23.11.2013 Views

Amino acid transmitters in the mammalian central nervous system

Amino acid transmitters in the mammalian central nervous system

Amino acid transmitters in the mammalian central nervous system

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Am<strong>in</strong>o</strong> Acid Transmitters<br />

<strong>in</strong> <strong>the</strong> Mammalian Central Nervous System<br />

DAVID R. CURTIS and GRAHAM A. R. JOHNSTON*<br />

Content<br />

1. Introduction and Scope of this Review . . . . . . . . . . . . . . . . . . . . . . 98<br />

2. Evidence for <strong>Am<strong>in</strong>o</strong> Acids as Transmitters . . . . . . . . . . . . . . . . . . . . 99<br />

2.1. Syn<strong>the</strong>sis and Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br />

2.2. Synaptic Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

2.3. Postsynaptic Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

2.4. Postsynaptic Antagonists . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

2.5. Inactivation and Removal . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

3. Neurochemistry and Neuropharmacology of <strong>Am<strong>in</strong>o</strong> Acid Transmitters . . . . . . . . 106<br />

3.1. Glyc<strong>in</strong>e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

3.2. GABA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />

3.3. Taur<strong>in</strong>e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

3.4. Structurally Related Depressant <strong>Am<strong>in</strong>o</strong> Acids . . . . . . . . . . . . . . . . . 1t4<br />

3.5. Aspartate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

3.6. Glutamate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

3.7. Structurally Related Excitant <strong>Am<strong>in</strong>o</strong> Acids . . . . . . . . . . . . . . . . . . 1t9<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

4. Anatomical Organization of <strong>Am<strong>in</strong>o</strong> Acid Transmitters . . . . . . . . . . . . . . . 120<br />

4.1. Cerebral Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

4.1.1. Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

4.1.2. Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

4.2. Cerebellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

4.2.1. Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

4.2.2. Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

4.3. Rh<strong>in</strong>encephalon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

4.31. Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

4.3.2. Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

4.4. Ret<strong>in</strong>a<br />

4.5. Olfactory Bulb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

4.6. Thalamus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

4.6.1. Neurochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

4.6.2. Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

4.6.3. Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

4.7. Hypothalamus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

4.8. Basal Ganglia and Red Nucleus . . . . . . . . . . . . . . . . . . . . . . . 137<br />

4.8.1. Substantia Nigra . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

4.8.2. Caudate and O<strong>the</strong>r Nuclei . . . . . . . . . . . . . . . . . . . . . . 139<br />

4.8.3. Red Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

4.9. Vestibular Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

4.9.1. Neurochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

4.9.2. Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

4.10. Bra<strong>in</strong> Stem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

4.10.1. Cranial Motor Nuclei . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

* Department of Pharmacology, John Curt<strong>in</strong> School of Medical Research, Australian National<br />

University, Canberra, Australia


98 D.R. CURTIS and G. A. R. JOHNSTON :<br />

4.10.2. Reticular Formation . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

4.11. Dorsal Column Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

4.11.1. Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

4.11.2. Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

4.12. Sp<strong>in</strong>al Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

4.12.1. Neurochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

4.12.1.1. Aspartate . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

4.12.1.2. Glutamate . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

4.12.1.3. Glyc<strong>in</strong>e . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

4.12.1.4. GABA . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

4.12.1.5. O<strong>the</strong>r <strong>Am<strong>in</strong>o</strong> Acids . . . . . . . . . . . . . . . . . . . . 153<br />

4.12.2. Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

4.12.3. Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

4.12.3.1. Glyc<strong>in</strong>e . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

4.12.3.2. GABA . . . . . . . . . . . . . . . . . . . . . . . . . .. 159<br />

4.13. Non-Central Neurones . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

4.13.1. Dorsal Root Ganglia . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

4.13.2. Autonomic Ganglia . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

5. Summariz<strong>in</strong>g and Conclud<strong>in</strong>g Remarks . . . . . . " . . . . . . . . . . . . . . . . . 163<br />

5.1. Glyc<strong>in</strong>e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

5.2. GABA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

5.3. Aspartate and Glutamate . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

5.4. O<strong>the</strong>r <strong>Am<strong>in</strong>o</strong> Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

5.5. Conclud<strong>in</strong>g Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

References . . . . . . . . . . . . . : . . . . . . . . . . . . . . . , . . . . . . 165<br />

1. Introduction and Scope of this Review<br />

Two decades ago <strong>in</strong>sufficient <strong>in</strong>formation was available for am<strong>in</strong>o <strong>acid</strong>s to be<br />

seriously considered as synaptic <strong>transmitters</strong> <strong>in</strong> <strong>the</strong> <strong>mammalian</strong> <strong>central</strong> <strong>nervous</strong><br />

<strong>system</strong> (CNS). Even as recently as ten years ago am<strong>in</strong>o <strong>acid</strong>s were regarded<br />

as ma<strong>in</strong>ly concerned <strong>in</strong> <strong>the</strong> bra<strong>in</strong> with <strong>in</strong>termediary metabolism (ELLIOTT, PA6E,<br />

and QUASTEL, 1962), although considerable significance had already been attached<br />

to ?-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) as a possible vertebrate and <strong>in</strong>vertebrate <strong>in</strong>hibitory<br />

transmitter, a subject to which a whole symposium was devoted <strong>in</strong> 1959<br />

(ROBERTS, 1960).<br />

Largely as a consequence of <strong>in</strong>creas<strong>in</strong>g understand<strong>in</strong>g of neurochemistry,<br />

neuroanatomy, neurophysiology and neuropharmacology, and advances <strong>in</strong> techniques<br />

at both <strong>the</strong> multi- and. s<strong>in</strong>gle neurone level, a stage has now been reached<br />

where <strong>the</strong> metabolism of glyc<strong>in</strong>e, GABA, aspartate and glutamate with<strong>in</strong> <strong>nervous</strong><br />

tissue might even be considered primarily of importance <strong>in</strong> relation to <strong>the</strong>ir<br />

syn<strong>the</strong>sis and <strong>in</strong>activation as <strong>transmitters</strong>. At <strong>the</strong> present time <strong>the</strong>re may be,<br />

<strong>in</strong> fact, sufficient evidence to justify <strong>the</strong> use of terms such as glyc<strong>in</strong>ergic, gabergic,<br />

aspartergic and glutamergic to <strong>in</strong>dicate neurones and term<strong>in</strong>als which release<br />

<strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s, and synaptic processes <strong>in</strong> which <strong>the</strong>y participate. These terms,<br />

or perhaps more euphonious versions of <strong>the</strong>m, are required for <strong>the</strong> same reasons<br />

proposed 40 years ago by DALE when <strong>in</strong>troduc<strong>in</strong>g "chol<strong>in</strong>ergic" and "adrenergic",<br />

some 29 years after <strong>the</strong> concept of chemical transmission was put forward


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 99<br />

by ELLIOTT: "Such a usage would assist clear th<strong>in</strong>k<strong>in</strong>g without committ<strong>in</strong>g us<br />

to precise chemical identification, which may be long <strong>in</strong> com<strong>in</strong>g" (DALE, 1933).<br />

There may even be a need for less specific terms than those above which <strong>in</strong>dicate<br />

<strong>the</strong> participation of particular am<strong>in</strong>o <strong>acid</strong>s, s<strong>in</strong>ce groups of closely related am<strong>in</strong>o<br />

<strong>acid</strong>s may activate <strong>the</strong> same "receptors" of a number of membrane and enzyme<br />

processes, and <strong>the</strong> onus of proof for transmitter function becomes eventually<br />

a chemical problem requir<strong>in</strong>g techniques applicable at <strong>the</strong> synaptic level.<br />

Aspects of <strong>central</strong> am<strong>in</strong>o <strong>acid</strong> transmission have been reviewed previously<br />

from both <strong>the</strong> neurochemical and neuropharmacological po<strong>in</strong>t of view (ROBERTS,<br />

1956, 1960, 1968, 1971 ; HAYASHI, 1959, 1966; ELLIOTT and JASPER, 1959 ; ROBERTS<br />

and EIDELBERG, 1960 ; GRUNDFEST, 1960; FLOREY, 1964; CURTIS and WATKINS,<br />

1965; CURTIS and CRAWFORD, 1969 ; CURTIS, 1970; CURTIS and JOHNSTON, 1970;<br />

APRISON and WERMAN, 1968; KRNJEVI~, 1970; BLOOM, 1972; HAMMERSCHLAG<br />

and WEINREICH, 1972 ; IVERSEN, 1972 ; JOHNSON, 1972 a; OBATA, 1972 b ; OTSUKA,<br />

1972; SNYDER, LOGAN, BENNETT, and ARREGVI, 1972; SYTINSKY, 1972; WERMAN,<br />

1972). The purpose of this present review is to consider <strong>the</strong> types of evidence<br />

upon which claims can be based for suggest<strong>in</strong>g an am<strong>in</strong>o <strong>acid</strong> as <strong>the</strong> transmitter<br />

for a certa<strong>in</strong> type of synapse (Section 2), to discuss <strong>the</strong> general aspects of <strong>the</strong><br />

metabolism and neuropharmacology of particular am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong> (Section<br />

3), and to provide an analysis of those pathways and neurones for which<br />

<strong>the</strong>re is evidence that am<strong>in</strong>o <strong>acid</strong>s could be <strong>transmitters</strong> (Section 4).<br />

Drug <strong>in</strong>duced alterations <strong>in</strong> <strong>the</strong> activity of <strong>the</strong> CNS associated with changed<br />

levels of certa<strong>in</strong> am<strong>in</strong>o <strong>acid</strong>s have not been considered <strong>in</strong> detail. In view of<br />

<strong>the</strong> complex metabolic <strong>in</strong>ter-relationships between am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong> (WAT-<br />

KINS, 1972), and <strong>the</strong> impossibility of determ<strong>in</strong><strong>in</strong>g <strong>the</strong> distribution of any one<br />

between various metabolic and anatomical compartments, it is difficult to ascerta<strong>in</strong><br />

whe<strong>the</strong>r alterations <strong>in</strong> <strong>the</strong> level of an am<strong>in</strong>o <strong>acid</strong> cause or result from abnormal<br />

neuronal activity. Never<strong>the</strong>less <strong>the</strong> importance of both <strong>in</strong>hibitory and excitatory<br />

am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong>se abnormal states, and <strong>in</strong> a number of neurological disorders,<br />

must not be underestimated.<br />

Much of <strong>the</strong> subsequent text is concerned with <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong><br />

of <strong>the</strong> cat, s<strong>in</strong>ce most neurophysiological and neuropharmacological <strong>in</strong>vestigations,<br />

and an <strong>in</strong>creas<strong>in</strong>g number of neurochemical studies concerned with am<strong>in</strong>o<br />

<strong>acid</strong> <strong>transmitters</strong>, have been carried out <strong>in</strong> this animal. There are, however,<br />

no major reasons for suspect<strong>in</strong>g that conclusions made about <strong>the</strong> cat <strong>nervous</strong><br />

<strong>system</strong> are not directly applicable to o<strong>the</strong>r mammals, <strong>in</strong>clud<strong>in</strong>g man. Reference<br />

will be made to o<strong>the</strong>r species when <strong>in</strong>formation of <strong>the</strong> particular type is ei<strong>the</strong>r<br />

not available or re<strong>in</strong>forces f<strong>in</strong>d<strong>in</strong>gs made <strong>in</strong> <strong>the</strong> cat.<br />

2. Evidence for <strong>Am<strong>in</strong>o</strong> Acids as Transmitters<br />

The evidence for certa<strong>in</strong> am<strong>in</strong>o <strong>acid</strong>s as synaptic <strong>transmitters</strong> <strong>in</strong>cludes <strong>in</strong>formation<br />

about <strong>the</strong> syn<strong>the</strong>sis and storage with<strong>in</strong> presynaptic nerve cells, <strong>the</strong> release from<br />

presynaptic term<strong>in</strong>als, <strong>the</strong> <strong>in</strong>teraction with receptors on <strong>the</strong> postsynaptic neurones<br />

and <strong>the</strong> consequent transient alterations <strong>in</strong> ionic permeability of <strong>the</strong> subsynaptic


100 D.R. CURTIS and G. A. R. JOHNSTON :<br />

membrane, <strong>the</strong> ability ofcerta<strong>in</strong> substances to antagonise both am<strong>in</strong>o <strong>acid</strong>- and<br />

synaptically-<strong>in</strong>duced postsynaptic effects, and <strong>the</strong> processes associated with <strong>the</strong><br />

<strong>in</strong>activation and removal of am<strong>in</strong>o <strong>acid</strong>s from <strong>the</strong> synaptic environment. Experimental<br />

difficulties abound <strong>in</strong> all aspects of <strong>the</strong>se <strong>in</strong>vestigations and, as discussed<br />

below, necessitate compromises regard<strong>in</strong>g <strong>the</strong> rigid application of lists of criteria<br />

for transmitter identification which were drawn up largely on <strong>the</strong> basis of experience<br />

regard<strong>in</strong>g <strong>the</strong> transmitter function of acetylchol<strong>in</strong>e at vertebrate neuromuscular<br />

and ganglionic synapses.<br />

2.1. Syn<strong>the</strong>sis and Storage<br />

Any transmitter must occur <strong>in</strong> <strong>the</strong> appropriate presynaptic term<strong>in</strong>als. It may<br />

be syn<strong>the</strong>sised <strong>in</strong>, or accumulated by, <strong>the</strong>se term<strong>in</strong>als or transported to <strong>the</strong> term<strong>in</strong>als<br />

from cell bodies. An appreciable presynaptic store of transmitter may<br />

not be required if <strong>the</strong> transmitter can be syn<strong>the</strong>sised rapidly and efficiently on<br />

demand. In addition, s<strong>in</strong>ce most am<strong>in</strong>o <strong>acid</strong>s have a variety of <strong>in</strong>tracellular<br />

functions, a localised presynaptic store of "transmitter" am<strong>in</strong>o <strong>acid</strong> may not<br />

be readily apparent. It may be possible, however, to establish an association<br />

between an am<strong>in</strong>o <strong>acid</strong>, and/or its syn<strong>the</strong>sis<strong>in</strong>g enzyme, with <strong>the</strong> fibres and term<strong>in</strong>als<br />

of a particular pathway. Measurement of turnover rates may provide<br />

more useful <strong>in</strong>formation than that of steady state levels of am<strong>in</strong>o <strong>acid</strong>s.<br />

<strong>Am<strong>in</strong>o</strong> <strong>acid</strong> levels are usually determ<strong>in</strong>ed by conventional chemical and biochemical<br />

procedures (TALLAN, MOORE and STEIN, 1954 ; SHAW and HEINE, 1965 ;<br />

BAXTER, 1972), but enzyme recycl<strong>in</strong>g (OTsuKA and MIYATA, 1972), gas-liquid<br />

chromatography (SmMADA, KURIMOTO, WADA, HINO, SUGINOSHITA, and KIHARA,<br />

1971), and methods <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> formation of radioactive derivatives (e. g. dansyl<br />

derivatives, BRIEL and NEUHOFE, 1972 ; SNODGRASS and IVERSEN, 1973 a) are f<strong>in</strong>d<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>g application to smaller pieces of tissue. Postmortem changes have been<br />

observed <strong>in</strong> <strong>the</strong> levels of most am<strong>in</strong>o <strong>acid</strong>s (TEws, CARTER, ROA, and STONE,<br />

1963 ; SHANK and APRISON, 1971 ;PERRY, HANSEN, BERRY, MOK, and LESK, 1971 b;<br />

PERRY, SANDERS, HANSEN, LESK, KLOSTER, and GRAVLIN, 1972), and <strong>the</strong> figures<br />

usually reported are probably overestimates of those <strong>in</strong> vivo. When available<br />

biopsy figures are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Tables.<br />

Regional Studies. Regional variations <strong>in</strong> <strong>the</strong> levels of am<strong>in</strong>o <strong>acid</strong>s and <strong>the</strong><br />

activities of related enzymes and transport <strong>system</strong>s may provide <strong>in</strong>dications of<br />

transmitter function: <strong>in</strong> fact <strong>the</strong> unusually high levels of glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al<br />

grey matter prompted <strong>in</strong>vestigation of this am<strong>in</strong>o <strong>acid</strong> as a sp<strong>in</strong>al transmitter<br />

(APRISON, DAVIDOFF, and WE~WAN, 1970). <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> analyses have been performed<br />

on s<strong>in</strong>gle neurones of a particular class isolated from <strong>nervous</strong> tissue,<br />

or on small blocks of <strong>nervous</strong> tissue (OTSUKA and MIYATA, 1972). Determ<strong>in</strong>ation<br />

of <strong>the</strong> distribution of am<strong>in</strong>o <strong>acid</strong> syn<strong>the</strong>sis<strong>in</strong>g enzymes may offer certa<strong>in</strong> advantages<br />

(FONNtrM, 1972), moreover histochemical methods may lead to direct visualization<br />

of enzyme location (HOKFELT and LJUNGDAHL, 1972c). The localization<br />

and even <strong>the</strong> concentration of am<strong>in</strong>o <strong>acid</strong>s and enzymes with<strong>in</strong> nerve term<strong>in</strong>als<br />

can be assessed by compar<strong>in</strong>g tissue levels and morphology before and after<br />

section of <strong>the</strong> appropriate <strong>nervous</strong> pathway (see FONNt~ and WALBERG, 1973).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 101<br />

Autoradiographic procedures, at <strong>the</strong> light and electron microscope level, have<br />

been used to study <strong>the</strong> distribution of am<strong>in</strong>o <strong>acid</strong> transport <strong>system</strong>s, and hence<br />

that of certa<strong>in</strong> endogenous am<strong>in</strong>o <strong>acid</strong> compartments, under both <strong>in</strong> vitro and<br />

<strong>in</strong> vivo conditions. Such methods are of considerable value, especially when <strong>the</strong><br />

radiolabel is conf<strong>in</strong>ed to term<strong>in</strong>als or neurones of one particular type (MATuS<br />

and DENNISON, 1972; HOKFELT and LJUNGDAHL, 1972a, b, c). Labelled am<strong>in</strong>o<br />

<strong>acid</strong>s have also been used to study dendritic and aTonal transport (GLOBUS,<br />

Lux, and SCHUBERT, 1968; SCHUBERT, KREUTZBERG, and Lux, 1972), <strong>the</strong> latter<br />

be<strong>in</strong>g useful <strong>in</strong> analyses of fiber projections.<br />

Subcellular Studies. Considerable use has been made of <strong>the</strong> preparation of<br />

p<strong>in</strong>ched-off nerve end<strong>in</strong>gs, "synaptosomes", from CNS tissue us<strong>in</strong>g carefully<br />

controlled homogenization and centrifugation techniques (DE ROBERTIS, 1968;<br />

WHITTAKER, 1968; WHITTAKER and BARKER, 1972; COTMAN, 1972). Synaptosomes<br />

cannot be isolated <strong>in</strong> pure form, be<strong>in</strong>g contam<strong>in</strong>ated <strong>in</strong> particular with glial<br />

fragments (COTMAN, HERSCHMAN, and TAYLOR, 1971), and <strong>the</strong> end<strong>in</strong>gs of a particular<br />

pathway cannot be readily identified. Fur<strong>the</strong>rmore, dur<strong>in</strong>g <strong>the</strong> preparative<br />

stage <strong>the</strong>re may be a redistribution of soluble components between <strong>in</strong>tra- and<br />

extra-cellular phases (WHITTAKER, 1965; NEAL and IVERSEN, 1969; TACmKI, DE<br />

FEUDIS, and APRISON, 1972). Never<strong>the</strong>less <strong>the</strong>se subcellular particles have been<br />

used to study <strong>the</strong> syn<strong>the</strong>sis, storage, uptake and release of am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong>,<br />

synaptosomes presumably associated with different am<strong>in</strong>o <strong>acid</strong>s be<strong>in</strong>g separable<br />

on <strong>the</strong> basis of density differences (SNYDER, LOGAN, BENNETT, and ARREGUI, 1972).<br />

Studies on such contam<strong>in</strong>ated and frequently morphologically unidentified<br />

"synaptosomal preparations" have yielded some supportive <strong>in</strong>formation relevant<br />

to am<strong>in</strong>o <strong>acid</strong> transmitter function: <strong>the</strong> syn<strong>the</strong>sis<strong>in</strong>g enzymes for GABA and<br />

taur<strong>in</strong>e appear to be associated with <strong>the</strong>se preparations as do active transport<br />

