia on the north coast<br />

<strong>of</strong> Nuussuaq. The log is generalised due to<br />

intermittent exposures <strong>of</strong> the mudstone<br />

intervals. Top <strong>of</strong> section is at Danienrygge;<br />

for location, see Fig. 74. K/T, Cretaceous–<br />

Palaeogene boundary. See also Figs 88 <strong>and</strong><br />

118. For legend, see Plate 1.<br />

K/T<br />

Kangilia Formation<br />

Annertuneq Conglomerate Member<br />

Itilli Formation<br />

Umiivik Member<br />

420<br />

400<br />

380<br />

360<br />

340<br />

320<br />

300<br />

280<br />

260<br />

240<br />

220<br />

200<br />

180<br />

120<br />

140<br />

120<br />

100<br />

80<br />

60<br />

★<br />

★<br />

★<br />

★<br />

Poorly<br />

exposed<br />

Poorly exposed<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbl.<br />

Submarine canyon<br />

Unconformity<br />

Kangilia Formation Eqalulik Formation Vaigat Fm<br />

m a.s.l.<br />

800<br />

780<br />

760<br />

740<br />

720<br />

700<br />

680<br />

660<br />

640<br />

620<br />

600<br />

580<br />

560<br />

540<br />

520<br />

500<br />

480<br />

460<br />

440<br />

T<br />

Poorly exposed Poorly exposed Poorly exposed<br />

T<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbl.<br />

Ataata Kuua (Figs 14, 89; Dam & Nøhr-Hansen 2001)<br />

<strong>and</strong> at Ivisaannguit west <strong>of</strong> Ataata Kuua. The formation<br />

was drilled <strong>and</strong> cored in the GANT#1 well in Tunorsuaq<br />

between 35 m <strong>and</strong> 256 m (Fig. 76) <strong>and</strong> drilled in the<br />

GRO#3 well between 728 m <strong>and</strong> 959 m (Fig. 67).<br />

Thickness. The Kangilia Formation varies in thickness<br />

from 440 m at Kangilia (Fig. 87) to c. 400 m at Ataata<br />

Kuua (Fig. 15), 230 m in the GRO#3 well (Fig. 67), to<br />

just 75 m on central Nuussuaq (H.J. Hansen <strong>19</strong>70).<br />

Lithology. On northern Nuussuaq the Kangilia Formation<br />

comprises a basal approximately 85–140 m thick conglomeratic<br />

unit overlain by a mudstone-dominated succession.<br />

The conglomeratic unit is here formally<br />

established as the Annertuneq Conglomerate Member.<br />

In the lower part it is composed <strong>of</strong> amalgamated conglomerate<br />

beds that towards the top become finer-grained<br />

<strong>and</strong> separated by mudstone intervals (Figs 72, 76, 87; for<br />

detailed description, see below).<br />

The succession overlying the basal conglomerate unit<br />

consists mainly <strong>of</strong> dark mudstones with thin beds <strong>of</strong><br />

fine- to coarse-grained s<strong>and</strong>stone (Figs 76, 87, 88). The<br />

mudstones are weakly laminated; locally some <strong>of</strong> the<br />

laminae are graded. The s<strong>and</strong>stone beds have sharp bases<br />

<strong>and</strong> are usually normally graded. The s<strong>and</strong>stones are<br />

structureless or parallel-laminated. Ferroan carbonate<br />

concretions <strong>and</strong> fragments <strong>of</strong> fossil wood are common<br />

at various levels.<br />

105


Eqalulik Formation<br />

Kangilia Formation<br />

Annertuneq Conglomerate Member<br />

Itilli Formation<br />

Umiivik Member<br />

Fig. 88. Outcrop <strong>of</strong> the Itilli, Kangilia <strong>and</strong> Eqalulik Formations at Kangilia. The snowline at c. 800 m corresponds roughly to the base <strong>of</strong> the<br />

volcanic Vaigat Formation. For location, see Fig. 74.<br />

At Ataata Kuua on the south coast <strong>of</strong> Nuussuaq, a<br />

basal s<strong>and</strong>stone unit with scattered mudstone clasts <strong>and</strong><br />

transported concretions up to 1.5 m in diameter rests on<br />

a deeply eroded surface above lowest Campanian <strong>and</strong><br />

older Atane Formation (Figs 14, 15). The unit forms the<br />

base <strong>of</strong> a 107 m thick fining-upward succession; the<br />

s<strong>and</strong>stone unit grades up into thinly interbedded s<strong>and</strong>stones<br />

<strong>and</strong> mudstones that are capped by mudstones<br />

with scattered basement pebbles interbedded with s<strong>and</strong>stone<br />

lenses <strong>and</strong> layers (Fig. 89; Pulvertaft & Chalmers<br />

<strong>19</strong>90; Dam & Nøhr-Hansen 2001). The s<strong>and</strong>stones are<br />

largely structureless, but may grade into parallel- <strong>and</strong><br />

cross-laminated s<strong>and</strong>stone. Convolute bedding is developed<br />

locally.<br />

The s<strong>and</strong>stones occur as sheets in composite bedsets<br />

in the basal 11 m <strong>of</strong> the succession, or as single beds that<br />

fill wide shallow scours in the middle <strong>and</strong> upper part<br />

(Fig. 89). The composite s<strong>and</strong>stone bedsets are succeeded<br />

by approximately 50 m <strong>of</strong> interbedded s<strong>and</strong>stones <strong>and</strong><br />

mudstones consisting <strong>of</strong> sharply based laminae <strong>and</strong> beds<br />

that grade upwards from coarse-grained to fine-grained<br />

s<strong>and</strong>stone capped by silty mudstone (Fig. 89). These<br />

lithologies may form sharply based fining-upward units<br />

up to 1.5 m thick, restricted to lenticular bodies a few<br />

tens <strong>of</strong> metres wide (Fig. 89). Erosional discordances are<br />

common within the lenticular bodies <strong>and</strong> internally they<br />

are made up <strong>of</strong> small amalgamated fining-upward successions.<br />

The interbedded s<strong>and</strong>stones <strong>and</strong> mudstones are succeeded<br />

by a 56 m thick unit dominated by massive mudstone<br />

containing scattered s<strong>and</strong> grains <strong>and</strong> few pebble<strong>and</strong><br />

cobble-sized basement clasts (Fig. 89). The mudstone<br />

beds are interbedded with laminated mudstones with<br />

s<strong>and</strong> streaks (Fig. 90). Conglomerates <strong>and</strong> s<strong>and</strong>stones<br />

form an up to 40 m thick unit in the middle <strong>of</strong> the Ataata<br />

Kuua exposure (Figs 14, 15, 89), with sedimentary facies<br />

very similar to that seen in the prominent conglomerate<br />

unit on the north coast <strong>of</strong> Nuussuaq. This unit is overlain<br />

by approximately 250 m <strong>of</strong> generally poorly exposed<br />

mudstone (Fig. 14).<br />

106


m<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

Kangilia Formation<br />

80<br />

70<br />

60<br />

50<br />

Fig. 90. Dark grey mudstones interbedded with thin s<strong>and</strong>stone beds<br />

<strong>of</strong> the Kangilia Formation at Ataa (for location, see Fig. 40). The<br />

illustrated section is c. 5 m thick.<br />

40<br />

Atane<br />

Fm<br />

30<br />

20<br />

10<br />

0<br />

clay<br />

si<br />

s<strong>and</strong><br />

pebble cobble<br />

Just west <strong>of</strong> Ataata Kuua, several levels <strong>of</strong> coarsegrained<br />

s<strong>and</strong>stones <strong>and</strong> conglomerates are present within<br />

the upper mudstone succession (Fig. 91). Larger clasts<br />

include s<strong>and</strong>stone <strong>and</strong> mudstone intraclasts, clay ironstone<br />

concretions <strong>and</strong> kaolinised gneiss clasts. Dykes <strong>of</strong><br />

injected s<strong>and</strong> are also seen. Farther west these coarsegrained<br />

levels disappear.<br />

In Agatdalen on central Nuussuaq, the formation is<br />

generally poorly exposed <strong>and</strong> dominated by mudstones.<br />

A Paleocene conglomerate unit about 5 m thick was<br />

described as the Oyster-Ammonite Conglomerate by<br />

Birkelund (<strong>19</strong>65) <strong>and</strong> Rosenkrantz (<strong>19</strong>70). It is mainly<br />

composed <strong>of</strong> derived, highly fossiliferous concretions<br />

<strong>and</strong> is here formally established as the Oyster–Ammonite<br />

Conglomerate Bed.<br />

Fig. 89. Sedimentological log showing the lower part <strong>of</strong> the Kangilia<br />

Formation at Ataata Kuua. Slightly modified from Dam & Nøhr-<br />

Hansen (2001), see also Fig. 15. For location <strong>of</strong> section, see Fig. 40;<br />

for legend, see Plate 1.<br />

Fossils. Along the north coast <strong>of</strong> Nuussuaq, fossils are<br />

rare in the Kanglia Formation apart from Teredo-bored<br />

fossil wood (Mathiesen <strong>19</strong>61; Rosenkrantz <strong>19</strong>70). A very<br />

107


Fig. 91. Mudstones interbedded with s<strong>and</strong>stone <strong>and</strong> channellised conglomerates (arrows point to base <strong>of</strong> conglomerate-filled channels). The<br />

Kangilia Formation at Ataa; for location, see Fig. 40. Height <strong>of</strong> the section is c. 50 m.<br />

small number <strong>of</strong> in situ ammonites (Hoploscaphites aff.<br />

H. angmartussutensis) <strong>and</strong> echinoderms have been found<br />

in a s<strong>and</strong>stone bed in the lower part <strong>of</strong> the formation <strong>and</strong><br />

in scattered concretions (Nøhr-Hansen & Dam <strong>19</strong>97;<br />

Kennedy et al. <strong>19</strong>99). Palynomorphs are common <strong>and</strong><br />

are referred to five zones from the Wodehouseia spinata<br />

Zone to the Palaeocystodinium bulliforme Zone (Nøhr-<br />

Hansen <strong>19</strong>97b; Nøhr-Hansen et al. 2002).<br />

The Oyster–Ammonite Conglomerate Bed in<br />

Agatdalen is made up <strong>of</strong> highly fossiliferous concretions<br />

containing a mainly Maastrichtian fauna <strong>of</strong> ammonites<br />

although concretions with Campanian <strong>and</strong> Danian species<br />

are also present. The matrix <strong>of</strong> the conglomerate contains<br />

Danian oysters <strong>and</strong> other bivalves, gastropods, crustaceans<br />

<strong>and</strong> rare specimens <strong>of</strong> other fossils (Birkelund<br />

<strong>19</strong>65; Rosenkrantz <strong>19</strong>70).<br />

On the south coast <strong>of</strong> Nuussuaq, fossils are very scarce<br />

in the Kangilia Formation <strong>and</strong> only indeterminate thinshelled<br />

bivalves <strong>and</strong> gastropods have been found in the<br />

mudstones at Ivisaannguit. The trace fossil Planolites isp.<br />

<strong>and</strong> escape burrows occur locally in the s<strong>and</strong>stone beds.<br />

Depositional environment. The presence <strong>of</strong> dinocysts,<br />

echinoderms <strong>and</strong> ammonites indicates a marine depositional<br />

environment <strong>and</strong> the mudstones <strong>and</strong> s<strong>and</strong>stones<br />

dominating the formation are interpreted to have been<br />

deposited from waning, low-density turbidity currents<br />

whereas the conglomeratic units were deposited from<br />

108


channellised, high-density currents. Some <strong>of</strong> the mudstones<br />

may also have been deposited from suspension.<br />

The conglomerates <strong>and</strong> s<strong>and</strong>stones at the base <strong>of</strong> the<br />

Kangilia Formation exhibit a characteristic suite <strong>of</strong> facies<br />

that indicate deposition from catastrophic flows related<br />

to high-density, turbidity currents <strong>and</strong> debris flows. On<br />

the north coast <strong>of</strong> Nuussuaq deposition took place in a<br />

slope environment, probably in a major submarine canyon<br />

setting (Figs 76, 87).<br />

At Ataata Kuua, the lower part <strong>of</strong> the formation was<br />

deposited in a submarine canyon (Figs 15, 92) whereas<br />

the mudstones in the upper part were deposited by dilute<br />

turbidity currents in an unconfined slope setting. The<br />

basal erosional unconformity represents a transverse section<br />

through the submarine canyon (Figs 15, 92; Dam<br />

& Nøhr-Hansen 2001). The thin lenticular fining-upward<br />

successions are interpreted as minor turbidite channel<br />

deposits. Dinocysts <strong>and</strong> macr<strong>of</strong>ossils suggest general<br />

marine conditions during deposition. Along the south<br />

coast <strong>of</strong> Nuussuaq, at Ataata Kuua <strong>and</strong> Ivisaannguit, no<br />

marine palynomorphs have been recorded (McIntyre<br />

<strong>19</strong>93), suggesting a dominant terrestrial input.<br />

Boundaries. The lower boundary is an erosional unconformity<br />

that separates the Kangilia Formation from the<br />

underlying Atane Formation on southern Nuussuaq (Fig.<br />

15) <strong>and</strong> from the Itilli Formation on western, central<br />

<strong>and</strong> northern Nuussuaq (Figs 14, 87, 88). Along the<br />

north coast <strong>of</strong> Nuussuaq, in the GANT#1 <strong>and</strong> GRO#3<br />

wells <strong>and</strong> at Ataata Kuua, the lower boundary is picked<br />

at the base <strong>of</strong> a thick conglomerate unit that cuts down<br />

into the underlying deposits <strong>of</strong> the Itilli <strong>and</strong> Atane<br />

Formations. At all these localities, the lower boundary<br />

marks the base <strong>of</strong> a major submarine canyon system (Fig.<br />

92; Dam & Nøhr-Hansen 2001). Where the basal conglomerate<br />

is absent, the unconformity between the Itilli<br />

<strong>and</strong> Atane Formations is difficult to locate using lithological<br />

criteria (mudstone overlying mudstone) <strong>and</strong> has<br />

to be picked on the basis <strong>of</strong> biostratigraphic data.<br />

On Itsaku (Svartenhuk Halvø), there is an angular<br />

unconformity between the Kangilia Formation <strong>and</strong> the<br />

underlying sediments <strong>of</strong> the Upernivik Næs Formation.<br />

At this locality, a thick conglomerate unit occurs at the<br />

base <strong>of</strong> the formation. Elsewhere on Svartenhuk Halvø,<br />

the formation locally onlaps the basement or is in faulted<br />

contact with the Umiivik Member <strong>of</strong> the Itilli Formation<br />

(Fig. 73; J.G. Larsen & Pulvertaft 2000).<br />

The Kangilia Formation is overlain by the Eqalulik<br />

Formation on northern <strong>and</strong> western Nuussuaq (Figs 87,<br />

118), the Agatdal Formation on central Nuussuaq <strong>and</strong><br />

possibly on Itsaku (Fig. 113), <strong>and</strong> by the Quikavsak<br />

Formation on southern Nuussuaq (Fig. 99A).<br />

<strong>Geological</strong> age. The dinocyst flora suggest a late Maa -<br />

strichtian to Danian age for the Kangilia Formation on<br />

the north coast <strong>of</strong> Nuussuaq <strong>and</strong> a Danian age in the central<br />

part <strong>of</strong> Nuussuaq (Fig. 16; J.M. Hansen <strong>19</strong>70; Nøhr-<br />

Hansen <strong>19</strong>96, Nøhr-Hansen & Dam <strong>19</strong>97; Nøhr-<br />

Hansen et al. 2002).<br />

The type section <strong>of</strong> the Kangilia Formation provides<br />

a well-exposed section across the Cretaceous–Tertiary<br />

(K/T) boundary in a clastic, deep-water setting (Fig. 87;<br />

Nøhr-Hansen & Dam <strong>19</strong>97). Ammonites in the lowermost<br />

part <strong>of</strong> the formation indicate a late Maastrichtian<br />

age (Kennedy et al. <strong>19</strong>99) <strong>and</strong> coccoliths indicate that<br />

most <strong>of</strong> the section above the K/T boundary has a nan<strong>of</strong>ossil<br />

NP3–4 Zone age <strong>and</strong> consequently that NP2 <strong>and</strong><br />

A<br />

B<br />

Submarine canyon incision<br />

Submarine canyon filling<br />

Deltaic s<strong>and</strong>stone<br />

Turbidite s<strong>and</strong>stone<br />

Turbidite mud-rich heterolith<br />

?<br />

?<br />

Deltaic mudstone<br />

Clasts<br />

Fig. 92. Conceptual model for the formation <strong>of</strong> the submarine<br />

canyon fill <strong>of</strong> the Kangilia Formation at Ataata Kuua. From Dam<br />

& Nøhr-Hansen (2001 fig. 4). The canyon formed in response to<br />

listric faulting, detachment <strong>and</strong> collapse <strong>of</strong> the hanging wall (A).<br />

The steeply dipping part <strong>of</strong> the detachment surface <strong>of</strong> the footwall<br />

acted as the canyon wall <strong>and</strong> seems not to have been eroded to an<br />

appreciable extent. During a subsequent transgression, the canyon<br />

was filled with turbidite deposits (B). Colours reflect interpreted<br />

depositional environments (see Plate 1).<br />

109


part <strong>of</strong> the NP1 zone are probably missing or very condensed<br />

(Nøhr-Hansen et al. 2002). The K/T boundary<br />

was also cored by the GANT#1 well (Fig. 76).<br />

On central Nuussuaq, Danian bivalves <strong>and</strong> gastropods<br />

in the matrix <strong>of</strong> the Oyster–Ammonite Conglomerate<br />

Member indicate that this part <strong>of</strong> the formation cannot<br />

be older than Danian.<br />

On the south coast <strong>of</strong> Nuussuaq at Ataata Kuua, palynomorphs<br />

(mainly spores <strong>and</strong> pollen) suggest a late<br />

Maastrichtian – Early Paleocene age for the formation<br />

(McIntyre <strong>19</strong>93).<br />

Correlation. The upper, Paleocene part <strong>of</strong> the Kangilia<br />

Formation is coeval with the Agatdal <strong>and</strong> Quikavsak<br />

Formations (Fig. 16).<br />

Subdivision. At the type locality <strong>of</strong> the Kangilia Formation,<br />

the Annertuneq Conglomerate Member forms the basal<br />

unit <strong>of</strong> the formation (Figs 76, 87). In Agatdalen, a conglomerate<br />

unit containing abundant, derived concretions,<br />

the so-called ‘Oyster-Ammonite Conglomerate’<br />

<strong>of</strong> Birkelund (<strong>19</strong>65), is now formally established as the<br />

Oyster–Ammonite Conglomerate Bed.<br />

Annertuneq Conglomerate Member<br />

redescribed member<br />

History. This coarse-grained unit was established by<br />

Rosenkrantz (<strong>19</strong>70) as the Conglomerate Member – the<br />

basal member <strong>of</strong> the Danian Kangilia Formation in the<br />

type section on the north coast <strong>of</strong> Nuussuaq (Figs 72,<br />

93, 94). Rosenkrantz (<strong>19</strong>70) correlated it with his basal<br />

Danian conglomerate in Agatdalen, a unit also referred<br />

to as the Oyster-Ammonite Conglomerate by Birkelund<br />

(<strong>19</strong>65) <strong>and</strong> H.J. Hansen (<strong>19</strong>70). Based on new data<br />

from the north coast <strong>of</strong> Nuussuaq <strong>and</strong> subsurface data<br />

from the GANT#1 well, a more thorough <strong>and</strong> formal<br />

description is presented here. The member is retained for<br />

the sake <strong>of</strong> continuity <strong>and</strong> also because this impressive<br />

unit is distinctive as one <strong>of</strong> the relatively few conglomerates<br />

in the Nuussuaq Basin.<br />

Name. The name is derived partly from the reference<br />

locality close to the type section <strong>and</strong> partly from its historical<br />

name based on the lithology <strong>of</strong> the unit.<br />

Distribution. The Annertuneq Conglomerate Member<br />

forms a conspicuous unit along the north coast <strong>of</strong> Nuus -<br />

suaq between Niaqorsuaq <strong>and</strong> Kangilia. It has been drilled<br />

in the GANT#1 well in the Tunorsuaq valley (Figs 74,<br />

76), <strong>and</strong> is assumed to be present locally in the subsurface<br />

at the base <strong>of</strong> the Kangilia Formation.<br />

Type section. The type section <strong>of</strong> the Annertuneq Conglo -<br />

merate Member is the same as for the Kangilia Formation<br />

(Figs 74, 87, 88). The base <strong>of</strong> the member is located at<br />

70°44.54´N, 53°25.11´W.<br />

Reference sections. A well-exposed section <strong>of</strong> the lower<br />

part <strong>of</strong> the member is accessible in the western gully<br />

leading to Annertuneq, a few kilometres west <strong>of</strong> Kangilia<br />

(Figs 72, 93, 94). The member was cored in the GANT#1<br />

well, from 256.0 m to 100.0 m (Fig. 76).<br />

Annertuneq Conglomerate Mb<br />

Itilli Fm<br />

Fig. 93. The Annertuneq Conglomerate<br />

Member (c. 40 m thick) <strong>of</strong> the Kangilia<br />

Formation at Annertuneq. For location,<br />

see Fig. 74.<br />

110


Thickness. The Annertuneq Conglomerate Member varies<br />

in thickness from c. 85 m on the north coast <strong>of</strong> Nuussuaq<br />

(Fig. 87) to 140 m (excluding igneous intrusions) in the<br />

GANT#1 well (Fig. 76; see also A.K. Pedersen et al.<br />

2006b).<br />

Lithology. At the reference section at Annertuneq, the lower<br />

part <strong>of</strong> the conglomerate unit is composed <strong>of</strong> amalgamated<br />

up to 8 m thick lenticular beds containing pebble- to boulder-sized<br />

clasts up to 2 m in diameter (Fig. 94). Clasts<br />

include quartz (40%), quartzitic grey s<strong>and</strong>stones (35%),<br />

intraformational mudstones <strong>and</strong> concretions (10%),<br />

quartzitic red s<strong>and</strong>stones (7%), chert (3%) <strong>and</strong> others<br />

(5%); ‘others’ include Precambrian gneiss <strong>and</strong> granite<br />

clasts, <strong>and</strong> clasts <strong>of</strong> silicified limestone that may be pisolitic<br />

or contain Ordovician gastropods. The conglomerates also<br />

include coalified wood fragments <strong>and</strong> poorly preserved<br />

marine bivalves <strong>and</strong> gastropods. Individual conglomerate<br />

beds can be divided into structureless, structureless<br />

to normally graded, or inversely graded, clast-supported<br />

conglomerate facies. The conglomerates are poorly sorted<br />

<strong>and</strong> always contain a matrix <strong>of</strong> medium to very coarsegrained<br />

s<strong>and</strong>stone or s<strong>and</strong>y mudstone. The s<strong>and</strong>stones<br />

are predominantly structureless, but in some cases the<br />

uppermost parts <strong>of</strong> the beds show well-developed parallel<br />

lamination <strong>and</strong> cross-lamination. Dish structures <strong>and</strong><br />

escape burrows are common.<br />

In the type section at Kangilia, the lower part <strong>of</strong> the<br />

member consists <strong>of</strong> a 20 m thick unit <strong>of</strong> amalgamated<br />

conglomerate beds comprising pebble- to boulder-sized<br />

clasts in a poorly sorted medium- to very coarse-grained<br />

s<strong>and</strong>stone matrix. The conglomerate units fine upwards<br />

<strong>and</strong> s<strong>and</strong>stone becomes the dominant lithology towards<br />

the top (Fig. 87, 95).<br />

Fossils. Scarce, strongly worn bivalves <strong>and</strong> gastropods<br />

<strong>and</strong> occasional, coalified wood fragments are present in<br />

the member.<br />

Depositional environment. Both at the type section <strong>and</strong><br />

in the GANT#1 well, the conglomerates were deposited<br />

from debris flows <strong>and</strong> high density turbidite currents<br />

<strong>and</strong> s<strong>and</strong>stones from high- <strong>and</strong> low-density turbidity<br />

currents. It has previously been suggested that deposition<br />

took place in a fluvial environment (H.J. Hansen<br />

<strong>19</strong>70), but the depositional facies <strong>and</strong> inferred processes,<br />

the upward transition into fully marine deposits <strong>and</strong> the<br />

presence <strong>of</strong> marine dinocysts in the interbedded mudstones<br />

(Nøhr-Hansen <strong>19</strong>97b) indicate a marine depositional<br />

environment. The considerable increase in the<br />

thickness <strong>of</strong> the member in the GANT#1 well compared<br />

Annertuneq Conglomerate Member<br />

Itilli Formation Kangilia Formation<br />

Fig. 94. Close-up <strong>of</strong> the sharp, erosional base <strong>of</strong> the Annertuneq<br />

Conglomerate Member at Annertuneq. Person for scale. For location,<br />

see Fig. 74.<br />

to the exposures situated at Annertuneq <strong>and</strong> Kangilia, c.<br />

6 km to the north, suggests that deposition took place<br />

in a major submarine canyon <strong>and</strong> that the GANT#1<br />

well is situated in a more axial position than the north<br />

coast exposures.<br />

Boundaries. The lower boundary <strong>of</strong> the Annertuneq<br />

Conglomerate Member is developed as a major erosional<br />

unconformity. On the north coast <strong>of</strong> Nuussuaq,this separates<br />

mudstones <strong>of</strong> the Itilli Formation below from the<br />

conglomerates <strong>of</strong> the Annertuneq Conglomerate Member<br />

above (Fig. 72). The upper boundary is gradational at<br />

all localities <strong>and</strong> is placed at the top <strong>of</strong> the uppermost,<br />

very coarse-grained s<strong>and</strong>stone bed (Figs 76, 87, 93, 95).<br />

<strong>Geological</strong> age. The Annertuneq Conglomerate Member<br />

does not contain fossils <strong>of</strong> biostratigraphic significance.<br />

The age <strong>of</strong> the member is, however, constrained by its<br />

position between marine mudstones. The Umiivik Mem -<br />

ber <strong>of</strong> the Itilli Formation (below) has a Late Campanian<br />

111


Annertuneq<br />

Conglomerate Member<br />

Fig. 95. Upper boundary (dashed line) <strong>of</strong> the Annertuneq Conglomerate Member <strong>of</strong> the Kangilia Formation at Kangilia showing a gradual<br />

transition from conglomerates <strong>and</strong> s<strong>and</strong>stones to mudstones. For location, see Fig. 74; person for scale.<br />

age (J.M. Hansen <strong>19</strong>80b; Nøhr-Hansen <strong>19</strong>96, <strong>19</strong>97b;<br />

Dam et al. <strong>19</strong>98c; Nøhr-Hansen et al. 2002). The mudstones<br />

<strong>of</strong> the remaining Kangilia Formation (above) are<br />

<strong>of</strong> late Maastrichtian – Paleocene age. The position <strong>of</strong><br />

the Maastrichtian–Paleocene boundary within the Kang -<br />

ilia Formation varies between localities, from 210 m above<br />

the base <strong>of</strong> the Annertuneq Conglomerate Member<br />

(Nøhr-Hansen & Dam <strong>19</strong>97), c. 70 m above the base<br />

<strong>of</strong> the member at Kangilia (Fig. 87), to a position close<br />

to the top <strong>of</strong> the member in the GANT#1 well (Nøhr-<br />

Hansen <strong>19</strong>97b). This suggests an ?early to late Maa -<br />

strichtian age for the member.<br />

Oyster–Ammonite Conglomerate Bed<br />

new bed<br />

History. In Agatdalen on central Nuussuaq, a conglomerate<br />

<strong>of</strong> Danian age containing a huge number <strong>of</strong> derived<br />

concretions has been referred to as the Oyster-Ammonite<br />

Conglomerate (e.g. Birkelund <strong>19</strong>65). H.J. Hansen (<strong>19</strong>70)<br />

referred this conglomerate to the Thyasira Member <strong>of</strong><br />

Rosenkrantz (<strong>19</strong>70). For historical reasons <strong>and</strong> in order<br />

to distinguish this fossiliferous conglomerate unit from<br />

the Annertuneq Conglomerate Member, it is now formally<br />

established as a bed <strong>and</strong> named the Oyster –Ammo -<br />

nite Conglomerate Bed.<br />

Name. The bed is named after the rich occurrence <strong>of</strong><br />

reworked oysters <strong>and</strong> ammonites in the conglomerate.<br />

Distribution. The bed has only been described from three<br />

localities in Agatdalen (Fig. 113).<br />

Type locality. The bed is best exposed in the western river<br />

bank <strong>of</strong> the Agatdalen river, south-east <strong>of</strong> Sill Sø (Figs<br />

96, 113). The type locality is located at 70°34.62´N,<br />

53°04.50´W.<br />

Thickness. The bed is approximately 5 m thick (Rosen -<br />

krantz <strong>19</strong>70).<br />

112


Fig. 96. A: Type locality <strong>of</strong> the Oyster–<br />

Ammonite Conglomerate Bed on the<br />

western bank <strong>of</strong> the Agatdalen river. For<br />

location, see Fig. 113. B: Clast in the polymodal,<br />

matrix-supported conglomerate<br />

(paraconglomerate) in the Oyster–<br />

Ammonite Conglomerate Bed.<br />

Hammer (encircled) for scale.<br />

A<br />

See B<br />

4 m<br />

B<br />

Lithology. The Oyster–Ammonite Conglomerate Bed is<br />

a clast-supported conglomerate dominated by numerous,<br />

calcareous concretions <strong>and</strong> dark mudstone boulders<br />

eroded from Maastrichtian <strong>and</strong> Campanian deposits<br />

(Fig. 96; H.J. Hansen <strong>19</strong>70). The matrix consists <strong>of</strong><br />

s<strong>and</strong>y mudstone containing Danian oysters <strong>and</strong> bivalves<br />

(see below). In places, calcareous concretions have been<br />

formed within the conglomerate (Floris <strong>19</strong>72).<br />

Fossils. The fossils in the concretions are reworked <strong>and</strong><br />

include ammonites, oysters <strong>and</strong> other bivalves, gastropods,<br />

crustaceans <strong>and</strong> corals (Birkelund <strong>19</strong>65; Rosenkrantz<br />

<strong>19</strong>70; Floris <strong>19</strong>72). They show that the concretions were<br />

eroded from Maastrichtian deposits <strong>and</strong> represent a rich<br />

fauna including Hypophylloceras (Neophylloceras) groenl<strong>and</strong>icum<br />

Birkelund <strong>19</strong>65, Saghalinites wrighti Birkelund<br />

<strong>19</strong>65, Baculites cf. B. meeki Elias <strong>19</strong>33, Scaphites (Disco -<br />

scaphites) waagei Birkelund <strong>19</strong>65, <strong>and</strong> S. (D.) angmartussutensis<br />

Birkelund <strong>19</strong>65 (Hoploscaphites Nowak <strong>19</strong>11<br />

according to Kennedy et al. <strong>19</strong>99). In addition Scaphites<br />

(Hoploscaphites) cf. S. (H.) ravni Birkelund <strong>19</strong>65, S. (H.)<br />

cf. S. (H.) greenl<strong>and</strong>icus Donovan <strong>19</strong>53, S. cobbani Birkelund<br />

<strong>19</strong>65 <strong>and</strong> S. rosenkrantzi Birkelund <strong>19</strong>65 occur very<br />

occasionally <strong>and</strong> indicate that some concretions were<br />

derived from the Campanian (Kennedy et al. <strong>19</strong>99).<br />

Corals include Stephanocyathus sp. <strong>and</strong> Caryophyllia agatdalensis<br />

(Floris <strong>19</strong>72). The mudstone matrix includes oysters<br />

<strong>and</strong> other bivalves that have also been described from<br />

the lower part <strong>of</strong> the overlying Eqalulik Formation on the<br />

north coast <strong>of</strong> Nuussuaq (Thyasira Member <strong>of</strong> Rosenkrantz<br />

(<strong>19</strong>70)). Dinocysts are present in both the reworked concretions<br />

<strong>and</strong> the matrix <strong>of</strong> the conglomerate.<br />

Depositional environment. Deposition took place from<br />

debris flow(s) in a marine environment.<br />

Boundaries. The lower <strong>and</strong> upper boundaries <strong>of</strong> the bed<br />

are not well exposed. The lower boundary is inferred to<br />

be an erosional unconformity separating the conglomerate<br />

from underlying mudstones <strong>of</strong> the Campanian Itilli<br />

113


Formation. The conglomerate is overlain by black bituminous<br />

mudstones <strong>of</strong> the Kangilia Formation (Fig. 113).<br />

<strong>Geological</strong> age. The oysters <strong>and</strong> other bivalves in the<br />

matrix <strong>of</strong> the conglomerate indicate a Danian age (Birke -<br />

lund <strong>19</strong>65). The fauna has species in common with the<br />

Thyasira Member <strong>of</strong> the Kangilia Formation <strong>of</strong> Rosen -<br />

krantz (<strong>19</strong>70), here defined as the Eqalulik Formation,<br />

<strong>and</strong> the conglomerate was referred to the Lower to Middle<br />

Danian by Rosenkrantz (<strong>19</strong>70). Dinocysts from the mudstone<br />

matrix also suggest a Danian age. Kennedy et al.<br />

(<strong>19</strong>99) referred the ammonites to the early Maastrichtian.<br />

The age <strong>of</strong> the Oyster–Ammonite Conglomerate Bed is<br />

constrained by its Danian fossils <strong>and</strong> the early Late Danian<br />

age <strong>of</strong> the Agatdal Formation, which overlies the Kangilia<br />

Formation.<br />

Correlation. The bed is referred to the Kangilia Formation<br />

based on the general Danian age <strong>and</strong> the lack <strong>of</strong> volcani -<br />

clastic material (the presence <strong>of</strong> which characterises the<br />

Eqalulik Formation) in both the conglomerate <strong>and</strong> the<br />

overlying mudstone.<br />

Quikavsak Formation<br />

new formation<br />

History. The strata comprising the Quikavsak Formation<br />

as defined here were briefly described by Steenstrup<br />

(1874 p. 79) <strong>and</strong> later in detail by Koch (<strong>19</strong>59) who<br />

included them in his Quikavsak Member <strong>of</strong> the Tertiary<br />

Upper Atanikerdluk Formation. The strata are now established<br />

as a separate formation. A major, fluvial channellised<br />

s<strong>and</strong>stone unit that Koch (<strong>19</strong>59 fig. 5) previously<br />

included in the top <strong>of</strong> the Atane Formation at Quikassaap<br />

Kuua is now tentatively also included in the Quikavsak<br />

Formation. At Nassaat, a tributary on the south-eastern<br />

side <strong>of</strong> Agatdalen, a poorly exposed conglomerate unit<br />

that had been assigned to the Sonja member (Agatdal<br />

Formation) by Rosenkrantz (<strong>19</strong>70) <strong>and</strong> to the Quikavsak<br />

Member by Koch (<strong>19</strong>59) is here re-assigned to the Qui -<br />

kavsak Formation.<br />

Dam (2002) suggested a division <strong>of</strong> the Quikavsak<br />

Formation into four members reflecting various depositional<br />

stages during infill <strong>and</strong> drowning <strong>of</strong> the incised<br />

valley system. Dam’s three lower members – the Tupaasat,<br />

Nuuk Qiterleq <strong>and</strong> Paatuutkløften Members – are defined<br />

formally below. The Asuup Innartaa Member is no longer<br />

recognised, <strong>and</strong> the deposits on Nuussuaq are now<br />

included in either the Eqalulik or the Atanikerluk<br />

Formations whereas the deposits on Disko are now<br />

referred to the Kussinerujuk Member <strong>of</strong> the Itilli For -<br />

mation (see below).<br />

Name. The member is named after the stream <strong>of</strong><br />

Quikavsaup kûa (now spelled Quikassaap Kuua) near<br />

Atanikerluk (Fig. 40). The spelling <strong>of</strong> the name is taken<br />

from Koch (<strong>19</strong>59).<br />

Distribution. The formation is exposed along the south<br />

coast <strong>of</strong> Nuussuaq, from Nuuk Killeq in the west to<br />

Saqqaqdalen in the east. On central Nuussuaq, the formation<br />

is exposed at Nassaat (Fig. 2).<br />

s<br />

s<br />

Atane Fm<br />

Paatuutkløften Mb<br />

Nuuk Qiterleq Mb<br />

Tupaasat Mb<br />

Quikavsak Fm<br />

Fig. 97. The type locality <strong>of</strong> the Quikavsak<br />

Formation, east <strong>of</strong> Nuuk Qiterleq on the<br />

south coast <strong>of</strong> Nuussuaq (for location, see<br />

Figs 2, 40). The Quikavsak Formation<br />

overlies the Atane Formation <strong>and</strong> is<br />

overlain by a very thin Eqalulik Formation<br />

<strong>and</strong> hyaloclastite breccias <strong>of</strong> the Vaigat<br />

Formation. A volcanic sill (S) has been<br />

intruded between the Quikavsak <strong>and</strong> the<br />

Eqalulik Formations. The thickness <strong>of</strong> the<br />

Quikavsak Formation in this outcrop is c.<br />

180 m.<br />

114


On Svartenhuk Halvø, on the east slope <strong>of</strong> Firefjeld,<br />

a thin (30 m) Paleocene conglomeratic unit is present<br />

between the Itilli Formation <strong>and</strong> the hyaloclastic rocks<br />

<strong>of</strong> the Vaigat Formation (Fig. 73; J.G. Larsen & Pulvertaft<br />

2000). This unit may be correlated with either the Agatdal<br />

Formation or the Quikavsak Formation.<br />

Type section. Originally, Koch (<strong>19</strong>59) chose the exposures<br />

at the stream <strong>of</strong> Quikassaap Kuua as the type locality<br />

for his Quikavsak Member (Fig. 40). At this locality,<br />

however, only two <strong>of</strong> the members <strong>of</strong> the Quikavsak<br />

Formation are exposed (Tupaasat <strong>and</strong> Nuuk Qiterleq<br />

Members) <strong>and</strong> the formation has an atypical appearance<br />

(Fig. 100). The best exposures <strong>and</strong> the most complete<br />

development <strong>of</strong> the formation occur between Paatuut<br />

<strong>and</strong> Nuuk Killeq, south Nuussuaq. The type section is<br />

located on the coastal slope just east <strong>of</strong> Nuuk Killeq<br />

below the mountain Point 1580 (Figs 6, 97, 98, 99A;<br />

A.K. Pedersen et al. <strong>19</strong>93). The type section is located<br />

at 70°20.75´N, 53°08.75´W.<br />

Reference sections. Reference sections occur at Ivisaannguit,<br />

Paatuut <strong>and</strong> Quikassaap Kuua (Figs 40, 99B, 100, 108).<br />

Thickness. The channellised nature <strong>of</strong> the deposits forming<br />

the Quikavsak Formation results in highly variable<br />

thicknesses. The formation is up to 180 m thick at the<br />

type locality. At Ivisaannguit it is up to 116 m thick, on<br />

the west side <strong>of</strong> Ataata Kuua it is up to 135 m, on the<br />

east side <strong>of</strong> Ataata Kuua below the mountain <strong>of</strong> Ivissussat<br />