<strong>system</strong>s for L-glutamate/L-aspartate, glyc<strong>in</strong>e and GABA. It should be emphasised,<br />

however, that <strong>the</strong>se studies do not usually dist<strong>in</strong>guish between neuronal<br />

and glial elements, and that <strong>the</strong> results obta<strong>in</strong>ed should be compared with those<br />

obta<strong>in</strong>ed by o<strong>the</strong>r methods, such as autoradiography at <strong>the</strong> electron microscope<br />

level, preferably us<strong>in</strong>g more <strong>in</strong>tact tissue preparations.<br />

Inhibitors. Evidence for <strong>the</strong> syn<strong>the</strong>sis and/or storage of a compound at a particular<br />

synapse may be provided by <strong>the</strong> use of <strong>in</strong>hibitors of transmitter syn<strong>the</strong>sis<br />

and/or storage <strong>in</strong> a relatively specific manner, for example by limit<strong>in</strong>g <strong>the</strong> access<br />

of a precursor to <strong>the</strong> site of syn<strong>the</strong>sis, or by <strong>in</strong>hibit<strong>in</strong>g an essential enzyme.<br />

With respect to am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong> evidence of this type so far has been<br />

obta<strong>in</strong>ed only for <strong>in</strong>hibitors of glutamic <strong>acid</strong> decarboxylase (GAD), relat<strong>in</strong>g<br />

<strong>the</strong> fall <strong>in</strong> GABA levels to changes <strong>in</strong> <strong>the</strong> operation of GABA-releas<strong>in</strong>g synaptic<br />

pathways, although <strong>the</strong> <strong>in</strong>hibitors used are far from selective for this particular<br />

enzyme.<br />

Studies of this type have not been carried out on s<strong>in</strong>gle neurones us<strong>in</strong>g electrophoretic<br />

adm<strong>in</strong>istration of an am<strong>in</strong>o <strong>acid</strong> syn<strong>the</strong>sis antagonist. S<strong>in</strong>ce <strong>the</strong>re are<br />

probably substantial transmitter stores with<strong>in</strong> presynaptic term<strong>in</strong>als, high frequency<br />

activation of <strong>the</strong> pathway of <strong>in</strong>terest for prolonged periods may be required<br />

to exhaust <strong>the</strong> store. Fur<strong>the</strong>rmore it is possible that enzyme <strong>in</strong>hibitors active<br />

<strong>in</strong> homogenates may not readily ga<strong>in</strong> access to enzyme <strong>system</strong>s conta<strong>in</strong>ed with<strong>in</strong><br />

presynaptic term<strong>in</strong>als <strong>in</strong> vivo,


102 D.R. CURTIS and G. A. R. JOHNSTON :<br />

2.2. Synaptic Release<br />

Largely because of difficulties <strong>in</strong> <strong>the</strong> collection of measurable amounts <strong>the</strong> <strong>in</strong>vestigation<br />

of <strong>the</strong> synaptic release of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> vivo has not proved easy. Collection<br />

can only be remote from sites of release with<strong>in</strong> a complex tissue, ei<strong>the</strong>r from<br />

<strong>the</strong> surface of <strong>the</strong> bra<strong>in</strong> or cord, from <strong>the</strong> ventricles or sp<strong>in</strong>al <strong>central</strong> canal,<br />

from <strong>the</strong> venous effluent or from artificial tissue spaces created at <strong>the</strong> tip of<br />

a "push-pull" cannula. S<strong>in</strong>ce <strong>the</strong> extracellular concentrations of am<strong>in</strong>o <strong>acid</strong><br />

<strong>transmitters</strong> must normally be ma<strong>in</strong>ta<strong>in</strong>ed by tissue mechanisms at a low level,<br />

<strong>the</strong> released am<strong>in</strong>o <strong>acid</strong> requires "protection" dur<strong>in</strong>g its diffusion through <strong>nervous</strong><br />

tissue. However <strong>the</strong> major method of transmitter <strong>in</strong>activation appears to<br />

be cellular uptake (Section 2.5), and no specific antagonists have been found<br />

of <strong>the</strong> uptake of any of <strong>the</strong> putative am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong> which do not have<br />

ei<strong>the</strong>r excitant or depressant effects on neurones. Hence success <strong>in</strong> demonstrat<strong>in</strong>g<br />

<strong>the</strong> release of a particular am<strong>in</strong>o <strong>acid</strong> by impulses <strong>in</strong> a certa<strong>in</strong> pathway seems<br />

difficult.<br />

Some progress has been made <strong>in</strong> this direction us<strong>in</strong>g a relatively non-specific<br />

antagonist of am<strong>in</strong>o <strong>acid</strong> uptake (JORDAN and WEBSTER, 1971), <strong>in</strong>hibitors of<br />

am<strong>in</strong>o <strong>acid</strong> metabolis<strong>in</strong>g enzymes which may also <strong>in</strong>directly modify uptake<br />

(OBATA and TAKEDA, 1969; IVERSEN, MITCHELL, and SRINIVASAN, 1971), or relatively<br />

non-physiological stimuli which possibly" overwhelm" transmitter <strong>in</strong>activat<strong>in</strong>g<br />

mechanisms. Use has been made of <strong>the</strong> measurement of <strong>the</strong> efflux of substances<br />

o<strong>the</strong>r than <strong>transmitters</strong> preloaded <strong>in</strong>to <strong>the</strong> tissue to ascerta<strong>in</strong> whe<strong>the</strong>r enhanced<br />

release is not merely a consequence of <strong>in</strong>creased metabolic activity of stimulated<br />

structures. Additionally, dim<strong>in</strong>ished release of a possible transmitter <strong>in</strong> <strong>the</strong> absence<br />

of calcium ions <strong>in</strong> <strong>the</strong> perfus<strong>in</strong>g medium is usually advanced as evidence of<br />

synaptic release (RuBIN, 1970), neglect<strong>in</strong>g <strong>the</strong> complex effects of such a solution<br />

on <strong>the</strong> activity of synaptically <strong>in</strong>terconnected neurones.<br />

Results from <strong>the</strong>se <strong>in</strong>vestigations provide, at <strong>the</strong> most, <strong>in</strong>direct evidence of<br />

synaptic release of am<strong>in</strong>o <strong>acid</strong> by impulses <strong>in</strong> particular pathways. The <strong>in</strong> vivo<br />

release of endogenous GABA, ~aur<strong>in</strong>e, L-glutamate and L-aspartate has been<br />

observed to be, at least qualitatively, correlated with stimulation of certa<strong>in</strong> pathways.<br />

The evoked efflux of preloaded labelled (i. e. exogenous) GABA and glyc<strong>in</strong>e<br />

has also been studied <strong>in</strong> vivo, but equat<strong>in</strong>g such release with that of <strong>the</strong> endogenous<br />

material is complicated by metabolic compartmentation (BERL and CLARKE, 1969 ;<br />

BENJAMIN and QUASTEL, 1972; VAN DEN BERG, 1973) of <strong>the</strong> particular am<strong>in</strong>o<br />

<strong>acid</strong>. In vitro procedures <strong>in</strong>volve stimulation of tissue slices or crude synaptosomal<br />

preparations with electric fields or high potassium ion concentrations (BRADFORD,<br />

1972): <strong>the</strong>se procedures may be useful for study<strong>in</strong>g <strong>the</strong> ionic requirements of<br />

release and <strong>the</strong> effects of drugs, but considerable caution is necessary when<br />

relat<strong>in</strong>g <strong>the</strong> results to <strong>in</strong> vivo conditions.<br />

2.3. Postsynaptic Action<br />

The absolute necessity for establish<strong>in</strong>g that a suspected transmitter has postsynaptic<br />

excitatory or <strong>in</strong>hibitory effects on <strong>central</strong> neurones identical to that of a


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 103<br />

synaptically released transmitter has been discussed previously <strong>in</strong> detail (WERMAN,<br />

1966; CURTIS and JOHNSTON, 1970).<br />

Although microelectrophoretic methods (CURTIS, 1964; KRNJEVIC:, 1971) permit<br />

ready detection of excitation or depression of neuronal fir<strong>in</strong>g, <strong>the</strong> comparison<br />

of alterations of membrane properties <strong>in</strong>duced synaptically (EccLES, 1966) with<br />

those result<strong>in</strong>g from an artificially adm<strong>in</strong>istered agent is difficult. It is essential<br />

that <strong>the</strong> synaptic action used <strong>in</strong> <strong>the</strong> comparison is purely excitatory or <strong>in</strong>hibitory<br />

<strong>in</strong> nature, preferably generated by volleys <strong>in</strong> one type of fibre converg<strong>in</strong>g on<br />

<strong>the</strong> neurones be<strong>in</strong>g studied. Intracellular record<strong>in</strong>g is required for measurement<br />

of 'reversal' potentials (GINSBORG, 1967), and for determ<strong>in</strong>ation of <strong>the</strong> effects<br />

of altered electrochemical gradients of ions possibly <strong>in</strong>volved <strong>in</strong> <strong>the</strong> synaptic<br />

process. The correct <strong>in</strong>terpretation of such analyses requires <strong>the</strong> activation by<br />

<strong>the</strong> transmitter and <strong>the</strong> adm<strong>in</strong>istered am<strong>in</strong>o <strong>acid</strong> of <strong>the</strong> same regions of cell<br />

membrane <strong>in</strong> relation to <strong>the</strong> record<strong>in</strong>g microelectrode. The possibility must also<br />

be considered that <strong>the</strong> synaptic process be<strong>in</strong>g <strong>in</strong>vestigated may not directly <strong>in</strong>volve<br />

changes <strong>in</strong> membrane ion permeability but alters <strong>the</strong> operation of ion pumps<br />

or <strong>in</strong>tracellular metabolic processes (WEIGHT, 1971).<br />

In addition to <strong>the</strong> many neurones from which prolonged <strong>in</strong>tracellutar record<strong>in</strong>g<br />

is impossible, <strong>the</strong>re rema<strong>in</strong>s a virtually <strong>in</strong>surmountable problem of how to <strong>in</strong>vestigate<br />

synaptic and am<strong>in</strong>o <strong>acid</strong> <strong>in</strong>duced changes <strong>in</strong> membrane properties at dendritic<br />

sites remote from <strong>the</strong> usually <strong>in</strong>trasomatic site of record<strong>in</strong>g (see DIAMOND, 1968).<br />

It is fortuitous that <strong>the</strong> <strong>in</strong>hibitory synapses which are of considerable <strong>in</strong>terest<br />

from <strong>the</strong> po<strong>in</strong>t of view of am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong> are located predom<strong>in</strong>antly<br />

on <strong>the</strong> soma of neurones, but <strong>the</strong> study of excitatory synaptic mechanisms is<br />

complicated by <strong>the</strong> dendritic location of synapses (see SZENTAGOTHA1, 1971).<br />

The dendritic location of synapses is also a problem <strong>in</strong> relation to <strong>the</strong> <strong>in</strong>vestigation<br />

of remote or "presynaptic" <strong>in</strong>hibition (ScnMIDT, 1971). The effects of am<strong>in</strong>o<br />

<strong>acid</strong>s on primary afferent term<strong>in</strong>als have been studied <strong>in</strong> vivo, and by us<strong>in</strong>g<br />

isolated amphibian sp<strong>in</strong>al cords: results and conclusions from <strong>the</strong>se <strong>in</strong> vitro studies<br />

may not be completely applicable to <strong>the</strong> <strong>mammalian</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>.<br />

2.4. Postsynaptic Antagonists<br />

In <strong>the</strong> absence of methods which can be used with all types of neurone for<br />

compar<strong>in</strong>g <strong>the</strong> actions of adm<strong>in</strong>istered am<strong>in</strong>o <strong>acid</strong>s and synaptically released<br />

<strong>transmitters</strong>, considerable use has been made of am<strong>in</strong>o <strong>acid</strong> antagonists, substances<br />

which selectively block <strong>the</strong> postsynaptic effects of particular am<strong>in</strong>o <strong>acid</strong>s.<br />

Such antagonism, toge<strong>the</strong>r with <strong>the</strong> dim<strong>in</strong>ution of an appropriate synaptic process<br />

considered on o<strong>the</strong>r grounds to <strong>in</strong>volve a certa<strong>in</strong> am<strong>in</strong>o <strong>acid</strong>, has been used<br />

as a basis for consider<strong>in</strong>g <strong>the</strong> participation of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> at o<strong>the</strong>r synapses<br />

also sensitive to <strong>the</strong> antagonist. Thus antagonists, adm<strong>in</strong>istered near s<strong>in</strong>gle neurones<br />

or <strong>system</strong>ically, have proved convenient and useful <strong>in</strong> confirm<strong>in</strong>g <strong>the</strong> nature<br />

of <strong>the</strong> transmitter at certa<strong>in</strong> synapses, or <strong>in</strong> a prelim<strong>in</strong>ary survey of synaptic<br />

events prior to detailed neurochemical and physiological studies.<br />

Due consideration must be given to <strong>the</strong> fact that antagonism usually extends<br />

to close structural analogues of am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong>, that <strong>the</strong> one am<strong>in</strong>o


104 D.R. CURTIS and G. A. R. JOHNSTON :<br />

<strong>acid</strong> may 1/ave different antagonists at different receptors, and that an antagonist<br />

of an am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> one species may not necessarily be effective <strong>in</strong> ano<strong>the</strong>r.<br />

Care is also required to exclude <strong>the</strong> formation of relatively stable am<strong>in</strong>o <strong>acid</strong>/<br />

antagonist complexes as an explanation of antagonism. Although it may not be<br />

possible by microelectrophoretic methods alone to establish <strong>the</strong> mechanism of<br />

antagonism (CURTIS, DUGGAN, and JOHNSTON, 1971 c), <strong>the</strong> structure of antagonists<br />

may provide some evidence regard<strong>in</strong>g <strong>the</strong> nature of am<strong>in</strong>o <strong>acid</strong> receptors<br />

(SMYTHIES, 1971). Both this type of study, and proposals regard<strong>in</strong>g <strong>the</strong> nature of<br />

<strong>the</strong> transmitter, are streng<strong>the</strong>ned when <strong>the</strong>re is a direct correlation between <strong>the</strong><br />

potencies as am<strong>in</strong>o <strong>acid</strong> antagonists of a series of substances of similar or different<br />

structure and <strong>the</strong>ir effectiveness <strong>in</strong> suppress<strong>in</strong>g synaptic action.<br />

One major problem concerned with <strong>the</strong> use of antagonists is <strong>the</strong> method<br />

of adm<strong>in</strong>istration, both for establish<strong>in</strong>g <strong>the</strong> mechanism and degree of selectivity<br />

of <strong>the</strong> antagonism, and for block<strong>in</strong>g synaptic transmission. A highly selective<br />

antagonist ejected from one orifice of a multibarrel micropipette may readily<br />

block <strong>the</strong> effect of one am<strong>in</strong>o <strong>acid</strong> and not of o<strong>the</strong>rs ejected from adjacent<br />

orifices, yet may apparently have little action on <strong>the</strong> effect of <strong>the</strong> same am<strong>in</strong>o<br />

<strong>acid</strong> released synaptically because <strong>the</strong> antagonist ga<strong>in</strong>s access to too few synapses<br />

(CURTIS et al., 1971c; CURTIS, 1971). On <strong>the</strong> o<strong>the</strong>r hand, if <strong>the</strong> antagonist is<br />

adm<strong>in</strong>istered <strong>system</strong>ically, and local concentrations are sufficient to significantly<br />

modify synaptic transmission, <strong>the</strong>se may not be adequate to <strong>in</strong>fluence <strong>the</strong> effects<br />

of localized and relatively high concentrations of electrophoretically adm<strong>in</strong>istered<br />

am<strong>in</strong>o <strong>acid</strong>s. Potentially useful antagonists may not penetrate <strong>the</strong> blood bra<strong>in</strong><br />

barrier, and <strong>the</strong> dose of a <strong>system</strong>ically adm<strong>in</strong>istered compound may be severely<br />

limited by general effects on <strong>the</strong> experimental animal and actions at synapses<br />

o<strong>the</strong>r than those be<strong>in</strong>g studied. Nei<strong>the</strong>r method of adm<strong>in</strong>istration is ideal for<br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> selectivity of an antagonist <strong>in</strong> such a complex tissue as <strong>the</strong><br />

CNS. The estimations can best be considered no more than <strong>in</strong>dications of <strong>the</strong><br />

probability that <strong>the</strong> suppression of a synaptic event <strong>in</strong>volves <strong>the</strong> participation<br />

of one am<strong>in</strong>o <strong>acid</strong>, and not ano<strong>the</strong>r, as <strong>the</strong> transmitter.<br />

Accept<strong>in</strong>g <strong>the</strong>se restrictions, strychn<strong>in</strong>e and some related compounds are useful<br />

antagonists at sites where glyc<strong>in</strong>e is <strong>the</strong> transmitter, and bicucull<strong>in</strong>e and<br />

picrotox<strong>in</strong><strong>in</strong>, where GABA is <strong>in</strong>volved. These and o<strong>the</strong>r agents are discussed<br />

<strong>in</strong> more detail <strong>in</strong> subsequent sections. At <strong>the</strong> present time no satisfactory antagonist<br />

has been found which dist<strong>in</strong>guishes between aspartate and glutamate as<br />

neuronal excitants, and <strong>the</strong> specificity of those agents proposed as selective antagonists<br />

of excitant am<strong>in</strong>o <strong>acid</strong>s seems doubtful.<br />

2.5. Inactivation and Removal<br />

There is no evidence to <strong>in</strong>dicate that am<strong>in</strong>o <strong>acid</strong>s are <strong>in</strong>activated enzymically<br />

<strong>in</strong> <strong>the</strong> extracellular synaptic environment, and a number of observations suggest<br />

that carrier mediated cellular uptake (see WYSSBROD, SCOTT, BRODSKY, and<br />

SCHWARTZ, 1971), which may <strong>in</strong>volve membrane bound enzymes as b<strong>in</strong>d<strong>in</strong>g<br />

sites (MEISTER, 1973), might be responsible for limit<strong>in</strong>g <strong>the</strong> immediate action<br />

of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> subsynaptic region and for prevent<strong>in</strong>g accumulation of


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 105<br />

am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> extraneuronal space (IVERSEN and NEAL, 1968; CURTIS, DUG-<br />

GAY, and JOHNSTON, 1970b; SNYDER et al., 1972). Uptake by synaptic term<strong>in</strong>als<br />

could provide a supply of transmitter for re-use, <strong>the</strong>re are <strong>in</strong>dications however<br />

that glial uptake can also take place (HENN and HAMBERGER, 1971). If local<br />

<strong>in</strong>activation of am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong> occurs, selective <strong>in</strong>hibition of <strong>the</strong> uptake<br />

of an am<strong>in</strong>o <strong>acid</strong> should lead to enhancement and prolongation of its effects<br />

after both synaptic release and artificial adm<strong>in</strong>istration. This has yet to be achieved<br />

<strong>in</strong> a selective fashion for any of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong>, largely because<br />

close structural analogues which are <strong>the</strong>mselves transported, so <strong>in</strong>hibit<strong>in</strong>g <strong>the</strong><br />

accumulation of <strong>the</strong> putative transmitter, have postsynaptic actions similar to<br />

that of <strong>the</strong> transmitter.<br />

The uptake of radiolabelled am<strong>in</strong>o <strong>acid</strong>s has been studied us<strong>in</strong>g tissue slices<br />

or particulate matter <strong>in</strong> homogenates (COHEN and LAJTHA, 1972). Such <strong>in</strong> vitro<br />

methods, convenient for study<strong>in</strong>g k<strong>in</strong>etics of <strong>the</strong> process and to assess <strong>the</strong> action<br />

of possible antagonists, maynot, however, be directly applicable to processes<br />

occur<strong>in</strong>g <strong>in</strong> vivo, particularly as CNS tissue has complex metabolic, ionic and<br />

organizational requirements. Thus analyses of <strong>the</strong> cellular distribution of radio<br />

labelled am<strong>in</strong>o <strong>acid</strong>s after direct <strong>in</strong> vivo <strong>in</strong>jection (see Section 2.2) offer a better<br />

<strong>in</strong>dication of <strong>the</strong> sites of uptake (HOKFELT and LJUNGDAHL, 1972b).<br />

Structurally specific uptake <strong>system</strong>s (COHEN and LAJTHA, 1972) fall <strong>in</strong>to two<br />

groups on <strong>the</strong> basis of <strong>the</strong>ir k<strong>in</strong>etic parameters, subcellular and regional distributions.<br />

The first group is characterised by Km's higher than 5 x 10- 4M, and appear<br />

to be similar to those found <strong>in</strong> o<strong>the</strong>r than CNS tissues. The second group has<br />

Km'S lower than 5x 10-SM: <strong>the</strong>se "high at'f<strong>in</strong>ity" <strong>system</strong>s, which are sodium<br />

dependent, have been found specific for <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s considered most likely<br />

to be <strong>transmitters</strong>, GABA, glyc<strong>in</strong>e, taur<strong>in</strong>e and L-glutamate/L-aspartate, and<br />

appear to be associated with dist<strong>in</strong>ct populations of subcellular particles --<br />

nerve term<strong>in</strong>als and/or glial elements.<br />

The cellular accumulation or uptake of am<strong>in</strong>o <strong>acid</strong>s is accompanied by a<br />

movement of ions across <strong>the</strong> membrane (CHRISTENSEN, 1970, 1972), but it<br />

has become apparent that this process differs <strong>in</strong> several respects from <strong>the</strong><br />

ionic permeability <strong>in</strong>crease responsible for excitation or <strong>in</strong>hibition by am<strong>in</strong>o<br />

<strong>acid</strong>s. In <strong>the</strong> first place, strychn<strong>in</strong>e, picrotox<strong>in</strong><strong>in</strong> and bicucull<strong>in</strong>e <strong>in</strong>terfere with<br />

<strong>the</strong> <strong>in</strong>hibitory actions of glyc<strong>in</strong>e and GABA, but have not been found to modify<br />

<strong>the</strong> uptake of <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s by <strong>nervous</strong> tissue (Cat: BALCAR and JOI~NSTON,<br />

1973). Secondly, although groups of structurally similar am<strong>in</strong>o <strong>acid</strong>s are transported<br />

by common carrier mechanisms (COHEN and LAJTHA, 1972), and to some<br />

extent <strong>the</strong> structural requirements seem similar to those necessary for <strong>in</strong>teraction<br />

with receptors for excitation or <strong>in</strong>hibition (CURTIS and WATK~S, 1965), a number<br />

of potent agonists of am<strong>in</strong>o <strong>acid</strong> action are weak or relatively <strong>in</strong>effective <strong>in</strong>hibitors<br />

of <strong>the</strong> uptake of <strong>the</strong> related naturally occur<strong>in</strong>g am<strong>in</strong>o <strong>acid</strong>s. Thus D-homocysteate<br />

and N-methyl-D-aspartate are unlikely to be transported by <strong>the</strong> L-glutamate/<br />

aspartate <strong>system</strong> (BALCAR and JOHNSTON, 1972a), yet both are potent excitants<br />

(CURTIS and WATKINS, 1965). Additionally 3-am<strong>in</strong>opropane sulphonate has little<br />

effect on GABA uptake yet is a potent GABA-Iike depressant (BEART and JOHN-<br />

STON, 1973 b). A direct relationship would be expected between uptake and postsynaptic<br />

action if excitation or <strong>in</strong>hibition by an am<strong>in</strong>o <strong>acid</strong> directly <strong>in</strong>volved


106 D.R. CURTtS and G. A. R. JOHNSTON :<br />

its transport across <strong>the</strong> neuronal membrane. F<strong>in</strong>ally, organic mercurials and<br />

particularly p-chloromercuriphenylsulphonate, enhance am<strong>in</strong>o <strong>acid</strong> excitation<br />

and <strong>in</strong>hibition but block uptake (CURTIS et al., 1970b; BALCAR and JOHNSTON,<br />

1973).<br />

3. Neurochemistry and Neuropharmacology of <strong>Am<strong>in</strong>o</strong> Acid<br />

Transmitters<br />

This section outl<strong>in</strong>es <strong>in</strong> general terms neurochemical and neuropharmacological<br />

aspects of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong>, and <strong>the</strong>ir related enzymes and transport<br />

<strong>system</strong>s.<br />

Table 1 lists concentrations of <strong>the</strong> important am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> plasma,<br />

cerebrosp<strong>in</strong>al fluid and selected portions of <strong>the</strong> <strong>nervous</strong> <strong>system</strong> of <strong>the</strong> cat. Particularly<br />

noteworthy are <strong>the</strong> extremely low plasma and cerebrosp<strong>in</strong>al fluid (CSF)<br />

levels of GABA, <strong>the</strong> low cerebrosp<strong>in</strong>al levels of all am<strong>in</strong>o <strong>acid</strong>s considered as<br />

possible neuro<strong>transmitters</strong> (see also Human : GJESSING, GJESDAHL and SHAASTAD,<br />

1972), <strong>the</strong> high concentrations of glutamate <strong>in</strong> <strong>the</strong> cerebellar and cerebral cortices,<br />

<strong>the</strong> high level of cerebellar taur<strong>in</strong>e and <strong>the</strong> high sp<strong>in</strong>al levels of glyc<strong>in</strong>e. These<br />

and o<strong>the</strong>r f<strong>in</strong>d<strong>in</strong>gs will be discussed <strong>in</strong> more detail <strong>in</strong> <strong>the</strong> subsequent text.<br />

One important feature common to all of <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s is <strong>the</strong> concept<br />

of a blood-bra<strong>in</strong> barrier: a barrier which h<strong>in</strong>ders <strong>the</strong> free diffusion of a compound<br />

from <strong>the</strong> plasma to <strong>the</strong> extracellular fluid of <strong>the</strong> bra<strong>in</strong> and cord, a fluid presumably<br />

Table 1. <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> concentrations <strong>in</strong> cat plasma, cerebrosp<strong>in</strong>al fluid, cerebral cortex, cerebellum<br />

and sp<strong>in</strong>al cord (n.m.a. =no measurable amount)<br />

Aspar- Gluta- GABA Gly- Tau- e-Ala- Reference<br />

tate mate c<strong>in</strong>e r<strong>in</strong>e n<strong>in</strong>e<br />

Plasma 0. l 0.4 0.5<br />

(lamole/ml) 0.02 0.06 0.002- 0.2 0.2<br />

0.004<br />

Cerebrosp<strong>in</strong>al 0.04 0.01 0.02 0.05<br />

fluid 0.02 0.06 0.002- 0.2 0.2<br />

(gmole/ml) 0.004<br />

0.005 0.03 n.m.a. 0.01 0.02 0.09<br />

SNODGRASS et al. (1969)<br />

CROWSHAW et al. (1967)<br />

SNODGRASS et al. (1969)<br />

CROWSnAW et al. (1967)<br />

JASPER and KOYAMA (1969)<br />

Cerebral<br />

cortex<br />

(gmole/g)<br />

3.1 12.9 1.4 1.3 1.9 0.9 BATTISTIN et al. (1969)<br />

Cerebellum 2.9 12.6 1.5 1.5 3.1 0.9<br />

(~tmole/g)<br />

Sp<strong>in</strong>al grey 2.6 5.9 1.6 6.4<br />

matter, mean 4.4 5.2 6.0 0.1 1.3<br />

of dorsal and<br />

ventral (gmole/g)<br />

BATTISTIN et al. (1969)<br />

GRAHAM et al. (1967)<br />

JOHNSTON (1968)


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 107<br />

of similar composition to cerebrosp<strong>in</strong>al fluid (DAVSON, 1969). S<strong>in</strong>gle passage<br />

studies of <strong>the</strong> cerebral circulation <strong>in</strong>dicate that glyc<strong>in</strong>e, GABA, aspartate and<br />

glutamate penetrate very little when blood levels are elevated <strong>in</strong> adult mammals,<br />

<strong>the</strong> barriers be<strong>in</strong>g less effective <strong>in</strong> immature animals (Rat: OLDENDORF, 1971.<br />

Dog: YUDILEVICH, DE ROSE, and SEPIJLVEDA, 1972. Mouse: SETA, SERSHEN, and<br />

LAJTHA, 1972). The movement of am<strong>in</strong>o <strong>acid</strong>s between blood and bra<strong>in</strong> is, however,<br />

complicated by transport of both am<strong>in</strong>o <strong>acid</strong>s and precursors (RICHTER<br />

and WAINER, 1971), and by <strong>the</strong> anatomical and biochemical compartmentation<br />

of am<strong>in</strong>o <strong>acid</strong>s and metabolites with<strong>in</strong> this tissue. From a practical po<strong>in</strong>t of<br />

view <strong>the</strong>se processes are of significance only <strong>in</strong> relation to whe<strong>the</strong>r or not <strong>system</strong>ic<br />

adm<strong>in</strong>istration of a particular am<strong>in</strong>o <strong>acid</strong> or precursor can alter bra<strong>in</strong> levels<br />

sufficiently to modify its transmitter function.<br />

3.1. Glyc<strong>in</strong>e<br />

Glyc<strong>in</strong>e is a zwitterion at neutral pH with pK values of 2.33 and 9.53 at 35 °<br />

(KrNG, 1951). The rotational isomerism of glyc<strong>in</strong>e <strong>in</strong> solution has been studied<br />

by proton magnetic resonance spectroscopy (CAVANAUGH, 1967) and by potential<br />

energy calculations (PONNUSWAMY and SASlSEKARAN, 1970).<br />

With<strong>in</strong> <strong>the</strong> CNS, levels of glyc<strong>in</strong>e <strong>in</strong> excess of 3 gmole/g are found only<br />

<strong>in</strong> <strong>the</strong> medulla and sp<strong>in</strong>al cord (Section 4.10 and Table 8). Intraperitoneai<br />

adm<strong>in</strong>istration of glyc<strong>in</strong>e (13 gmole/g=1000 mg/kg) raises <strong>the</strong> <strong>central</strong> levels<br />

of both glyc<strong>in</strong>e and ser<strong>in</strong>e (Rat: RICHTER and WARNER, 1971). The flux of glyc<strong>in</strong>e<br />

from <strong>the</strong> blood <strong>in</strong>to adult rat CNS has been estimated to be of <strong>the</strong> order of<br />

0.1 gmole/g/h (SHANK and APRISON, 1970), and to be 10 to 60 times higher<br />

<strong>in</strong> immature rats (BA~IOS, DANIEL, MOORHOUSE, and PRATT, 1971). Glyc<strong>in</strong>e has<br />

<strong>the</strong> lowest CSF to plasma ratio of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s found <strong>in</strong> cat CSF (Table 1),<br />

perhaps due to a mediated transport of glyc<strong>in</strong>e from <strong>the</strong> CSF to <strong>the</strong> blood<br />

(Cat: MURRAY and CUTLER, 1970a, b; HENSCHEN and SODERBERG, 1968).<br />

Glyc<strong>in</strong>e Metabolism. Glyc<strong>in</strong>e metabolism <strong>in</strong> <strong>the</strong> CNS is complex and poorly<br />

understood. Glyc<strong>in</strong>e syn<strong>the</strong>sis from glucose appears to be via D-3-phosphoglycerate<br />

and/or D-glycerate (Fig. 1). Glyc<strong>in</strong>e <strong>in</strong>hibits D-glycerate dehydrogenase activity<br />

(EC. 1.1.1.29), but not D-3-phosphoglycerate dehydrogenase activity <strong>in</strong><br />

extracts of rat bra<strong>in</strong>, <strong>in</strong> a non-competitive manner suggestive of end-product<br />

<strong>in</strong>hibition (UHR and SNEDDON, 1971), and <strong>the</strong> regional distribution of this enzymic<br />

activity, but not that of D-3-phosphoglycerate dehydrogenase, <strong>in</strong> <strong>the</strong> cat CNS<br />

correlates with that of glyc<strong>in</strong>e (UHR and SNEDDON, 1972). These observations<br />

<strong>in</strong>dicate that <strong>the</strong> rate controll<strong>in</strong>g step <strong>in</strong> glyc<strong>in</strong>e metabolism may be <strong>the</strong> conversion<br />

of D-glycerate to hydroxypyruvate <strong>in</strong> <strong>the</strong> "non-phosphorylated" pathway. Two<br />

major possibilities exist for <strong>the</strong> production of glyc<strong>in</strong>e from hydroxypyruvate.<br />

The more obvious is that via ser<strong>in</strong>e by means of <strong>the</strong> enzymes hydroxypyruvate:<br />

c~-alan<strong>in</strong>e (glutamate/glutam<strong>in</strong>e) transam<strong>in</strong>ase and ser<strong>in</strong>e hydroxymethyltransferase<br />

(EC. 2.1.2.1). The required transam<strong>in</strong>ase activity is, however, very low or<br />

absent <strong>in</strong> bra<strong>in</strong> (Dog, ox: WALSH and SALLACH, 1966). The correspond<strong>in</strong>g enzyme<br />

for <strong>the</strong> "phosphorylated" pathway, phosphohydroxypyruvate: glutamate transam<strong>in</strong>ase<br />

is found <strong>in</strong> bra<strong>in</strong> (Sheep: HIRSCH and GREENBERG, 1967), and <strong>the</strong>re


108 D.R. CURTIS and G. A. R. JOHNSTON :<br />

GLUCOSE<br />

>- 3-PHOSPHO-<br />

r: D-GLYCERATE<br />

"- I--<br />

lb<br />

CH:zOPO }<br />

PHOSPHO co<br />

HYDROXY<br />

PYRUVATE IOO-<br />


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 109<br />

Glyc<strong>in</strong>e Transport. At least two k<strong>in</strong>etically dist<strong>in</strong>ct transport <strong>system</strong>s mediate<br />

glyc<strong>in</strong>e uptake <strong>in</strong> <strong>the</strong> CNS : a "low aff<strong>in</strong>ity" <strong>system</strong> (K<strong>in</strong> approx. 10- 4 M), which<br />

is shared by o<strong>the</strong>r small neutral am<strong>in</strong>o <strong>acid</strong>s and is found <strong>in</strong> all areas of <strong>the</strong><br />

CNS (Rat: SMITH, 1967. Mouse: BLASBERG, 1968), and a "high aff<strong>in</strong>ity" <strong>system</strong><br />

(K m approx. 10 s M), which is specific for glyc<strong>in</strong>e, conf<strong>in</strong>ed to <strong>the</strong> sp<strong>in</strong>al cord,<br />

pons and medulla, and shows an absolute dependence on external sodium ions<br />

(Rat: NEAL, 1971; JOHNSTON and IVERSEN, 1971; LOGAN and SNYDER, 1972;<br />

BENNETT, LOGAN, and SNYDER, 1972. Cat: BALCAR and JOHNSTON, 1973). There<br />

is evidence from subcellular fractionation and autoradiographic studies to support<br />

a predom<strong>in</strong>antly presynaptic location for <strong>the</strong> high aff<strong>in</strong>ity specific glyc<strong>in</strong>e uptake<br />

<strong>system</strong>, though glial components may also be important (Rat: IVERSEN and JOHN-<br />

STON, 1971; MATUS and DENNISON, 1972; ARREGUI, LOGAN, BENNETT, and<br />

SNYDER, 1972; HOKFELT and LJUNGDAHL, 1972C). A variety of <strong>central</strong>ly-active<br />

drugs <strong>in</strong>hibit <strong>the</strong> high aff<strong>in</strong>ity specific glyc<strong>in</strong>e uptake <strong>system</strong> <strong>in</strong>clud<strong>in</strong>g chlorpromaz<strong>in</strong>e,<br />

imipram<strong>in</strong>e and haloperidol (Rat: JOHNSTON and IVERSEN, 1971). p-Chloromercuriphenylsulphonate<br />

<strong>in</strong>hibits glyc<strong>in</strong>e uptake <strong>in</strong>to slices of cat sp<strong>in</strong>al cord<br />

(BALCAR and JOHNSTON, 1973) and, when adm<strong>in</strong>istered microelectrophoretically,<br />

potentiates <strong>the</strong> depressant action of glyc<strong>in</strong>e on <strong>the</strong> fir<strong>in</strong>g of cat sp<strong>in</strong>al neurones<br />

(CURTIS et al., 1970b).<br />

Glyc<strong>in</strong>e Release. Evoked release of exogenous glyc<strong>in</strong>e has been demonstrated<br />

<strong>in</strong> vivo from cat sp<strong>in</strong>al cord (JORDAN and WEBSTER, 1971), and <strong>in</strong> vitro from<br />

slices of rat sp<strong>in</strong>al cord (HoPKIN and NEAL, 1971 ; HAMMERSTAD, MURRAY, and<br />

CUTLER, 1971) and isolated amphibian cords (APRISON, 1970 ; ROBERTS and MIT-<br />

CHELL, 1972). In <strong>the</strong> sp<strong>in</strong>al cord tetanus tox<strong>in</strong> blocks glyc<strong>in</strong>e mediated <strong>in</strong>hibition<br />

probably by reduc<strong>in</strong>g <strong>the</strong> release of transmitter (Section 4.12.3.1).<br />

Postsynaptic Action of Glyc<strong>in</strong>e. Intracellular studies of <strong>the</strong> mechanism of <strong>the</strong><br />

depression by glyc<strong>in</strong>e of <strong>the</strong> fir<strong>in</strong>g of neurones <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord, medulla and<br />

cerebral cortex show that glyc<strong>in</strong>e hyperpolarises <strong>the</strong>se neurones and <strong>in</strong>creases<br />

<strong>the</strong> membrane conductance (Cat: WERMAN, DAVIDOFF, and APRISON, 1968;<br />

CURTIS, HOSLI, JOHNSTON, and JOHNSTON, 1968 b; BRUGGENCATE and ENGBERG,<br />

1968, 1971 ; KELLY and KRNSEVId, 1969; HOSLI and HAAS, 1972). The ionic basis<br />

of <strong>the</strong> effects of glyc<strong>in</strong>e on sp<strong>in</strong>al and Deiters' neurones cannot be dist<strong>in</strong>guished<br />

from synaptically-<strong>in</strong>duced <strong>in</strong>hibition by measurements of reversal potentials and<br />

<strong>the</strong> effects of <strong>in</strong>tracellular <strong>in</strong>jection of a series of anions and cations.<br />

Glyc<strong>in</strong>e Antagonists. A variety of compounds (Fig. 2) selectively antagonise<br />

<strong>the</strong> depressant action of glyc<strong>in</strong>e on neurones (Section 4.12.3.1.). Strychn<strong>in</strong>e is<br />

<strong>the</strong> most potent and <strong>the</strong> most widely <strong>in</strong>vestigated of <strong>the</strong>se compounds; o<strong>the</strong>rs<br />

<strong>in</strong>clude <strong>the</strong> alkaloids bruc<strong>in</strong>e, dendrob<strong>in</strong>e, diabol<strong>in</strong>e, gelsem<strong>in</strong>e, laudanos<strong>in</strong>e,<br />

morph<strong>in</strong>e and <strong>the</strong>ba<strong>in</strong>e, and <strong>the</strong> syn<strong>the</strong>tic compounds N,N-dimethylmuscimol,<br />

levorphan, N-methylbicuculle<strong>in</strong>e, and 4-phenyl-4-formyl-N-methylpiperid<strong>in</strong>e<br />

(Cat: CURTIS, H6SLI, and JOHNSTON, 1968 a; CURTIS and DUGGAN, 1969 ; CURTIS,<br />

DUGGAN, FELIX, and JOHNSTON, 1971a; JOHNSTON, BEART, CURTIS, GAME,<br />

MCCULLOCH, and MACLACHLAN, 1972; CURTIS and JOHNSTON, unpublished<br />

observations).<br />

Strychn<strong>in</strong>e also antagonises <strong>the</strong> depressant actions on sp<strong>in</strong>al neurones of<br />

~- and fl-alan<strong>in</strong>e, cystathion<strong>in</strong>e, ser<strong>in</strong>e and taur<strong>in</strong>e, which on this basis have<br />

been called "glyc<strong>in</strong>e-like" am<strong>in</strong>o <strong>acid</strong>s, but does not <strong>in</strong>fluence <strong>the</strong> actions of


1 l 0 D.R. CURTIS and G. A. R, JOHNSTON :<br />

0 N ~CH~<br />

~<br />

~:H 3<br />

CH3<br />

STRYCHNINE<br />

CH3?H E~/AIN E<br />

DENDROBINE<br />

CH 2<br />

H ~ ~'-N'cH3 [~OCH 3<br />

OCH3<br />

GELSEMINE<br />

LEVORPHAN<br />

LAUDANOSINE<br />

(~H3<br />

< O'~N(CH3~<br />

0 CUOH<br />

DIABOLINE<br />

4-FORMYL-4.PHENYt-<br />

N-METHYLPIPERIDINE<br />

N-METHYL-BICUCU LL EIN E<br />

o<br />

Fig 2. Antagonists of <strong>the</strong> postsynaptic action of glyc<strong>in</strong>e<br />