Qaqqaat it is more than 100 m, at Paatuut up to 162 m<br />

<strong>and</strong> at Quikassaap Kuua it is up to 70 m thick. Between<br />

these sections, the formation is only a few metres thick<br />

or is absent altogether.<br />

Lithology. Along the south coast <strong>of</strong> Nuussuaq the formation<br />

is divided into three lithological units that are given<br />

the rank <strong>of</strong> members (Dam & Nøhr-Hansen 2001; Dam<br />

Quikavsak Formation<br />

Tupaasat Mb<br />

Nuuk Qiterleq Mb PM<br />

m<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Fig. 98. Type section <strong>of</strong> the Quikavsak Formation (<strong>and</strong> the Tupaasat<br />

<strong>and</strong> Nuuk Qiterleq Members) at Tupaasat, east <strong>of</strong> Nuuk Qiterleq;<br />

for location, see Figs 2, 6, 97. The upper member <strong>of</strong> the formation<br />

(PM, Paatuutkløften Member) has not been measured at this locality.<br />

The lenticular mud-rich body illustrated on Fig. 99A just southeast<br />

<strong>of</strong> the section line is absent in this section, probably due to<br />

erosion at the charred base at 39 m. Modified from Dam & Nøhr-<br />

Hansen (2001). Note that the position <strong>of</strong> this section was erroneously<br />

stated to be at Ivisannguit in Dam (2002). For legend, see<br />

Plate 1.<br />

Atane Formation<br />

20<br />

10<br />

0<br />

Kangilia Fm<br />

Fault<br />

clay si s<strong>and</strong> pebbles<br />

115


NW SE<br />

600 m.a.s.l.<br />

Peak 1580<br />

Tupaasat<br />

600 m.a.s.l.<br />

Vaigat Formation<br />

400<br />

Quikavsak Formation<br />

400<br />

Fig. 98<br />

Paatuutkløften Mb<br />

Nuuk Qiterleq Mb<br />

Tupaasat Mb<br />

Kangilia Formation<br />

Atane Formation<br />

200<br />

200 400 600 800 1000 1200 1400 m<br />

A<br />

200<br />

NE SW<br />

Paatuutkløften<br />

Vaigat Formation<br />

750<br />

750<br />

m.a.s.l. m.a.s.l.<br />

Quikavsak Formation<br />

Paatuutkløften Mb<br />

Nuuk Qiterleq Mb<br />

Atane Formation<br />

500<br />

Tholeiitic picrite hyaloclastites<br />

(covered by scree)<br />

Picrite intrusives contemporary<br />

with the Vaigat Fm<br />

Marine mudstones (Eqalulik Fm)<br />

Estuarine s<strong>and</strong>stones (Paatuutkløften Mb)<br />

Fluvial s<strong>and</strong>stones (Paatuutkløften Mb)<br />

Thin estuarine mudstones<br />

(Paatuutkløften Mb)<br />

0 250<br />

Lacustrine mudstones<br />

<strong>and</strong> s<strong>and</strong>stones (Nuuk Qiterleq Mb)<br />

Fluvial conglomerates <strong>and</strong><br />

s<strong>and</strong>stones (Tupaaasat Mb)<br />

Low-energy mudstones <strong>and</strong> s<strong>and</strong>stones<br />

(Tupaasat Mb)<br />

Deep marine mudstones (Kangilia Fm)<br />

Deltaic s<strong>and</strong>stones (Atane Fm)<br />

Tupaasat<br />

Mb<br />

Deltaic <strong>and</strong> pro-deltaic mudstones<br />

<strong>and</strong> coals (Atane Fm)<br />

Bedding planes<br />

Fault<br />

500 750 1000 m<br />

B<br />

500<br />

116


Fig. 100. Reference locality <strong>of</strong> the<br />

Quikavsak Formation at Quikassaap Kuua<br />

(see Fig. 40 for location). This locality was<br />

selected by Koch (<strong>19</strong>59) as the type locality<br />

<strong>of</strong> his Quikavsak Member. The channellised<br />

s<strong>and</strong>stone is now referred to the<br />

Tupaasat Member <strong>of</strong> the Quikavsak<br />

Formation (for explanation, see text).<br />

20 m<br />

Quikavsak<br />

Formation<br />

Atane Formation<br />

2002). The lower, markedly erosional unit dominated by<br />

coarse-grained s<strong>and</strong>stones succeeded by a middle unit<br />

comprising s<strong>and</strong>- <strong>and</strong> silt-streaked mudstones <strong>and</strong> s<strong>and</strong>stones<br />

with numerous in situ <strong>and</strong> drifted remains <strong>of</strong> trees.<br />

The upper unit also has an erosional base <strong>and</strong> consists<br />

<strong>of</strong> medium- to coarse-grained s<strong>and</strong>stones arranged in an<br />

overall fining- <strong>and</strong> thinning-upward succession, locally<br />

with a basal boulder conglomerate bed. For detailed<br />

descriptions, see members below.<br />

Fossils. The s<strong>and</strong>y parts <strong>of</strong> the formation are rich in coal<br />

fragments <strong>and</strong> pieces <strong>of</strong> coalified wood. The fine-grained<br />

parts <strong>of</strong> the formation are rich in clay ironstone with<br />

plant fossils, sideritic silty shale with plant fossils, mostly<br />

as impressions, <strong>and</strong> in situ coalified tree trunks. Plant fossils<br />

belong to the ‘Upper Atanikerdluk A’ flora <strong>of</strong> Heer<br />

(1883a, b); fossil insects <strong>and</strong> ostracods have also been<br />

Facing page:<br />

Fig. 99. Photogrammetrically measured sections <strong>of</strong> the incised valley<br />

fills <strong>of</strong> the Quikavsak Formation. A: Longitudinal section <strong>of</strong> the<br />

Tupaasat <strong>and</strong> Paatuukløften incised valleys in the area around the<br />

type section (see Figs 97, 98). B: Cross-section <strong>of</strong> the Paatuutkløften<br />

incised valley from Paatuutkløften (see Fig. 105). Note that the<br />

Kangilia Formation is bounded by faults, <strong>and</strong> that the Atane Formation<br />

is also faulted. Most <strong>of</strong> the Tupaasat Member <strong>and</strong> the Nuuk Qiterleq<br />

Member were removed by erosion prior to deposition <strong>of</strong> the<br />

Paatuutkløften Member. For location <strong>of</strong> sections, see Figs 2, 40.<br />

Modified from Dam (2002; it should be noted that the figure captions<br />

for figs 3B <strong>and</strong> 4 in this paper are switched).<br />

described (Koch <strong>19</strong>59). At the top <strong>of</strong> the section at<br />

Paatuut, about 5 m below the basalts, a few marine molluscs<br />

have been found (Koch <strong>19</strong>59). Early Paleocene oysters<br />

(Ostrea sp.) have been reported immediately west <strong>of</strong><br />

Paatuutkløften <strong>and</strong> east <strong>of</strong> Nuuk Killeq (Koch <strong>19</strong>59).<br />

Palynomorphs are common, but only few marine dino -<br />

cysts are present.<br />

Depositional environment. The Quikavsak Formation represents<br />

fluvial to estuarine deposition in a series <strong>of</strong> faultcontrolled,<br />

incised valley systems that formed during<br />

two phases <strong>of</strong> uplift <strong>of</strong> the Nuussuaq Basin (Dam &<br />

Sønderholm <strong>19</strong>98; Dam & Nøhr-Hansen 2001; Dam<br />

2002). The mudstone member overlying the basal s<strong>and</strong>stone<br />

member in the type section (Fig. 98) is probably<br />

related to a quiescent period between the tectonic events<br />

resulting in the development <strong>of</strong> low-energy depositional<br />

(lacustrine) areas within the valleys.<br />

Boundaries. The lower boundary <strong>of</strong> the formation is a<br />

major erosional unconformity formed during valley incision,<br />

cutting at least <strong>19</strong>0 m down into the underlying<br />

deposits (Figs 99, 109). East <strong>of</strong> Ataata Kuua, the unconformity<br />

separates Turonian – Lower Campanian deltaic<br />

s<strong>and</strong>stones <strong>and</strong> mudstones <strong>of</strong> the Atane Formation from<br />

the coarse-grained deposits <strong>of</strong> the Quikavsak Formation.<br />

The contact with the underlying Atane Formation is<br />

generally easily recognised with the exception <strong>of</strong> the<br />

locality at Quikassaap Kuua where the boundary relationships<br />

are somewhat enigmatic (see below under<br />

Tupaasat Member). On the west slope <strong>of</strong> Ataata Kuua<br />

<strong>and</strong> westwards to Ivisaannguit <strong>and</strong> in the type section,<br />

117


m<br />

120<br />

Paatuut it is succeeded by syn-volcanic lacustrine deposits<br />

referred to the Atanikerluk Formation.<br />

110<br />

100<br />

<strong>Geological</strong> age. The fauna <strong>and</strong> flora are not age-diagnostic<br />

but a Danian age is indicated by the stratigraphic<br />

position between the Kangilia Formation, <strong>of</strong> Danian age<br />

on southern Nuussuaq, <strong>and</strong> the overlying Eqalulik For -<br />

mation <strong>of</strong> Danian to Sel<strong>and</strong>ian age (Fig. 16; Piasecki et<br />

al. <strong>19</strong>92; Nøhr-Hansen et al. 2002.<br />

Atane Formation Kangilia Formation<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Fault<br />

mud s<strong>and</strong> gravel<br />

Quikavsak Formation<br />

Tupaasat Member NQ<br />

m<br />

210<br />

200<br />

<strong>19</strong>0<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

mud s<strong>and</strong> gravel<br />

Correlation. The Quikavsak Formation deposits can be<br />

correlated to the submarine canyon deposits <strong>of</strong> the Agatdal<br />

Formation exposed on central Nuussuaq (Koch <strong>19</strong>59;<br />

Dam & Sønderholm <strong>19</strong>98) <strong>and</strong> occurring in the subsurface<br />

in the GRO#3 well (Fig. 67) <strong>and</strong> the GANE#1<br />

well (Fig. 1<strong>19</strong>).<br />

Subdivision. The Quikavsak Formation is divided into<br />

three members: the Tupaasat, Nuuk Qiterleq <strong>and</strong><br />

Paatuutkløften Members (Fig. 99).<br />

Tupaasat Member<br />

new member<br />

History. Strata now referred to the Tupaasat Member<br />

were first but only briefly described by Steenstrup (1874<br />

p. 79). The member was described in detail by Koch<br />

(<strong>19</strong>59) <strong>and</strong> referred to as the lower part <strong>of</strong> the Quikavsak<br />

Member (Upper Atanikerdluk Formation). That part <strong>of</strong><br />

the section at Quikassaap Kuua described by Koch (<strong>19</strong>59<br />

p. 17, fig. 5) as “cross-bedded quartz s<strong>and</strong>stone <strong>of</strong> a considerable<br />

thickness” <strong>and</strong> assigned by him to the Atane<br />

Formation, is now referred to the Quikavsak Formation<br />

(see Fig. 100).<br />

Fig. 101. Generalised sedimentological log from Ivisaannguit on the<br />

south coast <strong>of</strong> Nuussuaq (for location, see Fig. 40). The s<strong>and</strong>stones<br />

<strong>and</strong> conglomerates <strong>of</strong> the Kangilia Formation are similar to those<br />

seen at Ataa (Fig. 91). At this locality, the Kangilia Formation has a<br />

faulted contact with the Atane Formation <strong>and</strong> is erosionally truncated<br />

by the Quikavsak Formation. NQ, Nuuk Qiterleq Member.<br />

For legend, see Plate 1.<br />

the Quikavsak Formation cuts down into mudstones <strong>of</strong><br />

the upper Maastrichtian – Lower Paleocene Kangilia For -<br />

mation (Figs 14, 15, 98, 101).<br />

West <strong>of</strong> Paatuut, the formation is overlain by marine<br />

mudstones <strong>of</strong> the Eqalulik Formation whereas east <strong>of</strong><br />

Name. The member is named after the headl<strong>and</strong> <strong>of</strong><br />

Tupaasat just west <strong>of</strong> Ataata Kuua.<br />

Distribution. The member is exposed along the south<br />

coast <strong>of</strong> Nuussuaq as the fill <strong>of</strong> an incised valley system<br />

extending from Nuuk Qiterleq in the west to Saqqaqdalen<br />

in the east where it occurs on the western slope <strong>of</strong><br />

Saqqaqdalen close to the Vaigat strait (Figs 40, 129; Koch<br />

<strong>19</strong>59; Pulvertaft <strong>19</strong>89a, b; A.K. Pedersen et al. 2007a).<br />

The Tupaasat Member is not present in all outcrops <strong>of</strong><br />

the Quikavsak Formation. At some localities it was partly<br />

or entirely eroded away prior to deposition <strong>of</strong> the<br />

Paatuutkløften Member (see Figs 99B, 109).<br />

118


Tupaasat Member<br />

Atane Formation<br />

Fig. 102. Giant-scale, cross-bedded conglomerates <strong>and</strong> s<strong>and</strong>stones <strong>of</strong> the Tupaasat Member (Quikavsak Formation). Encircled person for scale.<br />

From the coastal slope between Tupaasat <strong>and</strong> Nuuk Qiterleq (for location, see Fig. 2).<br />

Type section. The thickest deposits <strong>and</strong> the best exposure<br />

<strong>of</strong> the member occur between Tupaasat <strong>and</strong> Nuuk<br />

Qiterleq, in the coastal slope below the mountain Point<br />

1580 (Figs 6, 98, 99, 102). This exposure is designated<br />

as the type section. The type section is located at<br />

70°20.75´N, 53°08.75´W.<br />

Reference sections. There are several well-exposed sections<br />

along the south coast <strong>of</strong> Nuussuaq, e.g. in the coastal cliffs<br />

around Ivisaanguit (Dam 2002 fig. 4) <strong>and</strong> at Quikassaap<br />

Kuua (Figs 40, 100).<br />

Thickness. The member is 78 m thick in the type section,<br />

at least 80 m at Ivisaannguit, up to 7 m in Paatuutkløften,<br />

<strong>and</strong> c. 20 m at Quikassaap Kuua (Figs 40, 100).<br />

Lithology. At the type locality, the lower part <strong>of</strong> the<br />

Tupaasat Member consists <strong>of</strong> giant-scale trough cross-bedded,<br />

parallel-bedded <strong>and</strong> structureless pebbly to cobbly,<br />

very coarse-grained s<strong>and</strong>stone. In the lower part <strong>of</strong> the<br />

member, each trough set is up to 30 m in thickness (Figs<br />

98, 99, 102, 103), but set thickness decreases upwards<br />

to less than 0.5 m at the top concomitant with a finingupward<br />

trend; the s<strong>and</strong>stones are, however, distinctly<br />

different from the cross-bedded medium- to coarsegrained<br />

s<strong>and</strong>stones <strong>of</strong> the Paatuutkløften Member (Dam<br />

2002). Pebbles are well rounded <strong>and</strong> consist <strong>of</strong> quartz<br />

(80%), gneiss <strong>and</strong> granite (10%), metasediments (7%)<br />

<strong>and</strong> chert (3%). Within the pebbly s<strong>and</strong>stones in the<br />

type section area, an up to 10 m thick unit <strong>of</strong> mudstone<br />

rich in detrital mica is intercalated with lenses <strong>of</strong> s<strong>and</strong>stone.<br />

The mudstone is bounded at the top by an erosional<br />

unconformity giving rise to the lenticular shape<br />

<strong>of</strong> the shale. The shale is succeeded by cross-bedded pebbly<br />

s<strong>and</strong>stones.<br />

Around Ivisaannguit, the member has a similar development<br />

to that in the type section. In the eastern part<br />

<strong>of</strong> these exposures, the member is only up to 15 m thick.<br />

Towards the west, the thickness <strong>of</strong> the member increases<br />

dramatically to at least 80 m where it crosses an Early<br />

Paleocene fault scar (Dam 2002 fig. 4).<br />

1<strong>19</strong>


In Paatuutkløften <strong>and</strong> at the spur between the coastal<br />

escarpment <strong>and</strong> Ippigaarsukkløften, the Tupaasat Member<br />

consists <strong>of</strong> a 7 m thin unit <strong>of</strong> pebbly, coarse- to very<br />

coarse-grained s<strong>and</strong>stones <strong>and</strong> a pebble to cobble conglomerate<br />

(Figs 99B, 104).<br />

On the eastern slope <strong>of</strong> Quikassaap Kuua, a 20 m<br />

thick set <strong>of</strong> cross-bedded medium- to coarse-grained<br />

s<strong>and</strong>stone is present. It is well consolidated <strong>and</strong> forms a<br />

vertical cliff (Fig. 100). This cross-bedded s<strong>and</strong>stone unit<br />

was included in the Atane Formation by Koch (<strong>19</strong>59)<br />

in spite <strong>of</strong> the stronger similarity to the lower part <strong>of</strong> the<br />

Quikavsak Member farther west than to the fluvial s<strong>and</strong>stones<br />

<strong>of</strong> the Atane Formation. This assignment may<br />

have been based on the presence <strong>of</strong> a small unconformity,<br />

possibly associated with a fossil podsol pr<strong>of</strong>ile that separates<br />

the s<strong>and</strong>stones from the overlying heterolithic<br />

deposits, which he referred to as the Quikavsak Member<br />

but are here assigned to the Nuuk Qiterleq Member <strong>of</strong><br />

the Quikavsak Formation.<br />

Fossils. Fragments <strong>of</strong> coal <strong>and</strong> pieces <strong>of</strong> coalified wood<br />

are common in the member.<br />

Fig. 103. Giant-scale, cross-bedded conglomerates <strong>and</strong> s<strong>and</strong>stones<br />

<strong>of</strong> the Tupaasat Member. Encircled person for scale. Arrows indicate<br />

dip <strong>of</strong> major foresets. From the coastal slope above Ivisaannguit (for<br />

location, see Fig. 40).<br />

Depositional environment. The conglomerates <strong>and</strong> s<strong>and</strong>stones<br />

<strong>of</strong> the Tupaasat Member form a characteristic suite<br />

<strong>of</strong> very thick s<strong>and</strong>stone beds deposited by major bedforms<br />

related to catastrophic flows. The flows were confined to<br />

incised fluvial valleys formed during major tectonic uplift<br />

<strong>of</strong> the basin (Dam et al. <strong>19</strong>98a; Dam 2002). From the<br />

Tupaasat Member facies alone it is not possible to determine<br />

whether deposition took place in a subaerial or a<br />

submarine environment. The overlying sediments, how-<br />

Fig. 104. Tupaasat Member conglomerate<br />

in Paatuutkløften (for location, see Fig.<br />

99B). Hammer for scale.<br />

120


ever, have a fluvio-lacustrine origin, which makes a subaerial<br />

environment most likely for the Tupaasat Member.<br />

Boundaries. The lower boundary is a major erosional<br />

unconformity that follows the base <strong>of</strong> the incised valley<br />

systems. It cuts across faults that bring Lower Paleocene<br />

mudstones <strong>of</strong> the Kangilia Formation against mid-<br />

Cretaceous deltaic deposits <strong>of</strong> the Atane Formation (Figs<br />

98, 99A). The unconformity reflects major tectonic uplift<br />

<strong>of</strong> the basin (Dam 2002).<br />

Where the Nuuk Qiterleq Member is present, the<br />

upper boundary is gradational <strong>and</strong> non-erosional (Figs<br />

97, 98). At other localities, the Tupaasat Member is erosionally<br />

truncated by the Paatuutkløften Member (Fig.<br />

99).<br />

<strong>Geological</strong> age. The Tupaasat Member is referred to the<br />

Early Paleocene (Danian), its age being bracketed by<br />

data from the Kangilia Formation below <strong>and</strong> the Nuuk<br />

Qiterleq Member above (Dam 2002; Nøhr-Hansen et<br />

al. 2002).<br />

Nuuk Qiterleq Member<br />

new member<br />

History. Strata now referred to the Nuuk Qiterleq Member<br />

are equivalent to the Quikavsak Member as described by<br />

Koch (<strong>19</strong>59) from the type section at Quikassaap Kuua.<br />

Moreover, the Nuuk Qiterleq Member includes the middle,<br />

very fossiliferous unit <strong>of</strong> the Quikavsak Member<br />

described elsewhere in the area by Koch (<strong>19</strong>59).<br />

Name. The member is named after the headl<strong>and</strong> Nuuk<br />

Qiterleq (Fig. 2).<br />

Distribution. The member is locally exposed along the<br />

south coast <strong>of</strong> Nuussuaq as the fill <strong>of</strong> an incised valley<br />

system extending from Nuuk Qiterleq in the west to<br />

Atanikerluk in the east (Fig. 2). It is not recognised in<br />

all outcrops <strong>of</strong> the Quikavsak Formation due to erosion<br />

preceding deposition <strong>of</strong> the succeeding Paatuutkløften<br />

Member.<br />

Type section. The member is well exposed between Tupaasat<br />

<strong>and</strong> Nuuk Qiterleq. The type section is the same as that<br />

for the Tupaasat Member (Figs 97–99). The type section<br />

is located at 70°20.75´N, 53°08.75´W.<br />

Reference sections. Reference sections occur in Paatuut -<br />

kløften <strong>and</strong> at Quikassaap Kuua (Figs 99B, 100).<br />

Thickness. In the type section the member is 23 m thick,<br />

at Ivisaannguit 3–6 m, at Paatuut up to 42 m <strong>and</strong> at<br />

Quikassaap Kuua up to 50 m. The thickness is mainly<br />

dependent on the depth <strong>of</strong> erosion into the member<br />

prior to deposition <strong>of</strong> the overlying s<strong>and</strong>stones <strong>of</strong> the<br />

Paatuutkløften Member (Fig. 105).<br />

Lithology. In the type section <strong>and</strong> in Paatuutkløften, the<br />

Nuuk Qiterleq Member is composed <strong>of</strong> up to 6 m thick<br />

coarsening-upward successions, composed <strong>of</strong> silt- <strong>and</strong><br />

Paatuutkløften Member<br />

Nuuk Qiterleq Member<br />

Fig. 105. Nuuk Qiterleq Member erosively<br />

overlain by the Paatuutkløften Member in<br />

Paatuutkløften (see Fig. 99B). Helicopter<br />

(encircled) for scale.<br />

Atane Formation<br />

121


Paatuutkløften<br />

Member<br />

Nuuk Qiterleq Member<br />

A<br />

B<br />

Fig. 106. A: Thin coarsening-upward successions in the Nuuk Qiterleq Member composed <strong>of</strong> silt- <strong>and</strong> s<strong>and</strong>-streaked mudstones passing upwards<br />

into fine- to medium-grained s<strong>and</strong>stones. Person for scale. From the type locality near Nuuk Qiterleq (for location, see Fig. 2). Arrows indicate<br />

the location <strong>of</strong> in situ coalified tree trunks. Note the upper, sharp, erosional boundary with the Paatuutkløften Member. B: In situ vertical,<br />

coalified tree trunk from the type section <strong>of</strong> the Nuuk Qiterleq Member. Pencil for scale (arrowed).<br />

s<strong>and</strong>-streaked mudstones grading upward into fine- to<br />

medium-grained s<strong>and</strong>stones (Fig. 106A). Incipient ripples<br />

as well as wave <strong>and</strong> current ripples <strong>and</strong> parallel lamination<br />

are widespread. In situ vertical coalified trees <strong>and</strong><br />

drifted tree trunks <strong>and</strong> plant fossils are very common<br />

(Fig. 106B). At Ivisaannguit, at Paatuut <strong>and</strong> at Ippigaar -<br />

sukkløften, the member is dominated by mudstones with<br />

thin s<strong>and</strong>-streaks. A single, sharply based s<strong>and</strong>stone bed<br />

occurs at Ivisaannguit.<br />

At Quikassaap Kuua, the member consists <strong>of</strong> interbedded<br />

siltstones <strong>and</strong> graded, occasionally parallel- laminated,<br />

very fine-grained to very coarse-grained s<strong>and</strong>stones<br />

(Fig. 107). This interbedded facies alternates with lenticular<br />

beds with erosional bases consisting <strong>of</strong> normally<br />

graded, medium- to very coarse-grained trough, crossbedded<br />

s<strong>and</strong>stones arranged in thinning-upward successions<br />

up to c. 50 cm thick. The interbedded siltstones<br />

<strong>and</strong> s<strong>and</strong>stones are rich in plant fossils, clay ironstone concretions,<br />

in situ vertical coalified tree trunks, drifted coalified<br />

tree trunks <strong>and</strong> finely disintegrated coal fragments.<br />

Fossils. The Nuuk Qiterleq Member is very rich in plant<br />

fossils <strong>and</strong> contains most <strong>of</strong> the species known from the<br />

Quikavsak Formation. The fossil flora from this member<br />

<strong>and</strong> from the lower part <strong>of</strong> the overlying Naujât<br />

Member (Atanikerluk Formation) at Atanikerluk <strong>and</strong> a<br />

few additional localities is known as the ‘Upper Atani -<br />

kerdluk A’ flora <strong>of</strong> Heer (1883a) who recognised 282<br />

species, some <strong>of</strong> which have been revised by Brown<br />

(<strong>19</strong>39), Seward (<strong>19</strong>39), Chaney (<strong>19</strong>51) <strong>and</strong> Koch (<strong>19</strong>63).<br />

Koch described the Lower Paleocene flora in the Agatdalen<br />

area where he recognised 27 species, <strong>of</strong> which <strong>19</strong> species<br />

were recognised by him as also occurring in the Quikavsak<br />

Formation.<br />

Depositional environment. Sediments <strong>of</strong> the Nuuk Qiterleq<br />

Member were deposited in various environments within<br />

an incised valley system. The stacked coarsening-upward<br />

cycles in the type section <strong>and</strong> in Paatuutkløften were<br />

formed by repeated progradation <strong>of</strong> shoreface or bayhead<br />

deltas into a lacustrine environment (Dam 2002).<br />

The deposits at Quikassaap Kuua include lenticular<br />

fining-upward successions <strong>of</strong> s<strong>and</strong>stones deposited in<br />

minor fluvial channels, interbedded with siltstones <strong>and</strong><br />

graded, very fine-grained to very coarse-grained gravelly<br />

s<strong>and</strong>stones deposited in interchannel areas. The thin<br />

graded s<strong>and</strong>stone sheets were probably deposited during<br />

periods <strong>of</strong> intense overbank flooding.<br />

Boundaries. The lower boundary is placed at the lithological<br />

change from pebbly coarse-grained s<strong>and</strong>stones <strong>of</strong><br />

the Tupaasat Member to the fine-grained deposits <strong>of</strong><br />

Nuuk Qiterleq, rich in plant fossils (Fig. 99). At most<br />

localities, the lower boundary is non-erosional; at Qui -<br />

kassaap Kuua, however, the Nuuk Qiterleq Member<br />

overlies an erosional surface (Koch <strong>19</strong>59).<br />

122


etween Tupaasat <strong>and</strong> Nuuk Qiterleq <strong>and</strong> on central<br />

Nuussuaq at Nassaat (Koch <strong>19</strong>59 fig. 37). The strata<br />

were described in detail by (Dam et al. <strong>19</strong>98a; Dam &<br />

Sønderholm <strong>19</strong>98; Dam 2002).<br />

Name. The member is named after the Paatuutkløften<br />

ravine (Fig. 40).<br />

Distribution. The Paatuutkløften Member is exposed<br />

along the south coast <strong>of</strong> Nuussuaq as the fill <strong>of</strong> an incised<br />

valley system, exposed from Nuuk Qiterleq in the west<br />

to Ippigaarsukkløften in the east <strong>and</strong> also at Nassaat on<br />

central Nuussuaq (Figs 2, 40).<br />

Type section. The eastern slope <strong>of</strong> Paatuutkløften (Figs 99B,<br />

105, 108). The base <strong>of</strong> the type section is located at<br />

70°15.27´N, 52°40.65´W.<br />

Reference sections. Reference sections occur on the western<br />

slope <strong>of</strong> Ippigaarsukkløften (Figs 108, 109), at<br />

Ivissussat Qaqqaat on the east side <strong>of</strong> Ataata Kuua (Fig.<br />

110), in the south-west-facing cliffs above the west side<br />

<strong>of</strong> Ataata Kuua (Fig. 14) <strong>and</strong> between Tupaasat <strong>and</strong> Nuuk<br />

Qiterleq below the mountain Point 1580 (Figs 6, 97, 98,<br />

99; A.K. Pedersen et al. <strong>19</strong>93).<br />

1 m<br />

Fig. 107. Interbedded siltstones <strong>and</strong> s<strong>and</strong>stones <strong>of</strong> the Nuuk Qiterleq<br />

Member on the western slope <strong>of</strong> Quikassaap Kuua (for location, see<br />

Fig. 40). This section was previously the type section <strong>of</strong> the Quikavsak<br />

Member <strong>of</strong> Koch (<strong>19</strong>59).<br />

At most localities, the upper boundary is with the<br />

Paatuutkløften Member (Figs 99, 106). At Quikassaap<br />

Kuua, the member is overlain by dislocated (l<strong>and</strong>slipped)<br />

mudstones <strong>of</strong> the Atanikerluk Formation (Koch <strong>19</strong>59).<br />

<strong>Geological</strong> age. All the plants are interpreted as Danian in<br />

age (Koch <strong>19</strong>63).<br />

Paatuutkløften Member<br />

new member<br />

History. Strata now referred to the Paatuutkløften Member<br />

were first described <strong>and</strong> figured as the Quikavsak Member<br />

by Koch (<strong>19</strong>59) along the south coast <strong>of</strong> Nuussuaq in<br />

the Paatuut area (Koch <strong>19</strong>59 figs 20–25), the Ataata<br />

Kuua area (Koch <strong>19</strong>59 figs 26–30) <strong>and</strong> at the localities<br />

Thickness. The member is 145 m thick in the type section.<br />

Thicknesses in the reference sections are 158 m at<br />

Ippigaarsukkløften, more than 110 m at Ivissussat<br />

Qaqqaat, 110 m in the coastal cliffs above Ataata Kuua,<br />

up to 25 m at the coastal section above Ivisaannguit <strong>and</strong><br />

78 m in the section between Tupaasat <strong>and</strong> Nuuk Qiterleq.<br />

The exposures at Nassaat are too poor to estimate the<br />

thickness <strong>of</strong> the member.<br />

Lithology. At Ivissussat Qaqqaat <strong>and</strong> Ataata Kuua the<br />

member is initiated by conglomerates composed <strong>of</strong> gneiss<br />

pebbles <strong>and</strong> boulders (Fig. 110). This is followed by<br />

monotonous successions <strong>of</strong> light grey, well-sorted, dominantly<br />

planar cross-bedded, medium- to very coarsegrained<br />

pebbly s<strong>and</strong>stones that are present at all localities<br />

(Fig. 111). These are distinctly different to the succession<br />

characterising the Tupaasat Member (Dam 2002).<br />

There is a general overall upward decrease in grain size,<br />

clast size <strong>and</strong> set thickness; thin mudstone beds are occasionally<br />

present in the uppermost part <strong>of</strong> the member.<br />

Coal clasts, finely disseminated coal fragments <strong>and</strong> sideritic<br />

mudstone clasts are common. Penecontemporaneous<br />

deformation structures are widespread in some beds.<br />

Along the south coast <strong>of</strong> Nuussuaq between Nuuk<br />

Qiterleq <strong>and</strong> Ippigaarsukkløften, the s<strong>and</strong>stones become<br />

123


Eqalulik Fm<br />

m<br />

150<br />

140<br />

Paatuutkløften<br />

150<br />

Ippigaarsukkløften<br />

m<br />

Fig. 108. Type <strong>and</strong> reference sections <strong>of</strong> the<br />

Paatuutkløften Member at Paatuutkløften<br />

<strong>and</strong> Ippigaarsukkløften, respectively (for location,<br />

see Fig. 40; for legend, see Plate 1). The<br />

dashed lines indicate correlative surfaces<br />

between the two sections.<br />

130<br />

140<br />

Terminal lobe<br />

120<br />

130<br />

110<br />

120<br />

100<br />

110<br />

Quikavsak Formation<br />

Paatuutkløften Member<br />

90<br />

80<br />

70<br />

100<br />

90<br />

80<br />

60<br />

50<br />

70<br />

60<br />

Hydrothermal fracture<br />

40<br />

50<br />

30<br />

40<br />

20<br />

30<br />

10<br />

20<br />

Atane Fm<br />

0<br />

cl si s<strong>and</strong> pebbles<br />

Base <strong>of</strong> incised valley<br />

10<br />

0<br />

cl si s<strong>and</strong> pebbles<br />

124


Vaigat Formation<br />

sill<br />

Quikavsak Formation<br />

Atane Formation<br />

Fig. 109. Paatuutkløften Member as exposed in the Ippigaarsukkløften section (for location, see Fig. 40). The s<strong>and</strong>stones <strong>of</strong> the Paatuutkløften<br />

Member fill a valley incised into deltaic deposits <strong>of</strong> the Atane Formation (see Fig. 108). Thickness <strong>of</strong> valley fill is c. 180 m; the white arrow<br />

indicates the base <strong>of</strong> the reference section shown in Fig. 108.<br />

light orange in the upper part <strong>of</strong> the member <strong>and</strong> crossbeds<br />

show double mud drapes <strong>and</strong> reactivation surfaces<br />

draped by mudstone clasts. Locally the cross-bedding is<br />

bidirectional. The s<strong>and</strong>stones frequently show convolute<br />

bedding; coal fragments, sideritic mudstone clasts<br />

<strong>and</strong> concretions are common. Thin mudstone beds with<br />

plant debris <strong>and</strong> heavily bioturbated s<strong>and</strong>stones occur in<br />

the upper part <strong>of</strong> the succession.<br />

Fossils. Few recognisable plant fossils are present in the<br />

mudstones <strong>of</strong> the member. On the spur between the<br />

western slope <strong>of</strong> the Ippigaarsukkløften ravine <strong>and</strong> the<br />

coastal slope, about 5 m below the basalts, a few Danian<br />

marine molluscs have been found (Koch <strong>19</strong>59). Danian<br />

oysters (Ostrea sp.) have been found immediately west<br />

<strong>of</strong> Paatuutkløften <strong>and</strong> east <strong>of</strong> Nuuk Killeq (Fig. 2; Koch<br />

<strong>19</strong>59). These oysters were most probably derived from<br />

s<strong>and</strong>stones in the uppermost part <strong>of</strong> this member. Trace<br />

fossils are common to abundant at most localities in the<br />

upper part <strong>of</strong> the member. They include Ophiomorpha<br />

nodosa, Ophiomorpha isp., Diplocraterion parallelum <strong>and</strong><br />

Thalassinoides isp. (Fig. 108).<br />

Depositional environment. The sediments <strong>of</strong> the Paatuut -<br />

kløften Member were deposited in an incised valley system<br />

formed after an episode <strong>of</strong> renewed Early Paleocene<br />

faulting. The valley system seems to follow the system<br />

generated prior to the deposition <strong>of</strong> the Tupaasat Member,<br />

resulting in considerable or in some cases complete erosion<br />

<strong>of</strong> the earlier deposits within the incised valleys.<br />

Deposition <strong>of</strong> the lower part <strong>of</strong> the member took place<br />

in a fluvial environment during a period <strong>of</strong> rapidly rising<br />

sea level, high river discharge <strong>and</strong> high sedimentation<br />

rates (Koch <strong>19</strong>59; Dam & Sønderholm <strong>19</strong>98; Dam<br />

2002). The upper part <strong>of</strong> the member is characterised<br />

by a change in colour, by sedimentary structures typical<br />

<strong>of</strong> tidal activity <strong>and</strong> by intense bioturbation, indicating<br />

a change to a tidal estuarine environment during infilling<br />

<strong>of</strong> the valleys (Dam & Sønderholm <strong>19</strong>98).<br />

125


Paatuutkløften<br />

Member<br />

Fig. 110. Basal gneiss-clast conglomerate <strong>of</strong><br />

the Paatuutkløften Member at Ivissussat<br />

Qaqqaat (east slope <strong>of</strong> Ataata Kuua; for<br />

location, see Fig. 40). Person for scale.<br />

Atane Formation<br />

Boundaries. An erosional unconformity separates the<br />

s<strong>and</strong>stones <strong>of</strong> the Paatuutkløften Member from the underlying<br />

incised valley deposits <strong>of</strong> the Nuuk Qiterleq or<br />

Tupaasat Members (Figs 97, 99, 105). In some cases,<br />

the Paatuutkløften Member is incised directly into the<br />

Kangilia or Atane Formations suggesting either that the<br />

previous deposits within the valley system were completely<br />

eroded away or that new valleys were eroded<br />

locally (Figs 14, 99, 109, 110). The s<strong>and</strong>stones <strong>of</strong> the<br />

Paatuutkløften Member are abruptly overlain by mudstones<br />

<strong>of</strong> the Eqalulik Formation (Figs 108, 112).<br />

<strong>Geological</strong> age. The age <strong>of</strong> the Paatuutkløften Member is<br />

bracketed by the Danian age <strong>of</strong> the underlying Kangilia<br />

Formation <strong>and</strong> the latest Danian to Sel<strong>and</strong>ian age <strong>of</strong> the<br />

overlying Eqalulik Formation (see p. 137), suggesting<br />

that the age <strong>of</strong> Paatuutkløften Member is late NP3–NP4<br />

(Nøhr-Hansen et al. 2002).<br />

Correlation. The Paatuutkløften Member has been correlated<br />

with marine deposits <strong>of</strong> the Agatdal Formation<br />

on central Nuussuaq (Koch <strong>19</strong>59; Dam & Sønderholm<br />

<strong>19</strong>98), <strong>and</strong> with the Agatdal Formation in the GANE#1<br />

<strong>and</strong> GRO#3 wells (Nøhr-Hansen et al. 2002).<br />

Fig. 111. Uniformly cross-bedded fluvial s<strong>and</strong>stones <strong>of</strong> the<br />

Paatuutkløften Member at Ippigaarsukkløften (for location, see Fig.<br />

40). The apparent discontinuity in the middle <strong>of</strong> a section is due to<br />

hydrothermal alteration (see Fig. 108). Encircled person for scale.<br />

126


Fig. 112. The sharp boundary between<br />

estuarine s<strong>and</strong>stones <strong>of</strong> the Paatuutkløften<br />