<strong>the</strong> "GABA-like" am<strong>in</strong>o <strong>acid</strong>s, GABA, 7-am<strong>in</strong>o-fl-hydroxybutyric <strong>acid</strong>, 3-am<strong>in</strong>opropanesulphonic<br />

<strong>acid</strong>, 6-am<strong>in</strong>ovaleric <strong>acid</strong> and e-am<strong>in</strong>ocaproic <strong>acid</strong> (Cat: CURTIS<br />

et al., 1968a). The antagonism of glyc<strong>in</strong>e by strychn<strong>in</strong>e may be competitive<br />

<strong>in</strong> nature (Cat: JOHNSON, ROBERTS and STRAU6HAN, 1970; CURTIS et al., 1971 c).<br />

3.2. GABA<br />

GABA is a flexible molecule: X-ray crystallography <strong>in</strong>dicates that it exists <strong>in</strong><br />

a partially folded conformation <strong>in</strong> <strong>the</strong> solid state (ToMITA, 1971; STEWAm),<br />

PLAYER, QtJILLIAM, BROWN, and PRIY6LE, 1971), while proton magnetic resonance<br />

studies (PARRY JONES, ROBERTS, and AnMED, 197 l) favour extended conformations<br />

for GABA <strong>in</strong> solution. There is also evidence for extended conformations of<br />

GABA under "<strong>in</strong> vivo" conditions (BEART, CURTIS, and JOHNSTON, 1971; BEART,<br />

JOHNSTON, and UHR, 1972). The am<strong>in</strong>o <strong>acid</strong> is a zwitterion at neutral pH with<br />

pK values of 4.03 and 10.27 at 35 ° (KIyG, 1954).<br />

GABA occurs <strong>in</strong> mammals <strong>in</strong> appreciable amounts only <strong>in</strong> <strong>the</strong> CNS, with<br />

<strong>the</strong> highest levels <strong>in</strong> <strong>the</strong> substantia nigra and globus pallidus (BAXTER, 1970,<br />

1972). While it is generally accepted that <strong>system</strong>ically adm<strong>in</strong>istered GABA does<br />

not raise levels <strong>in</strong> <strong>the</strong> bra<strong>in</strong> (ROBERTS and KURIYA~A, 1968), subcutaneous <strong>in</strong>jection<br />

of large doses (60 pmole/g=6.2 g]kg) <strong>in</strong>creases <strong>the</strong> bra<strong>in</strong> levels <strong>in</strong> mice<br />

of all ages (LEv~, AMALDI, and MORISI, 1972). Bra<strong>in</strong> levels of GABA are altered<br />

by a variety of drugs, many of which <strong>in</strong>hibit GABA-metabolis<strong>in</strong>g enzymes<br />

(BAXTER, 1970 ; IVERSEN, 1972 ; COLLINS, 1973). Although itself not <strong>in</strong>corporated


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 111<br />

<strong>in</strong>to prote<strong>in</strong>, GABA (and glyc<strong>in</strong>e) stimulate prote<strong>in</strong> syn<strong>the</strong>sis <strong>in</strong> cell free extracts<br />

of immature rat bra<strong>in</strong> (BAXTER, TEWARI, and RAEBURN, 1972). An extensive<br />

review of GABA literature has been published (SYTINSKY, 1972).<br />

GABA Metabolism. GABA is syn<strong>the</strong>sised by <strong>the</strong> decarboxylation of L-glutamate.<br />

L-glutamate decarboxylase (GAD, EC. 4.1.1.15) exists <strong>in</strong> at least two<br />

forms: GAD I and GAD II. GAD I, <strong>the</strong> form more widely studied, requires<br />

pyridoxal phosphate as a cofactor and is strongly <strong>in</strong>hibited by anions such as<br />

chloride, and by carbonyl trapp<strong>in</strong>g reagents such as thiosemicarbazide (ROBERTS<br />

and KURIYAMA, 1968). GAD I is relatively <strong>in</strong>sensitive to product <strong>in</strong>hibition by<br />

GABA, but GABA may repress <strong>the</strong> syn<strong>the</strong>sis of GAD I (Mouse: SZE, 1970;<br />

SZE and LOVELL, 1970). GAD I appears to be localised predom<strong>in</strong>antly with<strong>in</strong><br />

<strong>the</strong> axoplasm of particular nerve end<strong>in</strong>gs and is not found <strong>in</strong> appreciable amounts<br />

<strong>in</strong> non-neural tissues. GAD II is relatively <strong>in</strong>sensitive to <strong>in</strong>hibition by anions,<br />

is stimulated by carbonyl trapp<strong>in</strong>g reagents and is found <strong>in</strong> various non-neural<br />

tissues (Human: HABER, KURIYAMA, and ROBERTS, 1970. Rabbit: KURIYAMA,<br />

HABER, and ROBERTS, 1970).<br />

GABA is degraded by <strong>the</strong> action of a specific GABA transam<strong>in</strong>ase (4-am<strong>in</strong>obutyrate<br />

:2-oxoglutarate am<strong>in</strong>otransferase, GABA-T, EC. 2.6.1.19) to succ<strong>in</strong>ic<br />

semialdehyde, which is <strong>in</strong> turn oxidised to succ<strong>in</strong>ate by a specific dehydrogenase.<br />

A number of multiple forms of GABA-T have been reported (Mouse, rat: WAKS-<br />

MAN and BLOCH, 1968), and GABA-T activity has been found <strong>in</strong> non-neural<br />

tissues (Rat: CACIAPPO, PANDOLFO, and DI CHIARA, 1959). GABA-T transam<strong>in</strong>ates<br />

some o<strong>the</strong>r substances related to GABA, <strong>in</strong>clud<strong>in</strong>g/~-alan<strong>in</strong>e and 8-<br />

am<strong>in</strong>o-valeric <strong>acid</strong>, but not 7-am<strong>in</strong>o-fl-hydroxybutyric <strong>acid</strong> or taur<strong>in</strong>e (Mouse:<br />

WAKSMAN and ROBERTS, 1965. Rat: SYTINSKY and VASILIJEV, 1970; BEART and<br />

JOHNSTON, 1973 a). Many <strong>in</strong>hibitors of GABA-T activity, <strong>in</strong>clud<strong>in</strong>g am<strong>in</strong>o-oxyacetic<br />

<strong>acid</strong>, hydroxylam<strong>in</strong>e and 3-hydraz<strong>in</strong>opropionic <strong>acid</strong>, <strong>in</strong>crease bra<strong>in</strong> GABA<br />

levels (BAXTER, 1970; IVERSEN, 1972) but, as with <strong>in</strong>hibitors of GAD I, cause<br />

and effect are difficult to correlate.<br />

The metabolic pathway from 2-oxoglutarate to succ<strong>in</strong>ate via L-glutamate,<br />

GABA and succ<strong>in</strong>ic semialdehyde constitutes <strong>the</strong> "GABA-shunt", i.e. an alternative<br />

pathway to that through succ<strong>in</strong>yl-coenzyme A <strong>in</strong> <strong>the</strong> normal tricarboxylic<br />

<strong>acid</strong> cycle. It has been estimated that <strong>in</strong> rat bra<strong>in</strong> slices <strong>the</strong> GABA-shunt constitutes<br />

about 8% of <strong>the</strong> total carbon flux of <strong>the</strong> tricarboxylic <strong>acid</strong> cycle (B~LAZS,<br />

MACHIYAMA, HAMMOND, JULIAN, and RICHTER, 1970). In vivo experiments with<br />

rats <strong>in</strong>dicate that <strong>the</strong> rate of GABA syn<strong>the</strong>sis <strong>in</strong> <strong>the</strong> bra<strong>in</strong> is about 5 pmole/g/h<br />

(VAN GELDER, 1966).<br />

Histochemical methods have been described for <strong>the</strong> localization of GABA<br />

(WoLMAN, 1971), GABA-T (VAN GELDER, 1965a) and succ<strong>in</strong>ic semialdehyde<br />

dehydrogenase (SIMS, WEITSEN, and BLOOM, 1971). Use has also been made of<br />

<strong>the</strong> distribution of radiolabelled thiosemicarbazide as an <strong>in</strong>dicator of GABA<br />

metabolism (CSILLIK, GEREBTZOFF, KISS, and KNYIH~,R, 1971).<br />

GABA Transport. GABA is taken up <strong>in</strong>to bra<strong>in</strong> slices by a saturable "high<br />

aff<strong>in</strong>ity" process (Km approx. 10-5 M), which is structurally specific, dependent<br />

on temperature and requires sodium ions (ELLIOTT and VAN GELDER, 1958;<br />

ROBERTS and KURIYAMA, 1968; IVERSEN and NEAL, 1968; COHEN and LAJTHA,<br />

1972). "Low aff<strong>in</strong>ity" uptake (Km approx. 10-4M) of GABA has also been


112 D.R. CURTIS and G.A.R. JOHNSTON:<br />

reported (LEvi and RAITERI, 1973). Various drugs <strong>in</strong>hibit GABA uptake <strong>in</strong> a<br />

relatively non-specificmanner, <strong>in</strong>clud<strong>in</strong>gp-chloromercuriphenylsulphonate, chlorpromaz<strong>in</strong>e,<br />

imipram<strong>in</strong>e, haloperidol, dibutyryl cyclic AMP and <strong>the</strong> protoveratr<strong>in</strong>es<br />

(Rat: IVERSEN and JOHNSTON, 1971 ; GOTTESFELD and ELLIOTT, 1971 ; BEART<br />

and JOHNSTON, 1973b; HARRIS, HOPKIN, and NEAL, 1973). GABA transport<br />

appears to be dependent on pyridoxyl phosphate, and can be <strong>in</strong>hibited by relatively<br />

high concentrations of am<strong>in</strong>o-oxyacetic <strong>acid</strong> (SNODGRASS and IVERSEN, 1973 b).<br />

Autoradiographic studies <strong>in</strong>dicate that a major site of uptake <strong>in</strong> rat cerebral<br />

cortex is a dist<strong>in</strong>ct population of nerve term<strong>in</strong>als (IvERSEN and BLOOM, 1972),<br />

but this is not true of all <strong>nervous</strong> tissue (Rat: NEAL and IVERSEN, 1972).<br />

Synaptic vesicles isolated from bra<strong>in</strong> b<strong>in</strong>d GABA by a structurally specific,<br />

sodium dependent, process (Mouse: ROBERTS and KURIYAMA, 1968 ; KURIYAMA,<br />

ROBERTS, and KAKEFUDA, 1968) which is <strong>in</strong>hibited by imipram<strong>in</strong>e (WEINSTEIN,<br />

VARON, and ROBERTS, 1971). This b<strong>in</strong>d<strong>in</strong>g may be related to <strong>the</strong> storage of<br />

GABA <strong>in</strong> <strong>the</strong> nerve term<strong>in</strong>al.<br />

GABA Release. The release of endogenous GABA has been demonstrated<br />

<strong>in</strong> vivo <strong>in</strong>to <strong>the</strong> fourth ventricle and from <strong>the</strong> surface of <strong>the</strong> cerebral cortex<br />

follow<strong>in</strong>g appropriate stimulation (Cat: OBATA and TAKEDA, 1969; JASPER and<br />

KOYAMA, 1969; IVERSEN, MITCHELL, and SRINIVASAN, 1971). In both <strong>the</strong> sp<strong>in</strong>al<br />

cord and cerebellum tetanus tox<strong>in</strong> appears to block <strong>the</strong> synaptic release of this<br />

am<strong>in</strong>o <strong>acid</strong> (CURTIS, FELIX, GAME, and MCCULLOCH, 1973a).<br />

Postsynaptic Action ofGABA. GABA depresses <strong>the</strong> fir<strong>in</strong>g of neurones throughout<br />

<strong>the</strong> <strong>mammalian</strong> <strong>nervous</strong> <strong>system</strong> and hyperpolarization with an <strong>in</strong>creased<br />

membrane conductance has been demonstrated <strong>in</strong> Deiters' nucleus, <strong>the</strong> cerebral<br />

and cerebellar cortices and <strong>the</strong> sp<strong>in</strong>al cord. (Cat: OBATA, ITO, OCHI, and SATO,<br />

1967; KRNJEVI~ and SCHWARTZ, 1967b; CURTIS et al., 1968b; BRUGGENCATE<br />

and ENGBERG, 1968. Rat: SIGGINS, OLIVER, HOFFER, and BLOOM, 1971). The<br />

reversal potentials for both synaptically- and GABA-<strong>in</strong>duced hyperpolarizations<br />

are similar, and <strong>in</strong>tracellular <strong>in</strong>jection of ions has essentially <strong>the</strong> same effects<br />

upon both types of <strong>in</strong>hibitory hyperpolarizations. It is <strong>the</strong>refore generally accepted<br />

that GABA has transmitter-like effects at certa<strong>in</strong> <strong>in</strong>hibitory synapses.<br />

GABA Antagonists'. Three series of compounds (Fig. 3) antagonise <strong>the</strong> postsynaptic<br />

effects of GABA: picrotox<strong>in</strong> and related compounds, bicucull<strong>in</strong>e and<br />

related compounds, and benzyl penicill<strong>in</strong>.<br />

<<br />

~~N~cH3<br />

o ?<br />

PICROTOXININ<br />

CH2CONH S CH3<br />

BICUCULLINE<br />

o/A --" -~cooN~<br />

BENZYI. PENICILLIN<br />

Fig. 3. Antagonists of <strong>the</strong> postsynaptic action of GABA


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 113<br />

Picrotox<strong>in</strong> is an equimolar mixture of picrotox<strong>in</strong><strong>in</strong> and picrot<strong>in</strong> (PORTER,<br />

1967), <strong>the</strong> former be<strong>in</strong>g about 50 times more active than <strong>the</strong> latter as a convulsant<br />

(Mouse: RA~WELL and SHAW, 1963 ; JARBOE, PORTER, and BUCKLER, 1968). Picrotox<strong>in</strong><br />

reversibly, but not consistently, antagonises <strong>the</strong> action of GABA <strong>in</strong> many<br />

areas of <strong>the</strong> CNS. The structurally related convulsant tut<strong>in</strong> (FASTIER, 1971) is<br />

also a GABA antagonist <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord of <strong>the</strong> cat.<br />

Bicucull<strong>in</strong>e, a convulsant phthalide isoqu<strong>in</strong>ol<strong>in</strong>e alkaloid (Rabbit: WELCH<br />

and HENDERSON, 1934. Baboon, Rhesus monkey : MELDRUM and HORTON, 1971),<br />

is a relatively specific GABA antagonist (Cat: CURTIS et al., 1971 a). The structurally<br />

related compounds corlum<strong>in</strong>e and bicuc<strong>in</strong>e methyl ester are similar <strong>in</strong> potency<br />

to bicucull<strong>in</strong>e as convulsants and as GABA antagonists (Cat: JOHNSTON et al.,<br />

1972). Quaternisation of <strong>the</strong> heterocyclic nitrogen atom <strong>in</strong> bicucull<strong>in</strong>e produces<br />

more active compounds. Bicucull<strong>in</strong>e methiodide ("N-methyl-bicucull<strong>in</strong>e", Rat:<br />

PONG and GRAHAM, 1972) is a more powerful convulsant than bicucull<strong>in</strong>e hydrochloride<br />

when <strong>in</strong>jected <strong>in</strong>tracisternally. Bicucull<strong>in</strong>e methochloride, which is about<br />

100 times more soluble <strong>in</strong> water than bicucull<strong>in</strong>e hydrochloride and is more<br />

active electrophoretically as a selective GABA antagonist (Cat: JOHNSTON et<br />

al., 1972), is less effective than bicucull<strong>in</strong>e when adm<strong>in</strong>istered <strong>system</strong>ically, as<br />

might be expected from its quaternary structure.<br />

Benzylpenicill<strong>in</strong> is a specific but less effective GABA antagonist than bicucull<strong>in</strong>e<br />

(Frog: DAVIDOFF, 1972b. Cat: DAVIDOFF, 1972C; CURTIS, GAME, JOHNSTON,<br />

McCuLLocrt, and MACLACHLAN, 1972 b).<br />

O<strong>the</strong>r substances, which like bicucull<strong>in</strong>e and picrotox<strong>in</strong><strong>in</strong> reduce <strong>in</strong>hibitions<br />

probably mediated by GABA and are <strong>the</strong>refore possibly GABA antagonists,<br />

<strong>in</strong>clude shikim<strong>in</strong> (KAJIMOTO, FUJIMORI, and HIROTA, 1955. Cat: prolonged sp<strong>in</strong>al<br />

<strong>in</strong>hibition, CURTIS and JOHNSTON, unpublished observation), tetramethylenedisulphotetram<strong>in</strong>e<br />

(HAGEN, 1950; D.I.B. KERR, personal communication. Cat: prolonged<br />

sp<strong>in</strong>al <strong>in</strong>hibition, CURTIS and JOr~NSTON, unpublished observations),<br />

diphenylam<strong>in</strong>o-ethanol (Cat: cerebellar <strong>in</strong>hibition of Deiters' neurones, KEE,<br />

WLLLS, and YIM, 1971). Additionally d-tubocurar<strong>in</strong>e reduces <strong>the</strong> <strong>in</strong>hibitory effects<br />

of both GABA and glyc<strong>in</strong>e on cerebral cortical neurones (Cat: HILL, SIMMONDS,<br />

and STRAUGHAN, 1972).<br />

3.3. Taur<strong>in</strong>e<br />

Taur<strong>in</strong>e is a non-prote<strong>in</strong>, sulphur conta<strong>in</strong><strong>in</strong>g am<strong>in</strong>o <strong>acid</strong>, which is a zwitterion<br />

at neutral pH with pK values of apl~rox.. 1.5 and 8.82 at 35 ° (ALBERT, 1950;<br />

KING, 1953). In <strong>the</strong> solid state, it is <strong>in</strong> an extended conformation with a gauche<br />

relationship between <strong>the</strong> protonated am<strong>in</strong>o and <strong>the</strong> sulphonate groups (OKAYA,<br />

1966).<br />

Taur<strong>in</strong>e occurs <strong>in</strong> vary<strong>in</strong>g concentrations throughout <strong>the</strong> <strong>nervous</strong> <strong>system</strong>,<br />

<strong>the</strong> highest level be<strong>in</strong>g <strong>in</strong> <strong>the</strong> lateral geniculate nucleus (Cat: GUIDOTTI, BADIANI,<br />

and PEPEU, 1972), but, unlike glyc<strong>in</strong>e and GABA, higher levels of taur<strong>in</strong>e exist<br />

<strong>in</strong> o<strong>the</strong>r than CNS tissue, (GAITONDE, 1970), particularly <strong>in</strong> <strong>the</strong> heart (Rat:<br />

AWAPARA, 1956). Levels are high dur<strong>in</strong>g <strong>the</strong> period of rapid growth of <strong>the</strong> bra<strong>in</strong>,<br />

and fall as <strong>the</strong> animal matures (AGRAWAL, DAVIS, and HIMWICH, 1966). Increas<strong>in</strong>g


114 D.R. CURTIS and G.A.R. JOHNSTON :<br />

<strong>the</strong> plasma levels of taur<strong>in</strong>e 100 fold does not significantly <strong>in</strong>crease bra<strong>in</strong> levels<br />

(Rat: LEVI, 1968). The rate of entry of taur<strong>in</strong>e <strong>in</strong>to <strong>the</strong> bra<strong>in</strong> from <strong>the</strong> blood<br />

is <strong>the</strong> same <strong>in</strong> immature and mature rats (BASOS et al., 1971). Repeated<br />

adm<strong>in</strong>istration of taur<strong>in</strong>e reduces both <strong>the</strong> seizure activity and <strong>the</strong> abnormalities<br />

of cortical am<strong>in</strong>o <strong>acid</strong> levels <strong>in</strong>duced by cobalt <strong>in</strong> <strong>the</strong> cortex (Cat, mouse: VAN<br />

GELDER, 1972).<br />

Taur<strong>in</strong>e Metabolism. Taur<strong>in</strong>e is syn<strong>the</strong>sised <strong>in</strong> <strong>the</strong> CNS via decarboxylation<br />

of cyste<strong>in</strong>esulph<strong>in</strong>ic <strong>acid</strong> to hypotaur<strong>in</strong>e and subsequent oxidation (GAITONDE,<br />

1970). The decarboxylase activity appears to be associated with nerve end<strong>in</strong>gs<br />

<strong>in</strong> rat bra<strong>in</strong> (AGRAWAL, DAVISON, and KACZMAREK, 1971). Taur<strong>in</strong>e is degraded<br />

slowly <strong>in</strong> rat bra<strong>in</strong> to isethionic <strong>acid</strong> (PECK and AWAPARA, 1967).<br />

Taur<strong>in</strong>e Transport. Taur<strong>in</strong>e is taken up <strong>in</strong>to bra<strong>in</strong> slices by at least two k<strong>in</strong>etically<br />

dist<strong>in</strong>ct transport <strong>system</strong>s with Km's of 5 x l0 -5 M and 1 x 10 -2 M (Rat:<br />

KACZMAREK and DAVlSON, 1972 ; LAHDESMAKI and OJA, 1972). Uptake of taur<strong>in</strong>e<br />

by <strong>the</strong> low K m <strong>system</strong> is structurally specific for taur<strong>in</strong>e and is <strong>in</strong>hibited by<br />

cyanide and ouaba<strong>in</strong> (Cat: BATTISTIN, GRYNBAUM, and LAJTHA, 1969a. Rat:<br />

KACZMAREK and DAVISON, 1972).<br />

Taur<strong>in</strong>e Release. Endogenous taur<strong>in</strong>e is released from <strong>the</strong> fel<strong>in</strong>e cerebral cortex<br />

<strong>in</strong> vivo as a result of stimulation of <strong>the</strong> reticular formation (JASPER and KOYAMA,<br />

1969). Exogenous taur<strong>in</strong>e is released from rat bra<strong>in</strong> slices under a variety of<br />

conditions (KACZMAREK and DAVISON, 1972; LAHDESMXKI and OJA, 1972).<br />

Postsynaptic Action of Taur<strong>in</strong>e. Intracellular studies of <strong>the</strong> mechanism of<br />

taur<strong>in</strong>e-<strong>in</strong>duced depression of neuronal fir<strong>in</strong>g have not yet been reported, but<br />

an action similar to glyc<strong>in</strong>e seems very likely.<br />

Taur<strong>in</strong>e Antagonists. In <strong>the</strong> fel<strong>in</strong>e sp<strong>in</strong>al cord and medulla, strychn<strong>in</strong>e, but<br />

not bicucull<strong>in</strong>e, is a taur<strong>in</strong>e antagonist, but <strong>in</strong> <strong>the</strong> cerebral cortex and lateral<br />

geniculate nucleus both strychn<strong>in</strong>e and bicucull<strong>in</strong>e block <strong>the</strong> depression of neuronal<br />

fir<strong>in</strong>g by taur<strong>in</strong>e. (CURTIS et al., 1968a, 1971 a; CUP, T~S, DUGGAN, FELIX,<br />

JOHNSTON, and MCLENNAN, 1971 b; CURTIS and TEB~CtS, 1972).<br />

3.4. Structurally Related Depressant <strong>Am<strong>in</strong>o</strong> Acids<br />

A number of depressant am<strong>in</strong>o <strong>acid</strong>s structurally related to glyc<strong>in</strong>e, GABA and<br />

taur<strong>in</strong>e occur <strong>in</strong> <strong>central</strong> <strong>nervous</strong> tissue.<br />

L-c~-Alan<strong>in</strong>e. This am<strong>in</strong>o <strong>acid</strong> is present <strong>in</strong> moderate amounts throughout <strong>the</strong> CNS, show<strong>in</strong>g<br />

little regional variation (TALLAN, 1962; Rat: SHAW and HHNE, 1965; SI~ANK and APmSON, 1970.<br />

Cat: BATXISTIN, GRYNBAU~4, and LAJTHA, 1969b). After <strong>in</strong>traperitoneal adm<strong>in</strong>istration L-e-alan<strong>in</strong>e<br />

(11 gmole/g) raises <strong>the</strong> csntral levels of L-c~-alan<strong>in</strong>e and also of glyc<strong>in</strong>e (Rat: RICHTER and WA1NER,<br />

1971). This am<strong>in</strong>o <strong>acid</strong> is taken up <strong>in</strong>to bra<strong>in</strong> slices by <strong>the</strong> "low aff<strong>in</strong>ity" small neutral am<strong>in</strong>o<br />

<strong>acid</strong> transport <strong>system</strong> (COHEN and LmTHA, 1972; Rat: SMmt, 1967; JOHNSTON and IVERSEN, 1971;<br />

LOGAN and SNYDER, 1972). Exogenous L-e-alan<strong>in</strong>e is not released from slices of rat bra<strong>in</strong> or sp<strong>in</strong>al<br />

cord by electrical stimulation (MITCHELL, NEAL and SRIMVASAN, 1969; HOVKIN and NEAL, 1971).<br />

The depressant effect of L-ct-alan<strong>in</strong>e on <strong>the</strong> fir<strong>in</strong>g of fel<strong>in</strong>e sp<strong>in</strong>al neurones, weaker than glyc<strong>in</strong>e<br />

but stronger than L-cystathion<strong>in</strong>e and L-ser<strong>in</strong>e, is blocked by strychn<strong>in</strong>e (CURTIS et al., 1968a).<br />

L-Ser<strong>in</strong>e. L-Ser<strong>in</strong>e and glyc<strong>in</strong>e are <strong>in</strong>terconvertible <strong>in</strong> <strong>the</strong> CNS. In <strong>the</strong> rat, ser<strong>in</strong>e concentrations<br />

are lower than glyc<strong>in</strong>e <strong>in</strong> all areas of <strong>the</strong> CNS, o<strong>the</strong>r than <strong>in</strong> <strong>the</strong> telencephalon and c~rebellum


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 115<br />

(Rat: SHAW and HEINE, 1965; SHANK and APRISON, 1970). L-Ser<strong>in</strong>e is also concerned with <strong>the</strong><br />

metabolism of L-cystathion<strong>in</strong>e (GAITONDE, 1970). Intraperitoneally adm<strong>in</strong>istered glyc<strong>in</strong>e (13 pmole/g)<br />

raises <strong>the</strong> <strong>central</strong> levels of ser<strong>in</strong>e (Rat: RICHTER and WAINER, 1971).The rate of entry of ser<strong>in</strong>e<br />

from <strong>the</strong> blood <strong>in</strong>to <strong>the</strong> bra<strong>in</strong> of immature rats is 40-120 times that of mature rats (BA~oS et<br />

al., 1971). When adm<strong>in</strong>istered electrophoretically L-ser<strong>in</strong>e is a weak strychn<strong>in</strong>e-sensitive depressant<br />

of <strong>the</strong> fir<strong>in</strong>g of fel<strong>in</strong>e sp<strong>in</strong>al neurones (CURTIS et al., 1968a). L-Ser<strong>in</strong>e does not <strong>in</strong>fluence <strong>the</strong> high<br />

aff<strong>in</strong>ity uptake of glyc<strong>in</strong>e by slices of cat and rat sp<strong>in</strong>al cord (JOHNSTON and IVERSEN, 1971 ; BALCAR<br />

and JOHNSTON, 1973), and is itself taken up by a "low aff<strong>in</strong>ity" <strong>system</strong> (Km approx. 6 × 10-4M)<br />

<strong>in</strong>to slices and homogenates of rat cord (JOHNSTON and IVERSEN, 1971 ; LOGAN and SNVDER, 1972).<br />

L-Cystathion<strong>in</strong>e. The levels of L-cystathion<strong>in</strong>e <strong>in</strong> <strong>the</strong> CNS vary over a wide range, with high<br />

levels <strong>in</strong> <strong>the</strong> cerebellum (Rat: SHAW and HEINE, 1965; KANDERA, LEVI, and LAJTHA, 1968) and<br />

<strong>the</strong> bov<strong>in</strong>e p<strong>in</strong>eal body (LABELLA, VIVIAN, and QUEEN, 1968). Sp<strong>in</strong>al levels <strong>in</strong> cats (WERMAN, DAVIDOFF,<br />

and APRISON, 1966) were overestimated by a factor of ten (WERMAN, 1972). L-Cystathion<strong>in</strong>e has<br />

a relatively weak, strychn<strong>in</strong>e-sensitive, depressant action on <strong>the</strong> fir<strong>in</strong>g of fel<strong>in</strong>e sp<strong>in</strong>al neurones (WER-<br />

MAN, DAVIDOFF, and APRISON, 1966; CURTIS et al., 1968a). When <strong>in</strong>travenously adm<strong>in</strong>istered, it<br />

is not transported <strong>in</strong>to <strong>the</strong> bra<strong>in</strong> but metabolic degradation products are <strong>in</strong>corporated <strong>in</strong>to bra<strong>in</strong><br />

prote<strong>in</strong> (Rat: BROWN and GORDON, 1971).<br />

Hypotaur<strong>in</strong>e. This sulph<strong>in</strong>ic <strong>acid</strong>, a metabolic precursor of taur<strong>in</strong>e, has been detected <strong>in</strong> extracts<br />

of rat bra<strong>in</strong> (BERGERET and CHATAGNE, 1954). Hypotaur<strong>in</strong>e depresses <strong>the</strong> fir<strong>in</strong>g of fel<strong>in</strong>e sp<strong>in</strong>al<br />

neurones (CURTIS and WATKINS, 1965), and <strong>in</strong>hibits <strong>the</strong> uptake of taur<strong>in</strong>e by rat bra<strong>in</strong> slices (KACZ-<br />

MAREK and DAVISON, 1972).<br />

fl-Alan<strong>in</strong>e. Very low levels of this am<strong>in</strong>o <strong>acid</strong> occur <strong>in</strong> <strong>the</strong> CNS (TALLAN, 1962; Human: PERRY<br />

et al., 1971 a. Cat: PERRY et al., 1972. Rat: SCHENCK, 1943; YOSHINO, DEFEUDIS, and ELLIOTT, 1970).<br />

The hyperpolarization by fl-alan<strong>in</strong>e of fel<strong>in</strong>e sp<strong>in</strong>al motoneurones is similar to that of glyc<strong>in</strong>e (CURTIS<br />

et al., 1968b). In <strong>the</strong> fel<strong>in</strong>e sp<strong>in</strong>al cord and lateral vestibular nucleus <strong>the</strong> depressant action of<br />

fl-alan<strong>in</strong>e is antagonised by strychn<strong>in</strong>e and unaffected by bicucull<strong>in</strong>e, but <strong>in</strong> <strong>the</strong> thalamus and <strong>in</strong><br />

<strong>the</strong> cerebral, cerebellar and hippocampal cortices, this action is antagonised by both alkaloids (CURTIS<br />

et al., 197l a, b).<br />

7-<strong>Am<strong>in</strong>o</strong>butyrylchot<strong>in</strong>e. This GABA derivative, present <strong>in</strong> <strong>the</strong> bra<strong>in</strong>, has little or no depressant action<br />

<strong>in</strong> <strong>the</strong> cat on <strong>the</strong> fir<strong>in</strong>g of sp<strong>in</strong>al <strong>in</strong>terneurones or neurones of <strong>the</strong> cerebral cortex, but does <strong>in</strong>fluence<br />

<strong>the</strong> fir<strong>in</strong>g of Renshaw ceils <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord. These and o<strong>the</strong>r observations suggest that <strong>the</strong> pharmacological<br />

actions of this compound <strong>in</strong> <strong>the</strong> CNS may be related to chol<strong>in</strong>ergic <strong>system</strong>s ra<strong>the</strong>r than<br />

to those <strong>in</strong>volv<strong>in</strong>g GABA (JOHNSTON and CURTIS, 1972).<br />

7-<strong>Am<strong>in</strong>o</strong>-fl-hydroxybutyric Acid. While <strong>the</strong> beta<strong>in</strong>e carnit<strong>in</strong>e undoubtedly occurs <strong>in</strong> <strong>the</strong> bra<strong>in</strong>,<br />

controversy still surrounds <strong>the</strong> role (HAYASHI, 1966), and even <strong>the</strong> presence (BAXTER, 1970; Mouse,<br />

ox: SELLER and WIECHMANN, 1969. Rat: YOSHINO, DEFEUDIS, and ELLIOTT, 1970) of y-am<strong>in</strong>o-flhydroxybutyric<br />

<strong>acid</strong> <strong>in</strong> <strong>nervous</strong> tissue. It is not a substrate for GABA-T (Rat: SYTINSKY and VASILHEV,<br />

1970; BEART and JOHNSTON, 1973a) and can be only a relatively weak substrate for <strong>the</strong> GABA<br />

uptake <strong>system</strong> <strong>in</strong> rat bra<strong>in</strong> slices (IVERSE~ and JOHNSTON, 1971). The am<strong>in</strong>o <strong>acid</strong> is a weaker depressant<br />

of <strong>the</strong> fir<strong>in</strong>g of <strong>central</strong> neurones than is GABA, and this action is antagonised by bicucull<strong>in</strong>e but<br />

not by strychn<strong>in</strong>e (Cat: CURTIS et al., 1971 a, b).<br />

lmidazole-4-acetic Acid. This histam<strong>in</strong>e metabolite (KAHLSON and ROSENGREN, 1971) structurally<br />

resembles both GABA and fl-alan<strong>in</strong>e. Follow<strong>in</strong>g parental adm<strong>in</strong>istration, imidazole-4-acetic <strong>acid</strong><br />

has mixed excitant and depressant effects (Mice, rats: TUNNICLIFF, WEIN, and ROBERTS, 1972),<br />

although, on electrophoretic adm<strong>in</strong>istration <strong>the</strong> fir<strong>in</strong>g of neurones <strong>in</strong> <strong>the</strong> fel<strong>in</strong>e sp<strong>in</strong>al cord, cerebral<br />

cortex and medulla is depressed, an effect comparable <strong>in</strong> potency to GABA and suppressed by<br />

bicucull<strong>in</strong>e (PHILLIS, TEBECIS, and YORK, 1968; CURTIS et al., 1971a, b; HAAS, ANDERSON, and<br />

H6SLI, 1972). Imidazole-4-acetic <strong>acid</strong> is a weak <strong>in</strong>hibitor of GABA uptake <strong>in</strong>to slices of sp<strong>in</strong>al<br />

cord (Cat: BALCAR and JOHNSTON, 1973), and of rat bra<strong>in</strong> GAD I (SMALL, HOLTON, and ANCILL,<br />

1970).<br />

2,4-Diam<strong>in</strong>obutyric <strong>acid</strong>. This am<strong>in</strong>o <strong>acid</strong> has been detected <strong>in</strong> bra<strong>in</strong> (Ox : NAKAJIMA, WOLFGRAM<br />

and CLARK, 1967), is a weak depressant of sp<strong>in</strong>al <strong>in</strong>terneurones (Cat: CURTIS and WATKINS, 1960)<br />

and a comparatively strong non-competitive <strong>in</strong>hibitor of <strong>the</strong> uptake of GABA by rat bra<strong>in</strong> slices<br />

(IVERSEN and JOHNSTON, 1971).


116 D.R. CURTIS and G. A. R. JOHNSTON :<br />

Prol<strong>in</strong>e. This cyclic am<strong>in</strong>o <strong>acid</strong> is present <strong>in</strong> bra<strong>in</strong> (Human, cat: PERRY et al., 1971 a, b, 1972)<br />

and is a weak strychn<strong>in</strong>e-sensitive depressant of cat sp<strong>in</strong>al <strong>in</strong>terneurones. It is taken up <strong>in</strong>to rat<br />

bra<strong>in</strong> slices by a high aff<strong>in</strong>ity <strong>system</strong>.<br />

3.5. L-Aspartate<br />

L-Aspartate, like its higher homologue L-glutamate, is an optically active <strong>acid</strong>ic<br />

am<strong>in</strong>o <strong>acid</strong>, with three ionizable groups (pK's of 2.05, 3.87 and 10.00 at 25°:<br />

SIMMS, 1928), which can associate via <strong>in</strong>termolecular hydrogen bonds, both <strong>in</strong><br />

<strong>the</strong> solid state (DERISSEN, ENDEMAN, and PEERDEMAN, 1968) and <strong>in</strong> aqueous solution<br />

(GLAGOI.EVA, 1967).<br />

The <strong>central</strong> levels of L-aspartate vary from region to region, but only with<strong>in</strong><br />

<strong>the</strong> fel<strong>in</strong>e sp<strong>in</strong>al cord have <strong>the</strong> levels been correlated with a possible function<br />

as a transmitter of excitatory <strong>in</strong>terneurones (DAVIDOFF, GRAHAM, SHANK, WER-<br />

MAN, and APRISON, 1967).<br />

When <strong>system</strong>ically adm<strong>in</strong>istered to immature animals, L-aspartate produces<br />

degeneration of cells <strong>in</strong> <strong>the</strong> ret<strong>in</strong>a and hypothalamus (Mouse: OLNEY, HO and<br />

RHEE, 1971) and seizures (Rat: JOHNSTON, 1973). Intraventricular adm<strong>in</strong>istration<br />

to mature mice also results <strong>in</strong> seizures (CRAWFORD, 1963).<br />

L-Aspartate Metabolism. The metabolism of L-aspartate <strong>in</strong> <strong>the</strong> CNS resembles<br />

that of L-glutamate <strong>in</strong> be<strong>in</strong>g concerned with a variety of compartments. Exogenous<br />

L-aspartate rapidly enters <strong>the</strong> "small" L-glutamate pool where it is metabolised<br />

via <strong>the</strong> tricarboxylic <strong>acid</strong> cycle to L-glutam<strong>in</strong>e, and does not equilibrate<br />

with a major portion of <strong>the</strong> endogenous L-aspartate. L-Aspartate transam<strong>in</strong>ase,<br />

which catalyses <strong>the</strong> reversible transam<strong>in</strong>ation between L-aspartate and L-glutamate,<br />

and <strong>the</strong>ir correspond<strong>in</strong>g oxo-<strong>acid</strong>s oxalacetate and e-oxoglutarate, is present<br />

<strong>in</strong> two forms <strong>in</strong> bra<strong>in</strong> differ<strong>in</strong>g <strong>in</strong> location and k<strong>in</strong>etic properties: nei<strong>the</strong>r form<br />

appears to be associated with nerve end<strong>in</strong>gs (Gu<strong>in</strong>ea pig, rat: FONNUM, 1968).<br />

High concentrations of N-acetyl-L-aspartate occur <strong>in</strong> <strong>the</strong> bra<strong>in</strong> but <strong>the</strong> function<br />

of this am<strong>in</strong>o <strong>acid</strong> derivative rema<strong>in</strong>s obscure (NADLER and COOPER, 1972).<br />

L-Aspartate Transport. Slices and homogenates of rat bra<strong>in</strong> and cat sp<strong>in</strong>al<br />

cord transport L-aspartate by <strong>the</strong> same "high" and "low" aff<strong>in</strong>ity <strong>system</strong>s that<br />

transport L-glutamate (COHEN and LAJTHA, 1972; WOFSEY, KUHAR, and SNYDER,<br />

1971 ; LOGAN and SNYDER, 1972; BALCAR and JOHNSTON, 1972a, b, 1973).<br />

L-Aspartate Release. Endogenous L-aspartate is released from rat bra<strong>in</strong> synaptosomes<br />

on electrical field stimulation (BRADFORD, 1970).<br />

Postsynaptic Action of L-Aspartate. Fel<strong>in</strong>e sp<strong>in</strong>al motoneurones are reversibly<br />

depolarized by L-aspartate (CURTIS, PHILLIS, and WATKINS, 1960) <strong>in</strong> a manner<br />

similar to that by L-glutamate (Section 3.6). Such a depolariz<strong>in</strong>g action accounts<br />

for <strong>the</strong> excitant action of L-aspartate on o<strong>the</strong>r <strong>central</strong> neurones.<br />

L-Aspartate Antagonists. All of <strong>the</strong> L-glutamate antagonists (Section 3.6;<br />

see Fig. 4), except<strong>in</strong>g LSD which was not tested aga<strong>in</strong>st L-aspartate, have also<br />

been found to antagonise <strong>the</strong> excitant action of L-aspartate. Glutamate diethylester<br />

has been reported to be less effective as an aspartate than as a glutamate<br />

antagonist (HALDEMAN and MCLENNAN, 1972). This observation, toge<strong>the</strong>r with