Member <strong>and</strong> the mudstones <strong>of</strong> the<br />

Eqalulik Formation above. Hammer (left)<br />

for scale. From Ippigaarsukkløften (for<br />

location, see Fig. 40).<br />

Eqalulik<br />

Formation<br />

Paatuutkløften<br />

Member<br />

Agatdal Formation<br />

revised formation<br />

History. The Agatdal Formation was established by<br />

Rosenkrantz (in: Koch <strong>19</strong>59 pp. 75–78) to encompass<br />

Upper Danian marine mudstones, s<strong>and</strong>stones <strong>and</strong> conglomerates<br />

found in the Agatdalen area on central Nuus -<br />

suaq; these sediments were further described by H.J.<br />

Hansen (<strong>19</strong>70), Rosenkrantz (<strong>19</strong>70) <strong>and</strong> Henderson et<br />

al. (<strong>19</strong>76). In some papers, the formation is referred to<br />

as the Agatdalen Formation.<br />

The Agatdalen area was the key study area for the<br />

Nûgssuaq Expeditions led by A. Rosenkrantz because <strong>of</strong><br />

the rich fossil content <strong>of</strong> the sediments (see ‘Previous<br />

work’). Focus was on the fossil assemblages, <strong>and</strong> the various<br />

outcrops (sections) were only shown schematically<br />

<strong>and</strong> described provisionally. The component lithological<br />

units <strong>of</strong> the section were assigned to individual members<br />

resulting in a complex lithostratigraphic terminology.<br />

Four members were recognised within the small area <strong>of</strong><br />

outcrop: the Turritellakløft, Andreas, Sonja <strong>and</strong> Abraham<br />

Members. Schematic sections from the localities in the<br />

Agatdalen area are shown in Rosenkrantz (<strong>19</strong>70 figs 4,<br />

5). The outcrops in the Agatdalen area are discontinuous,<br />

<strong>and</strong> because many <strong>of</strong> the s<strong>and</strong>stone <strong>and</strong> conglomerate<br />

units are channellised – <strong>and</strong> lateral facies changes<br />

are therefore pronounced – the members are difficult to<br />

correlate <strong>and</strong> map in detail (Figs 113, 114). A possible<br />

correlation between the outcrops <strong>of</strong> the Agatdal Formation<br />

is shown in Plate 3. Furthermore, the members cannot<br />

be recognised outside the type area <strong>and</strong> therefore the<br />

three lower members are no longer treated as formal<br />

units. They are, however, treated as informal members<br />

below in order to facilitate correlation between the new<br />

data presented here <strong>and</strong> the older literature <strong>and</strong> fossil<br />

records (see Plate 3).<br />

The Agatdal Formation as defined here is entirely prevolcanic.<br />

Thus, the Abraham Member, which is synvolcanic,<br />

is now included in the new Eqalulik Formation<br />

(see below). Rosenkrantz (<strong>19</strong>70) referred other synvolcanic<br />

marine sediments found on Nuussuaq to the tuffaceous<br />

Thyasira <strong>and</strong> Propeamussium Members (ab<strong>and</strong>oned<br />

here) <strong>of</strong> the Kangilia Formation. In Agatdalen, the<br />

Turritellakløft Member, from which tuffs are not reported,<br />

overlies the Propeamussium Member (Rosenkrantz <strong>19</strong>70<br />

fig. 5). The correlation between the pre- <strong>and</strong> synvolcanic<br />

members <strong>of</strong> the Kangilia <strong>and</strong> Agatdal Formations <strong>of</strong><br />

Rosenkrantz is not well explained.<br />

Strata assigned to the Agatdal Formation (Sonja<br />

Member) at Nassaat north-east <strong>of</strong> Agatdalen (Fig. 2) by<br />

Rosenkrantz (<strong>19</strong>70 fig. 4c, d) are here assigned to the<br />

Quikavsak Formation, following Koch (<strong>19</strong>59). The tuffaceous<br />

deposits <strong>of</strong> the Abraham Member are coeval with<br />

the volcanic Asuk Member <strong>of</strong> the Vaigat Formation <strong>and</strong><br />

are therefore now included in the Eqalulik Formation (see<br />

p. 137). A s<strong>and</strong>stone unit underlying the pillow breccias<br />

at Kangilia on the north coast <strong>of</strong> Nuussuaq was tentatively<br />

assigned to the Agatdal Formation by H.J. Hansen<br />

(<strong>19</strong>70), Rosenkrantz (<strong>19</strong>70) <strong>and</strong> Dam & Sønderholm<br />

(<strong>19</strong>98); this unit is regarded here as forming part <strong>of</strong> the<br />

Eqalulik Formation.<br />

127


1000<br />

800<br />

1000<br />

53°10' 53°05' 53°00'<br />

600<br />

Pyramidedal<br />

1000<br />

26<br />

Qaarsutjægerdal<br />

800<br />

600<br />

Turritellakløft<br />

Agatkløft<br />

’Sonja lens’ Sill Sø<br />

Teltbæk<br />

70°35'<br />

■■ ■■ ■■ ■■<br />

Teltbæk fault<br />

Scaphitesnæsen<br />

I I I I I I I I I I I I<br />

400701<br />

400702<br />

OA<br />

14<br />

800<br />

17<br />

600<br />

■■ ■ ■■<br />

Quaternary cover<br />

Vaigat Formation<br />

Eqalulik Formation<br />

Agatdal Formation<br />

Kangilia Formation<br />

Itilli Formation,<br />

Aaffarsuaq Member<br />

Atane Formation<br />

Intrusion<br />

Agatdalen fault<br />

12<br />

400703<br />

Jeepkløft<br />

OA<br />

14<br />

Brayakløft<br />

400<br />

Agatdalen<br />

400704<br />

Søndre<br />

<strong>and</strong> Nordre<br />

Baculiteskløft<br />

■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■<br />

600<br />

Ice<br />

800<br />

Sea/lake<br />

1000<br />

OA exposure<br />

14<br />

500<br />

Type section (OA)<br />

Strike <strong>and</strong> dip <strong>of</strong> strata<br />

Contour in 53°10' metres<br />

1 km<br />

Fig. 113. <strong>Geological</strong> map <strong>of</strong> the Agatdalen area. The positions <strong>of</strong> the four shallow wells drilled by GGU in <strong>19</strong>92 (GGU 400701–400704)<br />

are shown. Exposures <strong>of</strong> Oyster–Ammonite Conglomerate Bed (OA) shown with dots. From Dam et al. (2000) based on Rosenkrantz et al.<br />

(<strong>19</strong>74). Turritellakløft is also named Turritelladal on some maps. For location, see Fig. 2.<br />

Subsurface strata, here assigned to the Agatdal For -<br />

mation, were first cored in the GANE#1 well drilled by<br />

grønArctic Energy Inc. at Eqalulik on western Nuussuaq<br />

in <strong>19</strong>95 (Fig. 65). A thick succession <strong>of</strong> marine Paleocene<br />

s<strong>and</strong>stones <strong>and</strong> conglomerates was drilled in <strong>19</strong>96 by<br />

the GRO#3 exploration well south-east <strong>of</strong> the Kuussuaq<br />

river delta (Figs 9, 65, 67). This succession was referred<br />

to the Quikavsak Formation by Christiansen et al. (<strong>19</strong>99),<br />

but is here referred to the Agatdal Formation.<br />

Name. The formation is named after the Agatdalen valley<br />

on central Nuussuaq.<br />

Distribution. Outcrops <strong>of</strong> the Agatdal Formation are<br />

only known from the Agatdalen area (Fig. 113; Dam et<br />

al. 2000). From subsurface data (GRO#3, GANE#1 <strong>and</strong><br />

GANE#1A wells), the formation is known also to be<br />

present on western Nuussuaq, west <strong>of</strong> the Kuugannguaq–<br />

Qunnilik Fault.<br />

128


Agatdal Formation Eqalulik Formation<br />

‘Turritellakløft<br />

Member’<br />

‘Andreas<br />

Member’<br />

Abraham<br />

Member<br />

Fig. 114. Type locality <strong>of</strong> the Agatdal Formation in Turritellakløft (Rosenkrantz <strong>19</strong>70; for location, see Fig. 113). The section is approximately<br />

80 m high. In the present paper, the Agatdal Formation is not subdivided, but the formally ab<strong>and</strong>oned ‘Turritellakløft Member’ <strong>and</strong> ‘Andreas<br />

Member’ are shown to provide a link to Rosenkrantz (<strong>19</strong>70). The Agatdal Formation is overlain by a thin development <strong>of</strong> the Abraham Member<br />

which is part <strong>of</strong> the Eqalulik Formation. For measured section, see Plate 3 (section 1).<br />

The Turritellakløft Member <strong>and</strong> the Abraham Member<br />

<strong>of</strong> Rosenkrantz (<strong>19</strong>70) were described from the western<br />

end <strong>of</strong> the Turritellakløft gorge <strong>and</strong> Qaarsutjægerdal (Figs<br />

113–115, Plate 3; H.J. Hansen <strong>19</strong>70), whereas the<br />

Andreas Member was only recognised in Turritellakløft<br />

(Figs 113, 114, Plate 3). The Sonja Member <strong>of</strong> Rosen -<br />

krantz (<strong>19</strong>70) is only known from a section in Agatkløft,<br />

2 km east <strong>of</strong> Turritellakløft (Figs 116, 117, Plate 3).<br />

On Svartenhuk Halvø, on the east slope <strong>of</strong> Firefjeld,<br />

a thin (30 m) Paleocene conglomeratic unit is present<br />

between the Itilli Formation <strong>and</strong> the hyaloclastic rocks<br />

<strong>of</strong> the Vaigat Formation (Fig. 73; J.G. Larsen & Pulvertaft<br />

2000). This unit may be correlated with either the Agatdal<br />

Formation or the Quikavsak Formation.<br />

Type section. The type section <strong>of</strong> the Agatdal Formation<br />

is at the so-called ‘Store Pr<strong>of</strong>il’ (or ‘Big Section’) in Turri -<br />

tellakløft in the north-western end <strong>of</strong> Agatdalen (Fig.<br />

114, Plate 3, section 1; Rosenkrantz <strong>19</strong>70 fig. 5; Hender -<br />

son et al. <strong>19</strong>76 fig. 312). The type section is located at<br />

70°35.01´N, 53°08.02´W.<br />

Reference sections. Reference sections occur on the southern<br />

slopes <strong>of</strong> Agatkløft <strong>and</strong> on the eastern slope <strong>of</strong> Qaar -<br />

sutjægerdal (Figs 115, 116, 117, Plate 3).<br />

In the subsurface, a complete section through the<br />

forma tion was encountered in the GRO#3 well from<br />

718 m to 423 m (Fig. 67). No cores were taken but a<br />

complete suite <strong>of</strong> well logs is available (Kristensen &<br />

Dam <strong>19</strong>97). The upper part <strong>of</strong> the Agatdal Formation<br />

was drilled <strong>and</strong> fully cored in the GANE#1A well from<br />

706.7 m to 601.5 m (Fig. 1<strong>19</strong>).<br />

Thickness. The formation varies considerably in thickness<br />

from 65 m in the type section to 18 m in Qaarsutjægerdal<br />

(Plate 3). In the GRO#3 well, the formation is approximately<br />

250 m thick (excluding igneous intrusions; Fig. 67).<br />

129


Eqalulik<br />

Formation<br />

pillow breccia<br />

Agatdal<br />

Formation<br />

Kangilia<br />

Formation<br />

Fig. 115. Thin development <strong>of</strong> the Agatdal<br />

Formation in Qaarsutjægerdal (for<br />

location, see Fig. 113). S<strong>and</strong>stone beds <strong>of</strong><br />

the Agatdal Formation overlie mudstones<br />

<strong>of</strong> the Kangilia Formation with marked<br />

angular unconformity. The Agatdal<br />

Formation is overlain by the Abraham<br />

Member <strong>of</strong> the Eqalulik Formation. The<br />

exposed section below the pillow breccias is<br />

21 m thick. For measured section, see Plate<br />

3 (section 4).<br />

Lithology. In the Agatdalen area, the Agatdal Formation<br />

comprises mudstones with several thick, lenticular conglomeratic<br />

<strong>and</strong> s<strong>and</strong>stone units (Figs 114–117, Plate 3)<br />

that Rosenkrantz (<strong>19</strong>70) had already recognised to be<br />

partly laterally equivalent.<br />

The Agatdal Formation, as exposed in the junction<br />

between Agatkløft <strong>and</strong> Qaarsutjægerdal, is characterised<br />

by a major, fining-upward succession composed <strong>of</strong> a<br />

basal conglomerate unit grading upwards into alternating<br />

arkosic s<strong>and</strong>stones, conglomerates <strong>and</strong> mudstones<br />

with marine fossils <strong>and</strong> plant remains (Plate 3). The basal<br />

conglomerate unit can be followed laterally for about 1<br />

km, but disappears rapidly towards the south-east along<br />

the Agatdalen river (Figs 113, 116, 117, Plate 3). The<br />

conglomerates also seem to wedge out towards the northwest<br />

in Agatkløft. The clasts are pebble to boulder grade<br />

<strong>and</strong> are composed <strong>of</strong> gneiss. The conglomerates form<br />

amalgamated beds up to 7 m thick, or alternate with<br />

clast-rich, coarse-grained s<strong>and</strong>stones. The s<strong>and</strong>stone beds<br />

<strong>of</strong> the overlying succession usually show normal grading<br />

<strong>and</strong> both parallel- <strong>and</strong> cross-lamination. S<strong>and</strong>stone streaks<br />

are common in the mudstones interbedded with the<br />

s<strong>and</strong>stone beds.<br />

In the Turritellakløft section, the Kangilia Formation<br />

is unconformably overlain by dark grey to black, s<strong>and</strong>streaked<br />

mudstones with s<strong>and</strong>stone lenses <strong>and</strong> sheets<br />

which form the base <strong>of</strong> the Agatdal Formation (Fig. 114,<br />

Plate 3; Rosenkrantz <strong>19</strong>70). The lower part <strong>of</strong> the formation<br />

here consists <strong>of</strong> thinly interbedded mudstones,<br />

siltstones <strong>and</strong> s<strong>and</strong>stones. The mudstones show graded,<br />

parallel lamination. The s<strong>and</strong>stone beds are parallel- <strong>and</strong><br />

cross-laminated. Trace fossils are common (J.M. Hansen<br />

<strong>19</strong>80b).<br />

Upwards, the s<strong>and</strong>stone beds become thicker <strong>and</strong><br />

occur as sheets <strong>and</strong> lenses with erosional bases. The beds<br />

are parallel laminated or show normal grading from<br />

coarse-grained to fine-grained s<strong>and</strong>. Locally the s<strong>and</strong>stones<br />

are highly fossiliferous (predominantly Turritella<br />

sp.). Intraformational mudstone <strong>and</strong> s<strong>and</strong>stone clasts are<br />

common. Loose slabs show a preferred orientation <strong>of</strong><br />

Turritella shells; this parallel orientation indicates that the<br />

shells were current-worked <strong>and</strong> may serve as palaeocurrent<br />

indicators.<br />

In the upper part <strong>of</strong> the Turritellakløft section is a<br />

channellised unit <strong>of</strong> well-sorted, very coarse-grained,<br />

tabular to wedge-shaped, cross-bedded s<strong>and</strong>stone (Fig.<br />

114). The top <strong>of</strong> the Agatdal Formation is a 1.5 m thick<br />

gravelly, very coarse-grained s<strong>and</strong>stone bed. Body <strong>and</strong> trace<br />

fossils are very rare in these s<strong>and</strong>stones.<br />

In Qaarsutjægerdal, a matrix-supported conglomerate<br />

bed occurs at the base <strong>of</strong> the formation (Fig. 115, Plate<br />

3). It is succeeded by well-sorted, fine- to mediumgrained<br />

s<strong>and</strong>stones, with few mudstone interbeds. Locally<br />

the s<strong>and</strong>stones show parallel- <strong>and</strong> low-angle cross-lamination.<br />

Bioturbation is intense at the top <strong>of</strong> the section<br />

where Ophiomorpha isp. <strong>and</strong> Planolites isp. are common.<br />

The sediments are highly fossiliferous; Turritella sp. is particularly<br />

numerous <strong>and</strong> the shells show a preferred parallel<br />

orientation.<br />

In the GANE#1 well, the Agatdal Formation consists<br />

<strong>of</strong> a thick, fining-upward succession composed <strong>of</strong> a lower<br />

s<strong>and</strong>stone unit grading upwards into a heterolithic unit.<br />

130


Fig. 116. Basal conglomerate unit <strong>of</strong> the Agatdal Formation south <strong>of</strong> the junction between Agatdalen <strong>and</strong> Agatkløft (for location, see Fig.<br />

113). Note how the conglomerate pinches out towards the left (south). Section is approximately 13 m high. For measured section, see Plate<br />

3 (section 3).<br />

The cored succession in the GANE#1 <strong>and</strong> GANE#1A<br />

wells consists <strong>of</strong> amalgamated, thickly bedded, coarseto<br />

very coarse-grained s<strong>and</strong>stones with normally graded<br />

beds in places alternating with thinly interbedded s<strong>and</strong>stones<br />

<strong>and</strong> mudstones (Fig. 1<strong>19</strong>). The upper heterolithic<br />

part <strong>of</strong> the formation consists <strong>of</strong> mudstones, thinly<br />

interbedded s<strong>and</strong>stones <strong>and</strong> mudstones, amalgamated<br />

s<strong>and</strong>stones grading upwards into thinly interbedded<br />

s<strong>and</strong>stones <strong>and</strong> mudstones <strong>and</strong> muddy s<strong>and</strong>stones.<br />

Probable scape burrows are observed locally (Dam <strong>19</strong>96b).<br />

Fossils. The Agatdal Formation is the most fossiliferous<br />

<strong>of</strong> the marine units in West Greenl<strong>and</strong>, with more than<br />

500 described macr<strong>of</strong>ossil species (see also ‘Previous<br />

work’ above).<br />

Marine fossils in the mudstones (the former Turri -<br />

tellakløft Member) include gastropods, bivalves, scleractinian<br />

corals, fish, ostracods, coccoliths <strong>and</strong> foraminifera<br />

(Bendix-Almgreen <strong>19</strong>69; Rosenkrantz <strong>19</strong>70; Szczechura<br />

<strong>19</strong>71; J.M. Hansen <strong>19</strong>76; Kollmann & Peel <strong>19</strong>83;<br />

Petersen & Vedelsby 2000). Dinocysts are rare (J.M.<br />

Hansen <strong>19</strong>80b).<br />

The s<strong>and</strong>stones <strong>of</strong> the former Andreas Member are very<br />

poor in fossils in the Turritellakløft section, whereas certain<br />

levels in Qaarsutjægerdal are very fossiliferous.<br />

Turritella sp. is particularly common, but other gastropods<br />

together with bivalves, scleractinian corals <strong>and</strong><br />

spines <strong>of</strong> echinoids have also been found in the member<br />

(Rosenkrantz <strong>19</strong>70; Floris <strong>19</strong>72; Kollmann & Peel <strong>19</strong>83;<br />

Petersen & Vedelsby 2000). Wood <strong>and</strong> fragments <strong>of</strong><br />

leaves <strong>and</strong> fruits have been collected in this member in<br />

Qaarsutjægerdal (Koch <strong>19</strong>63, <strong>19</strong>72a, b).<br />

The s<strong>and</strong>stones <strong>and</strong> conglomerates <strong>of</strong> the former Sonja<br />

Member are generally poor in marine fossils but locally<br />

contain a very rich marine fauna, known mainly from<br />

the ‘Sonja lens’. The lens was originally 7 m long <strong>and</strong> 0.7<br />

m thick but was completely excavated by Rosenkrantz<br />

<strong>and</strong> his co-workers. The fauna from this bed is dominated<br />

by bivalves <strong>and</strong> gastropods, but also includes scleractinian<br />

corals, octocorals, asteroids, crinoids, echinoids, serpulids,<br />

brachiopods, bryozoans, scaphopods, crustaceans,<br />

fish, foraminifera, coccoliths <strong>and</strong> palynomorphs (Bendix-<br />

Almgreen <strong>19</strong>69; H.J. Hansen <strong>19</strong>70; Rosenkrantz <strong>19</strong>70;<br />

Szczechura <strong>19</strong>71; Floris <strong>19</strong>72; Perch-Nielsen <strong>19</strong>73;<br />

Henderson et al. <strong>19</strong>76; J.M. Hansen <strong>19</strong>80b; Kollmann<br />

& Peel <strong>19</strong>83; Collins & Wienberg Rasmussen <strong>19</strong>92;<br />

Petersen & Vedelsby 2000). Moreover, the Agatdal<br />

Formation contains a well-preserved macr<strong>of</strong>lora (Koch<br />

<strong>19</strong>63). On western Nuussuaq, however, no determinable<br />

macr<strong>of</strong>ossils have been found in the Agatdal Formation.<br />

Dinocysts are common in samples from the GRO#3<br />

<strong>and</strong> GANE#1 wells (Nøhr-Hansen <strong>19</strong>97b, c; Nøhr-<br />

Hansen et al. 2002). The trace fossils Ophiomorpha isp.<br />

<strong>and</strong> Planolites isp. are locally common (see above).<br />

Depositional environment. In the Agatdalen area, the<br />

macr<strong>of</strong>ossils are indicative <strong>of</strong> a relatively shallow-water,<br />

marine depositional environment, such as a lower<br />

shoreface or inner shelf environment (Petersen & Vedelsby<br />

2000). In contrast, the sedimentary facies are interpreted<br />

to reflect deposition in a deep-water slope environment.<br />

131


Fig. 117. Exposure <strong>of</strong> the Agatdal Formation in Agatkløft (for location, see Fig. 113; for measured section, see Plate 3 (section 2)). The section<br />

is approximately 50 m high <strong>and</strong>, together with the basal conglomerate unit shown in Fig. 116, was referred to the ‘Sonja Member’ by<br />

Rosenkrantz (<strong>19</strong>70). The completely excavated Sonja Lens was part <strong>of</strong> this section. According to H.J. Hansen (<strong>19</strong>70) the succession is capped<br />

by 6 m <strong>of</strong> concretionary mudstone (covered by scree during the authors’ visit in <strong>19</strong>92) underlying volcanic pillow breccias <strong>and</strong> a sill.<br />

The mudstone-dominated units were deposited from<br />

dilute turbidity currents in an unconfined slope setting<br />

where the s<strong>and</strong>stone interbeds possibly represent splay<br />

deposits from nearby submarine channels. The thick<br />

lenticular, conglomeratic s<strong>and</strong>stones were deposited by<br />

high- <strong>and</strong> low-density turbidite currents in submarine<br />

slope channels. The fossils found in these units must<br />

therefore have been transported, but probably only over<br />

short distances, as they are not worn or fragmented.<br />

The presence <strong>of</strong> basement boulders in the conglomerate<br />

close to the base <strong>of</strong> the formation implies fluvial<br />

transport from areas east <strong>of</strong> the Ikorfat fault system (A.K.<br />

Pedersen et al. <strong>19</strong>96 fig. 6). The conglomerates were thus<br />

probably deposited in a submarine canyon in front <strong>of</strong> a<br />

major delta at the mouth <strong>of</strong> the coeval incised fluvial<br />

valley system represented by the Quikavsak Formation.<br />

Palynological <strong>and</strong> geochemical investigations <strong>of</strong> the<br />

GRO#3 <strong>and</strong> GANE#1 wells also indicate a marine depositional<br />

environment (Bojesen-Koefoed et al. <strong>19</strong>97; Nøhr-<br />

Hansen <strong>19</strong>97c) <strong>and</strong> the sediments record deposition<br />

dominated by high-density turbidity currents. The thickness<br />

<strong>of</strong> the formation in the GRO#3 <strong>and</strong> GANE#1 wells<br />

<strong>and</strong> the overall geological setting suggests that deposition<br />

took place in a major submarine canyon system on<br />

a fault-controlled slope (Dam <strong>19</strong>96b; Kristensen & Dam<br />

<strong>19</strong>97). The small, fining-upward cycles in the upper,<br />

heterolithic part <strong>of</strong> the canyon fill were deposited in<br />

small turbidite channels.<br />

Boundaries. Where the lower boundary is exposed in the<br />

Agatdalen area the Agatdal Formation rests unconformably<br />

on the Kangilia Formation (Figs 113, 115,<br />

Plate 3). The Agatdal Formation is overlain by the Eqalulik<br />

Formation (Figs 113–115, 1<strong>19</strong>, Plate 3) or locally by<br />

volcaniclastic breccias <strong>of</strong> the Vaigat Formation.<br />

In the GRO#3 well the lower boundary is probably<br />

an erosional unconformity separating coarse- to very<br />

coarse-grained s<strong>and</strong>stones <strong>of</strong> the Agatdal Formation from<br />

132


heterolithic deposits <strong>of</strong> the Kangilia Formation below<br />

(Fig. 67). The upper boundary is placed at the base <strong>of</strong><br />

the reworked volcaniclastic sediments or tuffs <strong>of</strong> the<br />

Eqalulik Formation (Fig. 67).<br />

Age. Most fossil groups indicate a Paleocene (Late Danian)<br />

age for the formation (Fig. 16; Bendix-Almgreen <strong>19</strong>69;<br />

H.J. Hansen <strong>19</strong>70; Rosenkrantz <strong>19</strong>70; Szczechura <strong>19</strong>71;<br />

Kollmann & Peel <strong>19</strong>83; Collins & Wienberg Rasmussen<br />

<strong>19</strong>92). The coccolith assemblage indicates a Chiasmolithus<br />

danicus zone age (NP 3 Zone; Perch-Nielsen <strong>19</strong>73). The<br />

co-occurrence <strong>of</strong> the foraminifera Globoconusa daubjergensis<br />

<strong>and</strong> Globigerina compressa indicates a P1c plankton<br />

zone age for the Agatdal Formation (H.J. Hansen<br />

<strong>19</strong>70; Berggren et al. <strong>19</strong>95; Olsson et al. <strong>19</strong>99) which<br />

corresponds to a late NP3 – early NP4 age. In the GRO#3<br />

well, dinocysts <strong>and</strong> nann<strong>of</strong>ossils indicate an age not<br />

younger than nannoplankton zone NP4 (Late Danian<br />

or Early Sel<strong>and</strong>ian; Nøhr-Hansen <strong>19</strong>97c; Nøhr-Hansen<br />

et al. 2002).<br />

Correlation. The age <strong>of</strong> the Agatdal Formation suggests<br />

that it is coeval with the major incised valley systems <strong>of</strong><br />

the Quikavsak Formation on southern Nuussuaq <strong>and</strong><br />

with most <strong>of</strong> the upper part <strong>of</strong> the Kangilia Formation<br />

on the north coast <strong>of</strong> Nuussuaq (Figs 11, 15, 16; Nøhr-<br />

Hansen et al. 2002). The basal unconformity described<br />

between the Agatdal <strong>and</strong> Kangilia Formations in the<br />

Agatdalen area may be due to either condensation or<br />

nondeposition <strong>of</strong> nannoplankton zones NP1 <strong>and</strong> NP2<br />

in the type section <strong>of</strong> the Kangilia Formation.<br />

Eqalulik Formation<br />

new formation<br />

History. Deposits now assigned to the Eqalulik Formation<br />

embrace the marine synvolcanic strata below the basalts<br />

<strong>of</strong> the West Greenl<strong>and</strong> Basalt Group (Hald & Pedersen<br />

<strong>19</strong>75) that contain volcaniclastic s<strong>and</strong>stones <strong>and</strong> tuffs.<br />

On the north coast <strong>of</strong> Nuussuaq <strong>and</strong> on central Nuussuaq,<br />

these strata have previously been assigned to the Thyasira<br />

<strong>and</strong> Propeamussium Members <strong>of</strong> the Kangilia Formation<br />

(Rosenkrantz <strong>19</strong>70) <strong>and</strong> the Abraham Member <strong>of</strong> the<br />

Agatdal Formation (Rosenkrantz <strong>19</strong>70). However, the<br />

Thyasira <strong>and</strong> Propeamussium Members are considered<br />

inappropriate as they were established solely on the basis<br />

<strong>of</strong> the faunal content. The use <strong>of</strong> these two members as<br />

defined by Rosenkrantz (<strong>19</strong>70) is now ab<strong>and</strong>oned <strong>and</strong><br />

the strata included in the new Eqalulik Formation.<br />

On the south coast <strong>of</strong> Nuussuaq, a thin unit <strong>of</strong> marine<br />

black shale including bioturbated s<strong>and</strong>stone beds below<br />

the volcaniclastic breccias <strong>of</strong> the Vaigat Formation was<br />

referred to the Asuup Inatartaa Member <strong>of</strong> the Quikavsak<br />

Formation by Dam (2002) but is here included in the<br />

Eqalulik Formation. Strata previously mapped as unnamed<br />

Paleocene (Tertiary) on the north coast <strong>of</strong> Nuussuaq east<br />

<strong>of</strong> the Ikorfat fault, in the region around the Tunorsuaq<br />

valley, <strong>and</strong> in the Itilli <strong>and</strong> Aaffarsuaq valleys are now<br />

assigned to the Eqalulik Formation.<br />

Name. After Eqalulik, a lake close to the location <strong>of</strong> the<br />

GANE#1 drill site on western Nuussuaq (Fig. 65).<br />

Distribution. The formation is widely distributed below<br />

the hyaloclastites <strong>of</strong> the Anaanaa <strong>and</strong> Naujánguit Members<br />

<strong>of</strong> the Vaigat Formation (West Greenl<strong>and</strong> Basalt Group)<br />

<strong>and</strong>, although it is generally poorly exposed, it has been<br />

recognised at many localities on Nuussuaq (Piasecki et<br />

al. <strong>19</strong>92), locally on the north coast <strong>of</strong> Disko, <strong>and</strong> locally<br />

on Svartenhuk Halvø (Fig. 73; J.G. Larsen & Pulvertaft<br />

2000). On the north coast <strong>of</strong> Nuussuaq, the formation<br />

has been recognised both east <strong>and</strong> west <strong>of</strong> the Ikorfat fault.<br />

It is present in the Tunorsuaq valley <strong>and</strong> has been locally<br />

observed in the Itilli <strong>and</strong> Aaffarsuaq valleys (Floris <strong>19</strong>72).<br />

West <strong>of</strong> Ataa on the south coast <strong>of</strong> Nuussuaq, the formation<br />

forms a thin unit dominated by marine mudstones<br />

below the hyaloclastites <strong>of</strong> the Vaigat Formation. East <strong>of</strong><br />

Ataa, it is s<strong>and</strong>wiched between the s<strong>and</strong>stones <strong>of</strong> the<br />

Quikavsak Formation <strong>and</strong> overlying non-marine mudstones<br />

referred to the Naujât Member <strong>of</strong> the Atanikerluk<br />

Formation (see also Koch <strong>19</strong>59 pp. 78–79).<br />

Type section. The outcrop section at Kangilia where the<br />

Eqalulik Formation conformably overlies the Kangilia<br />

Formation is very poorly exposed (Figs 74, 87, 118). A<br />

complete, well-preserved section through the formation<br />

was cored from 598 m to 496.5 m in the GANE#1 well<br />

(Figs 65, 1<strong>19</strong>) <strong>and</strong> this is therefore chosen as the type section<br />

(Fig. 1<strong>19</strong>). The cores are stored at GEUS in Copen -<br />

hagen. The GANE#1 well is located at 70°28.25´N,<br />

54°00.40´W.<br />

Reference section. Reference sections occur on central<br />

Nuussuaq in Agatdalen (Plate 3) <strong>and</strong> Aaffarsuaq (Fig<br />

83), <strong>and</strong> on the south coast <strong>of</strong> Nuussuaq at Ippigaar suk -<br />

kløften (Fig. 120).<br />

In the GANK#1 well, a reference section was cored<br />

from 333 m to 114.9 m (Fig. 121), <strong>and</strong> the formation<br />

was also cored in the sidetrack well GANK#1A from<br />

332.9 m to 218.6 m. The cores are stored at GEUS.<br />

133


Eqalulik Formation<br />

Kangilia Formation<br />

Fig. 118. Exposure <strong>of</strong> the Eqalulik Formation overlying the Kangilia Formation at Kangilia. The photo shows the lower c. 20 m <strong>of</strong> the formation;<br />

for location, see Fig. 74.<br />

Thickness. On the north coast <strong>of</strong> Nuussuaq, the formation<br />

ranges from 100 to 160 m thick, in Agatdalen it is<br />

approximately 12 m thick (H.J. Hansen <strong>19</strong>70), <strong>and</strong> in<br />

Aaffarsuaq it is less than 20 m in thickness. In the<br />

GANE#1A well, the formation is 102 m thick <strong>and</strong> it is<br />

218 m thick in the GANK#1 well. The very variable<br />

thickness <strong>of</strong> the formation is the result <strong>of</strong> varying proportions<br />

<strong>of</strong> tuffaceous material (the presence <strong>of</strong> which<br />

defines the formation) <strong>and</strong> intensive loading <strong>and</strong> deformation<br />

<strong>of</strong> the mudstones by prograding thick lobes <strong>of</strong><br />

submarine basaltic breccia beds.<br />

Lithology. The formation comprises mudstones, tuff beds<br />

<strong>and</strong> volcaniclastic s<strong>and</strong>stones; the latter lithologies are<br />

essential to the definition <strong>of</strong> the formation (Fig. 122).<br />

Internal structures in the mudstones cannot be recognised<br />

due to poor exposure. The thicker s<strong>and</strong>stone units consist<br />

<strong>of</strong> amalgamated graded beds composed <strong>of</strong> fine- to<br />

very coarse-grained, volcaniclastic s<strong>and</strong>stones with scattered<br />

pebble-sized volcanic <strong>and</strong> mudstone clasts. Parallel<br />

lamination, current cross-lamination <strong>and</strong> dish structures<br />

have locally been observed within the graded beds. In some<br />

areas volcanic material may constitute up to 25% <strong>of</strong> the<br />

section (A.K. Pedersen <strong>19</strong>78) <strong>and</strong> fossils are common<br />

(Rosenkrantz <strong>19</strong>70; Floris <strong>19</strong>72). The tuff beds are up<br />

to 7 m thick at Kangilia, <strong>and</strong> tuff beds up to several<br />

metres thick are also seen in Danienkløft (Tunorsuaq)<br />

<strong>and</strong> in Koralkløft (Ilugissoq; Figs 2, 74). Most <strong>of</strong> these<br />

tuff beds contain scleractinian corals; these are without<br />

preferred orientation, but only slightly worn (Floris<br />

<strong>19</strong>72).<br />

In the GANE#1 well the formation consists <strong>of</strong> mudstones,<br />

interbedded quartz-rich, siliciclastic <strong>and</strong> volcaniclastic<br />

s<strong>and</strong>stones <strong>and</strong> mudstones, muddy s<strong>and</strong>stones<br />

<strong>and</strong> chaotic beds (Dam <strong>19</strong>96b). Volcanic clasts <strong>and</strong><br />

rounded basement pebbles <strong>and</strong> angular mudstone ripup<br />

clasts are common, <strong>and</strong> concretions <strong>and</strong> plant debris<br />

are locally present (Fig. 1<strong>19</strong>). Several thinning- <strong>and</strong> fining-upward<br />

successions have been recognised in the core.<br />

These are sharply based <strong>and</strong> consist <strong>of</strong> amalgamated normally<br />

graded, very coarse- to coarse-grained s<strong>and</strong>stone<br />

beds passing upwards into thinly interbedded s<strong>and</strong>stones<br />

<strong>and</strong> mudstones. Occasionally the s<strong>and</strong>stone beds are<br />

internally stratified, showing parallel-lamination or crosslamination,<br />

dish structures <strong>and</strong> s<strong>of</strong>t sediment folds.<br />

S<strong>and</strong>stones are occasionally burrowed <strong>and</strong> escape burrows<br />

134


GANE#1<br />

Vaigat Fm<br />

Anaanaa Mb<br />

m<br />

Hyaloclastites<br />

500<br />

GANE#1A<br />

Eqalulik Formation<br />

550<br />

m<br />

550<br />

600<br />

600<br />

First appearance <strong>of</strong><br />

hyaloclastite clasts<br />

Agatdal Formation<br />

640<br />

vf<br />

clay si<br />

f m c vc<br />

s<strong>and</strong> pb<br />

650<br />

Fig. 1<strong>19</strong>. Type section <strong>of</strong> the Eqalulik<br />

Formation in the GANE#1 <strong>and</strong> 1A wells<br />

on western Nuussuaq. For location, see<br />

Fig. 65; for legend, see Plate 1.<br />

700<br />

vf<br />

clay si<br />

f m c vc<br />

s<strong>and</strong><br />

pb<br />

135


Quikavsak Formation Eqalulik Fm Vaigat Formation<br />

m<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

cl<br />

si<br />

s<strong>and</strong><br />

Boundaries. The lower boundary is placed at the base <strong>of</strong><br />

the first volcaniclastic s<strong>and</strong>stones or tuffs. This boundco<br />

pb<br />

Fig. 120. Reference section <strong>of</strong> the Eqalulik Formation overlying the<br />

Paatuutkløften Member (Quikavsak Formation) at Ippigaarsukkløften<br />

on southern Nuussuaq (for location, see Fig. 40). The upper part <strong>of</strong><br />

the Eqalulik Formation comprises fine-grained, tuffaceous mudstones<br />

deposited at water depths up to 700 m, as demonstrated by<br />

the height <strong>of</strong> the foresets in the overlying <strong>and</strong> laterally equivalent hyaloclastite<br />

breccias. Modified from Dam & Nøhr-Hansen (2001). For<br />

legend, see Plate 1.<br />

are present in a few beds. Mudstone laminae show normal<br />

grading. The chaotic beds in the GANE#1 well consist<br />

<strong>of</strong> homogenised mudstones with evenly scattered<br />

s<strong>and</strong> grains, granules, volcanic clasts <strong>and</strong> concretions.<br />

The beds are interbedded with structureless muddy s<strong>and</strong>stones<br />

<strong>and</strong> slumped mudstones showing contorted bedding<br />

(Fig. 1<strong>19</strong>; Dam <strong>19</strong>96b).<br />

Fossils. The formation has yielded a very rich fauna, particularly<br />

in the Kangilia section where the concretions<br />

in the mudstones include gastropods, bivalves, corals,<br />

echinoderms <strong>and</strong> nautiloids, <strong>and</strong> also foraminifera,<br />

crinoids <strong>and</strong> serpulids. The bivalve Thyasira (Conchocele)<br />

aff. T. conradi (Rosenkrantz) <strong>and</strong> the pectinid Propeamussium<br />

ignoratum Ravn are especially common in the<br />

concretions together with a large thick-shelled Echinocorys,<br />

Hercoglossa groenl<strong>and</strong>ica (Rosenkrantz) <strong>and</strong> stems <strong>of</strong><br />

Isselicrinus groenl<strong>and</strong>icus Wienberg Rasmussen (Rosen -<br />

krantz <strong>19</strong>70; Henderson et al. <strong>19</strong>76; Kollmann & Peel<br />

<strong>19</strong>83; Petersen & Vedelsby 2000). A fish fauna is also<br />

represented in the concretions (Bendix-Almgreen <strong>19</strong>69)<br />

<strong>and</strong> scleractinian corals <strong>and</strong> coccoliths have been reported<br />

from the volcaniclastic s<strong>and</strong>stones (Floris <strong>19</strong>72; Jürgensen<br />

& Mikkelsen <strong>19</strong>74). Some corals are attached to tuff<br />

clasts, indicating that this was their original substrate. Their<br />

r<strong>and</strong>om orientation suggests, however, that they are redeposited,<br />

but as they are only slightly worn, transport distances<br />

must have been short (Floris <strong>19</strong>72). A sparse<br />

nannoplankton <strong>and</strong> dinocyst flora is present at most<br />

localities (Piasecki et al. <strong>19</strong>92; Nøhr-Hansen et al. 2002),<br />

including the mudstones at the base <strong>of</strong> the volcanic breccias<br />