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 117<br />

<strong>the</strong> differential sensitivity of thalamic (Section 4.6.2) and sp<strong>in</strong>al (Section 4.12.2)<br />

neurones to aspartate and glutamate, are <strong>the</strong> only <strong>in</strong>dications to date that <strong>the</strong>re<br />

may be different excitatory receptors for <strong>the</strong>se two am<strong>in</strong>o <strong>acid</strong>s.<br />

3.6. L-Glutamate<br />

L-Glutamate is an optically active <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong> with three ionizable groups<br />

with pK values of 2.16, 4.32 and 9.96 at 20 ° (NEUBERGER, 1936). It can associate<br />

<strong>in</strong> aqueous solution form<strong>in</strong>g <strong>in</strong>termolecular hydrogen bonds (GLAGOLEVA, 1967).<br />

L-Glutamate is <strong>the</strong> most abundant am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> <strong>the</strong> adult CNS, and regional<br />

variations <strong>in</strong> its distribution may reflect roles as a synaptic transmitter and as<br />

a major bra<strong>in</strong> metabolite (VAN DEN BERG, 1970; JOHNSON and APRISON, 1971).<br />

Of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> fel<strong>in</strong>e sp<strong>in</strong>al roots, only L-glutamate is more concentrated<br />

<strong>in</strong> <strong>the</strong> dorsal than <strong>in</strong> <strong>the</strong> ventral roots; this observation led to <strong>the</strong> proposal<br />

that it may be <strong>the</strong> excitatory transmitter released by <strong>the</strong> term<strong>in</strong>als of primary<br />

afferent fibres (GRAHAM, SHANK, WERMAN and APRISON, 1967). In o<strong>the</strong>r areas,<br />

however, it has proved difficult to correlate <strong>the</strong> levels of L-glutamate, and various<br />

L-glutamate-metaboliz<strong>in</strong>g enzymes, with suspected transmitter function (Cat:<br />

JOHNSON, 1972 a, b).<br />

Systemically adm<strong>in</strong>istered L-glutamate produces degeneration of cells <strong>in</strong> <strong>the</strong><br />

ret<strong>in</strong>a and hypothalamus (Mouse: OLNEY et al., 1971; PEREZ and OLNEY, 1972.<br />

Monkey: OLNEY, SHARPE and FEIGIN, 1972) and, <strong>in</strong> higher doses, seizures (Rat:<br />

HENNECKE and WIECHERT, 1970; STEWART, COURSIN, and BHAGAVAN, 1972 ; JOHN-<br />

STON, 1973). While immature animals are more susceptible than adult animals,<br />

factors o<strong>the</strong>r than age, for example <strong>the</strong> levels of pyridoxal 5'-phosphate and<br />

<strong>the</strong> activity of various metaboliz<strong>in</strong>g enzymes, may <strong>in</strong>fluence <strong>the</strong> efficiency of<br />

<strong>the</strong> blood-bra<strong>in</strong> barrier(s) to L-glutamate (Rat: BHAGAVAN, COURSIN, and STEW-<br />

ART, 1971). L-Glutamate and related excitant am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong>hibit prote<strong>in</strong> syn<strong>the</strong>sis<br />

<strong>in</strong> rat bra<strong>in</strong> slices (ORREGO and LIPMANN, 1967), although glutamate and aspartate<br />

stimulated prote<strong>in</strong> syn<strong>the</strong>si s <strong>in</strong> cell free preparations of immature rat bra<strong>in</strong><br />

(BAXTER and TEWARI, 1970). The toxic effects of L-glutamate, despite rapid<br />

conversion to L-glutam<strong>in</strong>e, appear not to be due to a disturbance of ammonia<br />

metabolism, s<strong>in</strong>ce o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s which have a direct excitant action on<br />

<strong>central</strong> neurones but are not concerned with ammonia metabolism (for example<br />

D-glutamate and N-methyl-D-aspartate) exhibit similar toxicity (Mouse: CRAW-<br />

FORD, 1963; OLNEY et al., 1971. Rat: MUSHAHWAR and KOEPPE, 1971; JOHNSTON,<br />

1973). It seems very likely that <strong>the</strong> depolariz<strong>in</strong>g action of <strong>the</strong>se excitant am<strong>in</strong>o<br />

<strong>acid</strong>s on <strong>central</strong> neurones is <strong>the</strong> basis of <strong>the</strong>ir toxic effects.<br />

L-Glutamate Metabolism. The metabolism of L-glutamate <strong>in</strong> <strong>the</strong> bra<strong>in</strong> is<br />

exceed<strong>in</strong>gly complex (VAN DEN BERG, 1973; BAL&ZS, PATEL and RICHTER, 1973;<br />

JOHNSON, 1972 a; WATKINS, 1972). There are at least two major metabolic "pools"<br />

of L-glutamate. In vivo, and under appropriate conditions <strong>in</strong> vitro (Rat: BERL,<br />

NICKLAS and CLARKE, 1968), adm<strong>in</strong>istration of radioactive L-glutamate results<br />

<strong>in</strong> rapid labell<strong>in</strong>g of L-glutam<strong>in</strong>e, such that <strong>the</strong> specific activity of L-glutam<strong>in</strong>e<br />

exceeds that of L-glutamate. The exogenous L-glutamate apparently does not<br />

readily equilibrate with a major portion of <strong>the</strong> endogenous L-glutamate (<strong>the</strong>


118 D.R. CURTIS and G. A. R. JOHNSTON"<br />

"large" L-glutamate pool), but enters <strong>the</strong> "small" pool <strong>in</strong> which it is converted<br />

to L-glutam<strong>in</strong>e by <strong>the</strong> action of L-glutam<strong>in</strong>e syn<strong>the</strong>tase. The L-glutamate <strong>in</strong><br />

<strong>the</strong> "large" pool appears to be syn<strong>the</strong>sised predom<strong>in</strong>antly from D-glucose and<br />

<strong>in</strong>termediates of glycolysis, and may represent "transmitter" L-glutamate <strong>in</strong> addition<br />

to L-glutamate <strong>in</strong>volved <strong>in</strong> energy metabolism related to electrical and general<br />

metabolic activity. The "small" pool may be associated with glial cells and may<br />

represent "<strong>in</strong>activated" L-glutamate taken up from <strong>the</strong> synaptic cleft after synaptic<br />

release.<br />

L-Glutamate Transport. At least two k<strong>in</strong>etically dist<strong>in</strong>ct transport <strong>system</strong>s<br />

have been described for L-glutamate <strong>in</strong> isolated bra<strong>in</strong> tissue. The <strong>system</strong> of<br />

higher Km, <strong>the</strong> "low aff<strong>in</strong>ity" <strong>system</strong>, seems to be a general property of many<br />

subcellular particles, whereas <strong>the</strong> <strong>system</strong> of lower Km, <strong>the</strong> "high aff<strong>in</strong>ity" <strong>system</strong>,<br />

is associated with a unique population of subcellular particles (Rat: WOVSEY<br />

et al,, 1971 ; LOGAN and SNYDER, 1972). Nei<strong>the</strong>r <strong>system</strong> is specific for L-glutamate,<br />

but may transport a variety of <strong>acid</strong>ic, am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong>clud<strong>in</strong>g L-aspartate and<br />

L-cysteate (COHEN and LAJTHA, 1972; Rat: BALCAR and JOHNSTON, 1972a, b).<br />

The "high aff<strong>in</strong>ity" <strong>system</strong> shows an absolute dependence on sodium ions (Rat:<br />

BENNETT et al., 1972). The possible relationship between <strong>the</strong> high and low aff<strong>in</strong>ity<br />

uptake <strong>system</strong>s and <strong>the</strong> two pools of L-glutamate metabolism is at present unknown.<br />

L-Glutamate uptake is <strong>in</strong>hibited by various drugs <strong>in</strong>clud<strong>in</strong>g juglone, chlorpromaz<strong>in</strong>e<br />

and p-chloromercuriphenylsulphonate (Cat, rat: BALCAR and JOHNSTON,<br />

1972 a, b, 1973): <strong>the</strong> latter when adm<strong>in</strong>istered microelectrophoretically enhances<br />

<strong>the</strong> excitant action of L-glutamate on fel<strong>in</strong>e sp<strong>in</strong>al <strong>in</strong>terneurones (CURTIS et al.,<br />

1970b).<br />

L-Glutamate Release. The release of endogenous L-glutamate <strong>in</strong> vivo from<br />

<strong>the</strong> surface of <strong>the</strong> fel<strong>in</strong>e cerebral cortex is <strong>in</strong>creased by bra<strong>in</strong> stem stimulation<br />

(JASPER and KOYAMA, 1969), and <strong>in</strong> vitro that from synaptosomes by electrical<br />

field stimulation (Rat: BRADFORD, 1970). The release of exogenous L-glutamate<br />

<strong>in</strong> vitro from slices of rat bra<strong>in</strong> and sp<strong>in</strong>al cord follow<strong>in</strong>g electrical field stimulation<br />

or stimulation by <strong>in</strong>creased extracellular potassium ions has also been reported<br />

(MITCHELL et al., 1969; ARNFRED and HERZ, 1971 ; HOPKIN and NEAL, 1971).<br />

Postsynaptie Action of L-Glutamate. L-Glutamate and structurally related<br />

<strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s excite fel<strong>in</strong>e <strong>central</strong> neurones by a reversible depolarization<br />

accompanied by an <strong>in</strong>crease <strong>in</strong> membrane conductance (CuRTlS et al., 1960;<br />

KRNJEVI~ and SCHWARTZ, 1967a, ZIEGLG~,NSBERGER and PUIL, 1973). D-Homocysteate,<br />

N-methyl-D-aspartate and fl-N-oxalyl-L-c~,fl-diam<strong>in</strong>opropionate are<br />

more powerful excitants than L-aspartate and L-glutamate, which <strong>in</strong> turn are<br />

slightly stronger than <strong>the</strong>ir correspond<strong>in</strong>g D-isomers (CURTIS and WATKINS, 1963 ;<br />

WATKINS, CURTIS, and BISCOE, 1966). Analysis of <strong>the</strong> complete ionic mechanism<br />

of am<strong>in</strong>o <strong>acid</strong>-<strong>in</strong>duced depolarization, or <strong>in</strong>deed of synaptic excitation, raises<br />

considerable experimental difficulties s<strong>in</strong>ce <strong>the</strong> majority of excitatory synapses<br />

upon neurones are located on <strong>the</strong> dendrites. However comparisons of <strong>the</strong> "reversal"<br />

potentials for am<strong>in</strong>o <strong>acid</strong> depolarization and synaptic excitation (CURTIS,<br />

1965; ZIEGLG,g, NSBERGER and PUIL, 1973) <strong>in</strong>dicate that <strong>the</strong> two types of depolarization<br />

could <strong>in</strong>volve <strong>the</strong> same change of membrane ion conductance. Fur<strong>the</strong>rmore,<br />

<strong>the</strong> extracellular adm<strong>in</strong>istration of tetrodotox<strong>in</strong>, or <strong>the</strong> <strong>in</strong>tracellular <strong>in</strong>jection


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 119<br />

of sufficient potassium or chloride ions to convert <strong>the</strong> hyperpolariz<strong>in</strong>g action<br />

of glyc<strong>in</strong>e <strong>in</strong>to depolarization, failed to modify <strong>the</strong> depolarization of fel<strong>in</strong>e sp<strong>in</strong>al<br />

motoneurones <strong>in</strong>duced synaptically or by microelectrophoretic DL-homocysteate<br />

or L-glutamate (CURTIS, DUGGAN, FELIX, JOHNSTON, TEBECIS, and WATKINS,<br />

1972 a; ZIE6L6XNSBERGER and PUIL, 1972). These experiments <strong>in</strong>dicate that depolarization<br />

may <strong>in</strong>volve a simultaneous <strong>in</strong>crease <strong>in</strong> membrane permeability to<br />

sodium and potassium ions which is unaffected by tetrodotox<strong>in</strong>. L-Glutamate<br />

and related excitant am<strong>in</strong>o <strong>acid</strong>s promote an <strong>in</strong>flux of sodium ions <strong>in</strong>to bra<strong>in</strong><br />

slices <strong>in</strong> vitro which is <strong>in</strong>hibited by tetrodotox<strong>in</strong> -- such ion movements are<br />

thus dist<strong>in</strong>ct from <strong>the</strong> <strong>in</strong>itial depolariz<strong>in</strong>g action of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s, and probably<br />

are those l<strong>in</strong>ked with action potentials aris<strong>in</strong>g from <strong>the</strong> depolarization (HARVEY<br />

and MCILWAIN, 1969; CURTIS, 1970; BALCAR and JOHNSTON, 1972a).<br />

NH 2 NH 2<br />

C2HsOCOCH2CH2CHCOOC2H5 HOOCCH2CH2CCOOH<br />

CH 3<br />

L-GLUTAMATE<br />

DL-~-METHYL<br />

DIETHYL ESTER GLUTAMIC ACID<br />

LSD<br />

o NH2<br />

CH~ISI Ii CH~CH~CH COON<br />

NH<br />

L-METHIONINE-<br />

DL-SULPHOXlMINE<br />

~ ~ CH3 NH~N2 ~ ;....O<br />

\o.<br />

OCH3 1-HYDROXY-3-AM INO<br />

2-METHOXYAPORPHINE PYRROLIDONE-2<br />

Fig. 4. Substances reported to antagonize <strong>the</strong> postsynaptic action of L-glutamate<br />

L-Glutamate Antagon&ts. The follow<strong>in</strong>g compounds have been re.ported as<br />

L-glutamate antagonists under certa<strong>in</strong> conditions with vary<strong>in</strong>g degrees of selectivity<br />

<strong>in</strong> <strong>the</strong> fel<strong>in</strong>e CNS: LSD (BoAKES, BRADLEY, BRIGGS, and DRAY, 1970), L-<br />

glutamate diethyl ester, DL-~-methyl glutamic <strong>acid</strong> (HALDEMAN, HUFFMAN, MAR-<br />

SHALL, and MCLENNAN, 1972), 2-methoxyaporph<strong>in</strong>e, L-methion<strong>in</strong>e-DL- sulphoxim<strong>in</strong>e<br />

(CURTIS et al., 1972 a) and 1-hydroxy-3-am<strong>in</strong>o- pyrrolidone-2 (DAVXES and<br />

WATKINS, 1972). The structures of <strong>the</strong>se compounds (Fig. 4) may provide clues<br />

to more useful antagonists.<br />

3.7. Structurally Related Excitant <strong>Am<strong>in</strong>o</strong> Acids<br />

At least two excitant am<strong>in</strong>o <strong>acid</strong>s, <strong>in</strong> addition to L-glutamate and L-aspartate, occur <strong>in</strong> normal<br />

CNS tissue, albeit <strong>in</strong> relative low concentrations: L-cysteate and L-cyste<strong>in</strong>e sulph<strong>in</strong>ate. It is possible<br />

that o<strong>the</strong>rs also are present as <strong>the</strong>re are unidentified peaks <strong>in</strong> am<strong>in</strong>o <strong>acid</strong> analyses of rat and mouse<br />

bra<strong>in</strong> <strong>in</strong> <strong>the</strong> regions where <strong>the</strong> known <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s are eluted (SHAw and HE1NE, 1965 ; SHIMADA


120 D.R. CURTlS and G. A. R. JOHNSTON :<br />

et al., 1971). Fur<strong>the</strong>rmore <strong>the</strong> natural occurrence of D-glutamate and D-aspartate <strong>in</strong> CNS tissue<br />

has not been excluded (CORRIGAN, 1969).<br />

L-Cysteate. The sulphonic <strong>acid</strong> analogue of L:aspartate is present <strong>in</strong> low concentration (approx.<br />

0.1 /~mole/g) <strong>in</strong> extracts of rat bra<strong>in</strong> (MussINI and MARCU¢¢k 1962; MANDEL and MARK, 1965).<br />

This am<strong>in</strong>o <strong>acid</strong> depolarizes fel<strong>in</strong>e sp<strong>in</strong>al motoneurones and is comparable <strong>in</strong> potency to L-aspartate<br />

(CURTIS et al., 1960). In general, L-cysteate may be metabolised by two pathways: decarboxylation<br />

to taur<strong>in</strong>e or transam<strong>in</strong>ation with a-oxo <strong>acid</strong>s (GAITONDE, 1970). L-Cysteate is a strong competitive<br />

<strong>in</strong>hibitor of <strong>the</strong> high aff<strong>in</strong>ity uptake of L-glutamate by rat bra<strong>in</strong> slices and thus could be a substrate<br />

for this transport <strong>system</strong> (BALCAR and JOHNSTON, 1972 b). L-Cysteate produces acute neuronal degeneration<br />

<strong>in</strong> <strong>the</strong> hypothalamus of <strong>in</strong>fant mice follow<strong>in</strong>g subcutaneous adm<strong>in</strong>istration (OLNEY et al.,<br />

1971).<br />

L-Cyste<strong>in</strong>e Sulph<strong>in</strong>ate. This <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>, which has been detected <strong>in</strong> rat bra<strong>in</strong> (BERGERET<br />

and CHAXAGNE, 1954)is a powerful excitant of sp<strong>in</strong>al neurones (Cat: CURTIS and WATKINS, 1963)<br />

and a powerful competitive <strong>in</strong>hibitor of <strong>the</strong> high aff<strong>in</strong>ity uptake of L-glutamate by rat bra<strong>in</strong> slices<br />

(BALeAR and JOHNSTON, 1972b). The enzyme L-cyste<strong>in</strong>e sulph<strong>in</strong>ate decarboxylase, which produces<br />

hypotaur<strong>in</strong>e from L-cyste<strong>in</strong>e sulph<strong>in</strong>ate, occurs <strong>in</strong> rat bra<strong>in</strong> associated with synaptosomes (AGRAWAL<br />

et al., 1971). The complex metabolic <strong>in</strong>terrelations of L-cyste<strong>in</strong>e sulph<strong>in</strong>ate, L-cysteate, taur<strong>in</strong>e and<br />

hypotaur<strong>in</strong>e are discussed by GAITONDE (1970). Subcutaneous adm<strong>in</strong>istration of L-cyste<strong>in</strong>e sulph<strong>in</strong>ate<br />

is followed by degeneration <strong>in</strong> <strong>the</strong> hypothalamus of <strong>in</strong>fant mice (OLN~Y, HO and RHEE, 1971).<br />

4. Anatomical Organization of <strong>Am<strong>in</strong>o</strong> Acid Transmitters<br />

4.1. Cerebral Cortex<br />

4.1.1. Excitation<br />

Although cortical glutamate levels (Table 2), are amongst <strong>the</strong> highest for <strong>mammalian</strong><br />

tissues, little evidence is currently available to associate regional differences<br />

<strong>in</strong> <strong>the</strong> levels of ei<strong>the</strong>r glutamate or aspartate with term<strong>in</strong>als of <strong>in</strong>terneurones<br />

or particular afferent fibres. Such arl association with fibres project<strong>in</strong>g to <strong>the</strong><br />

cortex is suggested bY <strong>the</strong> reduced levels of both am<strong>in</strong>o <strong>acid</strong>s (and GABA)<br />

which follows undercutt<strong>in</strong>g of <strong>the</strong> suprasylvian gyrus <strong>in</strong> <strong>the</strong> cat (BERL and<br />

MCMVRTRY, 1967), although <strong>the</strong> reduced glutamate levels of <strong>the</strong> motor cortex<br />

of <strong>the</strong> cat as a result of tetanic stimulation of <strong>the</strong> thalamic ventrolateral nucleus<br />

have been <strong>in</strong>terpreted largely <strong>in</strong> terms of energy metabolism (CONSTANTINESCU,<br />

FLOR~SCU, and HATEGANU, 1970). The moderate levels of glutamate <strong>in</strong> <strong>the</strong> corpus<br />

callosum and <strong>the</strong> posterior portion of <strong>the</strong> <strong>in</strong>ternal capsule (Table 2), which exceed<br />

those of <strong>the</strong> dorsal root, may <strong>in</strong>dicate <strong>the</strong> presence of glutamate releas<strong>in</strong>g fibres;<br />