<strong>of</strong> the Vaigat Formation along the south coast <strong>of</strong><br />

Nuussuaq. The trace fossils Planolites isp. <strong>and</strong> Helminthopsis<br />

horizontalis have been recognised in the GANE#1<br />

<strong>and</strong> GANK#1 cores (Dam <strong>19</strong>96b, c).<br />

Depositional environment. The macr<strong>of</strong>ossils <strong>and</strong> the<br />

dinocysts indicate a marine depositional environment.<br />

Based on the height <strong>of</strong> the overlying foresets in the hyaloclastite<br />

breccias, the water depth can be estimated to<br />

have been up to 700 m (A.K. Pedersen et al. <strong>19</strong>93). The<br />

s<strong>and</strong>stones are interpreted as the deposits <strong>of</strong> waning<br />

stage high- to low-density turbidity currents. However,<br />

tuff layers deposited from suspension have also been<br />

recorded (A.K. Pedersen et al. <strong>19</strong>89). Volcanism started<br />

from eruption centres in the north-western <strong>and</strong> western<br />

part <strong>of</strong> the region erupting directly into a deep marine<br />

environment covering large parts <strong>of</strong> Nuussuaq <strong>and</strong> northern<br />

Disko. The fossiliferous volcaniclastic s<strong>and</strong>stones<br />

<strong>and</strong> tuffs represent the distal bottomsets <strong>of</strong> major hyaloclastite<br />

beds <strong>of</strong> the Vaigat Formation (A.K. Pedersen<br />

<strong>19</strong>85), the result <strong>of</strong> sediment gravity flows that transported<br />

volcanic detritus <strong>and</strong> fossils into deeper water.<br />

136


Fig. 121. Well reference section <strong>of</strong> the<br />

Eqalulik Formation in the GANK#1 well.<br />

For location, see Fig. 65; for legend, see<br />

Plate 1.<br />

m<br />

250<br />

Vaigat Fm<br />

Annaanaa Mb<br />

m<br />

GANK#1<br />

110 Hyaloclastites<br />

Eqalulik Formation<br />

300<br />

150<br />

?Kangilia Formation<br />

Eqalulik Formation<br />

350<br />

200<br />

400<br />

clay si<br />

vf<br />

f m c vc<br />

s<strong>and</strong> pb<br />

250<br />

vf<br />

clay si<br />

f m c vc<br />

s<strong>and</strong><br />

pb<br />

ary is, however, difficult to place in the field since outcrops<br />

are generally very poor in these mudstone-domi -<br />

nated successions. Along the north coast <strong>of</strong> Nuussuaq <strong>and</strong><br />

in the Tunorsuaq valley, a conspicuous change in the<br />

colour <strong>of</strong> bottom sediment in small streams draining the<br />

local lithologies has been observed to occur at a distinctive<br />

level high in the sections. In the lower part <strong>of</strong> the<br />

sections, the stream-bed sediments are ochreous whereas<br />

this colouring is not present at higher levels; this change<br />

may reflect the sulphide content in the mudstones <strong>of</strong><br />

the two formations <strong>and</strong> thus aid localisation <strong>of</strong> the formation<br />

boundary. If so, the mudstones <strong>of</strong> the Kangilia<br />

Formation were deposited in a poorly oxygenated, deepwater<br />

environment in contrast to the Eqalulik Formation<br />

where more oxygenated conditions could have resulted<br />

from intermittent disturbance <strong>of</strong> bottom waters by progradation<br />

<strong>of</strong> volcanic breccias.<br />

The upper boundary is generally placed at the base <strong>of</strong><br />

the West Greenl<strong>and</strong> Basalt Group, at the base <strong>of</strong> the<br />

major hyaloclastic foreset beds <strong>of</strong> the Vaigat Formation<br />

or at sills situated along the base <strong>of</strong> the Vaigat Formation<br />

(Hald & Pedersen <strong>19</strong>75; A.K. Pedersen et al. <strong>19</strong>93). On<br />

southern Nuussuaq, however, between Ataa <strong>and</strong> Ippigaar -<br />

sukkløften (Fig. 40), the marine conditions prevailing during<br />

deposition <strong>of</strong> the Eqalulik Formation were succeeded<br />

by lacustrine environments, <strong>and</strong> consequently the Eqalulik<br />

Formation is overlain by non-marine shales <strong>of</strong> the<br />

Atanikerluk Formation (A.K. Pedersen et al. <strong>19</strong>96; G.K.<br />

Pedersen et al. <strong>19</strong>98).<br />

<strong>Geological</strong> age. The Eqalulik Formation is visibly diachronous,<br />

reflecting the progressive eastward progradation<br />

<strong>of</strong> the hyaloclastite fans which are very well exposed<br />

along the slopes overlooking the south coast <strong>of</strong> Nuussuaq<br />

137


<strong>of</strong> the Vaigat Formation in the north-western part <strong>of</strong> the<br />

basin (Nøhr-Hansen et al. 2002). The tuffs <strong>of</strong> the<br />

Abraham Member (see below) have a unique composition<br />

with graphite <strong>and</strong> native iron that allows them to<br />

be correlated with the volcanic Asuk Member (A.K.<br />

Pedersen et al. <strong>19</strong>89).<br />

Subdivision. The volcaniclastic sediments in Agatdalen<br />

<strong>and</strong> Qilakitsoq will continue to be assigned to a separate<br />

member, the Abraham Member, because <strong>of</strong> their<br />

unique geochemical composition which permits correlation<br />

<strong>of</strong> the sediments with the volcanic Asuk Member<br />

<strong>of</strong> the Vaigat Formation.<br />

Abraham Member<br />

revised member<br />

History. The Abraham Member was established by Rosen -<br />

krantz (in: Koch <strong>19</strong>59 pp. 75–78) as the uppermost<br />

member <strong>of</strong> the Agatdal Formation, but is now included<br />

in the Eqalulik Formation on the basis <strong>of</strong> the characteristic<br />

content <strong>of</strong> volcaniclastic material.<br />

Fig. 122. Fossiliferous, volcaniclastic s<strong>and</strong>stones <strong>of</strong> the Eqalulik<br />

Formation at Danienrygge. Pencil (encircled) <strong>and</strong> person for scale.<br />

(A.K. Pedersen et al. <strong>19</strong>93). However, the biostratigraphic<br />

resolution is in most cases not good enough to resolve<br />

this diachronism. The macr<strong>of</strong>auna at the type locality <strong>and</strong><br />

on central Nuussuaq indicates an Early Danian age<br />

(Rosenkrantz <strong>19</strong>70; Floris <strong>19</strong>72; Henderson et al. <strong>19</strong>76).<br />

The coccolith assemblage has been related to the NP3<br />

nannoplankton zone by Jürgensen & Mikkelsen (<strong>19</strong>74);<br />

however, new dinocyst <strong>and</strong> nannoplankton data indicate<br />

an NP4 – possibly base NP5 zone age (latest Danian<br />

– early Sel<strong>and</strong>ian; Nøhr-Hansen et al. 2002). 40 Ar/ 39 Ar<br />

age determinations <strong>of</strong> the volcanic rocks <strong>of</strong> the Anaanaa<br />

Member (Vaigat Formation) overlying the Eqalulik For -<br />

mation yield an age <strong>of</strong> 60.7 ± 1.0 (recalculated from<br />

Storey et al. <strong>19</strong>98).<br />

Correlation. On the basis <strong>of</strong> dinocyst markers, the strata<br />

in the type section can be correlated with the volcanic<br />

hyaloclastites <strong>of</strong> the Anaanaa <strong>and</strong> Naujánguit Members<br />

Name. After Abraham Løvstrøm from Niaqornat, who<br />

for 30 years was a member <strong>of</strong> Rosenkrantz’s expeditions<br />

to Nuussuaq (Fig. 7).<br />

Distribution. The Abraham Member is known from two<br />

localities in the northernmost part <strong>of</strong> the Agatdalen valley<br />

(Fig. 113) <strong>and</strong> from the Qilakitsoq area in the<br />

Aaffarsuaq valley (Fig. 82).<br />

Type section. The type section <strong>of</strong> the Abraham Member<br />

is in Turritellakløft at the northern end <strong>of</strong> Agatdalen<br />

(Fig. 113, 114, Plate 3, section 1). The type section is<br />

located at 70°35.01´N, 53°08.02´W.<br />

Reference section. A reference section occurs in ‘Ravine 4’<br />

east <strong>of</strong> Qilakitsoq (Figs 82, 83).<br />

Thickness. The thickness <strong>of</strong> the Abraham Member is<br />

approximately 12 m in the type section, 10 m in<br />

Qaersutjægerdal in Agatdalen <strong>and</strong> 10–20 m at Qilakitsoq.<br />

Lithology. The Abraham Member consists <strong>of</strong> black <strong>and</strong><br />

grey s<strong>and</strong>y mudstones intercalated with fossiliferous<br />

reworked volcaniclastic s<strong>and</strong>stones <strong>and</strong> basement pebble<br />

conglomerates (Figs 114, 115, Plate 3). Volcanic<br />

material may constitute up to 25% <strong>of</strong> the section (A.K.<br />

138


Pedersen <strong>19</strong>78). The beds are usually structureless, but<br />

cross-bedding has been recognised locally. Volcaniclastic<br />

s<strong>and</strong>stones also occur as thin streaks in the mudstones<br />

<strong>and</strong> may include spherules <strong>of</strong> volcanic glass or tuff with<br />

a distinct chemical composition known only from the<br />

Asuk Member erupted from the Ilugissoq graphite <strong>and</strong>esite<br />

volcano (A.K. Pedersen <strong>19</strong>85; A.K. Pedersen & Larsen<br />

2006). In the lower part <strong>of</strong> the member, the mudstones<br />

are very dark, fossiliferous <strong>and</strong> rich in concretions. At one<br />

horizon, in situ corals are present in small bioherms,<br />

10–20 cm high <strong>and</strong> less than 1 m wide (Plate 3, section<br />

4). This horizon can be followed for more than a kilometre<br />

on the eastern bank <strong>of</strong> Qaersutjægerdal. The content<br />

<strong>of</strong> volcaniclastic s<strong>and</strong>stones increases upwards in<br />

the section.<br />

Fossils. A sparse but diverse marine fauna <strong>and</strong> flora has<br />

been recorded from the Abraham Member, comprising<br />

scleractinian corals, echinoids, bivalves, gastropods, crustaceans,<br />

fish remains <strong>and</strong> palynomorphs (Bendix-<br />

Almgreen <strong>19</strong>69; Rosenkrantz <strong>19</strong>70; Floris <strong>19</strong>72; Koll -<br />

mann & Peel <strong>19</strong>83; Piasecki et al. <strong>19</strong>92; Petersen &<br />

Vedelsby 2000).<br />

Depositional environment. The macr<strong>of</strong>ossil content in the<br />

lower part <strong>of</strong> the member indicates a marine depositional<br />

environment. However, an increase up-section in<br />

terrestrially derived palynomorphs indicates that the<br />

environment became increasingly brackish with time.<br />

Sedimentary structures in the volcaniclastic s<strong>and</strong>stones<br />

indicate deposition from turbidity currents. The corals<br />

suggest a shallow water (50?–80 m) marine environment<br />

in a warm temperate climate (Floris <strong>19</strong>72), but where<br />

the corals were redeposited the water depth may well<br />

have exceeded 80 m.<br />

Boundaries. A sharp lithological boundary occurs between<br />

the s<strong>and</strong>stones <strong>of</strong> the Agatdal Formation <strong>and</strong> the interbedded<br />

mudstones <strong>and</strong> volcaniclastic s<strong>and</strong>stones <strong>of</strong> the<br />

Abraham Member (Figs 114, 115). At Qilakitsoq <strong>and</strong> in<br />

the northern part <strong>of</strong> Agatdalen, the Abraham Member<br />

is succeeded by hyaloclastites <strong>of</strong> the Naujánguit Member,<br />

whereas in the eastern part <strong>of</strong> Agatdalen the Abraham<br />

Member is succeeded by hyaloclastites <strong>of</strong> the Tunoqqu<br />

Member (A.K. Pedersen <strong>19</strong>78; Piasecki et al. <strong>19</strong>92; A.K.<br />

Pedersen, personal communication <strong>19</strong>99).<br />

<strong>Geological</strong> age. As for the Eqalulik Formation, i.e. latest<br />

Danian to early Sel<strong>and</strong>ian.<br />

Correlation. The geochemical correlation <strong>of</strong> the Abraham<br />

Member with the hyaloclastites <strong>of</strong> the Asuk Member <strong>of</strong><br />

the Vaigat Formation (A.K. Pedersen <strong>19</strong>78, <strong>19</strong>85; A.K.<br />

Pedersen & Larsen 2006) ties these isolated outcrops to<br />

the mapped volcanic succession on the south coast <strong>of</strong><br />

Nuussuaq (A.K. Pedersen et al. <strong>19</strong>93).<br />

Atanikerluk Formation<br />

new formation<br />

History. The Atanikerluk Formation comprises the synvolcanic<br />

non-marine sediments in the Nuussuaq Basin;<br />

in the eastern part <strong>of</strong> the basin, it includes almost all the<br />

sediments overlying the Atane Formation (Fig. 16). It is<br />

divided into five members (Fig. 123), which are correlated<br />

to members in the volcanic Vaigat <strong>and</strong> Maligât<br />

Formations (Fig. 131). The intra- <strong>and</strong> post-volcanic sediments<br />

<strong>of</strong> the Nuussuaq Basin are not included in the<br />

Nuussuaq Group <strong>and</strong> are therefore not discussed here.<br />

Koch <strong>19</strong>59<br />

Nuussuaq<br />

Nuussuaq<br />

This paper<br />

Disko<br />

Fig. 123. Lithostratigraphical subdivisions<br />

<strong>of</strong> the synvolcanic, non-marine deposits <strong>of</strong><br />

the Nuussuaq Basin.<br />

Upper<br />

Atanikerdluk<br />

Formation<br />

Point 976 Member<br />

Aussivik Member<br />

Umiussat Member Umiussat Member Umiussat Member<br />

Naujât Member<br />

Quikavsak Member<br />

Assoq Member<br />

Naujât Member<br />

Quikavsak<br />

Formation<br />

Assoq Member<br />

Pingu Member<br />

Akunneq Member<br />

Naujât Mb<br />

Not present<br />

Atanikerluk<br />

Formation<br />

139


Illukunnguaq<br />

Ujarasussuk<br />

Nuugaarsuk<br />

Akunneq<br />

Sullorsuaq<br />

Vaigat<br />

Q E Q E R T A R S U A Q<br />

Inngigissoq<br />

Pingu<br />

D I S K O<br />

69°45’<br />

Sorte Hak<br />

Storbræen<br />

Frederik Lange Dal<br />

Sullorsuaq Kv<strong>and</strong>alen<br />

Aqajaruata<br />

Qaqqaa<br />

Aqajarua<br />

Mudderbugten<br />

Daugaard-Jensen Dal<br />

Sermersuaq<br />

Laksedalen<br />

Killussaatsut Kuuat<br />

Blåbærdalen K uk Qaamasoq<br />

Akuliarutsip Qaqqaa<br />

Skorstensfjeldet<br />

Gule Ryg<br />

Flakkerhuk<br />

t<br />

69°30’<br />

Killussaatsut<br />

Quaternary cover<br />

Maligât Formation<br />

Siniffik<br />

Kuuk Qaamasoq<br />

Tuapaat<br />

Qaqqaat<br />

Marraat Nuuk<br />

Killuusat<br />

Innanguit<br />

Illunnguaq<br />

Tuapaat<br />

Aamaruutissat<br />

Skansen<br />

Innaarsuit<br />

Skansen<br />

Intrusion<br />

Atanikerluk Formation<br />

S<strong>and</strong>stone<br />

Atanikerluk Formation<br />

Mudstone<br />

Atane Formation<br />

Skansen Member<br />

Ice<br />

Sea/lake<br />

Assoq<br />

Niuluut<br />

53°<br />

5 km<br />

52°30’<br />

500<br />

Contour in metres<br />

52°<br />

Fig. 124. <strong>Geological</strong> map showing the distribution <strong>of</strong> the Atane <strong>and</strong> Atanikerluk Formations on eastern Disko, simplified from A.K. Pedersen<br />

et al. (2001). Note that the outcrops <strong>of</strong> the Atanikerluk Formation are discontinuous. Contour interval is 200 m. For location, see Fig. 2.<br />

140


In detail, however, the boundary between the Atanikerluk<br />

Formation <strong>and</strong> the volcanic formations can be complex,<br />

hyaloclastite breccias <strong>and</strong> invasive lavas interdigitating with<br />

the sedimentary succession. These sediments, interstratified<br />

locally with the lowermost volcanic layers, are<br />

intimately associated with the uppermost Nuussuaq<br />

Group strata <strong>and</strong> are thus referred to the Atanikerluk<br />

Formation where demonstrably related to an interdigitating<br />

volcanic–sediment facies front (Figs 17, 131).<br />

Two new formations, the Quikavsak Formation <strong>and</strong><br />

the Atanikerluk Formation, replace the ‘Upper Atani kerd -<br />

luk Formation’ <strong>of</strong> Nordenskiöld (1871), Troelsen (<strong>19</strong>56)<br />

<strong>and</strong> Koch (<strong>19</strong>59). The term ‘Upper Atanikerdluk For -<br />

mation’ dates back to Nordenskiöld (1871), who used<br />

this name for the beds (Öfre Atanekerdluklagren) containing<br />

the upper flora in the Atanikerluk area. The plant<br />

fossils occur in concretions that are dark grey on fresh<br />

surfaces but weather to a dark red colour (Nordenskiöld<br />

1871 pp. 1051–52). Koch (<strong>19</strong>59) reported that these<br />

concretions contain the Upper Atanikerdluk A flora <strong>of</strong><br />

Heer (1883a, b) <strong>and</strong> that they occur in his Quikavsak<br />

Member, i.e. the Quikavsak Formation <strong>of</strong> the present<br />

paper. The name Atanikerluk Formation is proposed<br />

because it does not imply the existence <strong>of</strong> a ‘Lower<br />

Atanikerd luk Formation’. Although a Lower Atanikerdluk<br />

Flora was mentioned by Heer (1868), this originated<br />

from the Atane Formation as recognised as early as 1871<br />

by Nordenskiöld.<br />

Koch (<strong>19</strong>59) subdivided the Upper Atanikerdluk<br />

Formation into five members on Nuussuaq (Fig. 123)<br />

but attempted no subdivision <strong>of</strong> the formation on Disko.<br />

His Quikavsak Member is here established as the Qui -<br />

kavsak Formation. Two <strong>of</strong> Koch’s members on Nuus -<br />

suaq are retained (the Naujât <strong>and</strong> Umiussat Members),<br />

whereas the Aussivik <strong>and</strong> Point 976 Members are ab<strong>and</strong>oned<br />

<strong>and</strong> the sediments are referred to the new Assoq<br />

Member. The reason for this is that the Aussivik <strong>and</strong><br />

Point 976 Members are only found in a very small area<br />

<strong>of</strong> south-eastern Nuussuaq (A.K. Pedersen et al. 2007b).<br />

On Disko, a subdivision into five members is proposed<br />

(the Naujât, Akunneq, Pingu, Umiussat, <strong>and</strong> Assoq Mem -<br />

bers; Fig. 123). The subdivision <strong>of</strong> the Atanikerluk<br />

Formation into five members reflects the dramatic palaeogeographic<br />

changes that accompanied the intense volcanic<br />

activity.<br />

Name. The formation is named after the Atanikerluk<br />

peninsula formed by a sill on the south coast <strong>of</strong> Nuussuaq<br />

(Fig. 40). The name was formerly spelled Atanekerdluk<br />

or Atanikerdluk.<br />

Distribution. The Atanikerluk Formation is known on<br />

south-east Nuussuaq (Saqqaqdalen, Atanikerluk, Kingit -<br />

toq, Paatuut, <strong>and</strong> Ataata Kuua), on central Nuussuaq<br />

(Nassaat <strong>and</strong> locally in Aaffarsuaq), on eastern Disko<br />

(Assoq, Tuapaat Qaqqaat, Gule Ryg, Pingu, Nuugaarsuk,<br />

Frederik Lange Dal) <strong>and</strong> central Disko (Daugaard Jensen<br />

Dal <strong>and</strong> Sorte Hak; Figs 2, 40, 124). In the Atanikerluk<br />

area, the formation was mapped in great detail by Koch<br />

& Pedersen (<strong>19</strong>60). Paleocene siliciclastic sediments are<br />

also present on Svartenhuk Halvø, where they are overlain<br />

by the volcanic Vaigat <strong>and</strong> Svartenhuk Formations<br />

(J.G. Larsen, personal communication 2008). These sediments<br />

remain unstudied in detail <strong>and</strong> the distribution<br />

<strong>of</strong> marine pre-volcanic, marine synvolcanic <strong>and</strong> nonmarine<br />

synvolcanic deposits is not known at present. In<br />

the future, Paleocene non-marine, synvolcanic sediments<br />

on Svartenhuk Halvø may be established as one or more<br />

members within the Atanikerluk Formation.<br />

Type section. The section in the south-facing slope between<br />

Atanikerluk <strong>and</strong> Tartunaq on south-east Nuussuaq is<br />

retained as the type section (Figs 125, 126) for the<br />

Atanikerluk Formation. This was described in detail by<br />

Koch (<strong>19</strong>59), who defined type sections for several members<br />

<strong>of</strong> the formation in this area. The type section is<br />

located at 70° 03.63´N, 52°13.53´W.<br />

Reference sections. Reference sections <strong>of</strong> the Atanikerluk<br />

Formation are found at Kingittoq, at Pingu <strong>and</strong> in the<br />

Tuapaat area (Figs 7, 132, 140). The stratigraphic succession<br />

in north-east Disko has been compiled from the<br />

(mainly sedimentary) sections on both sides <strong>of</strong> Akunneq<br />

<strong>and</strong> the volcanic succession at Aqajaruata Qaqqaa, south<br />

<strong>of</strong> Akunneq (A.K. Pedersen et al. 2005) (Figs 124, 131).<br />

Thickness. The Atanikerluk Formation is up to 500 m<br />

thick in a composite section, but individual outcrops<br />

reach thicknesses <strong>of</strong> c. 400 m (Pingu), c. 300 m (Kingittoq,<br />

Atanikerluk) <strong>and</strong> 200–250 m (Saqqaqdalen) (Figs 126,<br />

128). At Tuapaat Qaqqaat, the thickness is difficult to<br />

measure due to l<strong>and</strong>slides <strong>and</strong> interbedding <strong>of</strong> sediments<br />

<strong>and</strong> invasive lava flows (Fig. 140). Invasive lava flows are<br />

discussed below under ‘Lithology’.<br />

Lithology. The Atanikerluk Formation comprises mudstones,<br />

heterolithic s<strong>and</strong>stones, <strong>and</strong> fine-grained, loosely<br />

cemented s<strong>and</strong>stones. Mudstones are dominant in the<br />

Naujât <strong>and</strong> Pingu Members (Fig. 127) <strong>and</strong> in the lower<br />

part <strong>of</strong> the Assoq Member, whereas very friable s<strong>and</strong>stones<br />

characterise the Akunneq <strong>and</strong> Umiussat Members<br />

<strong>and</strong> the upper part <strong>of</strong> the Assoq Member. On a regional<br />

141


Naujât Member<br />

Qallorsuaq<br />

‘Keglen’<br />

Iviangernat<br />

Assoq Member<br />

invasive lava<br />

Atanikerluk Formation<br />

Umiussat Member<br />

subaerial lava flow<br />

Atane Formation<br />

Kingittoq Member<br />

Fig. 125. The coastal slope above Atanikerluk where Koch (<strong>19</strong>59) described the strata <strong>of</strong> the Atanikerluk Formation (for location, see Fig.<br />

40). The peak at Iviangernat is 1031 m a.s.l. The Albian to Cenomanian Kingittoq Member <strong>of</strong> the Atane Formation is up to 500 m thick<br />

<strong>and</strong> is overlain by the Paleocene Atanikerluk Formation (see Figs 16, 17).<br />

scale, the formation comprises two coarsening-upward<br />

successions that may include thinner, coarsening-upward<br />

successions on a local scale (Figs 16, 131).<br />

The mudstones are grey to dark grey, with abundant<br />

silt-sized particles <strong>and</strong> with kaolinite <strong>and</strong> quartz as the<br />

dominant minerals. In addition, gibbsite in subordinate<br />

amounts has been detected consistently in samples from<br />

the Pingu Member <strong>and</strong> commonly in the Assoq Member.<br />

Locally, rows <strong>of</strong> small, yellowish brown siderite concretions<br />

occur in the mudstones (G.K. Pedersen <strong>19</strong>89; G.K.<br />

Pedersen et al. <strong>19</strong>98). Reworked Cretaceous palynomorphs<br />

are found in the lowest part <strong>of</strong> the Atanikerluk Formation<br />

at Akunneq (Hjortkjær <strong>19</strong>91), suggesting that the formation<br />

also contains redeposited silt <strong>and</strong> clay. Interbedded<br />

with the mudstones are thin layers <strong>of</strong> tuff. The particles<br />

are in the coarse s<strong>and</strong> fraction <strong>and</strong> have a brownish colour<br />

that weathers to pale buff or white. The strong alteration<br />

precludes a determination <strong>of</strong> the original chemical composition<br />

<strong>of</strong> the volcanic glass.<br />

The s<strong>and</strong>stones are weakly cemented, <strong>and</strong> in several<br />

outcrops the lithology may be better described as s<strong>and</strong>.<br />

Colours range from pale grey to deep yellow, <strong>and</strong> fine<br />

coal debris is common. The s<strong>and</strong> or s<strong>and</strong>stones are generally<br />

fine- to medium-grained; coarser grain sizes occur<br />

but are volumetrically insignificant. Chert pebbles derived<br />

from Ordovician sediments occur in the coarser facies,<br />

as also seen locally in the Atane Formation. The sediments<br />

<strong>of</strong> the Atanikerluk Formation could therefore include<br />

material reworked from Cretaceous Atane Formation s<strong>and</strong><br />

or s<strong>and</strong>stones. This is supported by the occurrences <strong>of</strong><br />

few Paleocene palynomorphs together with more numerous<br />

Cretaceous spores <strong>and</strong> pollen in the lower part <strong>of</strong> the<br />

Akunneq Member at Pingu (Fig. 132, 285–355 m).<br />

The siliciclastic sediments are interbedded with volcanic<br />

rocks such as hyaloclastite breccias, invasive or subaqueous<br />

lava flows <strong>and</strong> tuffs. Hyaloclastite breccias<br />

comprise particles ranging from boulder-sized pillow<br />

fragments to s<strong>and</strong>-sized grains <strong>of</strong> glass; these rocks formed<br />

142


Fig. 126. Composite type section <strong>of</strong> the<br />

Atanikerluk Formation from the<br />

Atanikerluk area between Naajaat <strong>and</strong><br />

Umiusat, south-eastern Nuussuaq (for<br />

location, see Fig. 40). 1: Section through<br />

the Naujât Member from Saqqaqdalen at<br />

the type locality defined by Koch (<strong>19</strong>59)<br />

(Fig. 129). 2: Sections through the<br />

Umiussat Member from discontinuous<br />

outcrops in the Umiusat area (Figs 136,<br />

137). 3: Section through the upper part <strong>of</strong><br />

the Naujât Member <strong>and</strong> the upper part <strong>of</strong><br />

the Assoq Member, formerly the Point 976<br />

Member <strong>of</strong> Koch (<strong>19</strong>59) from discontinuous<br />

outcrops below Keglen (Fig. 125). For<br />

legend, see Plate 1.<br />

Atanikerluk Formation<br />

Naujât Member<br />

m<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Quikavsak<br />

Formation<br />

0<br />

1 3<br />

t 5<br />

t 2,4,5<br />

t 3,1,2<br />

Atanikerluk Formation<br />

Naujât Member Umiussat Member<br />

Assoq Member<br />

?<br />

m<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50<br />

* *<br />

40<br />

30<br />

20<br />

10<br />

0<br />

30<br />

20<br />

10<br />

0<br />

20<br />

10<br />

0<br />

2<br />

vf<br />

clay silt<br />

f m c vc<br />

s<strong>and</strong><br />

vf<br />

clay silt<br />

f m c vc<br />

s<strong>and</strong><br />

when lava flowed into water. The breccias are <strong>of</strong>ten foreset-bedded<br />

<strong>and</strong> the height <strong>of</strong> the foresets provides an<br />

indication <strong>of</strong> water depth (Jones & Nelson <strong>19</strong>70; A.K.<br />

Pedersen et al. <strong>19</strong>96; G.K. Pedersen et al. <strong>19</strong>98). Invasive<br />

or subaqueous lava flows formed from large volumes <strong>of</strong><br />

lava that reached the lake floor <strong>and</strong> continued into<br />

(invaded) the unconsolidated sediment without forming<br />

breccias (Schmincke <strong>19</strong>67; Duffield et al. <strong>19</strong>86; L.M.<br />

Larsen & Pedersen <strong>19</strong>90; Tucker & Scott 2009). Invasive<br />

or subaqueous lava flows can be traced laterally into sub-<br />

143


Naujât Member<br />

Fig. 127. Reference locality <strong>of</strong> the Naujât<br />

Member (Atanikerluk Formation) at<br />

Kingittoq where lacustrine mudstones<br />

overlie the Atane Formation (see also G.K.<br />

Pedersen et al. <strong>19</strong>98 fig. 7). For location,<br />

see Fig. 2.<br />

sill<br />

Atane Formation<br />

aerial lava flows <strong>and</strong> are thus different from sills, <strong>and</strong> are<br />

only slightly younger than the sediments they invade.<br />

Many <strong>of</strong> the invasive lava flows have retained their chemical<br />

composition <strong>and</strong> may thus be correlated to the volcanic<br />

lithostratigraphy. Layers <strong>of</strong> tuff are composed <strong>of</strong><br />

s<strong>and</strong>-sized particles, <strong>and</strong> typically are less than 3 cm<br />

thick. The volcanic glass is strongly altered, <strong>and</strong> it is<br />

rarely possible to determine the original chemical composition<br />

<strong>of</strong> the glass.<br />

Fossils. The Atanikerluk Formation contains a rich macro -<br />

flora (Koch <strong>19</strong>59, <strong>19</strong>63, <strong>19</strong>64), which Koch referred to<br />

the Paleocene Macclintockia Zone characterised by Metasequoia<br />

occidentalis, Cercidiphyllum arcticum, Macclin -<br />

tockia Kanei, Macclintockia Lyalli <strong>and</strong> Dicotylophyllum<br />

bellum (Koch <strong>19</strong>59, <strong>19</strong>63). Koch identified the Upper<br />

Atanikerdluk A flora <strong>and</strong> the Upper Atanikerdluk B flora<br />

<strong>of</strong> Heer (1883a, b) in the basal part <strong>of</strong> the formation (lowermost<br />

Naujât Member). The Upper Atanikerdluk A<br />

flora is also present in the Nuuk Qiterleq Member <strong>of</strong> the<br />

Quikavsak Formation. The difference between the two<br />

floras reflects changes in depositional environments, but<br />

the floras are essentially coeval (Koch <strong>19</strong>63). The diagnostic<br />

species <strong>of</strong> the Macclintockia Zone occur in the<br />

Naujât Member but have also been found in the Abraham<br />

Member <strong>of</strong> the Eqalulik Formation (Koch <strong>19</strong>63 p. 112).<br />

The palynomorphs (mainly spores <strong>and</strong> pollen) <strong>of</strong> the<br />

Atanikerluk Formation have been described by Croxton<br />

(<strong>19</strong>78a, b), Hjortkjær (<strong>19</strong>91), L.M. Larsen et al. (<strong>19</strong>92),<br />

Piasecki et al. (<strong>19</strong>92), Lanstorp (<strong>19</strong>99) <strong>and</strong> D.J. McIntyre,<br />

personal communication 2009. Marine dinocysts <strong>and</strong><br />

rare bivalves have been reported locally from the Assoq<br />

Member.<br />

Depositional environment. The mudstones are interpreted<br />

as lacustrine deposits on the basis <strong>of</strong> the high C/S ratios,<br />

the absence <strong>of</strong> pyrite, the presence <strong>of</strong> terrestrial fossils<br />

(macr<strong>of</strong>ossil plants, spores <strong>and</strong> pollen) <strong>and</strong> the general<br />

absence <strong>of</strong> marine dinocysts (Hjortkjær <strong>19</strong>91; Piasecki<br />

et al. <strong>19</strong>92; G.K. Pedersen et al. <strong>19</strong>98). The s<strong>and</strong>stones<br />

are interpreted as dominantly fluvial <strong>and</strong> lacustrine in origin<br />

on the basis <strong>of</strong> the current-generated sedimentary<br />

structures, the lack <strong>of</strong> marine trace fossils, <strong>and</strong> their stratigraphic<br />

position relative to the lacustrine mudstones.<br />

Periodic marine inundations are indicated by the presence<br />

<strong>of</strong> marine fossils in the mudstones <strong>of</strong> the Assoq<br />

Member (Piasecki et al. <strong>19</strong>92).<br />

Boundaries. Over large areas, the Atanikerluk Formation<br />

rests on an unconformity that defines the upper boundary<br />

<strong>of</strong> the Atane Formation <strong>and</strong> which reflects a hiatus<br />

<strong>of</strong> varying duration. In more restricted areas, the Atani -<br />

kerluk Formation conformably overlies the Quikavsak<br />

<strong>and</strong> Eqalulik Formations, or the volcanic Vaigat Formation<br />

(Fig. 16). On south-eastern Nuussuaq, the Atanikerluk<br />

Formation overlies either the Atane or the Quikavsak<br />

Formation. Strata <strong>of</strong> the Atane Formation dip towards<br />

the north-east, whereas the strata <strong>of</strong> the Atanikerluk<br />

Formation are sub-horizontal (Fig. 129). Where the<br />

Quikavsak Formation is present, its upper boundary is<br />

also horizontal, indicating that the angular unconformity<br />

between the Atane <strong>and</strong> Atanikerluk Formations<br />

formed prior to the Danian. At other outcrops, the lacustrine<br />

mudstones <strong>of</strong> the Naujât Member drape erosional<br />

relief at the top <strong>of</strong> the Atane Formation (Figs 127, 130;<br />

Pulvertaft <strong>19</strong>89a; A.K. Pedersen et al. 2007a). The lower<br />

boundary <strong>of</strong> the Atanikerluk Formation on Nuussuaq is<br />

144


m<br />

m<br />

240<br />

340 m<br />

Pingu<br />

Member<br />

230<br />

230<br />

330<br />

220<br />

220<br />

320<br />

Atane Formation<br />

Atanikerluk Formation<br />

Skansen Member<br />

Akunneq Member (lower part)<br />

Akunneq Member (upper part)<br />

210<br />

200<br />

<strong>19</strong>0<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Atanikerluk Formation<br />

Atanikerluk Formation<br />

Akunneq Member<br />

Pingu Member Umiussat Member<br />

210<br />

200<br />

<strong>19</strong>0<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

6 8<br />

50<br />

30<br />

15 4<br />

15 6<br />

25<br />

36<br />

30<br />

10<br />

5<br />

concretion<br />

Assoq Member<br />

310<br />

300<br />

290<br />

280<br />

270<br />

260<br />

250<br />

240<br />

vf f m c vc<br />

clay silt s<strong>and</strong><br />

Fig. 128. Type section <strong>of</strong> the Akunneq <strong>and</strong><br />

Pingu Members (Atanikerluk Formation)<br />

measured at two closely spaced outcrops at<br />

Pingu on eastern Disko (for outcrop, see<br />

Fig. 132; for location, see Fig. 124). The<br />

boundary between the lower <strong>and</strong> upper<br />

parts <strong>of</strong> the Akunneq Member, at 110 m<br />

on the log (left), is at 335 m a.s.l. (Fig<br />

132). The locality is also the reference<br />

section for the Atanikerluk Formation, the<br />

Umiussat Member <strong>and</strong> the Assoq Member.<br />

For legend, see Plate 1.<br />

10<br />

10<br />

0<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

0<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

145


interpreted as a lacustrine flooding surface which can be<br />

mapped westwards into the volcanic terrain where it separates<br />

subaerial lavas <strong>of</strong> the Naujánguit Member from overlying<br />

hyaloclastite breccias at or just above the base <strong>of</strong><br />

the Ordlingassoq Member (A.K. Pedersen <strong>19</strong>85; A.K.<br />

Pedersen et al. <strong>19</strong>93; G.K. Pedersen et al. <strong>19</strong>98) (Fig. 131).<br />

On eastern Disko, the lowest member <strong>of</strong> the Atanikerluk<br />

Formation is the dominantly fluvial Akunneq Member,<br />

<strong>and</strong> the base <strong>of</strong> this member constitutes the lower boundary<br />

<strong>of</strong> the formation; this is well exposed in the coastal<br />

section from Pingu to Nuu gaarsuk (Figs 132, 133). The<br />

upper boundary <strong>of</strong> the Atanikerluk Formation is either<br />

a recent erosion surface or the boundary with volcanic<br />

or volcaniclastic deposits <strong>of</strong> the Vaigat or Maligât<br />

Formations (Figs 16, 131).<br />

<strong>Geological</strong> age. The Atanikerluk Formation is dated by<br />

dinocysts, pollen or plant macr<strong>of</strong>ossils, <strong>and</strong> is constrained<br />

by magnetostratigraphic <strong>and</strong> radiometric dating <strong>of</strong> the<br />

correlative volcanic units. A maximum age for the<br />

Atanikerluk Formation is obtained from the NP4 – possibly<br />

early NP5 marine dinocysts in the underlying<br />

Eqalulik Formation (Nøhr-Hansen et al. 2002). Samples<br />

from the volcanic Ordlingassoq <strong>and</strong> Rinks Dal Members<br />

give radiometric ages <strong>of</strong> 60.7–61.1 ± 0.5–1.0 Ma, recalculated<br />

from Storey et al. (<strong>19</strong>98). This indicates an early<br />

to mid-Paleocene (possibly Sel<strong>and</strong>ian) age for the<br />

Atanikerluk Formation according to the timescale <strong>of</strong><br />

Gradstein et al. (2004) <strong>and</strong> Ogg et al. (2008).<br />

Correlation. The two regional, coarsening-upward successions<br />

recognised in the Atanikerluk Formation correlate<br />

with the volcanic Ordlingassoq <strong>and</strong> Rinks Dal<br />

Members <strong>of</strong> the Vaigat <strong>and</strong> Maligât Formations respectively<br />

(Fig. 131). Correlation <strong>of</strong> individual members <strong>of</strong><br />

the Atanikerluk Formation to strata <strong>of</strong> the Vaigat For -<br />

mation on Disko presents some difficulties due to lack<br />

<strong>of</strong> exposures along the north coast <strong>of</strong> the isl<strong>and</strong>. The<br />

Atanikerluk Formation is younger than the Eqalulik<br />

Formation despite the similarity in macroplant fossils<br />

between the Abraham <strong>and</strong> the Naujât Members.<br />

Subdivision. The Atanikerluk Formation is subdivided into<br />

five members: the Naujât, Akunneq, Pingu, Umiussat <strong>and</strong><br />

Assoq Members (Fig. 123).<br />

Naujât Member<br />

revised member<br />

History. The Naujât Member was established by Koch<br />

(<strong>19</strong>59). Its distribution is exp<strong>and</strong>ed here, but otherwise<br />

the definition <strong>of</strong> the member is retained.<br />

Name. The member is named from a small cove (modern<br />

spelling Naajaat) on the south coast <strong>of</strong> Nuussuaq, just<br />

west <strong>of</strong> Saqqaqdalen (Fig. 40; Koch <strong>19</strong>55).<br />

Distribution. The distribution <strong>of</strong> the Naujât Member<br />

along the south-east coast <strong>of</strong> Nuussuaq was mapped by<br />

Koch (<strong>19</strong>59 plates 5–7). He recognised the Naujât<br />

Member in almost continuous outcrops <strong>and</strong> scree-covered<br />

slopes on the western side <strong>of</strong> Saqqaqdalen <strong>and</strong> along<br />

Naujât Member<br />

U<br />

S<br />

70 m<br />

S<br />

Q<br />

Atane<br />

Formation<br />

Fig. 129. Type locality <strong>of</strong> the Naujât<br />

Member (Atanikerluk Formation) along<br />

the western slope <strong>of</strong> Saqqaqdalen near<br />

Naajaat (for location, see Fig. 40). An<br />

angular unconformity is seen between the<br />

Atane Formation <strong>and</strong> the Quikavsak<br />

Formation (Q). The latter is conformably<br />

overlain by lacustrine mudstones <strong>of</strong> the<br />

Naujât Member, which is cut by a sill (S).<br />

The outcrop <strong>of</strong> pale yellow s<strong>and</strong>stones in<br />

the distance belongs to the Umiussat<br />

Member (U).<br />

146


Naujât Member<br />

Atane Formation, Kingittoq Member<br />

Fig. 130. Outcrop <strong>of</strong> the Naujât Member overlying the Atane Formation at Eqip Inaarsuata Qaqqaa, at the northern end <strong>of</strong> the Saqqaqdalen<br />

valley (located as EIQ in Fig. 2). The lacustrine mudstones drape erosional relief on the top <strong>of</strong> the Atane Formation. The Naujât Member is<br />

c. 200 m thick.<br />

the coast from Naajaat to Kingittoq (Fig. 40). The member<br />

was traced in scree <strong>and</strong> l<strong>and</strong>slides in the Paatuut area,<br />

<strong>and</strong>, at Ataata Kuua, in a thin succession between the mudstones<br />

<strong>of</strong> the Eqalulik Formation <strong>and</strong> the hyaloclastite<br />

breccias <strong>of</strong> the Ordlingassoq Member below Point 1010<br />

m (Figs 15, 16; A.K. Pedersen et al. <strong>19</strong>93, 2007b). In<br />

Saqqaqdalen, the Naujât Member continues northwards<br />

for about 25 km along the upper western slopes <strong>of</strong> the<br />

valley (A.K. Pedersen et al. 2007a).<br />

On Disko, the Naujât Member is known from scattered<br />

outcrops along the north coast at Qorlortorsuaq<br />

<strong>and</strong> towards Nuugaarsuk (G.K. Pedersen et al. <strong>19</strong>98 fig.<br />

12). The delineation <strong>of</strong> the member on Disko is also discussed<br />

under the distribution <strong>of</strong> the Pingu Member.<br />

Type section. The type section was described in the southwestern<br />

end <strong>of</strong> Saqqaqdalen, above Naajaat, by Koch<br />

(<strong>19</strong>59; Figs 124, 129). The type section is located at<br />

70°04.10´N, 52°10.78´W.<br />

Reference section. A reference section is proposed at<br />

Kingittoq (Fig. 127). A sedimentological log is shown<br />

in G.K. Pedersen et al. (<strong>19</strong>98 fig. 10).<br />

Thickness. The Naujât Member is thickest on Nuussuaq,<br />

up to 230 m at Kingittoq (Koch <strong>19</strong>59) <strong>and</strong> in Saqqaqdalen<br />

(G.K. Pedersen et al. <strong>19</strong>98). On Disko, the member is<br />

thin; up to 10 m are preserved at Qorlortorsuaq on the<br />

north coast between Qullissat <strong>and</strong> Asuk (A.K. Pedersen<br />

<strong>19</strong>85).<br />

Lithology. The Naujât Member comprises dark grey to<br />

black mudstones with thin, discontinuous layers <strong>of</strong> s<strong>and</strong>stones<br />

<strong>and</strong> thin tuff beds. The tuffs are strongly altered<br />

<strong>and</strong> the original chemical composition cannot be determined,<br />

but examination <strong>of</strong> thin sections suggests that the<br />

tuffs correlate with the Vaigat Formation. Mineralogically,<br />

the mudstones are dominated by kaolinite <strong>and</strong> quartz with<br />

minor feldspar, illite <strong>and</strong> smectite. Gibbsite has only<br />

been identified in 15% <strong>of</strong> the samples, mostly from the<br />

upper part <strong>of</strong> the member. Pyrite has not been detected.<br />

147


Paatuut<br />

1<br />

Qullissat Giesecke M.<br />

Inussuk Kingittoq<br />

2 Fjeld<br />

3<br />

Atanikerluk<br />

4<br />

53°W<br />

Vaigat Fm Maligât Fm<br />

upper Rinks Dal<br />

Mb<br />

Akuarut unit<br />

Skarvefjeld unit<br />

lower Rinks Dal<br />

Mb<br />

Ordlingassoq<br />

Mb<br />

Naujánguit Mb<br />

Subaerial<br />

surface<br />

Condensed<br />

section<br />

Condensed<br />

section<br />

Naujât Mb<br />

Assoq<br />

Mb<br />

Umiussat<br />

Mb<br />

Naujât<br />

Mb<br />

Atanikerluk Formation<br />

Hareøen<br />

70°N<br />

Nuussuaq<br />

1<br />

3<br />

2 4<br />

Disko<br />

10<br />

9<br />

11<br />

8<br />

7<br />

6<br />

5 50 km<br />

Anaanaa Mb<br />

Eqalulik Fm<br />

Skarvefjeld<br />

5<br />

Assoq<br />

Marraat<br />

6<br />

Tuapaat<br />

7<br />

Peak<br />

1123 m<br />

8<br />

Fr. Langes<br />

Dal<br />

9<br />

Ingigissoq<br />

10<br />

Pingu<br />

11<br />

Vaigat Fm Maligât Fm<br />

upper Rinks Dal<br />

Mb<br />

Akuarut unit<br />

Skarvefjeld unit<br />

lower Rinks Dal<br />

Mb<br />

Ordlingassoq<br />

Mb<br />

60.7±0.4<br />

60.9±0.4<br />

61.1±0.5<br />

60.7±1.0<br />

Naujánguit Mb 60.8±0.5<br />

Assoq<br />

Mb<br />

Assoq Mb<br />

Umiussat Mb<br />

Pingu Mb<br />

Akunneq Mb<br />

Atanikerluk Formation<br />

Anaanaa Mb<br />

Subaerial lava flow<br />

Subaqueous lava flow<br />

Hyaloclastite breccia<br />

Entablature zone<br />

Columnar jointing<br />

S<strong>and</strong>stone<br />

Lacustrine mudstone<br />

Marine mudstone<br />

Conglomerate<br />

Coal<br />

Marine din<strong>of</strong>lagellate<br />

Fig. 131. Simplified stratigraphic sections showing the relationships between the volcanic rocks (colour coded) <strong>of</strong> the Vaigat <strong>and</strong> Maligât<br />

Formations (West Greenl<strong>and</strong> Basalt Group) <strong>and</strong> the Atanikerluk Formation. The upper boundary <strong>of</strong> the Assoq Member is indicated (dashed<br />

line). The invasive, subaqueous lavas are all assigned to the Maligât Formation. The radiometric ages are recalculated from Storey et al. (<strong>19</strong>98).<br />

148


The TOC [Total Organic Carbon] content is high (up<br />

to 11%) <strong>and</strong> C/S ratios are high (G.K. Pedersen et al.<br />

<strong>19</strong>98). Perregaard & Schiener (<strong>19</strong>79) noted that the<br />

organic matter is immature, consisting <strong>of</strong> exinite (c.<br />

50%), vitrinite (c. 35%) <strong>and</strong> inertinite (c. 15%), <strong>and</strong><br />

that it is chemically dominated by saturated <strong>and</strong> aromatic<br />

hydrocarbons. A study <strong>of</strong> palyn<strong>of</strong>acies indicates a<br />

predominance <strong>of</strong> brown <strong>and</strong> black lignite (Hjortkjær<br />

<strong>19</strong>91).<br />

Fossils. The Naujât Member has yielded well-preserved<br />

macroplant fossils, the Upper Atanikerdluk flora A <strong>and</strong><br />

B <strong>of</strong> Heer (1883a, b; Koch <strong>19</strong>59, <strong>19</strong>63). Leaves from<br />

deciduous trees are an important constituent in the flora<br />

which includes: Cladophlebis groenl<strong>and</strong>ica, Metasequoia<br />

occidentalis, Cercidiphyllum arcticum, Dicotylophyllum<br />

bellum, Dicotylophyllum Steenstrupianum, Macclintokia<br />

Kanei, Macclintockia Lyalli <strong>and</strong> Credneria spectabilis (Koch<br />

<strong>19</strong>63).<br />

The assemblage <strong>of</strong> spores <strong>and</strong> pollen in the Naujât<br />

Member was studied by Hjortkjær (<strong>19</strong>91). The flora is<br />

dominated by palynomorphs <strong>of</strong> terrestrial origin, whereas<br />

remains <strong>of</strong> lacustrine plants <strong>and</strong> algae are rare. Pollen <strong>of</strong><br />

Taxodium spp. are abundant. The stratigraphically important<br />

mid-Paleocene species Momipites actinus <strong>and</strong> Caryapollenites<br />

wodehouseia are present in this member.<br />

Depositional environment. The Naujât Member is interpreted<br />

as a succession <strong>of</strong> lacustrine mudstones (Koch<br />

<strong>19</strong>59; Schiener & Leythaeuser, <strong>19</strong>78; G.K. Pedersen et<br />

al. <strong>19</strong>98). The lake formed through damming by the<br />

volcanic rocks <strong>of</strong> the Ordlingassoq Member, <strong>and</strong> it was<br />

filled simultaneously by hyaloclastite breccias from the<br />

west <strong>and</strong> siliciclastic mud from the east <strong>and</strong> south-east<br />

(G.K. Pedersen et al. <strong>19</strong>98). The abundance <strong>of</strong> kaolinite<br />

among the clay minerals suggests that these have the<br />

same provenance as the mudstones <strong>of</strong> the Cretaceous<br />

Atane Formation, probably areas <strong>of</strong> deeply weathered<br />

crystalline rocks east <strong>of</strong> the basin boundary fault.<br />

Boundaries. The lower boundary <strong>of</strong> the Naujât Member<br />

corresponds to the lower boundary <strong>of</strong> the Atanikerluk<br />

Formation in the area where the Naujât Member occurs<br />

(Figs 126, 129, 130). Mapping <strong>of</strong> the lower boundary<br />

is difficult in the Paatuut <strong>and</strong> Ataata Kuua areas where<br />

the member overlies marine mudstones <strong>of</strong> the Eqalulik<br />

Formation. In this area, the Naujât Member is also<br />

interbedded with the toesets <strong>of</strong> hyaloclastite breccias <strong>of</strong><br />

the Ordlingassoq Member (Fig. 17, locality 5). The upper<br />

boundary <strong>of</strong> the Naujât Member is everywhere towards<br />

either the Umiussat Member or the Ordlingassoq Member<br />

<strong>of</strong> the Vaigat Formation (Fig. 136).<br />

<strong>Geological</strong> age. Within the resolution <strong>of</strong> the dating methods,<br />

the age <strong>of</strong> the Naujât Member lies within the age<br />

range <strong>of</strong> the Atanikerluk Formation (i.e. early to mid-<br />

Paleocene, see p. 146).<br />

Correlation. The Naujât Member is coeval with the volcanic<br />

breccias <strong>of</strong> the Ordlingassoq Member; both members<br />

overlie the same lacustrine flooding surface (A.K.<br />

Pedersen et al. <strong>19</strong>93; G.K. Pedersen et al. <strong>19</strong>98). The lacustrine<br />

Naujât Member on Nuussuaq correlates with the<br />

fluvial Akunneq Member on north-eastern Disko. The<br />

palynomorph assemblages <strong>of</strong> the Naujât, Akunneq <strong>and</strong><br />

Pingu Members are similar, <strong>and</strong> the upper part <strong>of</strong> the<br />

Naujât Member correlates with the Pingu Member (Figs<br />

123, 131).<br />

Akunneq Member<br />

new member<br />

History. The sediments now referred to the Akunneq<br />

Member were formerly referred to the Upper Atanikerdluk<br />

Formation (Koch <strong>19</strong>64; Croxton <strong>19</strong>78a section C2).<br />

Name. The member is named after the Akunneq valley<br />

between the Pingu <strong>and</strong> Inngigissoq mountains on the<br />

north-east coast <strong>of</strong> Disko.<br />

Distribution. The Akunneq Member is known from the<br />

north-east coast <strong>of</strong> Disko (Pingu to Nuugaarsuk) <strong>and</strong><br />

southwards to Gule Ryg (Fig. 124).<br />

Type section. The section at Pingu on the eastern side <strong>of</strong><br />

Akunneq is chosen as the type section (Figs 128, 132).<br />

The type section is located at 69°47.53´N, 52°05.43´W.<br />

Reference section. The section on the western side <strong>of</strong><br />

Akunneq is chosen as the reference section.<br />

Thickness. The Akunneq Member is c.165 m thick at<br />

Pingu but only c.145 m at Nuugaarsuk. Thus the member<br />

decreases in thickness towards the west (Fig. 133).<br />

Lithology. The Akunneq Member is dominated by very<br />

friable s<strong>and</strong>stone. It comprises a coarse-grained lower<br />

part <strong>and</strong> a finer-grained upper part, separated by a mudstone<br />

horizon at 335 m a.s.l. in the Pingu–Akunneq sec-<br />

149


Pingu 845 m<br />

Upper Rinks Dal Member<br />

sill<br />

Umiussat<br />

Member<br />

Pingu<br />

Member<br />

Assoq Member<br />

sill<br />

sill<br />

Inngigissoq<br />

845 m<br />

U. Rinks Dal Member<br />

sill<br />

P<br />

Akunneq<br />

Member<br />

335 m a.s.l.<br />

d<br />

Akunneq Member<br />

285 m a.s.l.<br />

d<br />

Atane Formation<br />

Skansen Member<br />

Fig. 132. Outcrop <strong>of</strong> Atanikerluk Formation in the area between Pingu <strong>and</strong> Inngigissoq on eastern Disko cut by several dykes (d) <strong>and</strong> sills<br />

(for location, see Fig. 124). The boundary between the Atane Formation (Skansen Member) <strong>and</strong> the Atanikerluk Formation is set at 285 m<br />

a.s.l. The boundary at 335 m a.s.l. separates the lower <strong>and</strong> upper parts <strong>of</strong> the Akunneq Member (for section, see Fig. 128). P, Pingu Member.<br />

tion (Figs 132, 133). The lower part consists <strong>of</strong> large-scale<br />

cross-beddded, coarse-grained s<strong>and</strong>stones that differ little<br />

from the fluvial s<strong>and</strong>stones <strong>of</strong> the Atane Formation<br />

(Figs 128, 134). The upper part is dominated by finegrained<br />

white s<strong>and</strong>s interbedded with thinner horizons<br />

<strong>of</strong> mudstone, carbonaceous mudstone or thin coal seams.<br />

Bedding planes in the s<strong>and</strong>stone are <strong>of</strong>ten draped by<br />

coaly plant debris. Photogrammetric work shows that<br />

the c. 5 m thick mudstones are laterally continuous over<br />

a distance <strong>of</strong> 10 km, <strong>and</strong> that the proportion <strong>of</strong> finegrained<br />

facies increases in a westerly direction from Pingu<br />

to Nuugaarsuk. Locally, the upper s<strong>and</strong>stones include<br />

2–3 m thick beds with low-angle, composite cross-bedding.<br />

Bedform migration directions suggest westerly<br />

palaeocurrents.<br />

Fossils. Thin mudstone horizons in the Akunneq Member<br />

contain Paleocene spores <strong>and</strong> pollen as well as reworked<br />

species <strong>of</strong> Cretaceous (Cenomanian) age (Croxton <strong>19</strong>78a,<br />

b; Hjortkjær <strong>19</strong>91, D.J. McIntyre, personal communication<br />

2009). The upper part <strong>of</strong> the Akunneq Member<br />

is dominated by Paleocene species identical to those<br />

occurring in the Naujât <strong>and</strong> Pingu Members (Hjortkjær<br />

<strong>19</strong>91; B.F. Hjortkjær, personal communication <strong>19</strong>99).<br />

The lower part <strong>of</strong> the Akunneq Member is dominated<br />

by reworked Cenomanian species, <strong>and</strong> unquestionable<br />

Paleocene species are scarce (B.F. Hjortkjær, personal<br />

communication <strong>19</strong>99; D.J. McIntyre, personal communication<br />

2009).<br />

Depositional environment. The Akunneq Member is interpreted<br />

as a succession <strong>of</strong> s<strong>and</strong>y fluvial deposits interbedded<br />

with thin lacustrine mudstones. The s<strong>and</strong>stones in<br />

the lower part <strong>of</strong> the Akunneq Member are interpreted<br />

as deposited in braided channels. The change in grainsize<br />

<strong>and</strong> the ubiquitous coaly plant debris indicate lower<br />

energy, <strong>and</strong> the occasional occurrence <strong>of</strong> s<strong>and</strong>y point bar<br />

deposits suggests deposition in me<strong>and</strong>ering fluvial channels.<br />

The thin but laterally widespread mudstones are<br />

interpreted as reflecting short-lived phases <strong>of</strong> lake formation,<br />

<strong>and</strong> the coal beds represent peat formation.<br />

Towards the west, in a downstream direction, the Akunneq<br />

150


Fig. 133. Correlation <strong>of</strong> the members<br />

within the Atanikerluk Formation on<br />

north-east Disko. Note the general<br />

thinning <strong>of</strong> units westwards from Pingu to<br />

Nuugaarsuk. Altitudes above sea level are<br />

indicated. For location, see Fig. 124; for<br />

legend, see Plate 1.<br />

m<br />

700<br />

Pingu<br />

Assoq Member<br />

600<br />

Umiussat Member<br />

m<br />

600<br />

Nuugaarsuk<br />

500<br />

400<br />

300<br />

220<br />

Atane Formation Atanikerluk Formation<br />

Skansen Member<br />

Akunneq Member<br />

Pingu Member<br />

?<br />

500<br />

420<br />

400<br />

300<br />

260<br />

?<br />

mud s<strong>and</strong><br />

mud s<strong>and</strong><br />

151


Fig. 134. The illustrated, coarse-grained,<br />

fluvial s<strong>and</strong>stone unit, c. 30 m thick,<br />

showing large-scale cross-bedding is<br />

characteristic <strong>of</strong> the lower part <strong>of</strong> the<br />

Akunneq Member on the western side<br />

<strong>of</strong> Akunneq. The s<strong>and</strong>stone is abruptly<br />

overlain by grey muddy s<strong>and</strong>stones, also<br />

referred to the Akunneq Member. For<br />

location, see Fig. 124.<br />

Member becomes thinner with an increasing amount <strong>of</strong><br />

mudstone, which suggests that it was deposited on a<br />

floodplain adjacent to the ‘Naujât lake’.<br />

Boundaries. The lower boundary <strong>of</strong> the Akunneq Member<br />

corresponds to the lower boundary <strong>of</strong> the Atanikerluk<br />

Formation in the area <strong>of</strong> distribution <strong>of</strong> the Akunneq<br />

Member (Fig. 132). The geological map <strong>of</strong> the Pingu area<br />

shows that both the Atane <strong>and</strong> the Atanikerluk Formations<br />

are subhorizontal in north-east Disko (A.K. Pedersen et<br />

al. 2001). The boundary between the fluvial Skansen<br />

Member <strong>and</strong> the fluvial Akunneq Member may be difficult<br />

to identify in outcrops. In the Pingu area, the lower<br />

boundary <strong>of</strong> the Akunneq Member is placed at the base<br />

<strong>of</strong> a c. 3 m thick unit <strong>of</strong> bluish grey, laterally continuous<br />

mudstones, which forms a terrace with a steep front.<br />

The upper boundary <strong>of</strong> the Akunneq Member is placed<br />

at the base <strong>of</strong> the mudstones <strong>of</strong> the Pingu Member (Figs<br />

132, 133, 135).<br />

<strong>Geological</strong> age. Reworked Cretaceous spores <strong>and</strong> pollen<br />

dominate the lower part <strong>of</strong> the Akunneq Member, but<br />

the few Paleocene forms show that the age <strong>of</strong> the Akunneq<br />

Member lies within the age range <strong>of</strong> the Atanikerluk<br />

Formation (i.e. early to mid-Paleocene, see above).<br />

Correlation. The Akunneq Member is interpreted to correlate<br />

with the lower or middle part <strong>of</strong> the Naujât Member.<br />

Abundant l<strong>and</strong>slides on the north coast <strong>of</strong> Disko obscure<br />

the relationships between the Akunneq Member <strong>and</strong> the<br />

Ordlingassoq Member <strong>of</strong> the Vaigat Formation (A.K.<br />

Pedersen et al. 2005).<br />

Pingu Member<br />

new member<br />

History. Sediments referred to the Pingu Member were<br />

earlier described by Croxton (<strong>19</strong>78a section C2). Their<br />

sedimentary facies <strong>and</strong> depositional environment were<br />

discussed by G.K. Pedersen (<strong>19</strong>87, <strong>19</strong>89). The deposits<br />

were tentatively referred to the Naujât Member by G.K.<br />

Pedersen (<strong>19</strong>87). The difference in mineralogy, the lack<br />

<strong>of</strong> positive evidence that the Pingu <strong>and</strong> Naujât Members<br />

are continuous, <strong>and</strong> the prominence <strong>of</strong> this mudstone<br />

unit on north-east Disko are the reasons for erecting the<br />

Pingu Member.<br />

Name. The member is named from the mountain <strong>of</strong><br />

Pingu on north-east Disko (Figs 124, 132).<br />

Distribution. The Pingu Member is only known from outcrops<br />

on Disko. It is continuously exposed in the coastal<br />

section from Pingu to Nuugaarsuk <strong>and</strong> can be traced<br />

south-west <strong>of</strong> Pingu to Gule Ryg (Fig. 124).<br />

Type section. The section on the north side <strong>of</strong> Pingu (east<br />

<strong>of</strong> Akunneq) is chosen as the type section <strong>of</strong> the Pingu<br />

Member (Figs 128, 135). The type section is located at<br />

69°47.13´N, 52°02.12´W.<br />

Reference section. The section between Akunneq <strong>and</strong> Nuu -<br />

gaarsuk is chosen as the reference section <strong>of</strong> the Pingu<br />

Member (Figs 124, 133).<br />

152


Fig. 135. Type locality <strong>of</strong> the Pingu<br />

Member on the north side <strong>of</strong> Pingu (for<br />

location, see Fig. 124). Note the sharp<br />

lower boundary with the Akunneq<br />

Member <strong>and</strong> the transitional upper<br />

boundary with the Umiussat Member.<br />

Umiussat Member<br />

25 m<br />

Pingu Member<br />

Akunneq<br />

Member<br />

Thickness. The Pingu Member is 85 m thick at Pingu,<br />

probably thinning towards Nuugaarsuk, although the<br />

thickness is difficult to measure at the latter locality due<br />

to l<strong>and</strong>slides (Fig. 133). The member is more than 30<br />

m thick at Gule Ryg.<br />

Lithology. The Pingu Member consists <strong>of</strong> dark grey mudstones<br />

interbedded with thin layers <strong>of</strong> tuff <strong>and</strong> finegrained<br />

s<strong>and</strong>stone beds that increase in frequency upwards.<br />

The member thus constitutes an overall coarseningupward<br />

succession (Fig. 128; G.K. Pedersen <strong>19</strong>89).<br />

Mineralogically, the mudstones consist <strong>of</strong> kaolinite<br />

<strong>and</strong> quartz with a little illite <strong>and</strong> feldspar; neither calcite<br />

nor pyrite has been detected. Gibbsite is found in 96%<br />

<strong>of</strong> the samples where it makes up 5–10% <strong>of</strong> the sediment.<br />

Siderite occurs in small concretions that weather bright<br />

yellow. The mudstones are rich in organic matter (up to<br />

8%), most <strong>of</strong> which is terrestrial (G.K. Pedersen <strong>19</strong>89).<br />

A palyn<strong>of</strong>acies study demonstrated the predominance<br />

<strong>of</strong> brown <strong>and</strong> black wood (Hjortkjær <strong>19</strong>91). The s<strong>and</strong>stones<br />

are fine-grained, well-sorted <strong>and</strong> form thin beds<br />

showing parallel lamination or current ripple cross-lamination.<br />

Fossils. The assemblage <strong>of</strong> spores <strong>and</strong> pollen in the Pingu<br />

Member was studied by Hjortkjær (<strong>19</strong>91), who found<br />

that it corresponds to that <strong>of</strong> the Naujât Member. The<br />

flora is dominated by palynomorphs <strong>of</strong> terrestrial origin,<br />

whereas remains <strong>of</strong> lacustrine plants <strong>and</strong> algae are rare.<br />

Pollen <strong>of</strong> Taxodium spp. are abundant. The stratigraphically<br />

important mid-Paleocene species Momipites actinus<br />

<strong>and</strong> Caryapollenites wodehouseia occur together with<br />

a few specimens <strong>of</strong> the mid- to late Paleocene Insulapollenites<br />

rugulatus (Hjortkjær <strong>19</strong>91). Neither Croxton (<strong>19</strong>78a,<br />

b) nor Hjortkjær (<strong>19</strong>91) observed marine dinocysts in<br />

samples from the Pingu Member.<br />

Depositional environment. The Pingu Member represents<br />

a predominantly low energy depositional environment<br />

characterised by settling <strong>of</strong> mud from suspension <strong>and</strong> occasional<br />

deposition <strong>of</strong> s<strong>and</strong> from low energy sediment gravity<br />

flows. The lack <strong>of</strong> marine fossils coupled with the<br />

absence <strong>of</strong> both pyrite <strong>and</strong> its weathering product jarosite<br />

indicates a lacustrine depositional environment. The<br />

increasing number <strong>of</strong> s<strong>and</strong> layers up-section are interpreted<br />

to record gradual progradation <strong>of</strong> the shoreline <strong>and</strong> consequent<br />

filling <strong>of</strong> the lake (G.K. Pedersen <strong>19</strong>89). The supply<br />

<strong>of</strong> gibbsite to the lacustrine mud suggests input from<br />

a new provenance area. The exp<strong>and</strong>ing areas <strong>of</strong> subaerial<br />

basalt flows may have weathered to lateritic soils that<br />

could have supplied gibbsite during deposition in the<br />

‘Pingu lake’. This new provenance area is also reflected<br />

in the mineralogy <strong>of</strong> the top <strong>of</strong> the lacustrine Naujât<br />

Member.<br />

Boundaries. The Pingu Member has a sharp lower <strong>and</strong> a<br />

gradational upper boundary (Figs 128, 132, 135). The<br />

lower boundary separates the lacustrine mudstones <strong>of</strong><br />

the Pingu Member from the underlying s<strong>and</strong>y fluvial<br />

Akunneq Member; this abrupt boundary is overlain<br />

either directly by mudstones or by a thin succession <strong>of</strong><br />

mudstones interbedded with s<strong>and</strong>stone layers <strong>and</strong> it is<br />

interpreted as an erosional surface formed during lacustrine<br />

drowning (Figs 128, 135). The upper boundary is<br />

defined by the base <strong>of</strong> the Umiussat Member (Figs 128,<br />

132, 133, 134, 135).<br />

153


<strong>Geological</strong> age. The age <strong>of</strong> the Pingu Member is the same<br />

that <strong>of</strong> the Atanikerluk Formation (i.e. early to mid-<br />

Paleocene, see p. 146).<br />

Correlation. The deposits assigned here to the Pingu<br />

Member have been correlated with the Naujât Member<br />

(Henderson et al. <strong>19</strong>81 fig. 4). The assemblages <strong>of</strong> spores<br />

<strong>and</strong> pollen in the two members are similar (Hjortkjær<br />

<strong>19</strong>91), but the mineralogy differs, especially with respect<br />

to the distribution <strong>of</strong> gibbsite. We interpret the Pingu<br />

Member on Disko as correlating with the upper part <strong>of</strong><br />

the Naujât Member on Nuussuaq.<br />

A correlation between the Pingu Member <strong>and</strong> the volcanic<br />

Ordlingassoq Member cannot be proven because<br />

the north coast <strong>of</strong> Disko is ravaged by l<strong>and</strong>slides <strong>and</strong><br />

rock glaciers between Nuugaarsuk <strong>and</strong> Qullissat (A.K.<br />

Pedersen et al. 2005). Between Pingu <strong>and</strong> Nuugaarsuk,<br />

the oldest magmatic rocks have a composition corresponding<br />

to the Maligât Formation (Fig. 131).<br />

Umiussat Member<br />

revised member<br />

History. The Umiussat Member was established by Koch<br />

(<strong>19</strong>59) on south-east Nuussuaq where it overlies the<br />

Naujât Member. In the present paper the definition <strong>of</strong><br />

the Umiussat Member is retained, but its geographical<br />

distribution is exp<strong>and</strong>ed.<br />

Name. The member is named from the Umiusat ridge<br />

on south-eastern Nuussuaq (Fig. 40).<br />

Distribution. The Umiussat Member is known on southeast<br />

Nuussuaq in the area between Naajaat <strong>and</strong> Kingittoq,<br />

<strong>and</strong> in Saqqaqdalen. It covers a smaller area than the<br />

Naujât Member. The Umiussat Member is also present<br />

on eastern Disko between Nuugaarsuk <strong>and</strong> Pingu, <strong>and</strong><br />

at Gule Ryg (Figs 40, 124).<br />

Type section. The type section <strong>of</strong> the Umiussat Member<br />

<strong>of</strong> Koch (<strong>19</strong>59) at Umiusat is retained (Figs 126, 136).<br />

The type section is located at 70°09.00´N, 52°26.57´W.<br />

Reference section. The section on the north side <strong>of</strong> Pingu,<br />

east <strong>of</strong> Akunneq, is suggested as a reference section for<br />

the Umiussat Member (Figs 128, 132).<br />

Thickness. The Umiussat Member is 70−100 m thick. It<br />

is rarely well exposed, hence lateral variations in thickness<br />

are not documented. The member is c. 80 m thick<br />

at Pingu (Fig. 128) <strong>and</strong> c. 100 m thick in the Atanikerluk<br />

area (Koch <strong>19</strong>59).<br />

Lithology. The Umiussat Member is dominated by fineto<br />

medium-grained s<strong>and</strong>s or s<strong>and</strong>stones which range in<br />

colour from white or pale grey on Disko to yellow on<br />

Nuussuaq. Comminuted plant debris is abundant <strong>and</strong><br />

outlines bedding planes <strong>and</strong> sedimentary structures such<br />

as cross-lamination <strong>and</strong> cross-bedding. The s<strong>and</strong>s or<br />

s<strong>and</strong>stones are interbedded with 1–5 m thick mudstones,<br />

Maligât Formation lava flows<br />

35 m<br />

Umiussat Member<br />

Naujât Member<br />

Fig. 136. Type locality <strong>of</strong> the Umiussat<br />

Member (Atanikerluk Formation) at<br />

Umiusat, south-eastern Nuussuaq (for<br />

location, see Fig. 40). At the top <strong>of</strong> the<br />

Naujât Member, an increase in the number<br />

<strong>of</strong> thin s<strong>and</strong>stone beds results in a<br />

transitional boundary between the two<br />

members.<br />

154


Fig. 137. Lower, sharp boundary <strong>of</strong> the<br />

Assoq Member with the Umiussat Member<br />

at Umiusat. See section 2 in the composite<br />

sedimentological log in Fig. 126.<br />

Maligât Formation<br />

15 m<br />

Assoq<br />

Member<br />

Umiussat Member<br />

some <strong>of</strong> which include thin coal beds (Figs 126, 128, 137).<br />

A 120 cm thick coal bed forms the top <strong>of</strong> the Umiussat<br />

Member on north-east Disko (Fig. 131).<br />

Fossils. No fossils have been reported from the Umiussat<br />

Member.<br />

Depositional environment. The sediments <strong>of</strong> the Umiussat<br />

Member are interpreted to have been deposited in predominantly<br />

braided fluvial channels <strong>and</strong> on floodplains.<br />

Boundaries. The lower boundary with the Naujât Member<br />

is transitional <strong>and</strong> is rarely well exposed (Fig. 136; Koch<br />

<strong>19</strong>59). The lower boundary with the Pingu Member is<br />

placed at an erosional surface separating the heterolithic<br />

s<strong>and</strong>y mudstones at the top <strong>of</strong> the Pingu Member from<br />

the overlying fluvial s<strong>and</strong>stones <strong>of</strong> the Umiussat Member<br />

(Figs 128, 135). The upper boundary <strong>of</strong> the Umiussat<br />

Member is placed at the drowning surface which forms<br />

the lower boundary <strong>of</strong> the Assoq Member (Figs 133, 137).<br />

<strong>Geological</strong> age. The age <strong>of</strong> the member lies within the age<br />

range <strong>of</strong> the Atanikerluk Formation (i.e. early to mid-<br />

Paleocene, see p. 146).<br />

Correlation. The Umiussat Member is interpreted as<br />

coeval with the uppermost subaerial lava flows <strong>of</strong> the<br />

Ordlingassoq Member, <strong>and</strong> deposition <strong>of</strong> the Umiussat<br />

Member probably continued during the break in volcanic<br />

activity between the Vaigat <strong>and</strong> the Maligât Formations<br />

(Fig. 131).<br />

Assoq Member<br />

new member<br />

History. The sediments referred to the Assoq Member<br />

include those overlying the Umiussat Member on Disko<br />

as well as those referred to the Aussivik Member <strong>and</strong> the<br />

Point 976 Member <strong>of</strong> Koch (<strong>19</strong>59) (Fig. 123). The<br />

Aussivik <strong>and</strong> Point 976 Members are ab<strong>and</strong>oned because<br />

they are poorly exposed <strong>and</strong> only cover small areas on<br />

south-eastern Nuussuaq.<br />

Name. The member is named from the coastal mountain<br />

slope at Assoq on southern Disko (Fig. 124).<br />

Distribution. The geological map sheets 1:100 000 Uiffaq<br />

<strong>and</strong> 1:100 000 Pingu show that the Assoq Member covers<br />

most <strong>of</strong> Disko, east <strong>of</strong> the Disko Gneiss Ridge (A.K.<br />

Pedersen et al. 2000, 2001). The area in which the Assoq<br />

Member is distributed is strongly affected by l<strong>and</strong>slides<br />

<strong>and</strong> reliable outcrops are discontinuous (Fig. 124). On<br />

Nuussuaq, the Assoq Member is present at Kingittoq,<br />

between Umiusat <strong>and</strong> Saqqaqdalen, in the Atanikerluk<br />

area <strong>and</strong> probably also on central Nuussuaq, east <strong>of</strong> the<br />

Ikorfat fault (Fig. 40; A.K. Pedersen et al. <strong>19</strong>93, 2002,<br />

2007b).<br />

Type section. The type section is at Assoq within a huge<br />

l<strong>and</strong>slipped block (Fig. 138). This locality has the best<br />

exposures <strong>of</strong> the fissile mudstones, but neither the lower<br />

nor the upper boundary <strong>of</strong> the Assoq Member is confi-<br />

155


Lower Rinks Dal Member<br />

subaqueous lava<br />

Upper Rinks Dal Member<br />

subaqueous lava<br />

subaqueous lava<br />

Assoq Member<br />

invasive lava<br />

55 m a.s.l.<br />

invasive lava<br />

Assoq Member<br />

invasive lava<br />

Fig. 138. Type locality <strong>of</strong> the Assoq Member at Assoq on the south coast <strong>of</strong> Disko (for location, see Fig. 124). The brownish black mudstones<br />

<strong>of</strong> the Assoq Member are interbedded with invasive lava flows <strong>and</strong> overlain by subaqueous lava flows <strong>of</strong> the lower Rinks Dal Member <strong>of</strong> the<br />

Maligât Formation (see Fig. 131). Sediments <strong>and</strong> interbedded volcanic rocks are part <strong>of</strong> a huge l<strong>and</strong>slide, two blocks <strong>of</strong> which are separated<br />

by the dash–dot line. The Assoq Member is also found at higher altitudes away from the coast (A.K. Pedersen et al. 2003). For log, see Fig.<br />

139.<br />

dently identified (Fig. 139). The type section is located<br />

at 69°<strong>19</strong>.23´N, 53°09.10´W.<br />

Reference sections. Reference sections are exposed on southern<br />

Disko east <strong>of</strong> Assoq (Fig. 139), on northern Disko<br />

at Pingu (Figs 124, 128), <strong>and</strong> on southern Nuussuaq at<br />

Qallorsuaq (Keglen). The sediments here were formerly<br />

referred to the Aussivik <strong>and</strong> Point 976 Members <strong>of</strong> Koch<br />