<strong>the</strong> low level <strong>in</strong> <strong>the</strong> peduncles suggest that <strong>the</strong> fibres of <strong>the</strong> pyramidal tract<br />

may not be of this type.<br />

Subcellular distribution studies have hi<strong>the</strong>rto failed to demonstrate any selective<br />

storage of ei<strong>the</strong>r aspartate or glutamate with<strong>in</strong> nerve end<strong>in</strong>gs (synaptosomes)<br />

of <strong>the</strong> cerebral cortex (Rat: RYALL, 1964. Gu<strong>in</strong>ea pig: RYALL, 1964 ; MANGAN<br />

and WHITTAKER, 1966; see also KRNJEVIC and WHITTAKER, 1965; WHITTAKER,<br />

1968). Both am<strong>in</strong>o <strong>acid</strong>s, however, are accumulated from low extracellular concentrations<br />

by a subcellular fraction of homogenates of this tissue which may<br />

be largely synaptosomal <strong>in</strong> nature, and can be dist<strong>in</strong>quished from fractions accumulat<strong>in</strong>g<br />

o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s (Rat: WOFSEY et al., 1971). This "high aff<strong>in</strong>ity"


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System<br />

121<br />

Tabel 2. Excitant am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> regions of cerebral cortex (gmole/g, *Biopsy)<br />

Region Animal Aspar- Gluta- Reference<br />

rate mate<br />

Frontal Human 1.9 8.9 PERRY et al. (1971 a)<br />

Occipital Human 2.6 8.6 PERRY et al. (t971 a)<br />

Temporal Human 1.9 10.8 PERRY et al. (1971 a)<br />

Temporal Cat 3.1 12.9 BATT1ST1N et al. (1969)<br />

Suprasylvian Cat 2.9 10.5 BERL and McMVRXRY (1967)<br />

Post Cruciate Cat 2.7 10.3 VAN G~LDER (1972)<br />

Association Cat 1.5" 6.0* PERRY et al. (1972)<br />

Motor Cat t.6' 5.5* PERRY et al. (1972)<br />

Visual Cat 1.8" 5.9* PERRY et al. (1972)<br />

Primary auditory Cat 10.7 JOHNSON and APRISON (1971)<br />

Primary somatosensory Cat 10.2 JOHNSON and APRISON (1971 )<br />

Sylvian ectosytvian Cat 13.0 JOHNSON and APRISON (1971)<br />

Various areas Cat 2.3* 9.7* KOYAMA (1972)<br />

Corpus callosum Cat 5.9 JOHNSON and APRISON (1971)<br />

Corpus callosum Cat 1.4 10.6 BATTISTIN et al. (1969)<br />

Peduncle Cat 3.7 JOHNSON and AeRISON (1971)<br />

Internal capsule Cat 5.6 JOHNSON and APRISON (1971)<br />

(posterior)<br />

uptake, which has also been studied <strong>in</strong> slices of cerebral cortex (Rat: BALCAR<br />

and JOHNSTON, 1972b) is absolutely sodium dependent (BENNETT et al., 1972).<br />

Both glutamate and aspartate are released from <strong>the</strong> exposed and superfused<br />

cerebral cortex of neuroaxially <strong>in</strong>tact cats, <strong>the</strong> rates be<strong>in</strong>g higher <strong>in</strong> aroused<br />

than <strong>in</strong> sleep<strong>in</strong>g animals (JASPER, KHAN, and ELLIOTT, 1965; JASPER and KOYAMA,<br />

1969). Rates of release <strong>in</strong> rest<strong>in</strong>g encephale isol6 preparations were comparable<br />

with those of <strong>in</strong>tact sleep<strong>in</strong>g animals, and were considerably.enhanced by stimulation<br />

of <strong>the</strong> mesencephalic reticular formation, which simulated arousal, but not<br />

by stimulation of <strong>the</strong> medial thalamic recruit<strong>in</strong>g <strong>system</strong>. S<strong>in</strong>ce both k<strong>in</strong>ds of<br />

stimulation <strong>in</strong>crease <strong>the</strong> cortical release of acetylchol<strong>in</strong>e, separate chol<strong>in</strong>ergic<br />

and excitant am<strong>in</strong>o <strong>acid</strong>-releas<strong>in</strong>g "activat<strong>in</strong>g" pathways have been proposed<br />

(JASPER and KOYAMA, 1969). However, reciprocal alterations <strong>in</strong> <strong>the</strong> rate of GABA<br />

release were also recorded, and changes <strong>in</strong> am<strong>in</strong>o <strong>acid</strong> release from <strong>the</strong> cortical<br />

surface may not necessarily be a direct measure of that released synaptically.<br />

Glutamate is also released from <strong>the</strong> cortical surface dur<strong>in</strong>g spread<strong>in</strong>g depression<br />

(VAN HARREVELD and KOOIMAN, 1965), and <strong>the</strong>re is an extensive literature concern<strong>in</strong>g<br />

a possible association between excitant am<strong>in</strong>o <strong>acid</strong>s and this abnormal state<br />

<strong>in</strong> both <strong>the</strong> cortex and ret<strong>in</strong>a (VAN HARREVELD, 1970; VAN HARREVELD and<br />

FIFKOVA, 1972; PHILHS and OCHS, 1971 ; Do CARMO and LE~.O, 1972).<br />

The excitatory effect of glutamate and aspartate on <strong>the</strong> cortex was first<br />

demonstrated after <strong>in</strong>tracortical or <strong>in</strong>tracarotid <strong>in</strong>jection (OKO~OTO, 1951; ITO,<br />

TANI, SATO, and ODA, 1952; HAYASHI, 1952). Such an action also accounts for<br />

<strong>the</strong> effects of topically (Rabbit: VAN HARREVELD, 1959. Cat: PURPURA, GIRADO,<br />

SMITH, CALLAN, and GRUNDFEST, 1959) or <strong>in</strong>traventricularly (see CURTIS and<br />

WATKINS, 1965) adm<strong>in</strong>istered <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s, and direct excitation was<br />

subsequently confirmed at <strong>the</strong> cellular level <strong>in</strong> microelectrophoretic studies (Cat:<br />

KRNJEVIC and PHILLIS, 1963 ; KRNJEVIC, 1964; CRAWFORD and CURTIS, 1964). The


122 D.R. CURTIS and G. A. R. JOHNSTON :<br />

depolarization of cortical neurones by L-glutamate (KRNJEVIC, 1964) is associated<br />

with an <strong>in</strong>creased membrane conductance (KRNJEVIC and SCHWARTZ, 1967a).<br />

As elsewhere <strong>in</strong> <strong>the</strong> fel<strong>in</strong>e CNS, <strong>the</strong> effects of electrophoretic glutamate and<br />

aspartate are characteristically rapid <strong>in</strong> both onset and recovery, <strong>the</strong> potencies<br />

of <strong>the</strong> L-isomers are similar and only slightly greater than those of <strong>the</strong> D-isomers.<br />

No <strong>system</strong>atic variations have been found <strong>in</strong> <strong>the</strong> relative sensitivity of different<br />

cortical neurones to glutamate, aspartate and DL-homocysteate (CRAWFORD,<br />

1970), although such a study should be repeated with anatomical/physiological<br />

identification of cell types. Surface stimulation of <strong>the</strong> cruciate cortex <strong>in</strong>hibits<br />

<strong>the</strong> fir<strong>in</strong>g of pyramidal cells excited by L-glutamate for much longer periods<br />

than fir<strong>in</strong>g at <strong>the</strong> same frequency produced by DL-homocysteate (MCLENNAN,<br />

1970). Although this may <strong>in</strong>dicate differences <strong>in</strong> <strong>the</strong> nature of L-glutamate and<br />

DL-homocysteate receptors (MCLENNAN, 1970), an alternative explanation has<br />

been provided <strong>in</strong> terms of <strong>the</strong> distribution of am<strong>in</strong>o <strong>acid</strong> receptors activated<br />

by <strong>the</strong>se excitants (CURTIS et al., 1972a).<br />

A number of possible antagonists of am<strong>in</strong>o <strong>acid</strong> excitation have been tested<br />

<strong>in</strong> <strong>the</strong> fel<strong>in</strong>e pericruciate cortex, particularly on cells also fired by acetylchol<strong>in</strong>e.<br />

Selective antagonism of excitation by aspartate and glutamate (and DL-homocysteate)<br />

has been demonstrated us<strong>in</strong>g L-methion<strong>in</strong>e-DL-sulphoxim<strong>in</strong>e, 2-methoxyaporph<strong>in</strong>e<br />

(CURTIS et al., 1972a) and 1-hydroxy-3-am<strong>in</strong>opyrrolidone-2 (DAVIES<br />

and WATKINS, 1972, 1973). None of <strong>the</strong>se agents appeared to modify <strong>the</strong> spontaneous<br />

fir<strong>in</strong>g of cortical neurones, and <strong>the</strong> effects on synaptic fir<strong>in</strong>g have yet<br />

to be determ<strong>in</strong>ed.<br />

4.1.2. Inhibition<br />

The extensive literature concern<strong>in</strong>g <strong>the</strong> possible role of neutral am<strong>in</strong>o <strong>acid</strong>s,<br />

particularly GABA, as <strong>in</strong>hibitory <strong>transmitters</strong> <strong>in</strong> <strong>the</strong> <strong>mammalian</strong> cerebral cortex<br />

has been <strong>the</strong> subject of numerous reviews (ROBERTS, 1960, 1968; CURTIS and<br />

WATKrNS, 1965 ; KRNJEVId, 197b ; SYTINSKY, 1972). The essential evidence can<br />

be summarized as follows.<br />

Cortical glyc<strong>in</strong>e levels are relatively low (Table 3) and <strong>the</strong> content <strong>in</strong> <strong>the</strong><br />

cerebral hemispheres of <strong>the</strong> cat (1.3 gmole/g) and rat (0.8-1 ~tmole/g) are lower<br />

than those of sp<strong>in</strong>al grey matter (SHAw and HEINE, 1965; APRISON, SHANK,<br />

and DAVIDOFF, 1969; see also SHANK and APRISON, 1970). A high aff<strong>in</strong>ity uptake<br />

<strong>system</strong> for glyc<strong>in</strong>e has not been found <strong>in</strong> cortical tissue (Rat: JOHNSTON and<br />

IVERSEN, 1971 ; NEAL, 1971 ; BENNETT et al., 1972).<br />

There are considerable species differences <strong>in</strong> cortical levels of taur<strong>in</strong>e (Table 3;<br />

see also GAITONDE, 1970). High levels are found <strong>in</strong> <strong>the</strong> cerebral hemispheres<br />

of <strong>the</strong> rat (%8 p.mole/g, KACZMAREK, AGRAWAL, and DAVISON, 1971; SHANK<br />

and APRISON, 1970) and <strong>the</strong> mouse (VAN GELDER, 1972) although levels <strong>in</strong> <strong>the</strong><br />

cerebral cortex of <strong>the</strong> cat are lower. No particular association with synaptosomes<br />

has been demonstrated. There seems to be little correlation between regional<br />

distributions of taur<strong>in</strong>e and <strong>the</strong> enzyme responsible for its syn<strong>the</strong>sis although<br />

cyste<strong>in</strong>e sulph<strong>in</strong>ic <strong>acid</strong> decarboxylase is present <strong>in</strong> synaptosomes (KACZMAREK,<br />

AGRAWAL, and DAVISON, 1970). Two uptake <strong>system</strong>s for taur<strong>in</strong>e have been demon-


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 123<br />

,~o<br />


124 D.R. CURTIS and G.A.R. JOHNSTON:<br />

strated <strong>in</strong> rat cortical slices (KACZMAREK and DAVISON, 1972; L~HDESM~,KI and<br />

OJA, 1972), both differ<strong>in</strong>g from that associated with GABA transport. The efflux<br />

oftaur<strong>in</strong>e from rat cortical slices has also been studied (KACZMAREK and DAVISON,<br />

1972; L~HDESMXKI and OJA, 1972), and under <strong>in</strong> vivo conditions <strong>the</strong> efflux of<br />

taur<strong>in</strong>e and of glyc<strong>in</strong>e from <strong>the</strong> surface of <strong>the</strong> cortex of <strong>in</strong>tact or encephale<br />

isol6 cats was enhanced dur<strong>in</strong>g electrocortical arousal (JASPER and KOYAMA,<br />

1969).<br />

Although GABA levels <strong>in</strong> <strong>the</strong> cortical grey matter are not high (Table 3)<br />

<strong>the</strong> values exceed that of white matter (Human: 0.7 gmole/g, SYnNSKY, 1969.<br />

Rhesus monkey: 0.3 gmole/g, FAHN and C6TI~, 1968; 0.5 gmole/g, DEFEUDIS,<br />

DELGADO, and ROTH, 1970). Fur<strong>the</strong>rmore <strong>the</strong> GABA content of s<strong>in</strong>gle Betz<br />

cells (Cat: 2,5 mM, OTSUKA, OBATA, MIYATA, and TANAKA, 1971) is higher than<br />

that of sp<strong>in</strong>al motoneurones (0.9) but not as high as that of Deiters' neurones<br />

(6.3). In <strong>the</strong> motor cortex of adult monkey (Macaca mulatta) highest levels of<br />

GABA occur <strong>in</strong> <strong>the</strong> outer two layers, whereas <strong>in</strong> <strong>the</strong> visual cortex <strong>the</strong> highest<br />

level is found <strong>in</strong> layer 4 (HIRSCH and ROBINS, 1962). GABA has not been shown<br />

to be specifically associated with synaptosomes prepared from cortical tissue<br />

(RYALL, 1964; MANGAN and WHITTAKER, 1966; WHITTAKER, 1968; HEAL and<br />

IVERSEN, 1969; TACHIKI et al., 1972), although a high proportion of cortical<br />

GAD is present <strong>in</strong> <strong>the</strong>se particles (DE ROBERTIS, 1968). The level of this enzyme<br />

<strong>in</strong> <strong>the</strong> cerebral cortex is moderately high (LOWE, ROBINS, and EYERMAN, 1958;<br />

ALBERS and BRADY, 1959; MOLLER and LANGEMANN, 1962), <strong>in</strong> <strong>the</strong> occipital<br />

cortex levels <strong>in</strong> layers 3 and 4a exceed those of o<strong>the</strong>r cortical layers (ALBERS<br />

and BRADY, 1959). Similarly, cortical levels of GABA-T are moderate, <strong>in</strong> both<br />

<strong>the</strong> occipital and motor areas <strong>the</strong> highest levels occur <strong>in</strong> layers 2 and 3 (SALVADOR<br />

and ALBERS, 1959).<br />

A number of <strong>in</strong>vestigations have been concerned with <strong>the</strong> specificity, k<strong>in</strong>etics,<br />

mechanism and effects of drugs on <strong>the</strong> carrier mediated uptake of GABA by<br />

homogenates or slices of cortical tissue (see Section 3.2). The subcellular distribution<br />

of labelled GABA appears to be similar to that of <strong>the</strong> endogenous am<strong>in</strong>o<br />

<strong>acid</strong> (HEAL and [VERSEN, 1~)69, but see TACHIKI, et al., 1972), <strong>the</strong> pr<strong>in</strong>cipal sites<br />

of uptake by homogenates and slices be<strong>in</strong>g nerve term<strong>in</strong>als (IvERSEN and BLOOM,<br />

1972; H6KFELT and LJUNGDAHL, 1971 b). Follow<strong>in</strong>g direct <strong>in</strong>jection of labelled<br />

GABA <strong>in</strong>to <strong>the</strong> parietal cortex of rats, <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> is accumulated by stellate<br />

cells of layers II and III (HOKFELT and LJUNGDAHL, 1972a).<br />

The efflux of GABA from <strong>the</strong> surface of <strong>the</strong> cerebral cortex of <strong>the</strong> cat has<br />

been correlated with <strong>the</strong> presence of slow wave and sp<strong>in</strong>dle EEG activity, be<strong>in</strong>g<br />

considerably reduced by reticulo-cortical activation (JASPER, KHAN, and ELLIOTT,<br />

1965 ; JASPER and KOYAMA, 1969). GABA efflux, however, is enhanced by electrical<br />

stimulation of medial bra<strong>in</strong> stem structures (Cat: KOYAMA and JASPER, 1972,<br />

personal communication) ~<strong>in</strong>d a calcium-dependent release of both endogenous<br />

and labelled GABA (presumably from <strong>in</strong>hibitory synaptic term<strong>in</strong>als) from <strong>the</strong><br />

cat visual cortex has been demonstrated to accompany cortical <strong>in</strong>hibition <strong>in</strong>duced<br />

by electrical stimulation of <strong>the</strong> cortical surface or of <strong>the</strong> lateral geniculate nucleus<br />

(IVERSEN et al., 1971 ; IVERSEN, MITCHELL, HEAL, and SRINIVASAN, 1970). Both<br />

<strong>the</strong> spontaneous and evoked release of GABA from <strong>the</strong> visual cortex tended to<br />

be greater <strong>in</strong> animals pretreated with am<strong>in</strong>o-oxyacetic <strong>acid</strong> (IVERSEN et al., 1971).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 125<br />

Neurochemical data for <strong>the</strong> participation of o<strong>the</strong>r neutral am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong><br />

cortical <strong>in</strong>hibition, for example imidazole-4-acetate and /%alan<strong>in</strong>e, are not as<br />

detailed as that available for GABA (see Section 3.4).<br />

Important evidence for <strong>the</strong> transmitter function of GABA has been obta<strong>in</strong>ed<br />

<strong>in</strong> microelectrophoretic experiments of <strong>the</strong> effects of am<strong>in</strong>o <strong>acid</strong>s on <strong>the</strong> fir<strong>in</strong>g<br />

of s<strong>in</strong>gle cortical neurones. Most experiments have been performed on physiologically<br />

identified pyramidal tract cells of <strong>the</strong> fel<strong>in</strong>e pericruciate cortex, and <strong>the</strong><br />

f<strong>in</strong>d<strong>in</strong>gs account for earlier observations of <strong>the</strong> effects of topically or <strong>system</strong>ically<br />

adm<strong>in</strong>istered am<strong>in</strong>o <strong>acid</strong>s on cortical function (see CURTIS and WATKINS, 1965).<br />

The depression of <strong>the</strong> fir<strong>in</strong>g of cortical neurones by GABA (Cat: KRNJEVI~ and<br />

PHILLIS, 1963; CRAWFORD and CURTIS, 1964; KRNJEVld, 1964. Rat: BISCOE, DUG-<br />

GAN, and LODGE, 1972. Rabbit: CLARKE and HILL, 1972) is associated with<br />

membrane hyperpolarization and an <strong>in</strong>creased conductance (KRNJEVI~ and<br />

SCrrWARTZ, 1967 b) which, like <strong>the</strong> membrane changes accompany<strong>in</strong>g <strong>in</strong>hibition<br />

at synapses activated by electrical stimulation of <strong>the</strong> cortical surface (KELLY,<br />

KRNJEVI~:, MORRIS, and YaM, 1969), appears to <strong>in</strong>volve predom<strong>in</strong>antly an <strong>in</strong>creased<br />

chloride ion permeability (DREIVUSS, KELLY, and KRNJEVId, 1969). S<strong>in</strong>ce<br />

most comparisons between synaptic and GABA <strong>in</strong>hibition have hi<strong>the</strong>rto been<br />

made on cortical neurones with relatively low rest<strong>in</strong>g potentials, fur<strong>the</strong>r exam<strong>in</strong>ation<br />

of <strong>the</strong> ionic mechanism of <strong>in</strong>hibition is warranted, <strong>in</strong>clud<strong>in</strong>g that of <strong>in</strong>hibitions<br />

evoked by more physiological stimuli. Never<strong>the</strong>less <strong>the</strong> postsynaptic action of<br />

GABA is generally accepted to closely resemble that of <strong>the</strong> <strong>in</strong>hibitory transmitter<br />

released upon <strong>the</strong> bodies of cortical pyramidal cells.<br />

Of <strong>the</strong> naturally occur<strong>in</strong>g neutral am<strong>in</strong>o <strong>acid</strong>s, GABA is <strong>the</strong> most effective<br />

depressant of <strong>the</strong> fir<strong>in</strong>g of cortical neurones, glyc<strong>in</strong>e, e-alan<strong>in</strong>e and taur<strong>in</strong>e be<strong>in</strong>g<br />

much less active (KRNJEVI(; and PHILLIS, 1963; CRAWFORD and CURTIS, 1964;<br />

JOHNSON et al., 1970; CURTIS et al., 1971b; BIscoE et al., 1972). Fur<strong>the</strong>rmore<br />