(<strong>19</strong>59) (Figs 40, 125).<br />

Thickness. The Assoq Member is up to c. 200 m thick,<br />

but the thickness is difficult to measure in areas where<br />

the sediments are interbedded with volcanic or intrusive<br />

rocks <strong>and</strong> are subject to l<strong>and</strong>slides.<br />

Lithology. The Assoq Member constitutes a major, coarsening-upward<br />

succession with a lower part dominated<br />

by brownish black fissile mudstones, <strong>and</strong> an upper part<br />

that is dominated by s<strong>and</strong>s but also includes a single, 3<br />

m thick, coal seam (Figs 126, 128, 138, 140). The mudstones<br />

have TOC contents <strong>of</strong> up to 7%. The dominant<br />

clay mineral is kaolinite, but gibbsite is also present in<br />

most samples. Thin beds are cemented by siderite. Nume -<br />

rous thin tuff layers are interbedded with the mudstones.<br />

They are typically a few millimetres to a few centimetres<br />

thick, deposited by settling through the water column.<br />

Examination <strong>of</strong> thin sections shows that the tuff<br />

is strongly altered diagenetically. The mudstones are<br />

interbedded with hyaloclastite breccias <strong>and</strong> subaqueous<br />

lava flows which formed where lava flows <strong>of</strong> the lower<br />

Rinks Dal Member entered the ‘Assoq lake’ (L.M. Larsen<br />

et al. 2006). Based on their chemical composition, the<br />

invasive lava flows are correlated with various units within<br />

the volcanic lower Rinks Dal Member (Figs 131, 139,<br />

140).<br />

156


m<br />

130<br />

125<br />

110<br />

t<br />

t<br />

invasive lava<br />

lower Rinks Dal Mb<br />

The upper part <strong>of</strong> the Assoq Member is dominated<br />

by s<strong>and</strong>s, <strong>of</strong>ten with comminuted plant debris. In the<br />

scree-covered slopes at Tuapaat Qaqqaat <strong>and</strong> Qallorsuaq<br />

(Keglen), the s<strong>and</strong>s are yellow <strong>and</strong> fine-grained, but rarely<br />

well exposed. At Pingu <strong>and</strong> Gule Ryg, the sedimentary<br />

structures suggest deposition from traction currents in<br />

a low-energy environment (Fig. 128). A thick coal bed<br />

has been observed at the top <strong>of</strong> the Assoq Member (Fig.<br />

141) which probably correlates to coal beds interbedded<br />

with volcanic rocks at several localities west <strong>of</strong> Gule Ryg,<br />

eastern Disko (L.M. Larsen & Pedersen <strong>19</strong>90; A.K.<br />

Pedersen et al. 2001) (Fig. 131). These sediments are<br />

considered part <strong>of</strong> the Atanikerluk Formation as they<br />

can be traced from continuous sedimentary successions<br />

into the basal part <strong>of</strong> the subaerial lava flow succession.<br />

The chemistry <strong>of</strong> these volcanic rocks corresponds to<br />

the lower part <strong>of</strong> the upper Rinks Dal Member.<br />

?Atane Formation Atanikerluk Formation<br />

Assoq Member<br />

105<br />

40<br />

35<br />

30<br />

25<br />

10<br />

5<br />

0<br />

t<br />

s<br />

t<br />

s<br />

s<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

sill<br />

clay si s<strong>and</strong><br />

invasive lava<br />

lower Rinks Dal Mb<br />

8<br />

10<br />

10<br />

10<br />

20<br />

30<br />

12<br />

10<br />

22<br />

30<br />

10<br />

20<br />

3<br />

7<br />

10<br />

10<br />

invasive lava<br />

lower Rinks Dal Mb<br />

10<br />

5<br />

Fossils. Plant macr<strong>of</strong>ossils are unevenly distributed in the<br />

Assoq Member, but they are generally scarce. From the<br />

Atanikerluk area, Koch (<strong>19</strong>59) reported a leaf <strong>of</strong><br />

Cercidiphyllum arcticum from the lower part (his Aussivik<br />

Member) <strong>and</strong> pieces <strong>of</strong> fossil wood <strong>of</strong> Taxodioxylon type<br />

from his Point 976 member. Bedding planes covered by<br />

plant remains were observed west <strong>of</strong> Kingittoq by the present<br />

authors. The freshwater bivalve Unio sp. occurs in<br />

the upper, s<strong>and</strong>y part <strong>of</strong> the Assoq Member (Koch <strong>19</strong>59).<br />

Fish scales <strong>and</strong> bones are preserved in a concretion from<br />

Akuliarusinnguaq (c. 4 km north <strong>of</strong> Gieseckes Monument;<br />

Fig. 2).<br />

The spores <strong>and</strong> pollen in the Assoq Member were<br />

described by Hjortkjær (<strong>19</strong>91) <strong>and</strong> differ little from those<br />

in the older members <strong>of</strong> the Atanikerluk Formation.<br />

Piasecki et al. (<strong>19</strong>92) reported finds <strong>of</strong> marine dinocysts<br />

in a few samples from the Assoq Member in southern<br />

<strong>and</strong> eastern Disko. In the inner part <strong>of</strong> Kv<strong>and</strong>alen (Fig.<br />

124), the mudstones are found to contain rare bivalves<br />

(protobranchs?) <strong>and</strong> rare dinocysts (Piasecki et al. <strong>19</strong>92).<br />

A few marine dinocysts were found at Tuapaat Qaqqaat<br />

at the top <strong>of</strong> the Assoq Member just below the basalt conglomerate<br />

(Fig. 140).<br />

Fig. 139. Type section <strong>of</strong> the Assoq Member at Assoq on the south<br />

coast <strong>of</strong> Disko (for location, see Fig. 124). The lacustrine mudstones<br />

contain numerous millimetre-thick tuff beds. For legend, see Plate 1.<br />

157


Atanikerluk Formation<br />

Assoq Member<br />

m<br />

510<br />

500<br />

450<br />

400<br />

380<br />

280<br />

250<br />

200<br />

150<br />

100<br />

invasive lava flows correlate to the lower Rinks Dal Member invasive lava flows correlate to the Akuarut unit<br />

<strong>of</strong> the lower Rinks Dal Member<br />

Depositional environment. At Skarvefjeld (Fig. 2), the<br />

lower, shaly part <strong>of</strong> the Assoq Member is interbedded with<br />

hyaloclastite breccias that are traced laterally into the<br />

lower Rinks Dal Member (Heinesen <strong>19</strong>87; L.M. Larsen<br />

& Pedersen <strong>19</strong>90). Water depths <strong>of</strong> 80−100 m are calculated<br />

from the height <strong>of</strong> the foresets <strong>of</strong> the hyaloclastite<br />

breccias. Similar interbedding <strong>of</strong> Assoq Member mudstones<br />

<strong>and</strong> hyaloclastite breccias is also known from Sorte<br />

Hak on central Disko, slightly east <strong>of</strong> the Disko Gneiss<br />

Ridge (Fig. 124). The Assoq Member is interpreted as<br />

lacustrine in origin, deposited within the ‘Assoq lake’. At<br />

present it is not possible to demonstrate whether this<br />

was one huge lake or several smaller lakes. Scarce marine<br />

dinocysts indicate that the Assoq lake was subject to<br />

marine inundations. The dinocysts were found in samples<br />

from eastern <strong>and</strong> south-eastern Disko, but were not<br />

recorded from Nuussuaq. This distribution, coupled<br />

with a south-eastward tilting <strong>of</strong> an originally nearly horizontal<br />

magmatic boundary (L.M. Larsen & Pedersen<br />

<strong>19</strong>92) suggests that the marine inundations were from<br />

the south. The upward transition from mudstones to<br />

s<strong>and</strong>stones reflects shallowing <strong>and</strong> gradual fill <strong>of</strong> the<br />

lake. During a break in clastic sediment input, peat accumulated<br />

in a large swamp in eastern Disko, <strong>and</strong> resulted<br />

in a thick coal bed (Fig. 141).<br />

Boundaries. The lower boundary <strong>of</strong> the Assoq Member<br />

is placed at the base <strong>of</strong> the mudstone succession, <strong>and</strong> is<br />

interpreted as a lacustrine drowning surface (Figs 128,<br />

137). On north-east Disko, the lower boundary overlies<br />

a coal bed. The upper boundary is placed where the sediments<br />

are overlain by subaerial lava flows <strong>of</strong> the Rinks<br />

Dal Member. Note that locally thin tongues <strong>of</strong> sediment<br />

within the lower Rinks Dal Member are assigned to the<br />

Assoq Member; such sediment wedges are bounded<br />

abruptly beneath <strong>and</strong> above by volcanic strata. At Tuapaat<br />

Qaqqaat, the uppermost bed in the Assoq Member is a<br />

conglomerate with clasts <strong>of</strong> basaltic rocks derived from<br />

lava flows <strong>of</strong> the Akuarut unit <strong>of</strong> the Rinks Dal Member<br />

(Fig. 140; L.M. Larsen & Pedersen <strong>19</strong>90, 2009).<br />

Atane Formation<br />

Skansen Member<br />

50<br />

0<br />

Covered by<br />

scree<br />

vf f m c vc f m c<br />

clay silt s<strong>and</strong> pebbles<br />

Fig. 140. Composite reference section <strong>of</strong> the Assoq Member at Tuapaat<br />

Qaqqaat, south-eastern Disko (for location, see Fig. 124). Note the<br />

occurrence <strong>of</strong> marine dinocysts at the top <strong>of</strong> the lacustrine section,<br />

indicating a brief marine inundation. Colour coding <strong>of</strong> volcanic rocks<br />

follows Fig. 131. For legend, see Plate 1.<br />

158


Fig. 141. Upper part <strong>of</strong> the Assoq Member<br />

including a 5.1 m thick coal bed. South<br />

side <strong>of</strong> Blåbærdalen, eastern Disko (for<br />

location, see Fig. 124). Correlative coal<br />

beds are seen at several widely spaced<br />

outcrops indicating the development <strong>of</strong><br />

large swamps. The sediments are overlain<br />

by subaerial lava flows <strong>of</strong> the volcanic<br />

Rinks Dal Member (see Fig. 131).<br />

upper Rinks Dal Member<br />

coal<br />

Assoq Member<br />

<strong>Geological</strong> age. The age <strong>of</strong> the Assoq Member lies within<br />

the age range <strong>of</strong> the Atanikerluk Formation (i.e. early to<br />

mid-Paleocene, see p. 146).<br />

Correlation. On southern Disko, the lower, shaly, part <strong>of</strong><br />

the Assoq Member is interbedded with subaqueous lava<br />

flows <strong>and</strong> hyaloclastite breccias, which continue westwards<br />

into the Skarvefjeld unit (formerly Pahoehoe unit) <strong>of</strong><br />

the lower Rinks Dal Member (Fig. 131; Heinesen <strong>19</strong>87;<br />

L.M. Larsen & Pedersen <strong>19</strong>90, 2009; A.K. Pedersen et<br />

al. 2003; L.M. Larsen et al. 2006). On north-eastern<br />

Disko (Akunneq <strong>and</strong> Pingu), the earliest volcanic rocks<br />

are thick invasive lava flows with columnar jointing,<br />

which invaded the uppermost part <strong>of</strong> the Umiussat<br />

Member <strong>and</strong> the Assoq Member. The composition <strong>of</strong><br />

these volcanic rocks tie them to the uppermost lower<br />

Rinks Dal Member <strong>and</strong> the Akuarut unit (formerly FeTi<br />

unit) (Fig. 131; A.K. Pedersen et al. 2005; L.M. Larsen<br />

et al. 2006; L.M. Larsen & Pedersen 2009).<br />

On Nuussuaq, lava flows <strong>of</strong> the Akuarut unit invaded<br />

mudstones <strong>of</strong> the Assoq Member <strong>and</strong> increased markedly<br />

in thickness due to ponding <strong>of</strong> the lavas in the ‘Assoq lake’.<br />

Throughout eastern Disko <strong>and</strong> southern Nuussuaq the<br />

Assoq Member is thus interbedded with invasive flows<br />

<strong>of</strong> the Rinks Dal Member, <strong>and</strong> the various volcanic facies<br />

(breccias, invasive lavas or ponded subaerial lava flows)<br />

are thought to reflect different extrusion rates. In most<br />

<strong>of</strong> its area <strong>of</strong> distribution, the Assoq Member is overlain<br />

by subaerial lava flows <strong>of</strong> the upper Rinks Dal Member<br />

(Fig. 131). It is concluded that the Assoq Member generally<br />

correlates with the Rinks Dal Member. On easternmost<br />

central Nuussuaq, however, an outcrop <strong>of</strong> mudstones<br />

interbedded with invasive lava flows <strong>of</strong> the younger<br />

Niaqussat Member is also referred to the Assoq Member<br />

(A.K. Pedersen et al. 2002).<br />

Acknowledgements<br />

The work reported on in this publication was carried<br />

out with considerable financial support from the Danish<br />

Energy Research Programme (EFP), the Danish Natural<br />

Science Research Council (SNF), the Bureau <strong>of</strong> Minerals<br />

<strong>and</strong> Petroleum, Government <strong>of</strong> Greenl<strong>and</strong>, the Carlsberg<br />

Foundation <strong>and</strong> the Arktisk Station, University <strong>of</strong> Copen -<br />

hagen. Their support is gratefully acknowledged.<br />

The authors are greatly indebted to the three referees:<br />

Dr. T. Christopher R. Pulvertaft, now retired from GEUS,<br />

has taken a keen interest in the manuscript from its early<br />

stages <strong>and</strong> has encouraged the authors throughout. He<br />

has corrected the English language <strong>and</strong> has used his great<br />

knowledge <strong>of</strong> the area to ensure that details in descriptions<br />

<strong>and</strong> illustrations are correct. Dr. J. Christopher<br />

Harrison <strong>of</strong> the <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Canada <strong>and</strong> Dr.<br />

Robert Knox <strong>of</strong> the British <strong>Geological</strong> <strong>Survey</strong> have read<br />

the manuscript very carefully <strong>and</strong> <strong>of</strong>fered a large number<br />

<strong>of</strong> helpful suggestions for the improvement <strong>of</strong> text<br />

<strong>and</strong> figures. With few exceptions, the illustrations have<br />

been prepared by Jette Halskov, GEUS, without whom<br />

the manuscript would not have been completed.<br />

159


References<br />

Ambirk, D. 2000: A sedimentary, sequence stratigraphic <strong>and</strong> carbon<br />

isotopic investigation <strong>of</strong> sections <strong>of</strong> the Atane Formation, Nuussuaq,<br />

central West Greenl<strong>and</strong>, 137 pp. Unpublished M.Sc. thesis,<br />

University <strong>of</strong> Copenhagen, <strong>Denmark</strong>.<br />

Balkwill, H.R., McMillan, N.J., MacLean, B., Williams, G.L. &<br />

Srivastava, S.P. <strong>19</strong>90: Geology <strong>of</strong> the Labrador Shelf, Baffin Bay,<br />

<strong>and</strong> Davis Strait. In: Keen, M.J. & Williams, G.L. (eds): Geology<br />

<strong>of</strong> the continental margins <strong>of</strong> eastern Canada. Geology <strong>of</strong> Canada<br />

2, 293–348. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Canada.<br />

Bate, K.J. & Christiansen, F.G. <strong>19</strong>96: The drilling <strong>of</strong> the stratigraphic<br />

borehole Umiivik#1, Svartenhuk Halvø, West Greenl<strong>and</strong>. <strong>Bulletin</strong><br />

Grønl<strong>and</strong>s Geologiske Undersøgelse 172, 22–27.<br />

Bendix-Almgreen, S.E. <strong>19</strong>69: Notes on the Upper Cretaceous <strong>and</strong><br />

Lower Tertiary fish faunas <strong>of</strong> northern West Greenl<strong>and</strong>. Meddelelser<br />

fra Dansk Geologisk Forening <strong>19</strong>, 204–217.<br />

Berggren, W.A., Kent, D.V., Swisher III, C.C. & Aubrey, M.-P. <strong>19</strong>95:<br />

A revised Cenozoic geochronology <strong>and</strong> chronostratigraphy. In:<br />

Berggren, W.A. et al. (eds): Geochronolgy, time scale <strong>and</strong> global<br />

stratigraphic correlation. Society for Sedimentary Geology (SEPM)<br />

Special Publication 54, 129–212.<br />

Birkelund, T. <strong>19</strong>56: Upper Cretaceous belemnites from West<br />

Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Undersøgelse 13, 28<br />

pp. (also Meddelelser om Grønl<strong>and</strong> 137(9)).<br />

Birkelund, T. <strong>19</strong>65: Ammonites from the Upper Cretaceous <strong>of</strong> West<br />

Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Undersøgelse 56, <strong>19</strong>2<br />

pp. (also Meddelelser om Grønl<strong>and</strong> 179(7)).<br />

Bojesen-Koefoed, J.A., Christiansen, F.G., Nyt<strong>of</strong>t, H. & Dalh<strong>of</strong>f, F.<br />

<strong>19</strong>97: Organic geochemistry <strong>and</strong> thermal maturity <strong>of</strong> sediments<br />

in the GRO#3 well, Nuussuaq, West Greenl<strong>and</strong>. Danmarks og<br />

Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport <strong>19</strong>97/143, 18 pp.<br />

Bojesen-Koefoed, J.A., Christiansen, F.G., Nyt<strong>of</strong>t, H.P. & Pedersen,<br />

A.K. <strong>19</strong>99: Oil seepage onshore West Greenl<strong>and</strong>: evidence <strong>of</strong><br />

multiple source rocks <strong>and</strong> oil mixing. In: Fleet, A.J. & Boldy,<br />

S.A.R. (eds): Petroleum geology <strong>of</strong> Northwest Europe: Proceedings<br />

<strong>of</strong> the 5th conference, 305–314. London: <strong>Geological</strong> Society.<br />

Bojesen-Koefoed, J.A., Dam, G., Nyt<strong>of</strong>t, H.P., Pedersen, G.K. &<br />

Petersen, H.I. 2001: Drowning <strong>of</strong> a nearshore peat-forming environment,<br />

Atâne Formation (Cretaceous) at Asuk, West Greenl<strong>and</strong>:<br />

sedimentology, organic petrography <strong>and</strong> geochemistry. Organic<br />

Geochemistry 32, 967–980.<br />

Bojesen-Koefoed, J.A., Nyt<strong>of</strong>t, H.P. & Christiansen, F.G. 2004: Age<br />

<strong>of</strong> oils in West Greenl<strong>and</strong>: was there a Mesozoic seaway between<br />

Greenl<strong>and</strong> <strong>and</strong> Canada? <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong><br />

Greenl<strong>and</strong> <strong>Bulletin</strong> 4, 49–52.<br />

Bojesen-Koefoed, J.A., Bidstrup, T., Christiansen, F.G., Dalh<strong>of</strong>f, F.,<br />

Gregersen, U., Nyt<strong>of</strong>t, H.P., Nøhr-Hansen, H., Pedersen, A.K.<br />

& Sønderholm, M. 2007: Petroleum seepages at Asuk, Disko,<br />

West Greenl<strong>and</strong>: implications for regional petroleum exploration.<br />

Journal <strong>of</strong> Petroleum Geology 30, 2<strong>19</strong>–236.<br />

Bonow, J.M. 2005: Re-exposed basement l<strong>and</strong>forms in the Disko<br />

region, West Greenl<strong>and</strong> – disregarded data for estimation <strong>of</strong> glacial<br />

erosion <strong>and</strong> uplift modelling. Geomorphology 72, 106–127.<br />

Bonow, J.M., Lidmar-Bergström, K. & Japsen, P. 2006a: Palaeosurfaces<br />

in central West Greenl<strong>and</strong> as reference for identification <strong>of</strong> tectonic<br />

movements <strong>and</strong> estimation <strong>of</strong> erosion. Global <strong>and</strong> Planetary<br />

Change 50, 161–183.<br />

Bonow, J.M., Japsen, P., Lidmar-Bergström, K., Chalmers, J.A. &<br />

Pedersen, A.K. 2006b: Cenozoic uplift <strong>of</strong> Nuussuaq <strong>and</strong> Disko,<br />

West Greenl<strong>and</strong> – elevated erosion surfaces as uplift markers <strong>of</strong> a<br />

passive margin. Geomorphology 80, 325–337.<br />

Bonow, J.M., Japsen, P., Green, P.F., Wilson, R.W., Chalmers, J.A.,<br />

Klint, K.E.S., van Gool, J.A.M., Lidmar-Bergström, K. & Pedersen,<br />

A.K. 2007: A multi-disciplinary study <strong>of</strong> Phanerozoic l<strong>and</strong>scape<br />

development in West Greenl<strong>and</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong><br />

<strong>and</strong> Greenl<strong>and</strong> <strong>Bulletin</strong> 13, 33–36.<br />

Boyd, A. <strong>19</strong>90: A preliminary report on the lithostratigraphy <strong>and</strong> bio -<br />

stratigraphy <strong>of</strong> the Late Cretaceous Pautût flora from West<br />

Greenl<strong>and</strong>. In: Knobloch, E. & Kvaček, Z. (eds): Proceedings <strong>of</strong><br />

the symposium ‘Pale<strong>of</strong>loristic <strong>and</strong> paleoclimatic changes in the<br />

Cretaceous <strong>and</strong> Tertiary’, 91–98. Prague, Czechoslovakia, 28<br />

August – 1 September <strong>19</strong>89.<br />

Boyd, A. <strong>19</strong>92: Revision <strong>of</strong> the Late Cretaceous Pautût Flora from<br />

West Greenl<strong>and</strong>: Gymnospermopsida (Cycadales, Cycadeoidales,<br />

Caytoniales, Ginkgoales, Coniferales). Palaeontographica Abt. B<br />

225, 105–172.<br />

Boyd, A. <strong>19</strong>93: Paleodepositional setting <strong>of</strong> the Late Cretaceous<br />

Pautût Flora from West Greenl<strong>and</strong> as determined by sedimentological<br />

<strong>and</strong> plant taphonomic data. Palaeogeography, Palaeo -<br />

climatology, Palaeoecology 103, 251–280.<br />

Boyd, A. <strong>19</strong>94: Some limitations in using leaf physiognomic data as<br />

a precise method for determining paleoclimates with an example<br />

from the Late Cretaceous Pautût Flora <strong>of</strong> West Greenl<strong>and</strong>. Palaeo -<br />

geography, Palaeoclimatology, Palaeoecology 112, 261–278.<br />

Boyd, A. <strong>19</strong>98a: Macroleaf biostratigraphy <strong>of</strong> the Early Cretaceous<br />

beds in West Greenl<strong>and</strong>. Zentralblatt für Geologie und Paläon -<br />

tologie 1, 1455–1468.<br />

Boyd, A. <strong>19</strong>98b: The Bennettitales <strong>of</strong> the Early Cretaceous floras<br />

from West Greenl<strong>and</strong>: Pseudocycas. Palaeontographica Abt. B<br />

247, 123–155.<br />

Boyd, A. <strong>19</strong>98c: Cuticular <strong>and</strong> impressional angiosperm leaf remains<br />

from the Early Cretaceous floras <strong>of</strong> West Greenl<strong>and</strong>. Palae onto -<br />

graphica Abt. B 247, 1–53.<br />

Boyd, A. 2000: Bennittales from the Early Cretaceous floras <strong>of</strong> West<br />

Greenl<strong>and</strong>: Pterophyllum <strong>and</strong> Nilssoniopteras. Palaeontographica<br />

Abt. B 255, 47–77.<br />

Bromley, R.G. & Pedersen, G.K. 2008: Ophiomorpha irregulaire,<br />

Mesozoic trace fossil that is either well understood but rare in<br />

outcrop or poorly understood but common in core. Palaeo geo -<br />

graphy, Palaeoclimatology, Palaeoecology 270, 295–298.<br />

Brongniart, A. 1831: Histoire des végétaux fossiles ou recherches bo -<br />

taniques et géologiques sur les végéteaux renfermes dans les diverses<br />

couches du globe, 488 pp. Paris.<br />

160


Brown, R. 1875: <strong>Geological</strong> notes on the Noursoak peninsula, Disco<br />

Isl<strong>and</strong>, <strong>and</strong> the country in the vicinity <strong>of</strong> Disco Bay, North<br />

Greenl<strong>and</strong>. Transactions <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> Glasgow 5,<br />

55–112.<br />

Brown, R.W. <strong>19</strong>39: Fossil leaves, fruits <strong>and</strong> seeds <strong>of</strong> Cercidiphyllum.<br />

Journal <strong>of</strong> Paleontology 13, 484–499.<br />

Bruun, M. 2006: Cyklicitet i fluviale aflejringer i Atane Formationen,<br />

Skansen, Vestgrønl<strong>and</strong>, 89 pp. Unpublished M.Sc. thesis, Køben -<br />

havns Universitet, Danmark.<br />

Burden, E. & Langille, A. <strong>19</strong>90: Stratigraphy <strong>and</strong> sedimentology <strong>of</strong><br />

Cretaceous <strong>and</strong> Paleocene strata in half-grabens on the southeast<br />

coast <strong>of</strong> Baffin Isl<strong>and</strong>, Northwest Territories. <strong>Bulletin</strong> <strong>of</strong> Canadian<br />

Petroleum Geology 38, 185–<strong>19</strong>6.<br />

Chalmers, J.A. <strong>19</strong>89: A pilot seismo-stratigraphic study on the West<br />

Greenl<strong>and</strong> continental shelf. Rapport Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 142, 16 pp.<br />

Chalmers, J.A. <strong>19</strong>91: New evidence on the structure <strong>of</strong> the Labrador<br />

Sea/Greenl<strong>and</strong> continental margin. Journal <strong>of</strong> the <strong>Geological</strong><br />

Society (London) 148, 899–908.<br />

Chalmers, J.A. 2000: Offshore evidence for Neogene uplift in central<br />

West Greenl<strong>and</strong>. In: Chalmers, J.A. & Cloething, S. (eds):<br />

Neogene uplift <strong>and</strong> tectonics around the North Atlantic. Global<br />

<strong>and</strong> Planetary Change 24, 311–318.<br />

Chalmers, J.A. & Pulvertaft, T.C.R. <strong>19</strong>93: The southern West<br />

Greenl<strong>and</strong> continental shelf – was Greenl<strong>and</strong> petroleum exploration<br />

ab<strong>and</strong>oned prematurely? In: Vorren, T.O. et al. (eds): Arctic<br />

geology <strong>and</strong> petroleum potential. Norsk Petroleums Forening<br />

Special Publication 2, 55–66. Amsterdam: Elsevier.<br />

Chalmers, J.A. & Pulvertaft, T.C.R. 2001: Development <strong>of</strong> the continental<br />

margins <strong>of</strong> the Labrador Sea: a review. In: Wilson, R.C.L.<br />

et al. (eds): Non-volcanic rifting <strong>of</strong> continental margins: a comparison<br />

<strong>of</strong> evidence from l<strong>and</strong> <strong>and</strong> sea. <strong>Geological</strong> Society (London)<br />

Special Publication 187, 77–105.<br />

Chalmers, J.A., Pulvertaft, T.C.R., Christiansen, F.G., Larsen, H.C.,<br />

Laursen, K.H. & Ottesen, T.G. <strong>19</strong>93: The southern West<br />

Greenl<strong>and</strong> continental margin: rifting history, basin development<br />

<strong>and</strong> petroleum potential. In: Parker, J.R. (ed.): Petroleum geology<br />

<strong>of</strong> Northwest Europe: proceedings <strong>of</strong> the 4th conference,<br />

915–931. London: <strong>Geological</strong> Society.<br />

Chalmers, J.A., Pulvertaft, T.C.R., Marcussen, C. & Pedersen, A.K.<br />

<strong>19</strong>99: New insight into the structure <strong>of</strong> the Nuussuaq Basin, central<br />

West Greenl<strong>and</strong>. Marine <strong>and</strong> Petroleum Geology 16, <strong>19</strong>7–224.<br />

Chaney, R.W. <strong>19</strong>51: A revision <strong>of</strong> Fossil Sequoia <strong>and</strong> Taxodium in<br />

western North America based upon recent discoveries. Transactions<br />

<strong>of</strong> the American Philosophical Society New Series 40, 171–263.<br />

Christiansen, F.G. <strong>19</strong>93: Disko Bugt Project <strong>19</strong>92, West Greenl<strong>and</strong>.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 159, 47–52.<br />

Christiansen, F.G. & Pulvertaft, T.C.R. <strong>19</strong>94: Petroleum-geological<br />

activities in <strong>19</strong>93: oil source rocks the dominant theme <strong>of</strong> the season’s<br />

field programme. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

160, 52–56.<br />

Christiansen, F.G., Dam, G., McIntyre, D.J., Nøhr-Hansen, H.,<br />

Pedersen, G.K. & Sønderholm, M. <strong>19</strong>92: Renewed petroleum geological<br />

studies onshore West Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s<br />

Geologiske Undersøgelse 155, 31–35.<br />

Christiansen, F.G., Dam, G., Nøhr-Hansen, H. & Sønderholm, M.<br />

<strong>19</strong>94a: Shallow core drilling summary sheets: Cretaceous sediments<br />

<strong>of</strong> Nuussuaq <strong>and</strong> Svartenhuk Halvø (GGU 400701–400712).<br />

Open File Series Grønl<strong>and</strong>s Geologiske Undersøgelse 94/10, 31<br />

pp.<br />

Christiansen, F.G., Dam, G. & Pedersen, A.K. <strong>19</strong>94b: Discovery <strong>of</strong><br />

live oil at Marraat, Nuussuaq: field work, drilling <strong>and</strong> logging.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 160, 57–63.<br />

Christiansen, F.G., Marcussen, C. & Chalmers, J.A. <strong>19</strong>95: Geophysical<br />

<strong>and</strong> petroleum geological activities in the Nuussuaq – Svartenhuk<br />

Halvø area <strong>19</strong>94: promising results for onshore exploration potential.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 165, 30–39.<br />

Christiansen, F.G., Bate, K.J., Dam, G., Marcussen, C. & Pulvertaft,<br />

T.C.R. <strong>19</strong>96a: Continued geophysical <strong>and</strong> petroleum geological<br />

activities in West Greenl<strong>and</strong> in <strong>19</strong>95 <strong>and</strong> the start <strong>of</strong> onshore<br />

exploration. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Undersøgelse 172,<br />

15–21.<br />

Christiansen, F.G., Bojesen-Koefoed, J.A., Dam, G., Nyt<strong>of</strong>t, H.-P.,<br />

Larsen, L.M., Pedersen, A.K. & Pulvertaft, T.C.R. <strong>19</strong>96b: The<br />

Marraat oil discovery on Nuussuaq, West Greenl<strong>and</strong>: evidence for<br />

a latest Cretaceous – earliest Tertiary oil prone source rock in the<br />

Labrador Sea – Melville Bay region. <strong>Bulletin</strong> <strong>of</strong> Canadian Petroleum<br />

Geology 44, 39–54.<br />

Christiansen, F.G., Bojesen-Koefoed, J.[A.], Nyt<strong>of</strong>t, H.-P. & Laier,<br />

T. <strong>19</strong>96c: Organic geochemistry <strong>of</strong> sediments, oils <strong>and</strong> gases in<br />

the GANE#1, GANT#1 <strong>and</strong> GANK#1 wells, Nuussuaq, West<br />

Greenl<strong>and</strong>. Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

Rapport <strong>19</strong>96/23, 35 pp.<br />

Christiansen, F.G., Bojesen-Koefoed, J.[A.] & Laier, T. <strong>19</strong>97: Organic<br />

geochemistry <strong>of</strong> sediments <strong>and</strong> gases in the borehole Umiivik-1,<br />

Svartenhuk Halvø, West Greenl<strong>and</strong>. Danmarks og Grønl<strong>and</strong>s<br />

Geologiske Undersøgelse Rapport <strong>19</strong>97/33, 16 pp.<br />

Christiansen, F.G., Boesen, A., Bojesen-Koefoed, J.A., Dalh<strong>of</strong>f, F.,<br />

Dam, G., Neuh<strong>of</strong>f, P.S., Pedersen, A.K., Pedersen, G.K., Stannius,<br />

L.S. & Zinck-Jørgensen. K. <strong>19</strong>98: Petroleum geological activities<br />

onshore West Greenl<strong>and</strong> in <strong>19</strong>97. Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong><br />

<strong>Bulletin</strong> 180, 10–17.<br />

Christiansen, F.G. et al. <strong>19</strong>99: Petroleum geological activities in West<br />

Greenl<strong>and</strong> in <strong>19</strong>98. Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong> <strong>Bulletin</strong> 183,<br />

46–56.<br />

Christiansen, F.G. et al. 2000: Petroleum geological activities in West<br />

Greenl<strong>and</strong> in <strong>19</strong>99. Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong> <strong>Bulletin</strong> 186,<br />

88–96.<br />

Christiansen, F.G., Bojesen-Koefoed, J.A., Chalmers, J.A., Dalh<strong>of</strong>f,<br />

F., Marcussen, C., Nielsen, T., Nøhr-Hansen, H. & Sønderholm,<br />

M. 2002: Petroleum geological activities in West Greenl<strong>and</strong> in 2001.<br />

Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong> <strong>Bulletin</strong> <strong>19</strong>1, 84–89.<br />

Collins, J.S.H. & Wienberg Rasmussen, H. <strong>19</strong>92: Upper Cretaceous<br />

– lower Tertiary decapod crustaceans from West Greenl<strong>and</strong>.<br />

<strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Undersøgelse 162, 46 pp.<br />

Croxton, C.A. <strong>19</strong>76: Sampling <strong>of</strong> measured sections for palynological<br />

<strong>and</strong> other investigations between 69°<strong>and</strong> 72°N, central West<br />

Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 80,<br />

36–39.<br />

Croxton, C.A. <strong>19</strong>78a: Report <strong>of</strong> field work undertaken between 69°<br />

<strong>and</strong> 72°N, central West Greenl<strong>and</strong> in <strong>19</strong>75 with preliminary palynological<br />

results, 88 pp. Unpublished report, <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> Greenl<strong>and</strong>, Copenhagen (in archives <strong>of</strong> <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>, GEUS Report File 16961).<br />

161


Croxton, C.A. <strong>19</strong>78b: Report <strong>of</strong> field work undertaken between 69°<br />

<strong>and</strong> 72°N, central West Greenl<strong>and</strong> in <strong>19</strong>77 with preliminary palynological<br />

results, 24 pp. Unpublished report, <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> Greenl<strong>and</strong>, Copenhagen (in archives <strong>of</strong> <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>, GEUS Report File 28069).<br />

Dahl, K., Bate, K.J. & Dam, G. <strong>19</strong>97: Well summary GANT#1<br />

grønArctic Nuussuaq Tunorsuaq, West Greenl<strong>and</strong>. Report prepared<br />

for grønArctic Energy Inc., Calgary, Alberta, Canada, November<br />

<strong>19</strong>95. Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport<br />

<strong>19</strong>97/37, 25 pp.<br />

Dalh<strong>of</strong>f, F., Chalmers, J.A., Gregersen, U., Nøhr-Hansen, H.,<br />

Rasmussen, E. & Sheldon, E. 2003: Mapping <strong>and</strong> facies analysis<br />

<strong>of</strong> Paleocene–Mid-Eocene seismic sequences, <strong>of</strong>fshore southern<br />

West Greenl<strong>and</strong>. Marine <strong>and</strong> Petroleum Geology 20, 935–986.<br />

Dam, G. <strong>19</strong>96a: Sedimentology <strong>of</strong> the GANT#1 core drilled by<br />

grønArctic Energy Inc., Tunorsuaq, Nuussuaq, West Greenl<strong>and</strong>.<br />

Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport<br />

<strong>19</strong>96/96, 18 pp.<br />

Dam, G. <strong>19</strong>96b: Sedimentology <strong>of</strong> the GANE#1 <strong>and</strong> GANE#1A cores<br />

drilled by grønArctic Energy Inc., Eqalulik, Nuussuaq, West<br />

Greenl<strong>and</strong>. Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

Rapport <strong>19</strong>96/82, 18 pp.<br />

Dam, G. <strong>19</strong>96c: Sedimentology <strong>of</strong> the GANK#1 <strong>and</strong> GANK#1A cores<br />

drilled by grønArctic Energy Inc., Kuussuaq, Nuussuaq, West<br />

Greenl<strong>and</strong>. Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

Rapport <strong>19</strong>96/83, 15 pp.<br />

Dam, G. <strong>19</strong>97: Sedimentology <strong>of</strong> the Umiivik-1 core, Svartenhuk<br />

Halvø, West Greenl<strong>and</strong>. Danmarks og Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse Rapport <strong>19</strong>97/136, 15 pp.<br />

Dam, G. 2002: Sedimentology <strong>of</strong> magmatically <strong>and</strong> structurally controlled<br />

outburst valleys along rifted volcanic margins; examples<br />

from the Nuussuaq Basin, West Greenl<strong>and</strong>. Sedimentology 49,<br />

505–532.<br />

Dam, G. & Christiansen, F.G. <strong>19</strong>94: Well summary, Marraat-1,<br />

Nuussuaq, West Greenl<strong>and</strong>. Open File Series Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 94/11, 27 pp.<br />

Dam, G. & Nøhr-Hansen, H. <strong>19</strong>95: Sedimentology <strong>and</strong> stratigraphy<br />

<strong>of</strong> the sediments from cores drilled by Falconbridge Ltd. in<br />

<strong>19</strong>94 at Serfat, northern Nuussuaq, West Greenl<strong>and</strong>. Open File<br />

Series Grønl<strong>and</strong>s Geologiske Undersøgelse 95/8, 18 pp.<br />

Dam, G. & Nøhr-Hansen, H. 2001: Mantle plumes <strong>and</strong> sequence<br />

stratigraphy; Late Maastrichtian – Early Paleocene <strong>of</strong> West Green -<br />

l<strong>and</strong>. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Denmark</strong> 48, 189–207.<br />

Dam, G. & Sønderholm, M. <strong>19</strong>94: Lowst<strong>and</strong> slope channels <strong>of</strong> the<br />

Itilli succession (Maastrichtian – Lower Paleocene), Nuussuaq, West<br />

Greenl<strong>and</strong>. Sedimentary Geology 94, 49–71.<br />

Dam, G. & Sønderholm, M. <strong>19</strong>98: Sedimentological evolution <strong>of</strong> a<br />

fault-controlled Early Paleocene incised-valley system, Nuussuaq<br />

Basin, West Greenl<strong>and</strong>. In: Shanley, K.W. & McCabe, P.J. (eds):<br />

Relative role <strong>of</strong> eustasy, climate, <strong>and</strong> tectonism in continental<br />

rocks. Society <strong>of</strong> Economic Paleontologists <strong>and</strong> Mineralogists<br />

Special Publication 59, 109–121.<br />

Dam, G., Larsen, M. & Sønderholm, M. <strong>19</strong>98a: Sedimentary response<br />

to mantle plumes: implications from Paleocene onshore successions,<br />

West <strong>and</strong> East Greenl<strong>and</strong>. Geology 26, 207–210.<br />

Dam, G., Nøhr-Hansen, H., Christiansen, F.G., Bojesen-Koefoed,<br />

J.A. & Laier, T. <strong>19</strong>98b: The oldest marine Cretaceous sediments<br />

in West Greenl<strong>and</strong> (Umiivik-1 borehole) – record <strong>of</strong> the Ceno -<br />

manian–Turonian Anoxic Event? Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong><br />

<strong>Bulletin</strong> 180, 128–137.<br />

Dam, G., Nøhr-Hansen, H. & Kennedy, W.J. <strong>19</strong>98c: The northernmost<br />

marine Cretaceous–Tertiary boundary section: Nuussuaq,<br />

West Greenl<strong>and</strong>. Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong> <strong>Bulletin</strong> 180,<br />

138–144.<br />

Dam, G. et al. <strong>19</strong>98d: Reservoir modelling <strong>of</strong> western Nuussuaq, central<br />

West Greenl<strong>and</strong>. EFP-96 project 1313/96-0010 final report.<br />

Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport <strong>19</strong>98/5,<br />

1–3 (14 individual reports).<br />

Dam, G., Nøhr-Hansen, H., Pedersen, G.K. & Sønderholm, M.<br />

2000: Sedimentary <strong>and</strong> structural evidence <strong>of</strong> a new early Cam -<br />

panian rift phase in the Nuussuaq Basin, West Greenl<strong>and</strong>. Cre -<br />

taceous Research 21, 127–154.<br />

de Loriol, P. 1883: Om fossile Saltv<strong>and</strong>sdyr fra Nord-Grønl<strong>and</strong> (in<br />

French). Meddelelser om Grønl<strong>and</strong> 5, 205–213.<br />

Dueholm, K.S. & Olsen, T. <strong>19</strong>93: Reservoir analog studies using<br />

multimodel photogrammetry: a new tool for the petroleum industry.<br />

American Association <strong>of</strong> Petroleum Geologists <strong>Bulletin</strong> 77,<br />

2023–2031.<br />

Duffield, W.A., Bacon, C.R. & Delaney, P.T. <strong>19</strong>86: Deformation <strong>of</strong><br />

poorly consolidated sediment during shallow emplacement <strong>of</strong> a<br />

basalt sill, Coso Range, California. <strong>Bulletin</strong> <strong>of</strong> Volcanology 48,<br />

97–107.<br />

Ehman, D.A. <strong>19</strong>77: Report on ARCO <strong>19</strong>76 West Greenl<strong>and</strong> field<br />

party, 31 pp. Unpublished report, ARCO Greenl<strong>and</strong> Inc.,<br />

Copenhagen, <strong>Denmark</strong> (in archives <strong>of</strong> <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>, GEUS Report File 17594).<br />

Ehman, D.A., Sodero, D.E. & Wise, J.C. <strong>19</strong>76: Report on ARCO<br />

<strong>and</strong> Chevron groups <strong>19</strong>75 West Greenl<strong>and</strong> field party, 84 pp. +<br />

data volume. Unpublished report, ARCO Greenl<strong>and</strong> Inc.,<br />

Copenhagen, <strong>Denmark</strong> (in archives <strong>of</strong> <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>, GEUS Report File 17592).<br />

Elder, J.W. <strong>19</strong>75: A seismic <strong>and</strong> gravity study <strong>of</strong> the western part <strong>of</strong><br />

the Cretaceous–Tertiary sedimentary basin <strong>of</strong> central West<br />

Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 69, 5–9.<br />

Elliott, T. <strong>19</strong>89: Deltaic systems <strong>and</strong> their contribution to an underst<strong>and</strong>ing<br />

<strong>of</strong> basin-fill successions. In: Whateley, M.K.G. &<br />

Pickering, K.T. (eds): Deltas: sites <strong>and</strong> traps for fossil fuels.<br />

<strong>Geological</strong> Society (London) Special Publication 41, 3–10.<br />

Escher, A. <strong>19</strong>71: <strong>Geological</strong> map <strong>of</strong> Greenl<strong>and</strong>, 1:500 000, Søndre<br />

Strømfjord – Nûgssuaq, Sheet 3. Copenhagen: <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> Greenl<strong>and</strong>.<br />

Escher, J.C. <strong>19</strong>85: <strong>Geological</strong> map <strong>of</strong> Greenl<strong>and</strong>, 1:500 000, Upernavik<br />

Isfjord, Sheet 4. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Escher, J.C. & Pulvertaft, T.C.R. <strong>19</strong>95: <strong>Geological</strong> map <strong>of</strong> Greenl<strong>and</strong>,<br />

1:2 500 000. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Floris, S. <strong>19</strong>67: West Greenl<strong>and</strong> scleractinian corals from Upper<br />

Cretaceous <strong>and</strong> Lower Tertiary. Meddelelser fra Dansk Geologisk<br />

Forening 17, <strong>19</strong>2–<strong>19</strong>3.<br />

Floris, S. <strong>19</strong>72: Scleractinian corals from the Upper Cretaceous <strong>and</strong><br />

Lower Tertiary <strong>of</strong> Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s<br />

Geologiske Undersøgelse 100, 132 pp.<br />

Frebold, H. <strong>19</strong>34: Obere Kreide in Ostgrönl<strong>and</strong>. Meddelelser om<br />

Grønl<strong>and</strong> 84(8), 33 pp.<br />

Fürsich, F.T. & Bromley, R.G. <strong>19</strong>85: Behavioural interpretation <strong>of</strong><br />

162


a rosetted spreite trace fossil: Dactyloidites ottoi (Geinitz). Lethaia<br />

18, <strong>19</strong>9–207.<br />

Geodætisk Institut <strong>19</strong>66: Grønl<strong>and</strong> 1:250 000, 70 V.1 Nûgssuaq.<br />

København: Geodætisk Institut.<br />

Government <strong>of</strong> Newfoundl<strong>and</strong> <strong>and</strong> Labrador 2000: Sedimentary<br />

basins <strong>and</strong> hydrocarbon potential <strong>of</strong> Newfoundl<strong>and</strong> <strong>and</strong> Labrador.<br />

Report 2000-01, 62 pp.<br />

Gradstein, F.M., Ogg, J.G. & Smith, A.G. 2004: A geologic time scale<br />

2004, 610 pp. Cambridge: Cambridge University Press.<br />

Gregersen, U., Bidstrup, T., Bojesen-Koefoed, J.A., Christiansen,<br />

F.G., Dalh<strong>of</strong>f, F. & Sønderholm, M. 2007: Petroleum systems <strong>and</strong><br />

structures <strong>of</strong>fshore central West Greenl<strong>and</strong>: implications for hydrocarbon<br />

prospectivity. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong><br />

<strong>Bulletin</strong> 13, 25–28.<br />

Gry, H. <strong>19</strong>40: Petrografiske undersøgelser af de kretaciske og tertiære<br />

sedimentserier paa Disko, Nûgsssuaq og Svartenhuk. Meddelelser<br />

fra Dansk Geologisk Forening 9, 656 only.<br />

Gry, H. <strong>19</strong>42: The Cretaceous <strong>and</strong> Tertiary sediments on Itsako. In:<br />

Rosenkrantz, A. et al. (eds): A geological reconnaissance on the<br />

southern part <strong>of</strong> the Svartenhuk Peninsula, West Greenl<strong>and</strong>.<br />

Meddelelser om Grønl<strong>and</strong> 135(3), 27–35.<br />

Hald, N. <strong>19</strong>76: Early Tertiary flood basalts from Hareøen <strong>and</strong> western<br />

Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 120, 36 pp.<br />

Hald, N. & Pedersen, A.K. <strong>19</strong>75: Lithostratigraphy <strong>of</strong> the Early<br />

Tertiary volcanic rocks <strong>of</strong> central West Greenl<strong>and</strong>. Rapport Grøn -<br />

l<strong>and</strong>s Geologiske Undersøgelse 69, 17–24.<br />

Hansen, H.J. <strong>19</strong>70: Danian foraminifera from Nûgssuaq, West Green -<br />

l<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Undersøgelse 93, 132 pp.<br />

Hansen, J.M. <strong>19</strong>76: Microplankton <strong>and</strong> sedimentological studies in<br />

the Nûgssuaq <strong>and</strong> Disko region, central West Greenl<strong>and</strong>. Rapport<br />

Grønl<strong>and</strong>s Geologiske Undersøgelse 80, 39–42.<br />

Hansen, J.M. <strong>19</strong>80a: Morphological characterization <strong>of</strong> encrusting,<br />

palynomorph green algae from the Cretaceous–Tertiary <strong>of</strong> central<br />

West Greenl<strong>and</strong> <strong>and</strong> <strong>Denmark</strong>. Grana <strong>19</strong>, 67–77.<br />

Hansen, J.M. <strong>19</strong>80b: Stratigraphy <strong>and</strong> structure <strong>of</strong> the Paleocene in<br />

central West Greenl<strong>and</strong> <strong>and</strong> <strong>Denmark</strong>, 156 pp. Unpublished lic.<br />

scient. thesis, University <strong>of</strong> Copenhagen, <strong>Denmark</strong>.<br />

Harrison, J.C. et al. <strong>19</strong>99: Correlation <strong>of</strong> Cenozoic sequences <strong>of</strong> the<br />

Canadian Arctic region <strong>and</strong> Greenl<strong>and</strong>; implications for the tectonic<br />

history <strong>of</strong> northern North America. <strong>Bulletin</strong> <strong>of</strong> Canadian<br />

Petroleum Geology 47, 223–254.<br />

Heer, O. 1868: Flora Fossilis Arctica. Die fossile Flora der Polarländer,<br />

<strong>19</strong>2 pp. Zürich: Druck und Verlag von Friedrich Schulthess.<br />

Heer, O. 1870: Contributions to the fossil flora <strong>of</strong> North Greenl<strong>and</strong>.<br />

Philosophical Transactions <strong>of</strong> the Royal Society <strong>of</strong> London 159,<br />

445–488.<br />

Heer, O. 1874a: Nachträge zur miocenen Flora Grönl<strong>and</strong>s. Kungliga<br />

Svenska Vetenskaps-Akademiens H<strong>and</strong>lingar 13(2), 29 pp.<br />

Heer, O. 1874b: Die Kreide-Flora der arctischen Zone. Kungliga<br />

Svenska Vetenskaps-Akademiens H<strong>and</strong>lingar 12(6), 138 pp.<br />

Heer, O. 1880: Nachträge zur fossilen Flora Grönl<strong>and</strong>s. Kungliga<br />

Svenska Vetenskaps-Akademiens H<strong>and</strong>lingar 18(2), 17 pp.<br />

Heer, O. 1882: Flora fossilis Grönl<strong>and</strong>ica. Die fossile Flora Grönl<strong>and</strong>s.<br />

Erster Theil, 112 pp. Zurich: Verlag von J. Wurster & Comp.<br />

Heer, O. 1883a: Flora fossilis Grönl<strong>and</strong>ica. Die fossile Flora Grönl<strong>and</strong>s.<br />

Zweiter Theil, 275 pp. Zurich: Verlag von J. Wurster & Comp.<br />

Heer, O. 1883b: Oversigt over Grønl<strong>and</strong>s fossile flora. Meddelelser<br />

om Grønl<strong>and</strong> 5, 79–202.<br />

Heim, A. <strong>19</strong>10: Über die Petrographie und Geologie der Umgebungen<br />

von Karsuarsuk, Nordseite der Halbinsel Nugsuak, W. Grönl<strong>and</strong>.<br />

Meddelelser om Grønl<strong>and</strong> 47(3), 173–230.<br />

Heinesen, M. <strong>19</strong>87: Nedre tertiære basaltbreccier og underv<strong>and</strong>s -<br />

lavastrømme, sydlige Disko, Vestgrønl<strong>and</strong>: Strukturelle, petrografiske<br />

og mineralogiske studier, 118 pp. Unpublished M.Sc.<br />

thesis, Københavns Universitet, Danmark.<br />

Henderson, G. <strong>19</strong>69: Oil <strong>and</strong> gas prospects in the Cretaceous–Tertiary<br />

basin <strong>of</strong> West Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Under -<br />

søgelse 22, 63 pp.<br />

Henderson, G. <strong>19</strong>73: The geological setting <strong>of</strong> the West Greenl<strong>and</strong><br />

Basin in the Baffin Bay region. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Canada,<br />

Paper 71-23, 521–544.<br />

Henderson, G. <strong>19</strong>76: Petroleum geology. In: Escher, A. & Watt,<br />

W.S. (eds): Geology <strong>of</strong> Greenl<strong>and</strong>, 488–505. Copenhagen:<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Henderson, G. & Pulvertaft, T.C.R. <strong>19</strong>87: <strong>Geological</strong> map <strong>of</strong><br />

Greenl<strong>and</strong>, 1:100 000, Mârmorilik 71 V.2 Syd, Nûgâtsiaq 71 V.2<br />

Nord, Pangnertoq 72 V.2 Syd. Descriptive text, 72 pp., 8 plates.<br />

Copenhagen: Grønl<strong>and</strong>s Geologiske Undersøgelse [<strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>].<br />

Henderson, G., Rosenkrantz, A. & Schiener, E.J. <strong>19</strong>76: Creta -<br />

ceous–Tertiary sedimentary rocks <strong>of</strong> West Greenl<strong>and</strong>. In: Escher,<br />

A. & Watt, W.S. (eds): Geology <strong>of</strong> Greenl<strong>and</strong>, 341–362. Copen -<br />

hagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Henderson, G., Schiener, E.J., Risum, E.J., Croxton, C.A. & Andersen,<br />

B.B. <strong>19</strong>81: The West Greenl<strong>and</strong> Basin. In: Kerr, J.W. & Ferguson,<br />

A.J. (eds): Geology <strong>of</strong> the North Atlantic Borderl<strong>and</strong>s. Memoir<br />

<strong>of</strong> the Canadian Society <strong>of</strong> Petroleum Geology 7, 399–428.<br />

Hjortkjær, B.F. <strong>19</strong>91: Palynologisk undersøgelse af tertiære skifre fra<br />

Disko og Nûgssuaq, Vestgrønl<strong>and</strong>, 94 pp. Unpublished M.Sc.<br />

thesis, Københavns Universitet, Danmark.<br />

Japsen, P., Green, P.F. & Chalmers, J.A. 2005: Separation <strong>of</strong> Palaeogene<br />

<strong>and</strong> Neogene uplift on Nuussuaq, West Greenl<strong>and</strong>. Journal <strong>of</strong><br />

the <strong>Geological</strong> Society (London) 162, 299–314.<br />

Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar-<br />

Bergström, K. 2006: Elevated, passive continental margins: longterm<br />

highs or Neogene uplifts? New evidence from West Greenl<strong>and</strong>.<br />

Earth <strong>and</strong> Planetary Science Letters 248, 315–324.<br />

Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar-<br />

Bergström, K. 2009: Formation, uplift <strong>and</strong> dissection <strong>of</strong> planation<br />

surfaces at passive continental margins – a new approach. Wiley<br />

InterScience: http://dx.doi.org/10.1002/esp.1766.<br />

Jensen, M. 2000: Sedimentære facies og fluvial arkitektur i vertikalt<br />

stablede, fluviale aflejringer: Atane Formationen (N.–Ø. Kridt),<br />

SØ-Nuussuaq, Vestgrønl<strong>and</strong>, 144 pp. Unpublished M.Sc. thesis,<br />

Københavns Universitet, Danmark.<br />

Jensen, M.A. & Pedersen, G.K. in press: Architecture <strong>of</strong> vertically<br />

stacked fluvial deposits, Atane Formation, Cretaceous, central<br />

West Greenl<strong>and</strong>. Sedimentology.<br />

Johannessen, P. & Nielsen, L.H. <strong>19</strong>82: Aflejringer fra flettede floder,<br />

Atane Formation, Øvre Kridt, Pingo, Øst Disko. Dansk Geologisk<br />

Forening Årsskrift <strong>19</strong>81, 13–27.<br />

Jones, J.G. & Nelson, P.H.H. <strong>19</strong>70: The flow <strong>of</strong> basalt lava from air<br />

into water – its structural expression <strong>and</strong> stratigraphic signifi-<br />

163


cance. <strong>Geological</strong> Magazine 107, 13–<strong>19</strong>.<br />

Jürgensen, T. & Mikkelsen, N. <strong>19</strong>74: Coccoliths from volcanic sediments<br />

(Danian) in Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> <strong>of</strong> the<br />

<strong>Geological</strong> Society <strong>of</strong> <strong>Denmark</strong> 23, 225–230.<br />

Kalsbeek, F. & Christiansen, F.G. <strong>19</strong>92: Disko Bugt Project <strong>19</strong>91,<br />

West Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

155, 36–41.<br />

Kennedy, W.J., Nøhr-Hansen, H. & Dam, G. <strong>19</strong>99: The youngest<br />

Maastrichtian ammonite faunas from Nuussuaq, West Greenl<strong>and</strong>.<br />

Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong> <strong>Bulletin</strong> 184, 13–17.<br />

Kierkegaard, T. <strong>19</strong>98: Diagenesis <strong>and</strong> reservoir properties <strong>of</strong> Cam -<br />

panian–Paleocene s<strong>and</strong>stones in the GANT#1 well, western<br />

Nuussuaq, central West Greenl<strong>and</strong>. Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong><br />

<strong>Bulletin</strong> 180, 31–34.<br />

Koch, B.E. <strong>19</strong>55: <strong>Geological</strong> observations on the Tertiary sequence<br />

<strong>of</strong> the area around Atanikerdluk, West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grøn -<br />

l<strong>and</strong>s Geologiske Undersøgelse 9, 50 pp. (also Meddelelser om<br />

Grønl<strong>and</strong> 135(5)).<br />

Koch, B.E. <strong>19</strong>59: Contribution to the stratigraphy <strong>of</strong> the non-marine<br />

Tertiary deposits on the south coast <strong>of</strong> the Nûgssuaq peninsula<br />

northwest Greenl<strong>and</strong> with remarks on the fossil flora. <strong>Bulletin</strong><br />

Grønl<strong>and</strong>s Geologiske Undersøgelse 22, 100 pp. (also Meddelelser<br />

om Grønl<strong>and</strong> 162(1)).<br />

Koch, B.E. <strong>19</strong>63: Fossil plants from the lower Paleocene <strong>of</strong> the Agat -<br />

dalen (Angmârtussut) area, central Nûgssuaq peninsula, northwest<br />

Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Undersøgelse 38,<br />

120 pp. + 55 plates (also Meddelelser om Grønl<strong>and</strong> 172(5)).<br />

Koch, B.E. <strong>19</strong>64: Review <strong>of</strong> fossil floras <strong>and</strong> nonmarine deposits <strong>of</strong><br />

West Greenl<strong>and</strong>. <strong>Geological</strong> Society <strong>of</strong> America <strong>Bulletin</strong> 75,<br />

535–548.<br />

Koch, B.E. <strong>19</strong>72a: Coryphoid palm fruits <strong>and</strong> seeds from the Danian<br />

<strong>of</strong> Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 99, 38 pp.<br />

Koch, B.E. <strong>19</strong>72b: Fossil picodendroid fruit from the upper Danian<br />

<strong>of</strong> Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 98, 33 pp.<br />

Koch, B.E. & Pedersen, K.R. <strong>19</strong>60: <strong>Geological</strong> map <strong>of</strong> Atanikerdluk<br />

<strong>and</strong> environs 1:10 000. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Under -<br />

søgelse 23, 38 pp. (also Meddelelser om Grønl<strong>and</strong> 162(4)).<br />

Koch, L. <strong>19</strong>29: Stratigraphy <strong>of</strong> Greenl<strong>and</strong>. Meddelelser om Grønl<strong>and</strong><br />

73(2), 209–320.<br />

Kollmann, H.A. & Peel, J.S. <strong>19</strong>83: Paleocene gastropods from<br />

Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 146, 115 pp.<br />

Koppelhus, E.B. & Pedersen, G.K. <strong>19</strong>93: A palynological <strong>and</strong> sedimentological<br />

study <strong>of</strong> Cretaceous floodplain deposits <strong>of</strong> the Atane<br />

Formation at Skansen <strong>and</strong> Igdlunguaq, Disko, West Greenl<strong>and</strong>.<br />

Cretaceous Research 14, 707–734.<br />

Kristensen, L. & Dam, G. <strong>19</strong>97: Lithological <strong>and</strong> petrophysical evalua -<br />

tion <strong>of</strong> the GRO#3 well, Nuussuaq, West Greenl<strong>and</strong>. Danmarks<br />

og Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport <strong>19</strong>97/156, 26 pp.<br />

Lanstorp, J. <strong>19</strong>99: En palynologisk undersøgelse af kretassiske og<br />

paleocæne sedimenter fra det sydøstlige Nuussuaq, Vestgrønl<strong>and</strong>.<br />

Geologisk Tidsskrift <strong>19</strong>99/1, 13–20.<br />

Larsen, J.G. & Grocott, J. <strong>19</strong>91: Geologisk kort over Greenl<strong>and</strong>,<br />

1:100 000, Svartenhuk, 71 V.1 Nord, København: Grønl<strong>and</strong>s<br />

Geologiske Undersøgelse [English legend].<br />

Larsen, J.G. & Pulvertaft, T.C.R. 2000: The structure <strong>of</strong> the<br />

Cretaceous–Palaeogene sedimentary-volcanic area <strong>of</strong> Svartenhuk<br />

Halvø, central West Greenl<strong>and</strong>. Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong><br />

<strong>Bulletin</strong> 188, 40 pp.<br />

Larsen, L.M. & Pedersen, A.K. <strong>19</strong>90: Volcanic marker horizon in the<br />

Maligât Formation on Disko <strong>and</strong> Nûgssuaq, <strong>and</strong> implications for<br />

the development <strong>of</strong> the southern part <strong>of</strong> the West Greenl<strong>and</strong> basin<br />

in the Early Tertiary. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

148, 65–73.<br />

Larsen, L.M. & Pedersen, A.K. <strong>19</strong>92: Volcanic marker horizons in<br />

the upper part <strong>of</strong> the Maligât Formation on eastern Disko <strong>and</strong><br />

Nuussuaq, Tertiary <strong>of</strong> West Greenl<strong>and</strong>: syn- to post-volcanic basin<br />

movements. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 155,<br />

85–93.<br />

Larsen, L.M. & Pedersen, A.K. 2009: Petrology <strong>of</strong> the Paleocene<br />

picrites <strong>and</strong> flood basalts on Disko <strong>and</strong> Nuussuaq, West Greenl<strong>and</strong>.<br />

Journal <strong>of</strong> Petrology 50, 1667–1711.<br />

Larsen, L.M., Pedersen, A.K., Pedersen, G.K. & Piasecki, S. <strong>19</strong>92:<br />

Timing <strong>and</strong> duration <strong>of</strong> Early Tertiary volcanism in the North<br />

Atlantic: new evidence from West Greenl<strong>and</strong>. <strong>Geological</strong> Society<br />

Special Publication (London) 68, 321–333.<br />

Larsen, L.M., Pedersen, A.K. & Pedersen, G.K. 2006: A subaqueous<br />

rootless cone field at Niuluut, Disko, Paleocene <strong>of</strong> West<br />

Greenl<strong>and</strong>. Lithos 92, 20–32.<br />

McIntyre, D.J. <strong>19</strong>93: Palynology <strong>of</strong> twenty-eight samples from Upper<br />

Cretaceous <strong>and</strong> Paleocene strata at Atâtâ kûa, Nugssuaq, West<br />

Greenl<strong>and</strong> (map Qutdligssat 70 V.1 Syd). Paleontological Report.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Canada 2-DJM-<strong>19</strong>93, 13 pp.<br />

McIntyre, D.J. <strong>19</strong>94a: Report on Cretaceous palynology <strong>of</strong> eight<br />

samples from Kugssinerujuk, Disko Isl<strong>and</strong>, West Greenl<strong>and</strong> (Map<br />

70 V.1 Syd). Department <strong>of</strong> Natural Resources Canada, Pale -<br />

ontological Report 3-DJM-<strong>19</strong>94, 3 pp.<br />

McIntyre, D.J. <strong>19</strong>94b: Palynology <strong>of</strong> five Cretaceous samples from<br />

Kugssinerujuk, Disko Isl<strong>and</strong>, West Greenl<strong>and</strong> (Map 70 V.1 S).<br />

Department <strong>of</strong> Natural Resources Canada, Paleontological Report<br />

6-DJM-<strong>19</strong>94, 3 pp.<br />

McIntyre, D.J. <strong>19</strong>94c: Palynology <strong>of</strong> six Cretaceous samples from Atâta<br />

kûa, Nuussuaq, West Greenl<strong>and</strong> (map Qutdligssat 70 V.1 S).<br />

Department <strong>of</strong> Natural Resources Canada, Paleontological report<br />

13-DJM-<strong>19</strong>94, 4 pp.<br />

Madsen, J.H. 2000: Sedimentologisk og syntaktisk analyse af en<br />

finkornet turbidit succession, Øvre Kridt, Nuussuaq, Vestgrønl<strong>and</strong>,<br />

151 pp. Unpublished M.Sc. thesis, Københavns Universitet,<br />

Danmark.<br />

Madsen, V. 1897: The genus Scaphites in West Greenl<strong>and</strong>. Meddelelser<br />

fra Dansk Geologisk Forening 1(4), 45–51.<br />

Marcussen, C., Chalmers, J.A., Andersen, H.L., Rasmussen, R. &<br />

Dahl-Jensen, T. 2001: Acquisition <strong>of</strong> high-resolution multichannel<br />

seismic data in the <strong>of</strong>fshore part <strong>of</strong> the Nuussuaq Basin, central<br />

West Greenl<strong>and</strong>. Geology <strong>of</strong> Greenl<strong>and</strong> <strong>Survey</strong> <strong>Bulletin</strong> 189,<br />

34–40.<br />

Marcussen, C., Skaarup, N. & Chalmers, J.A. 2002: EFP Project<br />

NuussuaqSeis 2000 – final report. Structure <strong>and</strong> hydrocarbon<br />

potential <strong>of</strong> the Nuussuaq Basin: acquisition <strong>and</strong> interpretation<br />

<strong>of</strong> high-resolution multichannel seismic data. Danmarks og<br />

Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport 2002/33, 63 pp.<br />

Mathiesen, F.J. <strong>19</strong>61: On two specimens <strong>of</strong> fossil wood with adhe -<br />

164


ing bark from the Nûgssuaq peninsula. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geo -<br />

logiske Undersøgelse 30, 54 pp. (also Meddelelser om Grønl<strong>and</strong><br />

167(2)).<br />

Miall, A.D. <strong>19</strong>86: The Eureka Sound Group (Upper Cretaceous –<br />

Oligocene), Canadian Arctic Isl<strong>and</strong>s. <strong>Bulletin</strong> <strong>of</strong> Canadian Petro -<br />

leum Geology 34, 240–270.<br />

Miall, A.D., Balkwill, H.R. & Hopkins, W.S., Jr. <strong>19</strong>80: Cretaceous<br />

<strong>and</strong> Tertiary sediments <strong>of</strong> Eclipse Trough, Bylot Isl<strong>and</strong> area, Arctic<br />

Canada, <strong>and</strong> their regional setting <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Canada<br />

Paper 79-23, 20 pp.<br />

Midtgaard, H.H. <strong>19</strong>91: Vertikal og regional facies fordeling i deltacykler<br />

fra Atane Formationen, Øvre Kridt, Vestgrønl<strong>and</strong> – et tids -<br />

mæssigt perspektiv, 88 pp. Unpublished M.Sc. thesis, Københavns<br />

Universitet, Danmark.<br />

Midtgaard, H.H. <strong>19</strong>96a: Inner-shelf to lower-shoreface hummocky<br />

s<strong>and</strong>stone bodies with evidence for geostrophic influenced combined<br />

flow, Lower Cretaceous, West Greenl<strong>and</strong>. Journal <strong>of</strong><br />

Sedimentary Research 66, 343–353.<br />

Midtgaard, H.H. <strong>19</strong>96b: Sedimentology <strong>and</strong> sequence stratigraphy<br />

<strong>of</strong> coalbearing synrift sediments on Nuussuaq <strong>and</strong> Upernivik Ø<br />

(U. Albian – L. Cenomanian), central West Greenl<strong>and</strong>, 175 pp.<br />

Unpublished Ph.D. thesis, University <strong>of</strong> Copenhagen, <strong>Denmark</strong>.<br />

Midtgaard, H. & Olsen, T. <strong>19</strong>89: Sedimentological studies in the<br />

Upper Cretaceous coal bearing strata <strong>of</strong> southern Nûgssuaq, central<br />

West Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

145, 32–37.<br />

Miner, E.L. <strong>19</strong>32a: Megaspores ascribed to Selaginellites, from the<br />

Upper Cretaceous coals <strong>of</strong> western Greenl<strong>and</strong>. Journal <strong>of</strong> the<br />

Washington Academy <strong>of</strong> Sciences 22, 497–505.<br />

Miner, E.L. <strong>19</strong>32b: A new Gleicheniopsis from the Upper Cretaceous<br />

<strong>of</strong> western Greenl<strong>and</strong>. American Journal <strong>of</strong> Botany 21, 261–264.<br />

Miner, E.L. <strong>19</strong>35: Paleobotanical examinations <strong>of</strong> Cretaceous <strong>and</strong><br />

Tertiary coals. The American Midl<strong>and</strong> Naturalist 16, 585–625.<br />

Møller, L.W. 2006a: De rytmisk optrædende kullag i Atane For -<br />

mationen ved Skansen. En kobling mellem relativt havniveau,<br />

aflejringsmiljø og kildebjergartspotentiale belyst ved sedimentologi<br />

og kulpetrografi, 81 pp. Unpublished M.Sc. thesis, Køben -<br />

havns Universitet, Danmark.<br />

Møller, L.W. 2006b: De rytmisk optrædende kullag i Atane For -<br />

mationen, en sedimentologisk og kulpetrografisk undersøgelse.<br />

Geologisk Tidsskrift 2006/2, 1–4.<br />

Nielsen, I. 2003: En sedimentologisk undersøgelse af Atane For -<br />

mationen (N.–Ø. Kridt), SØ-Nuussuaq, Vestgrønl<strong>and</strong>, 146 pp.<br />

Unpublished M.Sc. thesis, Københavns Universitet, Danmark.<br />

Nøhr-Hansen, H. <strong>19</strong>93: Upper Maastrichtian? – lower Paleocene<br />

dino flagellate cysts <strong>and</strong> pollen from turbidites in the Itilli region,<br />

Nuussuaq, central West Greenl<strong>and</strong> – first dating <strong>of</strong> the sediments.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 159, 81–87.<br />

Nøhr-Hansen, H. <strong>19</strong>96: Upper Cretaceous din<strong>of</strong>lagellate cyst strati -<br />

graphy, onshore West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 170, 104 pp.<br />

Nøhr-Hansen, H. <strong>19</strong>97a: Palynology <strong>of</strong> the Umiivik-1 borehole,<br />

Svartenhuk Halvø, West Greenl<strong>and</strong>. Danmarks og Grønl<strong>and</strong>s<br />

Geologiske Undersøgelse Rapport <strong>19</strong>97/32, 12 pp.<br />

Nøhr-Hansen, H. <strong>19</strong>97b: Palynology <strong>of</strong> the boreholes GANE#1,<br />

GANK#1 <strong>and</strong> GANT#1, Nuussuaq, West Greenl<strong>and</strong>. Danmarks<br />

og Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport <strong>19</strong>97/89, 22 pp.<br />

Nøhr-Hansen, H. <strong>19</strong>97c: Palynology <strong>of</strong> the GRO#3 well, Nuussuaq,<br />

West Greenl<strong>and</strong>. Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

Rapport <strong>19</strong>97/151, <strong>19</strong> pp.<br />

Nøhr-Hansen, H. & Dam, G. <strong>19</strong>97: Palynology <strong>and</strong> sedimentology<br />

across a new marine Cretaceous –Tertiary boundary section on<br />

Nuussuaq, West Greenl<strong>and</strong>. Geology 25, 851–854.<br />

Nøhr-Hansen, H. & Sheldon, E. 2000: Palyno- <strong>and</strong> nannostratigraphic<br />

dating <strong>of</strong> the marine Paleocene succession in the Nuussuaq<br />

Basin, West Greenl<strong>and</strong>. GFF 122, 115–116. Stockholm: <strong>Geological</strong><br />

Society <strong>of</strong> Sweden.<br />

Nøhr-Hansen, H., Sheldon, E. & Dam, G. 2002: A new biostratigraphic<br />

scheme for the Paleocene onshore West Greenl<strong>and</strong> <strong>and</strong><br />

its implications for the timing <strong>of</strong> the pre-volcanic evolution. In:<br />

Jolley, D.W. & Bell, B.R. (eds): The North Atlantic igneous<br />

province: stratigraphy, tectonic, volcanic <strong>and</strong> magmatic processes.<br />

<strong>Geological</strong> Society (London) Special Publication <strong>19</strong>7, 111–156.<br />

Nordenskiöld, A.E. 1871: Redogörelse för en expedition till Grönl<strong>and</strong><br />

år 1870. Öfversigt Kungliga Vetenskaps-Akademiens Förh<strong>and</strong> -<br />

lingar 27 [1870], 973–1082.<br />

Nordenskiöld, [A.] E. 1872: Account <strong>of</strong> an expedition to Greenl<strong>and</strong><br />

in the year 1870. <strong>Geological</strong> Magazine 9, 97–101.<br />

North American Commission on Stratigraphic Nomenclature <strong>19</strong>83:<br />

North American stratigraphic code. American Association <strong>of</strong><br />

Petroleum Geologists <strong>Bulletin</strong> 67, 841–875.<br />

Núñez-Betelu, L.K. <strong>19</strong>94: Sequence stratigraphy <strong>of</strong> a coastal to <strong>of</strong>fshore<br />

transition, Upper Cretaceous Kanguk Formation: a palynological,<br />

sedimentological, <strong>and</strong> Rock-Eval characterization <strong>of</strong> a<br />

depositional sequence, northeastern Sverdrup Basin, Canadian<br />

Arctic, 569 pp. Unpublished Ph.D. thesis, Department <strong>of</strong> Geology<br />

<strong>and</strong> Geophysics, University <strong>of</strong> Calgary, Calgary, Canada.<br />

Núñez-Betelu, L.K., Hills, L.V., Krause, F.F. & McIntyre, D.J. <strong>19</strong>94a:<br />

Upper Cretaceous palaeoshorelines <strong>of</strong> the northeastern Sverdrup<br />

Basin, Ellesmere Isl<strong>and</strong>, Canadian Arctic Archipelago. In: Simakov,<br />

K.V. & Thurston, D.K. (eds): Proceedings <strong>of</strong> the international conference<br />

on Arctic margins, 43–49. Magadan, Russia, 6–10<br />

September <strong>19</strong>94.<br />

Núñez-Betelu, L.K., Hills, L.V. & MacRae, R.A. <strong>19</strong>94b:<br />

Palynostratigraphy <strong>and</strong> hydrocarbon potential <strong>of</strong> the Upper<br />

Cretaceous Kanguk Formation: an integrated multidisciplinary<br />

analysis <strong>of</strong> the northeastern Canadian Arctic Archipelago. In:<br />

Simakov, K.V. & Thurston, D.K. (eds): Proceedings <strong>of</strong> the international<br />

conference on Arctic margins, 54–61. Magadan, Russia,<br />

6–10 September <strong>19</strong>94.<br />

Nyt<strong>of</strong>t, H.P., Bojesen-Koefoed, J.A. & Christiansen, F.G. 2000: C 26<br />

<strong>and</strong> C 28 –C 34 28-norhopanes in sediments <strong>and</strong> petroleum. Organic<br />

Geochemistry 31, 25–39.<br />

Oakey, G.N. 2005: Cenozoic evolution <strong>and</strong> lithosphere dynamics <strong>of</strong><br />

the Baffin Bay – Nares Strait region <strong>of</strong> Arctic Canada <strong>and</strong><br />

Greenl<strong>and</strong>, 233 pp. Unpublished Ph.D. thesis, Vrije Universiteit,<br />

Amsterdam, The Netherl<strong>and</strong>s.<br />

Ødum, H. & Koch, B.E. <strong>19</strong>55: The Mesozoic sediments <strong>of</strong><br />

Qeqertarssuaq, Umanak District, West Greenl<strong>and</strong>. Meddelelser<br />

om Grønl<strong>and</strong> 135(2), 14 pp.<br />

Ogg, J.G., Ogg, G. & Gradstein, F.M. 2008: The concise geological<br />

time scale, 184 pp. Cambridge: Cambridge University Press.<br />

Olsen, T. <strong>19</strong>91: Fluviale distributionskanaler fra Atane Formationen,<br />

Øvre Kridt, Pautût, Vestgrønl<strong>and</strong>. S<strong>and</strong>legeme geometri og kanal<br />

165


morfologi, 108 pp. Unpublished M.Sc. thesis, Københavns Uni -<br />

versitet, Danmark.<br />

Olsen, T. <strong>19</strong>93: Large fluvial systems: the Atane Formation, a fluviodeltaic<br />

example from the Upper Cretaceous <strong>of</strong> central West<br />

Greenl<strong>and</strong>. In: Fielding, C.R. (ed.): Current research in fluvial sedimentology.<br />

Sedimentary Geology 85, 457–473.<br />

Olsen, T. & Pedersen, G.K. <strong>19</strong>91: The occurrence <strong>of</strong> marine fossils<br />

in the Upper Cretaceous deltaic sediments at Pautût, central West<br />

Greenl<strong>and</strong>. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Denmark</strong> 39,<br />

111–122.<br />

Olsson, R.K., Hemleben, C., Berggren, W.A. & Huber, B.T. <strong>19</strong>99:<br />

Atlas <strong>of</strong> Paleocene planktonic foraminifera. Smithsonian Contri -<br />

butions to Paleobiology 85, 1–252.<br />

Pacaud, J.-M. & Schnetler, K.I. <strong>19</strong>99: Revision <strong>of</strong> the gastropod<br />

family Pseudolividae from the Paleocene <strong>of</strong> West Greenl<strong>and</strong> <strong>and</strong><br />

<strong>Denmark</strong>. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Denmark</strong> 46,<br />

53–67.<br />

Pedersen, A.K. <strong>19</strong>78: Graphitic <strong>and</strong>esite tuffs resulting from high-<br />

Mg tholeiite <strong>and</strong> sediment interaction; Nûgssuaq, West Greenl<strong>and</strong>.<br />

<strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Denmark</strong> Special Issue 27,<br />

117–130.<br />

Pedersen, A.K. <strong>19</strong>85: Lithostratigraphy <strong>of</strong> the Tertiary Vaigat Formation<br />

on Disko, central West Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 124, 30 pp.<br />

Pedersen, A.K. & Dueholm, K.S. <strong>19</strong>92: New methods for the geological<br />

analysis <strong>of</strong> Tertiary volcanic formations on Nuussuaq <strong>and</strong><br />

Disko, central West Greenl<strong>and</strong>, using multi-model photogrammetry.<br />

In: Dueholm, K.S. & Pedersen, A.K. (eds): <strong>Geological</strong><br />

analysis <strong>and</strong> mapping using multi-model photogrammetry. Rapport<br />

Grønl<strong>and</strong>s Geologiske Undersøgelse 156, <strong>19</strong>–34.<br />

Pedersen, A.K. & Larsen, L.M. 2006: The Ilugissoq graphite <strong>and</strong>esite<br />

volcano, Nuussuaq, central West Greenl<strong>and</strong>. Lithos 92, 1–<strong>19</strong>.<br />

Pedersen, A.K. & Peel, J.S. <strong>19</strong>85: Ordovician(?) gastropods from<br />

cherts in Cretaceous s<strong>and</strong>stones, south-east Disko, central West<br />

Green l<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 125,<br />

30–33.<br />

Pedersen, A.K. & Ulff-Møller, F. <strong>19</strong>80: Field work in central west<br />

Disko, <strong>19</strong>79. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 100,<br />

51–55.<br />

Pedersen, A.K., Larsen, L.M. & Ulff-Møller, F. <strong>19</strong>89: Discovery <strong>of</strong><br />

<strong>and</strong>esite tuffs with graphite from the Vaigat Formation <strong>of</strong> south<br />

central Nûgssuaq. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse<br />

145, 42–45.<br />

Pedersen, A.K., Larsen, L.M. & Dueholm, K.S. <strong>19</strong>93: <strong>Geological</strong> section<br />

along the south coast <strong>of</strong> Nuussuaq, central West Greenl<strong>and</strong>,<br />

1:20 000, coloured geological sheet. Copenhagen: <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Pedersen, A.K., Larsen, L.M., Pedersen, G.K. & Dueholm, K.S.<br />

<strong>19</strong>96: Filling <strong>and</strong> plugging <strong>of</strong> a marine basin by volcanic rocks:<br />

the Tunoqqu Member <strong>of</strong> the Lower Tertiary Vaigat Formation on<br />

Nuussuaq, central West Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske<br />

Undersøgelse 171, 5–28.<br />

Pedersen, A.K., Ulf-Møller, F., Larsen, L.M., Pedersen, G.K. &<br />

Dueholm, K.S. 2000: <strong>Geological</strong> map <strong>of</strong> Greenl<strong>and</strong>, 1:100 000,<br />

Uiffaq, 69 V.1 Syd. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong><br />

<strong>and</strong> Greenl<strong>and</strong>.<br />

Pedersen, A.K., Larsen, L.M., Ulf-Møller, F., Pedersen, G.K. &<br />

Dueholm, K.S. 2001: <strong>Geological</strong> map <strong>of</strong> Greenl<strong>and</strong>, 1:100 000,<br />

Pingu, 69 V.2 Nord. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong><br />

<strong>and</strong> Greenl<strong>and</strong>.<br />

Pedersen, A.K., Larsen, L.M. & Dueholm, K.S. 2002: <strong>Geological</strong> section<br />

along the north side <strong>of</strong> the Aaffarsuaq valley <strong>and</strong> central<br />

Nuussuaq, central West Greenl<strong>and</strong>, 1:20 000, coloured geological<br />

sheet. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong><br />

Greenl<strong>and</strong>.<br />

Pedersen, A.K., Larsen, L.M., Pedersen, G.K., Heinesen, M.V. &<br />

Dueholm, K.S. 2003: <strong>Geological</strong> section along the south <strong>and</strong><br />

south-west coast <strong>of</strong> Disko, central West Greenl<strong>and</strong>, 1:20 000,<br />

coloured geological sheet. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>.<br />

Pedersen, A.K., Larsen, L.M., Pedersen, G.K. & Dueholm, K.S.<br />

2005: <strong>Geological</strong> section across north central Disko from Nord -<br />

fjord to Pingu, central West Greenl<strong>and</strong>, 1:20 000, coloured geological<br />

sheet. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong><br />

Greenl<strong>and</strong>.<br />

Pedersen, A.K., Larsen, L.M., Pedersen, G.K. & Dueholm, K.S.<br />

2006a: Five slices through the Nuussuaq Basin, West Greenl<strong>and</strong>.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong> <strong>Bulletin</strong> 10, 53–56.<br />

Pedersen, A.K., Larsen, L.M., Pedersen, G.K., Sønderholm, M.,<br />

Midtgaard, H.H., Pulvertaft, T.C.R. & Dueholm, K.S. 2006b:<br />

<strong>Geological</strong> section along the north coast <strong>of</strong> the Nuussuaq peninsula,<br />

central West Greenl<strong>and</strong>, 1:20 000, coloured geological sheet.<br />

Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>.<br />

Pedersen, A.K., Pedersen, G.K., Larsen, L.M., Pulvertaft, T.C.R.,<br />

Sønderholm, M. & Dueholm, K.S. 2007a: <strong>Geological</strong> map <strong>of</strong><br />

the Nuussuaq Basin in southern Nuussuaq, 1:100 000, special map<br />

Paatuut, with detailed sections. Copenhagen: <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>.<br />

Pedersen, A.K., Pedersen, G.K., Larsen, L.M., Pulvertaft, T.C.R.,<br />

Sønderholm, M. & Dueholm, K.S. 2007b: <strong>Geological</strong> map <strong>of</strong> the<br />

south-east coast <strong>of</strong> Nuussuaq between Ataata Kuua <strong>and</strong> Saqqaq -<br />

dalen, central West Greenl<strong>and</strong>, 1:50 000, with detailed sections.<br />

Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong>.<br />

Pedersen, G.K. <strong>19</strong>87: New sedimentological data on Lower Tertiary<br />

shales from Disko <strong>and</strong> Nûgssuaq, West Greenl<strong>and</strong>. Rapport<br />

Grønl<strong>and</strong>s Geologiske Undersøgelse 135, 17–25.<br />

Pedersen, G.K. <strong>19</strong>89: A fluvial dominated lacustrine delta in a volcanic<br />

province, W. Greenl<strong>and</strong>. In: Whatley, M.K.G. & Pickering,<br />

K.T. (eds): Deltas: sites <strong>and</strong> traps for fossil fuels. <strong>Geological</strong> Society<br />

(London) Special Publication 41, 139–146.<br />

Pedersen, G.K. & Bromley, R.G. 2006: Ophiomorpha irregulaire, rare<br />

trace fossil in shallow marine s<strong>and</strong>stones, Cretaceous Atane For -<br />

mation, West Greenl<strong>and</strong>. Cretaceous Research 27, 964–972.<br />

Pedersen, G.K. & Jeppesen, M.W. <strong>19</strong>88: Examples <strong>of</strong> bar accretion<br />

in fluvial s<strong>and</strong>, the Atane Formation, eastern Disko, West Green -<br />

l<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 140, 38–43.<br />

Pedersen, G.K. & Pulvertaft, T.C.R. <strong>19</strong>92: The nonmarine Cretaceous<br />

<strong>of</strong> the West Greenl<strong>and</strong> Basin, onshore West Greenl<strong>and</strong>. Cretaceous<br />

Research 13, 263–272.<br />

Pedersen, G.K. & Rasmussen, B.F. <strong>19</strong>89: New observations <strong>of</strong> marine<br />

trace fossils in delta plain sequences, southern Nûgssuaq, West<br />

Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 145,<br />

37–42.<br />

Pedersen, G.K., Larsen, L.M., Pedersen, A.K. & Hjortkjær, B.F.<br />

166


<strong>19</strong>98: The syn-volcanic Naajaat lake, Paleocene <strong>of</strong> West Greenl<strong>and</strong>.<br />

Palaeogeography, Palaeoclimatology, Palaeoecology 140, 271–287.<br />

Pedersen, G.K., Andersen, L.A., Lundsteen, E.B., Petersen, H.I.,<br />

Bojesen-Koefoed, J.A. & Nyt<strong>of</strong>t, H.P. 2006: Depositional environments,<br />

organic maturity <strong>and</strong> petroleum potential <strong>of</strong> the Creta -<br />

ceous coal-bearing Atane Formation at Qullissat, Nuussuaq Basin,<br />

West Greenl<strong>and</strong>. Journal <strong>of</strong> Petroleum Geology 29, 3–26.<br />

Pedersen, K.R. <strong>19</strong>68: Angiospermous leaves from the Lower Cretaceous<br />

Kome Formation <strong>of</strong> northern West Greenl<strong>and</strong>. Rapport Grønl<strong>and</strong>s<br />

Geologiske Undersøgelse 15, 17–18.<br />

Pedersen, K.R. <strong>19</strong>76: Fossil floras <strong>of</strong> Greenl<strong>and</strong>. In: Escher, A. & Watt,<br />

W.S. (eds): Geology <strong>of</strong> Greenl<strong>and</strong>, 518–535. Copenhagen: Geolo -<br />

g ical <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Perch-Nielsen, K. <strong>19</strong>73: Danian <strong>and</strong> Campanian/Maastrichtian coccoliths<br />

from Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong><br />

Society <strong>of</strong> <strong>Denmark</strong> 22, 79–82.<br />

Perregaard, J. & Schiener, E.J. <strong>19</strong>79: Organic geochemical <strong>and</strong> microscopical<br />

study <strong>of</strong> sedimentary organic matter, central West Green -<br />

l<strong>and</strong>. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 95, 55–60.<br />

Petersen, G.H. & Vedelsby, A. 2000: An illustrated catalogue <strong>of</strong> the<br />

Paleocene Bivalvia from Nuussuaq, Northwest Greenl<strong>and</strong>: their<br />

paleoenvironments <strong>and</strong> the paleoclimate. Steenstrupia 25, 25–120.<br />

Piasecki, S., Larsen, L.M., Pedersen, A.K. & Pedersen, G.K. <strong>19</strong>92:<br />

Palynostratigraphy <strong>of</strong> the Lower Tertiary volcanics <strong>and</strong> marine<br />

clastic sediments in the southern part <strong>of</strong> the West Greenl<strong>and</strong><br />

Basin: implications for the timing <strong>and</strong> duration <strong>of</strong> the volcanism.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 154, 13–31.<br />

Preuss, T. <strong>19</strong>96: En petrografisk undersøgelse af øvre kretassiske s<strong>and</strong>sten<br />

fra Itilli-dalen, Nuussuaq Halvøen, det centrale Vestgrønl<strong>and</strong>,<br />

167 pp. Unpublished c<strong>and</strong>. scient. thesis, Aarhus Universitet,<br />

Danmark.<br />

Pulvertaft, T.C.R. <strong>19</strong>79: Lower Cretaceous fluvial-deltaic sediments<br />

at Kûk, Nûgssuaq, West Greenl<strong>and</strong>. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong><br />

Society <strong>of</strong> <strong>Denmark</strong> 28, 57–72.<br />

Pulvertaft, T.C.R. <strong>19</strong>87: <strong>Geological</strong> map <strong>of</strong> Greenl<strong>and</strong>, 1:100 000,<br />

Agpat, 70 V.2 Nord. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Pulvertaft, T.C.R. <strong>19</strong>89a: The geology <strong>of</strong> Sarqaqdalen, West Greenl<strong>and</strong>,<br />

with special reference to the Cretaceous boundary fault system.<br />

Open File Series Grønl<strong>and</strong>s Geologiske Undersøgelse 89/5, 35 pp.<br />

Pulvertaft, T.C.R. <strong>19</strong>89b: Reinvestigation <strong>of</strong> the Cretaceous boundary<br />

fault in Sarqaqdalen, Nûgssuaq, central West Greenl<strong>and</strong>.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 145, 28–32.<br />

Pulvertaft, T.C.R. & Chalmers, J.A. <strong>19</strong>90: Are there Late Cretaceous<br />

unconformities in the onshore outcrops <strong>of</strong> the West Greenl<strong>and</strong><br />

Basin? Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 148, 75–82.<br />

Rasmussen, T.M., Thorning, L., Stemp, R.W., Jørgensen, M.S. &<br />

Schjøth, F. 2001: AEM Greenl<strong>and</strong> <strong>19</strong>94–<strong>19</strong>98 – summary report.<br />

Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport<br />

2001/58, 46 pp.<br />

Ravn, J.P.J. <strong>19</strong>11: Beretning om en geologisk Undersøgelsesrejse til<br />

Disko og Nûgssuaq-Halvø i Vest-Grønl<strong>and</strong>. Meddelelser om<br />

Grønl<strong>and</strong> 47(2), 147–172.<br />

Ravn, J.P.J. <strong>19</strong>18: De marine Kridtaflejringer i Vest-Grønl<strong>and</strong> og<br />

deres fauna. Meddelelser om Grønl<strong>and</strong> 56(9), 313–366.<br />

Rink, H.[J.] 1853: Om den geographiske Beskaffenhed af de danske<br />

H<strong>and</strong>elsdistrikter i Nordgrönl<strong>and</strong>, tilligemed en Udsigt over<br />

Nordgrönl<strong>and</strong>s Geognosi. Det Kongelige Danske Videnskabernes<br />

Selskabs Skrifter, 5. Række, Naturvidenskabelige og Mathematiske<br />

Afdeling 3, 37–70.<br />

Rink, H.[J.] 1855: De danske H<strong>and</strong>elsdistrikter i Nordgrønl<strong>and</strong>,<br />

deres geographiske Beskaffenhed og produktive Erhvervskilder.<br />

Anden Deel, 218 pp. København: Andreas Frederik Høst.<br />

Rink, H.[J.] 1857: Grønl<strong>and</strong>, geographisk og statistisk beskrevet, 1:<br />

Det nordre Inspectorat, 420 pp., 2: Det søndre Inspectorat, 588<br />

pp. København: Andreas Frederik Høst.<br />

Rolle, F. <strong>19</strong>85: Late Cretaceous – Tertiary sediments <strong>of</strong>fshore central<br />

West Greenl<strong>and</strong>: lithostratigraphy, sedimentary evolution,<br />

<strong>and</strong> petroleum potential. Canadian Journal <strong>of</strong> Earth Sciences 22,<br />

1001–10<strong>19</strong>.<br />

Rosenkrantz, A. <strong>19</strong>67: Bjørnefælden ved Nûgssuaq og nordboernes<br />

Eysunes i geologisk belysning. Tidsskriftet Grønl<strong>and</strong> December<br />

<strong>19</strong>67, 377–384.<br />

Rosenkrantz, A. <strong>19</strong>70: Marine Upper Cretaceous <strong>and</strong> lowermost<br />

Tertiary deposits in West Greenl<strong>and</strong>. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong><br />

Society <strong>of</strong> <strong>Denmark</strong> <strong>19</strong>, 406–453.<br />

Rosenkrantz, A. & Pulvertaft, T.C.R. <strong>19</strong>69: Cretaceous–Tertiary<br />

stratigraphy <strong>and</strong> tectonics in northern West Greenl<strong>and</strong>. American<br />

Association <strong>of</strong> Petroleum Geologists Memoir 12, 883–898.<br />

Rosenkrantz, A., Noe-Nygaard, A., Gry, H., Munck, S. & Laursen,<br />

D. <strong>19</strong>42: A geological reconnaissance <strong>of</strong> the southern part <strong>of</strong> the<br />

Svartenhuk Peninsula, West Greenl<strong>and</strong>. Meddelelser om Grønl<strong>and</strong><br />

135(3), 73 pp.<br />

Rosenkrantz, A., Münther, V. & Henderson, G. <strong>19</strong>74: <strong>Geological</strong><br />

map <strong>of</strong> Greenl<strong>and</strong>, 1:100 000, Agatdal, 70 V.1 Nord. Copenhagen:<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Rosenkrantz, A., Münther, V., Henderson, G., Pedersen, A.K. &<br />

Hald, N. <strong>19</strong>76: <strong>Geological</strong> map <strong>of</strong> Greenl<strong>and</strong>, 1:100 000, Qut -<br />

dligssat, 70 V.1 Syd. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Greenl<strong>and</strong>.<br />

Scherstén, A. & Sønderholm, M. 2007: Provenance <strong>of</strong> Cretaceous<br />

<strong>and</strong> Paleocene s<strong>and</strong>stones in the West Greenl<strong>and</strong> basins based on<br />

detrital zircon dating. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong><br />

<strong>Bulletin</strong> 13, 29–32.<br />

Schiener, E.J. <strong>19</strong>75: Basin study: central West Greenl<strong>and</strong> onshore<br />

Cretaceous–Tertiary sediments. IXme Congrès international de<br />

Sedimentologie, Nice <strong>19</strong>75, 2, Theme 5, 379–385.<br />

Schiener, E.J. <strong>19</strong>76: West Greenl<strong>and</strong> coal deposits: distribution <strong>and</strong><br />

petrography. Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 77,<br />

21 pp.<br />

Schiener, E.J. <strong>19</strong>77: Sedimentological observations on the Early<br />

Cretaceous sediments in eastern parts <strong>of</strong> the Nûgssuaq embayment.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 79, 45–61.<br />

Schiener, E.J. & Floris, S. <strong>19</strong>77: Coral-bearing material associated<br />

with a tholeiitic dyke in the Sordlût valley, Nûgssuaq. Rapport<br />

Grønl<strong>and</strong>s Geologiske Undersøgelse 79, 27–33.<br />

Schiener, E.J. & Leythaeuser, D. <strong>19</strong>78: Petroleum potential <strong>of</strong>f W.<br />

Greenl<strong>and</strong>. Oil <strong>and</strong> Gas Journal October <strong>19</strong>78, 223–234.<br />

Schlüter, C. 1874: Untitled abstract <strong>of</strong> talk. Sitzungsberichte der<br />

niederrheinischen Gesellschaft für Natur- und Heilkunde in Bonn<br />

7, 24–31.<br />

Schmincke, H.-U. <strong>19</strong>67: Fused tuff <strong>and</strong> peperites in south-central<br />

Washington. <strong>Geological</strong> Society <strong>of</strong> America <strong>Bulletin</strong> 78, 3<strong>19</strong>–330.<br />

Seward, A.C. <strong>19</strong>24: Notes sur la Flore Crétacique du Groenl<strong>and</strong>.<br />

Societé géologique Belgique. 5eme anniversaire Livre Jubilaire<br />

1(1), 227–263.<br />

167


Seward, A.C. <strong>19</strong>26: The Cretaceous plant-bearing rocks <strong>of</strong> western<br />

Greenl<strong>and</strong>. Philosophical Transactions <strong>of</strong> the Royal Society <strong>of</strong><br />

London, Series B 215, 57–175.<br />

Seward, A.C. & Conway, V.M. <strong>19</strong>35: Additional Cretaceous plants<br />

from western Greenl<strong>and</strong>. Kungliga Svenska Vetenskaps-Akade -<br />

miens H<strong>and</strong>lingar 15(3), 51 pp.<br />

Seward, A.C. & Conway, V.M. <strong>19</strong>39: Fossil plants from Kingigtoq<br />

<strong>and</strong> Kagdlunguak, West Greenl<strong>and</strong>. Meddelelser om Grønl<strong>and</strong><br />

93(5), 41 pp.<br />

Sharma, P.V. <strong>19</strong>73: Seismic velocity <strong>and</strong> sediment thickness investigations<br />

by refraction soundings in Nûgssuaq, West Greenl<strong>and</strong>.<br />

Rapport Grønl<strong>and</strong>s Geologiske Undersøgelse 54, 22 pp.<br />

Shekhar, S.C., Fr<strong>and</strong>sen, N. & Thomsen, E. <strong>19</strong>82: Coal on Nûgssuaq,<br />

West Greenl<strong>and</strong>, 82 pp. Copenhagen: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Green -<br />

l<strong>and</strong>.<br />

Skaarup, N. & Pulvertaft, T.C.R. 2007: Aspects <strong>of</strong> the structure on<br />

the coast <strong>of</strong> the West Greenl<strong>and</strong> volcanic province revealed in<br />

seismic data. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Denmark</strong> 55,<br />

65–80.<br />

Sønderholm, M., Nøhr-Hansen, H., Bojesen-Koefoed, J.A., Dalh<strong>of</strong>f,<br />

F. & Rasmussen, J.A. 2003: Regional correlation <strong>of</strong> Meso -<br />

zoic–Palaeogene sequences across the Greenl<strong>and</strong>–Canada boundary.<br />

Danmarks og Grønl<strong>and</strong>s Geologiske Undersøgelse Rapport<br />

2003/25, 175 pp.<br />

Sørensen, A.B. 2006: Stratigraphy, structure <strong>and</strong> petroleum potential<br />

<strong>of</strong> the Lady Franklin <strong>and</strong> Maniitsoq Basins, <strong>of</strong>fshore southern<br />

West Greenl<strong>and</strong>. Petroleum Geoscience 12, 221–234.<br />

Steenstrup, K.J.V. 1874: Om de kulförende Dannelser på Öen Disko,<br />

Hareöen og Syd-Siden af Nûgssuaq’s Halvöen i Nord-Grönl<strong>and</strong>.<br />

Videnskabelige Meddelelser fra den naturhistoriske Forening i<br />

Kjøbenhavn 3-7, 39 pp.<br />

Steenstrup, K.J.V. 1883a: Beretning om Undersøgelsesrejserne i Nord-<br />

Grønl<strong>and</strong> i Aarene 1878–80. Meddelelser om Grønl<strong>and</strong> 5, 1–41.<br />

Steenstrup, K.J.V. 1883b: Om Forekomsten af Forsteninger i de<br />

kulførende Dannelser i Nord-Grønl<strong>and</strong>. Meddelelser om Grønl<strong>and</strong><br />

5, 43–77.<br />

Steenstrup, K.J.V. 1883c: Et Par Bemærkninger til Pr<strong>of</strong>essor Heers<br />

Afh<strong>and</strong>ling i dette Hefte. Meddelelser om Grønl<strong>and</strong> 5, 215–216.<br />

Steenstrup, K.J.V. <strong>19</strong>00: Beretning om en Undersøgelsesrejse til Øen<br />

Disko. Meddelelser om Grønl<strong>and</strong> 24(3), 249–306.<br />

Steenstrup, K.J.V. (ed.) <strong>19</strong>10: Karl Ludvig Gieseckes mineralogisches<br />

Reisejournal über Grönl<strong>and</strong> 1806–13, 2te vollständige Ausgabe.<br />

Meddelelser om Grønl<strong>and</strong> 35, 532 pp.<br />

Stilling, J. <strong>19</strong>96: En petrografisk undersøgelse af kretassiske s<strong>and</strong>sten<br />

fra Nugssuaq Halvøen, det centrale Vestgrønl<strong>and</strong> – med hovedvægt<br />

på authigene faser, diagenesemønster og diagenetiske processer,<br />

125 pp. Unpublished M.Sc. thesis, Aarhus Universitet, Danmark.<br />

Storey, M., Duncan, R.A., Pedersen, A.K., Larsen, L.M. & Larsen,<br />

H.C. <strong>19</strong>98: 40 Ar/ 39 Ar geochronology <strong>of</strong> the West Greenl<strong>and</strong><br />

Tertiary volcanic province. Earth <strong>and</strong> Planetary Science Letters<br />

160, 569–586.<br />

Szczechura, J. <strong>19</strong>71: Paleocene Ostracoda from Nûgssuaq, West<br />

Greenl<strong>and</strong>. Meddelelser om Grønl<strong>and</strong> <strong>19</strong>3(1), 42 pp.<br />

Teichert, C. <strong>19</strong>39: Geology <strong>of</strong> Greenl<strong>and</strong>. In: Ruedemann, R. &<br />

Balk, R. (eds): Geology <strong>of</strong> North America 1, 100–175 (Geologie<br />

der Erde 1). Berlin: Verlag von Gebrüder Borntraeger.<br />

Thalbitzer, W. <strong>19</strong>10: Die grönländischen Ortsnamen in Gieseckes<br />

Reisejournal. Meddelelser om Grønl<strong>and</strong> 35, 511–532.<br />

Troelsen, J.C. <strong>19</strong>56: Groenl<strong>and</strong>. In: Pruvost, P. (ed.): Lexique stratigraphique<br />

international 1a, 116 pp. Paris.<br />

Tucker, D.S. & Scott, K.M. 2009: Structures <strong>and</strong> facies associated<br />

with the flow <strong>of</strong> subaerial basaltic lava into a deep freshwater lake:<br />

the Sulphur Creek lava flow, North Cascades, Washington. Journal<br />

<strong>of</strong> Volcanology <strong>and</strong> Geothermal Research 185, 311–322.<br />

White, D. & Schuchert, C. 1898: Cretaceous Series <strong>of</strong> the west coast<br />

<strong>of</strong> Greenl<strong>and</strong>. <strong>Bulletin</strong> <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> America 9,<br />

343–370.<br />

Whittaker, R.C., Hamann, N.E. & Pulvertaft, T.C.R. <strong>19</strong>97: A new<br />

frontier province <strong>of</strong>fshore northwest Greenl<strong>and</strong>: structure, basin<br />

development, <strong>and</strong> petroleum potential <strong>of</strong> the Melville Bay area.<br />

American Association <strong>of</strong> Petroleum Geologists <strong>Bulletin</strong> 81,<br />

978–998.<br />

Wilson, R.W., Klint, K.E.S., van Gool, J.A.M., McCaffrey, K.J.W.,<br />

Holdsworth, R.E. & Chalmers, J.A. 2006: Faults <strong>and</strong> fractures<br />

in central West Greenl<strong>and</strong>: onshore expression <strong>of</strong> continental<br />

break-up <strong>and</strong> sea-floor spreading in the Labrador – Baffin Bay Sea.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Denmark</strong> <strong>and</strong> Greenl<strong>and</strong> <strong>Bulletin</strong> 11,<br />

185–204.<br />

Yen, J.T.C. <strong>19</strong>58: A Cretaceous non-marine molluscan fauna <strong>of</strong> West<br />

Greenl<strong>and</strong>. <strong>Bulletin</strong> Grønl<strong>and</strong>s Geologiske Undersøgelse 21, 13 pp.<br />

168


Appendix: Place names <strong>and</strong> localities<br />

The place names <strong>and</strong> localities mentioned in the text are shown on one or more maps. Figure 2 contains many names <strong>and</strong> indicates the position<br />

<strong>of</strong> more detailed maps where the remaining names are shown. Names in italics are names with old spelling. They are located under their<br />

modern spelling or indicated on the historical maps (Figs 3, 4). The old forms <strong>of</strong> the names are typically mentioned under the heading<br />

‘History’.<br />

Place name<br />

Place name<br />

A<br />

Aaffarsuaq central Nuussuaq Figs 2, 82<br />

Aamaruutissat<br />

(also Skansen) southern Disko Fig. 124<br />

Aasiaat southern Disko Bugt Figs 2, 10<br />

Agatdalen central Nuussuaq Fig. 113<br />

Agatkløft central Nuussuaq Fig. 113<br />

Akuliarusinnguaq (Ak) southern Nuussuaq Fig. 2<br />

Akunneq northern Disko Fig. 124<br />

Alianaatsunnguaq southern Nuussuaq Fig. 2<br />

Alianaitsúnguaq<br />

(now Alianaatsunnguaq) southern Nuussuaq Figs 2, 4<br />

Anariatorfik western Nuussuaq Fig. 65<br />

Angiarsuit northern Nuussuaq Fig. 22<br />

Angiissat<br />

(part <strong>of</strong> Grønne Ejl<strong>and</strong>) southern Disko Bugt Fig. 2<br />

Angnertuneq<br />

(now Annertuneq)<br />

Annertuneq northern Nuussuaq Fig. 74<br />

Aqajaruata Qaqqaa eastern Disko Fig. 124<br />

Auvfarssuaq<br />

(now Aaffarsuaq)<br />

Assoq southern Disko Figs 2, 124<br />

Asuk northern Disko Fig. 2<br />

Ata (now Ataa) southern Nuussuaq Fig. 4<br />

Atâ (now Ataa)<br />

Ataa southern Nuussuaq Fig. 40<br />

Ataata Kuua southern Nuussuaq Figs 6, 40<br />

Atane (now Ataa) southern Nuussuaq Fig. 3<br />

Atanekerdluk<br />

(now Atanikerluk) southern Nuussuaq Fig. 3<br />

Atanikerdluk<br />

(now Atanikerluk) southern Nuussuaq Fig. 4<br />

Atanikerluk southern Nuussuaq Fig. 40<br />

Atâta kûa<br />

(now Ataata Kuua)<br />

B<br />

Baffin Bay Fig. 1<br />

Blåbærdalen southern Disko Fig. 124<br />

D<br />

Danienrygge (DR) northern Nuussuaq Fig. 74<br />

Daugaard Jensen Dal central Disko Fig. 124<br />

Davis Strait Fig. 1<br />

Disko Figs 2, 10,<br />

124<br />

Disko Bugt Figs 2, 10<br />

Disko Gneiss Ridge<br />

(DGR) western Disko Fig. 10<br />

E<br />

Ekkorfat (now Ikorfat) northern Nuussuaq Fig. 3<br />

Ekorgfat (now Ikorfat) northern Nuussuaq Fig. 4<br />

Eqalulik western Nuussuaq Fig. 65<br />

Eqip Inaarsuata Qaqqaa<br />

(EIQ) eastern Nuussuaq Fig. 2<br />

F<br />

Firefjeld Svartenhuk Halvø Fig. 73<br />

FP93-3-1 northern Disko Fig. 2<br />

FP94-11-02 northern Nuussuaq Fig. 74<br />

FP94-11-04 northern Nuussuaq Fig. 74<br />

FP94-11-05 northern Nuussuaq Fig. 74<br />

FP94-9-01 western Nuussuaq Fig. 65<br />

Frederik Lange Dal eastern Disko Fig. 124<br />

G<br />

GANE#1 western Nuussuaq Fig. 65<br />

GANK#1 western Nuussuaq Fig. 65<br />

GANT#1 northern Nuussuaq Fig. 74<br />

GANW#1 western Nuussuaq Fig. 65<br />

GGU 247701 southern Nuussuaq Fig. 40<br />

GGU 247801 southern Nuussuaq Fig. 40<br />

GGU 247901 southern Nuussuaq Fig. 40<br />

GGU 400701 central Nuussuaq Fig. 113<br />

GGU 400702 central Nuussuaq Fig. 113<br />

GGU 400703 central Nuussuaq Fig. 113<br />

GGU 400704 central Nuussuaq Fig. 113<br />

GGU 400705 northern Nuussuaq Fig. 74<br />

GGU 400706 northern Nuussuaq Fig. 74<br />

GGU 400707 northern Nuussuaq Fig. 74<br />

GGU 400708 Svartenhuk Halvø Fig. 73<br />

GGU 400709 Svartenhuk Halvø Fig. 73<br />

GGU 400710 Svartenhuk Halvø Fig. 73<br />

GGU 400711 Svartenhuk Halvø Fig. 73<br />

GGU 400712 Svartenhuk Halvø Fig. 73<br />

Giesecke Monument southern Nuussuaq Figs 6, 40<br />

169


Place name<br />

Place name<br />

GRO#3 western Nuussuaq Fig. 65<br />

Grønne Ejl<strong>and</strong> southern Disko Bugt Figs 2, 10<br />

Gule Ryg eastern Disko Fig. 124<br />

I<br />

Igdlokungoak<br />

(now Illokunnguaq) northern Disko Fig. 3<br />

Igdlokunguak<br />

(now Illokunnguaq) northern Disko Fig. 4<br />

Igdlunguaq<br />

(now Illunnguaq)<br />

Ikorfat northern Nuussuaq Figs 2, 22<br />

Ikorfat fault zone (Ik) northern Nuussuaq Fig. 10<br />

Illukunnguaq northern Disko Fig. 124<br />

Illunnguaq southern Disko Fig. 124<br />

Ilugissoq central Nuussuaq Fig. 2<br />

Ilulissat eastern Disko Bugt Figs 2, 10<br />

Innanguit southern Disko Fig. 124<br />

Inngigissoq northern Disko Fig. 124<br />

Innaarsuit (also Skansen) southern Disko Fig. 124<br />

Ippigaarsukkløften southern Nuussuaq Fig. 40<br />

Itilli western Nuussuaq Figs 2, 65<br />

Itivnera central Nuussuaq Fig. 82<br />

Itsaku Svartenhuk Halvø Fig. 73<br />

Ivissussat southern Nuussuaq Fig. 40<br />

Ivissussat Qaqqaat southern Nuussuaq Figs 6, 40<br />

Ivisaannguit southern Nuussuaq Figs 6, 40<br />

Ivnanguit (now Innanguit) southern Disko Fig. 4<br />

J.P.J. Ravn Kløft northern Nuussuaq Fig. 22<br />

K<br />

Kaersuarsuk (now Qaarsut)<br />

Kaersut (now Qaarsut) northern Nuussuaq Fig. 4<br />

Kangersooq central Nuussuaq Fig. 82<br />

Kangersôq<br />

(now Kangersooq)<br />

Kangilia northern Nuussuaq Fig. 74<br />

Kardlok<br />

(now Qallunguaq) southern Nuussuaq Fig. 4<br />

Kardlunguaq<br />

(now Qallunguaq)<br />

Karsoq (now Qaarsut)<br />

Killuusat southern Disko Fig. 124<br />

Kingigtok<br />

(now Kingittoq) southern Nuussuaq Fig. 4<br />

Kingigtoq (now Kingittoq)<br />

Kingittoq southern Nuussuaq Fig. 40<br />

Kitdlusat (now Killusat) southern Disko Fig. 4<br />

Kome (now Kuuk) northern Nuussuaq Fig. 3<br />

Kook (now Kuuk) northern Nuussuaq Fig. 4<br />

Kook angnertunek<br />

(now Annertuneq) northern Nuussuaq Fig. 4<br />

Kudliset (now Qullissat) northern Disko Fig. 3<br />

Kûk (now Kuuk) northern Nuussuaq Fig. 21<br />

Kûk quamassoq<br />

(now Kuuk Qaamasoq)<br />

Kussinerujuk northern Disko Fig. 2<br />

Kugannguaq valley northern Disko Fig. 2<br />

Kuugannguaq–Qunnilik Fault<br />

(KQ) western Nuussuaq Fig. 10<br />

Kuuk northern Nuussuaq Fig. 21<br />

Kuuk Qaamasoq southern Disko Fig. 124<br />

Kuussuaq central Nuussuaq Fig. 65<br />

Kv<strong>and</strong>alen eastern Disko Fig. 124<br />

L<br />

Labrador Sea Fig. 1<br />

Laksedalen eastern Disko Fig. 124<br />

M<br />

Majorallattarfik northern Nuussuaq Fig. 21<br />

Maligaat north-west <strong>of</strong> Disko Fig. 2<br />

Marraat southern Disko Fig. 124<br />

Marraat-1 western Nuussuaq Fig. 65<br />

Marrait (now Marraat)<br />

Marrak (now Marraat) southern Disko Fig. 4<br />

Melville Bay Fig. 1<br />

N<br />

Naajaat southern Nuussuaq Fig. 40<br />

Naassat central Nuussuaq Fig. 2<br />

Nalluarissat central Nuussuaq Fig. 82<br />

Naujat (now Naajaat) southern Nuussuaq Fig. 4<br />

Naujât (now Naajaat)<br />

Niakornak<br />

(now Niaqornat) northern Nuussuaq Fig. 3<br />

Niakornat<br />

(now Niaqornat) northern Nuussuaq Fig. 4<br />

Niaqornat northern Nuussuaq Fig. 74<br />

Noursoak Halfö<br />

(now Nuussuaq) Fig. 3<br />

Nûgârssuk<br />

(now Nuugaarsuk)<br />

Nûgssuaq<br />

(now Nuussuaq)<br />

Nugsuak<br />

(now Nuussuaq)<br />

Nugsuaks-Halvö<br />

(now Nuussuaq) Fig. 4<br />

Nuugaarsuk northern Disko Fig. 124<br />

Nuuk Killeq southern Nuussuaq Fig. 2<br />

Nuuk Qiterleq southern Nuussuaq Fig. 2<br />

Nuussuaq Figs 2, 10<br />

Nuussuaq Basin Fig. 1<br />

O<br />

Omenak (now Uummannaq) Fig. 3<br />

170


Place name<br />

Place name<br />

P<br />

Paatuut southern Nuussuaq Figs 2, 40<br />

Paatuutkløften southern Nuussuaq Fig. 40<br />

Patoot (now Paatuut) southern Nuussuaq Fig. 4<br />

Pâtût (now Paatuut)<br />

Pautût (now Paatuut)<br />

Peak 1010 m southern Nuussuaq Figs 6, 40<br />

Pingo (now Pingu)<br />

Pingu eastern Disko Figs 2, 124<br />

Pingunnguup Kuua western Nuussuaq Fig. 65<br />

Q<br />

Qaarsut northern Nuussuaq Figs 2, 22<br />

Qaarsutjægerdal central Nuussuaq Fig. 113<br />

Qagdlúnguaq<br />

(now Qallunnguaq)<br />

Qallorsuaq (Keglen) southern Nuussuaq Fig. 40<br />

Qallunnguaq southern Nuussuaq Fig. 40<br />

Qardlok (now Qallunnguaq)<br />

Qeqertarsuaq (isl<strong>and</strong>) Figs 2, 10,<br />

73<br />

Qeqertarsuaq (town) southern Disko Figs 2, 10<br />

Qilakitsoq central Nuussuaq Fig. 82<br />

Qorlortorsuaq northern Disko Fig. 2<br />

Quikassaap Kuua southern Nuussuaq Fig. 40<br />

Quikavsaup kûa<br />

(Quikassaap Kuua)<br />

Qutdligssat<br />

(now Qullissat)<br />

Qullissat northern Disko Fig. 2<br />

R<br />

Ritenbenks Kulbrud<br />

(now Qullissat) northern Disko Figs 3, 4<br />

S<br />

Sakkak (now Saqqaq) southern Nuussuaq Fig. 3<br />

Sarkak (now Saqqaq) southern Nuussuaq Fig. 4<br />

Saqqaq southern Nuussuaq Fig. 2<br />

Saqqaqdalen southern Nuussuaq Figs 2, 40<br />

Sarfâgfik northern Nuussuaq Fig. 21<br />

Sarqaq (now Saqqaq)<br />

Scaphitesnæsen central Nuussuaq Fig. 113<br />

Serfat northern Nuussuaq Fig. 74<br />

Sill Sø central Nuussuaq Fig. 113<br />

Sinigfik (now Siniffik) southern Disko Fig. 4<br />

Sinnifik (now Siniffik) southern Disko Fig. 3<br />

Sk<strong>and</strong>sen (now Skansen)<br />

Skansen southern Disko Figs 2, 124<br />

Skarvefjeld southern Disko Fig. 2<br />

Slibestensfjeldet northern Nuussuaq Fig. 22<br />

Sorte Hak central Disko Figs 2, 124<br />

Stordal central Disko Fig. 2<br />

Svartenhuk Halvø Figs 2, 10,<br />

73<br />

T<br />

Talerua northern Nuussuaq Fig. 22<br />

Tartunaq southern Nuussuaq Fig. 40<br />

Teltbæk fault central Nuussuaq Fig. 113<br />

Tuapassuit northern Nuussuaq Fig. 21<br />

Tuapaat southern Disko Fig. 124<br />

Tuapaat Qaqqaat southern Disko Fig. 124<br />

Tunoqqu central Nuussuaq Fig. 82<br />

Tunorqo (now Tunoqqu)<br />

Tunorsuaq northern Nuussuaq Fig. 74<br />

Tupaasat southern Nuussuaq Figs 2, 6<br />

Turritellakløft central Nuussuaq Fig. 113<br />

U<br />

Ujaragsugsuk<br />

(now Ujarassussuk) northern Disko Fig. 4<br />

Ujarattoorsuaq northern Nuussuaq Fig. 22<br />

Ujarasusuk<br />

(now Ujarassussuk) northern Disko Fig. 3<br />

Ujarasussuk northern Disko Fig. 124<br />

Ukalersalik western Nuussuaq Fig. 65<br />

Umanak<br />

(now Uummannaq) Fig. 4<br />

Umiivik-1 Svartenhuk Halvø Fig. 73<br />

Umiiviup Kangerlua Svartenhuk Halvø Fig. 73<br />

Umiussat (now Umiusat)<br />

Umiusat southern Nuussuaq Fig. 40<br />

Upernivik Næs Fig. 33<br />

Upernivik Ø Figs 2, 10<br />

Uppalluk,<br />

Giesecke Monument southern Nuussuaq Figs 6, 40<br />

Uummannaq Figs 2, 10<br />

Uummannaq Fjord Fig. 10<br />

V<br />

Vaigat Figs 2, 10<br />

Vesterfjeld northern Nuussuaq Fig. 22<br />

171

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!