<strong>the</strong> postsynaptic <strong>in</strong>hibitory action of glyc<strong>in</strong>e may differ from that of GABA<br />

(KZLLY and KRNJEVI~, 1969). Although electrophoreticatly adm<strong>in</strong>istered am<strong>in</strong>ooxyacetic<br />

<strong>acid</strong> did not modify <strong>the</strong> time course of ei<strong>the</strong>r <strong>the</strong> action of similarly<br />

adm<strong>in</strong>istered GABA, or <strong>the</strong> synaptic <strong>in</strong>hibition of cortical neurones, <strong>the</strong> effect<br />

of GABA was enhanced, and <strong>in</strong>hibition result<strong>in</strong>g from stimulation of <strong>the</strong> cortical<br />

surface or <strong>the</strong> pyramidal tract prolonged, follow<strong>in</strong>g <strong>in</strong>travenous adm<strong>in</strong>istration<br />

of am<strong>in</strong>o-oxyacetic <strong>acid</strong> (GoTTESF~LD, KELLY, and RENAtJD, 1972). These effects<br />

were <strong>in</strong>terpreted <strong>in</strong> terms of an <strong>in</strong>terference with <strong>the</strong> removal of GABA after<br />

synaptic or electrophoretic release (see also SNODGRASS and IV~RSEN, 1973 b),<br />

but <strong>the</strong> selectivity of am<strong>in</strong>o-oxyacetic <strong>acid</strong> <strong>in</strong> relation to o<strong>the</strong>r depressant am<strong>in</strong>o<br />

<strong>acid</strong>s was not determ<strong>in</strong>ed (GOTTESVELD et al., 1972).<br />

Fur<strong>the</strong>r evidence for an <strong>in</strong>hibitory transmitter role of GABA (or a GABA-like<br />

substance) has been obta<strong>in</strong>ed by <strong>the</strong> use of strychn<strong>in</strong>e and bicucull<strong>in</strong>e. The effects<br />

of <strong>the</strong>se convulsants on <strong>the</strong> fir<strong>in</strong>g and responses of cortical neurones are complex,<br />

particularly after <strong>system</strong>ic adm<strong>in</strong>istration. However much valuable <strong>in</strong>formation<br />

has been obta<strong>in</strong>ed from microelectrophoretic experiments, and <strong>the</strong> controversies<br />

which have arisen are perhaps ma<strong>in</strong>ly associated with methodological difficulties<br />

and differences of technique ra<strong>the</strong>r than reflect<strong>in</strong>g serious conflicts <strong>in</strong> <strong>the</strong> understand<strong>in</strong>g<br />

of am<strong>in</strong>o <strong>acid</strong>-receptor <strong>in</strong>teractions. In numerous electrophoretic experiments<br />

strychn<strong>in</strong>e has been demonstrated to be a selective antagonist of <strong>the</strong> depres-


126 D.R. CURTIS and G.A.R. JOHNSTON :<br />

sion of fel<strong>in</strong>e cortical neurones by glyc<strong>in</strong>e (CURTIS et al., 1968 a, 1971 b; JOHNSON<br />

et al., 1970), fl-alan<strong>in</strong>e and taur<strong>in</strong>e (CURTIS et al., 1968a, 1971b), <strong>the</strong> action<br />

of GABA be<strong>in</strong>g relatively <strong>in</strong>sensitive. The same high degree of selectivity appears<br />

not to occur when rat cortical neurones were studied (BISCOE et al., 1972). Fur<strong>the</strong>rmore<br />

<strong>the</strong> <strong>in</strong>hibition of <strong>the</strong> fir<strong>in</strong>g of pyramidal tract cells <strong>in</strong> <strong>the</strong> cat by local<br />

cortical stimulation (KRNJEVI~;, RANDIC and STRAUGHAN, 1966; CRAWFORD,<br />

CURTIS, VOORHOEVE, and WILSON, 1963), by recurrent volleys <strong>in</strong> <strong>the</strong> pyramidal<br />

tract (CRAWFORD et al., 1963 ; BISCOE and CURTIS, 1967), by stimulation of thalamic<br />

nuclei (KRNJEVIC; et al., 1966), and by direct chemical stimulation of <strong>in</strong>tracortical<br />

<strong>in</strong>terneurones (BISCOE and CURTIS, 1967) was not blocked by strychn<strong>in</strong>e.<br />

In contrast, electrophoretically adm<strong>in</strong>istered bicucull<strong>in</strong>e selectively reduced<br />

<strong>the</strong> <strong>in</strong>hibitory effect of GABA and some related am<strong>in</strong>o <strong>acid</strong>s (fl-alan<strong>in</strong>e, taur<strong>in</strong>e<br />

and imidazole acetic <strong>acid</strong>) on cortical neurones of <strong>the</strong> cat (CURTIS et al., 1971 b;<br />

see also STRAUGHAN, NEAL, SIMMONDS, COLLINS, and HILL, 1971). Similar<br />

results have been observed us<strong>in</strong>g bicucull<strong>in</strong>e methochloride (CURTIS, GAME, JOHN-<br />

SXON, and MCCULLOCH, unpublished observations). The same degree of selectivity<br />

has not been demonstrated <strong>in</strong> <strong>the</strong> rat cortex (BISCOE et al., 1972) where <strong>in</strong> a<br />

high proportion of tests bicucull<strong>in</strong>e reduced <strong>the</strong> effects of both glyc<strong>in</strong>e and GABA.<br />

These observations are of considerable relevance to <strong>the</strong> reduction by bicucull<strong>in</strong>e<br />

of <strong>the</strong> synaptic <strong>in</strong>hibition of pyramidal tract neurones by recurrent volleys, direct<br />

cortical electrical stimulation or chemical excitation of <strong>in</strong>tracortical neurones<br />

(Cat: CURTIS and FELIX, 1971). Additionally, antagonism of <strong>the</strong> <strong>in</strong>hibitory effects<br />

of fl-alan<strong>in</strong>e and taur<strong>in</strong>e on cortical neurones by both strychn<strong>in</strong>e and bicucull<strong>in</strong>e<br />

probably excludes ei<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong> as a transmitter of <strong>in</strong>hibitory synapses selectively<br />

blocked by bicucull<strong>in</strong>e.<br />

Picrotox<strong>in</strong> has also been reported to reduce <strong>the</strong> <strong>in</strong>hibition of cortical neurones<br />

<strong>in</strong> <strong>the</strong> cat by GABA (HILL, NIMMONDS, and STRAUGHAN, 1972b), and to reduce<br />

<strong>the</strong> effects of both GABA and glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> rat cortex (BISCOE et al., f972).<br />

Fur<strong>the</strong>r <strong>in</strong>vestigation is warranted s<strong>in</strong>ce <strong>the</strong> recurrent <strong>in</strong>hibition of pyramidal<br />

cells <strong>in</strong> <strong>the</strong> cat has been reported to be dim<strong>in</strong>ished by relatively low doses (0.1-<br />

0.3 mg/kg, BROOKS and ASANUMA, 1965), but <strong>in</strong>hibition evoked by direct cortical<br />

stimulation appeared <strong>in</strong>sensitive (0.6-2 mg/kg, KRNJEVI{~ et al., 1966). This latter<br />

<strong>in</strong>hibition was also apparently not modified by tetanus tox<strong>in</strong> (KRNJEVI~ et al.,<br />

1966), although abolition of <strong>the</strong> recurrent and transcallosal <strong>in</strong>hibition of pericruciate<br />

neurones (BROOKS and ASANUMA, 1965) suggests that <strong>the</strong> effects of tetanus<br />

tox<strong>in</strong> may be similar to those found <strong>in</strong> <strong>the</strong> cerebellar cortex (CURTIS et al.,<br />

1973 a). Penicill<strong>in</strong> has also been demonstrated to antagonize <strong>the</strong> <strong>in</strong>hibitory effect<br />

of GABA on cortical neurones, an action which may account for <strong>the</strong> epileptogenic<br />

activity of this compound (CURTIS et al., 1972b).<br />

As a consequence of <strong>the</strong>se studies, a proportion of stellate cells <strong>in</strong> <strong>the</strong> cerebral<br />

cortex may be considered <strong>in</strong>hibitory <strong>in</strong> nature, releas<strong>in</strong>g GABA at axosomatic<br />

synapses on pyramidal cells (see CURTIS and FELIX, 1971). Fur<strong>the</strong>r studies are<br />

required to ascerta<strong>in</strong> <strong>the</strong> location of <strong>the</strong> <strong>in</strong>terneurones activated by volleys <strong>in</strong><br />

particular <strong>in</strong>hibitory pathways, and to determ<strong>in</strong>e <strong>the</strong> significance of <strong>the</strong> <strong>in</strong>hibitory<br />

control by this am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> <strong>the</strong> function<strong>in</strong>g of pyramidal and stellate cells<br />

<strong>in</strong> various cortical areas. The importance of glyc<strong>in</strong>e as a cortical transmitter<br />

may be m<strong>in</strong>imal, <strong>the</strong> effects of strychn<strong>in</strong>e on cortical activity (AJMONE-MARSAN,


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 127<br />

1969) probably not be<strong>in</strong>g associated with a specific action at glyc<strong>in</strong>ergic synapses<br />

(see CURTIS et al., 1971c).<br />

4.2. Cerebellum<br />

4.2.1. Excitation<br />

Although aspartate and glutamate levels are relatively high <strong>in</strong> <strong>the</strong> cerebellum<br />

(Table 4), <strong>the</strong> <strong>in</strong>tracerebellar distributions of <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s have not been<br />

determ<strong>in</strong>ed, apart from <strong>the</strong> estimation of glutamate <strong>in</strong> <strong>the</strong> cerebellar cortex (Cat:<br />

10.8 ~tmole/g, JOHNSON and APRISON, 1971).<br />

Table 4. Cerebellar excitant am<strong>in</strong>o <strong>acid</strong>s (gmole/g, *Biopsy)<br />

Animal Aspartate Glutamate Reference<br />

Human 2.3 9.6 PERRY et al. (1971 a)<br />

0.8* 7.2* PERRY et al. (1971 b)<br />

Cat 2.9 12.6 BATTISTIN et al. (1969)<br />

10.8 JOHNSON and APRISON, 1971<br />

1.8 * 8.5 * PERRY et al. (1972)<br />

Rat 2.2 8.4 SHAW and HEINE (1965)<br />

2.0 10.3 KANDERA et al. (1968)<br />

2.0 9.7 SHANK and APRISON (1970)<br />

Purk<strong>in</strong>je, basket and granule cells, and cells of <strong>the</strong> <strong>in</strong>tracerebellar nuclei are<br />

excited by glutamate and DL-homocysteate (CRAWFORD, CURTIS, VOORHOEVE,<br />

and WILSON, 1966 ; CHAPMAN and MCCANCE, 1967; MCCANCE and PHILLIS, 1968 ;<br />

KAWAMtJRA and PROVINI, 1970), and <strong>the</strong> sensitivity of develop<strong>in</strong>g Purk<strong>in</strong>je cells<br />

to glutamate precedes <strong>the</strong> presence of dendritic synapses (WOODWARD, HOFFER,<br />

SIGGtNS, and BLOOM, 1971).<br />

Doubt has recently been cast on <strong>the</strong> identity of ergothione<strong>in</strong>e as <strong>the</strong> "cerebellar<br />

excitatory factor"(BRIGGS, 1972); when adm<strong>in</strong>istered electrophoretically ergothione<strong>in</strong>e<br />

did not excite cerebellar neurones <strong>in</strong> <strong>the</strong> cat (CRAWFORD et al., 1966).<br />

4.2.2. Inhibition<br />

Although <strong>the</strong> overall levels of GABA <strong>in</strong> <strong>the</strong> cerebellum are not high (Table 5),<br />

<strong>the</strong> highest values of both <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> and GAD occur <strong>in</strong> <strong>the</strong> Purk<strong>in</strong>je cell<br />

layer (Rabbit: KURIYAMA, HABER, SISKEN, and ROBERTS, 1966. Monkey and<br />

rat: HIRSCH and ROBINS, 1962; see also LOWE et al., 1958; ALBERS and BRADY,<br />

1959).<br />

The GABA-T content of <strong>the</strong> molecular layer is double that of <strong>the</strong> granular<br />

layer (Monkey: SALVADOR and ALBERS, 1959). In <strong>the</strong> cat particularly high levels<br />

of GABA are associated with both Purk<strong>in</strong>je cells (5.5 + 1.1 gmole/g, cerebellar


128 D.R. CURTIS and G. A. R. JOHNSTON :<br />

Table 5. Cerebellar depressant am<strong>in</strong>o <strong>acid</strong>s (p.mole/g, *Biopsy)<br />

Cerebellum<br />

Cortex<br />

(not pure<br />

grey)<br />

Vermal<br />

cortex<br />

Human 3.0 0.9 GJESSING and TORViCK (1966)<br />

Human 2.3 2.1 3.3 1.7 0.09 PERRY et al. (1971 a)<br />

Human 0.8* 0.5* 2.5* 0.7* 3.2* PERRY et al. (1971 b)<br />

Human 1.7 BOEHME et al. (1973)<br />

Cat 1.5 1.5 3.1 0.9 0.2 BATTISTIN et al. (1969)<br />

Cat 0.8* 0.5* 2.9* 0.3* 0.2* PF, RRV et al. (1972)<br />

Cat 0.8 APRISON, SHANK, and DAVlDOFF<br />

(I969)<br />

Rat 1.6 1.0 4.9 0.9 0.2 SHAW and HEINE (1965)<br />

Rat 1.5 0.6 5.6 0.6 0.3 KANDERA et al. (1968)<br />

Rat 1.6 0.6 6.2 0.6 SHANK and APRISON (1970)<br />

Mouse 2.2 2.2 0.8 StatMADA et al. (1972)<br />

Rhesus 2.0 FAHN and C6T~ (1968)<br />

monkey<br />

Baboon 2.1 OKADA et al. (1971)<br />

Rat 3.0 OKADA et al. (1971)<br />

Rabbit 1.8 OKADA et al. (1971)<br />

Gu<strong>in</strong>ea pig 2.5 OKADA et al. (1971)<br />

Mouse 2.5 2.6 1.3 SHIMADA et al. (1972)<br />

cortex 1.0+0.1) and cells of <strong>in</strong>tracerebellar nuclei (8.0+_1.1, nuclei 1.8+0.2;<br />

OTSUKA et al., 1971). S<strong>in</strong>ce <strong>the</strong> relatively high levels of GAD <strong>in</strong> <strong>the</strong> rat cerebellar<br />

cortex (46.8 + 3.6 gmole/h/g dry weight) and nucleus <strong>in</strong>terpositus (151.8_+20.5)<br />

are not significantly reduced by transection of <strong>the</strong> peduncles, GAD activity is<br />

largely associated with neurones <strong>in</strong>tr<strong>in</strong>sic to <strong>the</strong> cerebellum (FONNUM, 1972).<br />

Fur<strong>the</strong>rmore <strong>the</strong> enzyme seems roughly evenly distributed between synaptic end<strong>in</strong>gs<br />

and o<strong>the</strong>r cell components (FONNUM, 1972). Recent calculations, based on<br />

am<strong>in</strong>o <strong>acid</strong> and enzyme measurements, subcellular fractionation and quantitative<br />

morphological analyses, suggest that <strong>the</strong> concentration of GABA <strong>in</strong> Purk<strong>in</strong>je<br />

cell term<strong>in</strong>als <strong>in</strong> <strong>the</strong> nucleus <strong>in</strong>terpositus is 86 138mM, <strong>the</strong> activity of GAD<br />

permitt<strong>in</strong>g <strong>the</strong> syn<strong>the</strong>sis of GABA at a maximum rate of 613 980 mM/hr (Cat:<br />

FONNUM and WALBERG, 1973).<br />

There is very strong evidence that <strong>the</strong> Purk<strong>in</strong>je cells, which are <strong>in</strong>hibitory<br />

<strong>in</strong> function, release GABA as a transmitter at term<strong>in</strong>als <strong>in</strong> <strong>the</strong> lateral vestibular<br />

nucleus (see Section 4.9). Impulses <strong>in</strong> Purk<strong>in</strong>je cell axons also <strong>in</strong>hibit monosynaptically<br />

neurones of<strong>in</strong>tracerebellar nuclei (ITO, YOSHIDA, OBATA, KAWAI, and UDO,<br />

1970). These nuclei lie close to <strong>the</strong> roof of <strong>the</strong> fourth ventricle and, <strong>in</strong> cats<br />

pretreated with am<strong>in</strong>o-oxyacetic <strong>acid</strong>, electrical stimulation of <strong>the</strong> cerebellar cortex<br />

enhances <strong>the</strong> spontaneous efflux of GABA <strong>in</strong>to this ventricle by a factor<br />

of approximately three (OBATA and TAKEDA, 1969). Some success has also been<br />

achieved <strong>in</strong> detect<strong>in</strong>g <strong>the</strong> release of GABA <strong>in</strong>to <strong>in</strong>tracerebellar nuclei by means<br />

of a push-pull cannula (OBATA, 1972 b).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 129<br />

The distribution of GAD also suggests that GABA could be a transmitter<br />

with<strong>in</strong> <strong>the</strong> cerebellar cortex and nuclei. Such a proposal ga<strong>in</strong>s support from<br />

pharmacological evidence cited below, and observations that [3H]-GABA, after<br />

direct <strong>in</strong>jection <strong>in</strong>to <strong>the</strong> cerebellum (Rat: HOKFELT and LJUNGDAHL, 1972a) is<br />

accumulated <strong>in</strong> stellate cells, basket cell axons and term<strong>in</strong>als, and possibly also<br />

by Golgi cells, all of <strong>in</strong>hibitory function (ECCLES, ITO, and SZ~NTAGOTHAI, 1967).<br />

Similarly, superficially located stellate cells accumulate [3H]-GABA after <strong>in</strong>jection<br />

<strong>in</strong>to <strong>the</strong> lateral ventricle (Rat: SCHON and IVERSEN, 1972), no such specific localization<br />

could be shown for [3H]-glyc<strong>in</strong>e. The uptake of GABA by rat cerebellar<br />

cortical tissue is approximately 50% of that by cerebral cortical tissue (H6KVELT,<br />

JONSSON, and LJUNGDAHL, 1970; IVERSEN and JOHNSTON, 1971). Labelled GABA<br />

is also accumulated by neurones of cultured rat cerebellar tissue, uptake by<br />

glia, granule cells and macrophages be<strong>in</strong>g m<strong>in</strong>imal (SOTELO, PRIVAT, and DRIAN,<br />

1972).<br />

Of <strong>the</strong> o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s present <strong>in</strong> <strong>the</strong> cerebellum (Table 5), glyc<strong>in</strong>e and<br />

~-alan<strong>in</strong>e levels are low, whereas those of taur<strong>in</strong>e are high: <strong>the</strong> <strong>in</strong>tracerebellar<br />

distribution of this am<strong>in</strong>o <strong>acid</strong> is unknown. Only a low aff<strong>in</strong>ity uptake process<br />

for glyc<strong>in</strong>e has been found <strong>in</strong> cerebellar tissue (Rat: JOHNSTON and IVERSEN,<br />

1971).<br />

The fir<strong>in</strong>g of Purk<strong>in</strong>je cells is readily depressed by electrophoretically adm<strong>in</strong>istered<br />

glyc<strong>in</strong>e, GABA and related am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong>clud<strong>in</strong>g fl-alan<strong>in</strong>e and taur<strong>in</strong>e<br />

(Cat: KAWAMURA and PROVINI, 1970 ; CURTIS et al., 1971 b). Of <strong>the</strong>se substances<br />

GABA was <strong>the</strong> most effective, and hyperpolarizes and <strong>in</strong>creases <strong>the</strong> membrane<br />

conductance of Purk<strong>in</strong>je cells (Rat: SIGGINS et al., 1971. Frog: WOODWARD,<br />

HOVVER, SIGGINS, and OLIVER, 1971). It is thus highly significant to <strong>the</strong> transmitter<br />

role of GABA that <strong>the</strong> <strong>in</strong>hibition of Purk<strong>in</strong>je cells which follows excitation<br />

of cerebellar basket (and stellate cells) is not affected by strychn<strong>in</strong>e (Cat: Intravenous,<br />

ANDERSEN, ECCLES, LOYNING, and VOORHOEVE, 1963; CRAWFORD et al.,<br />

1963; BISTI, IOSIF, MARCHESI, and STRATA, 1971. Electrophoretic, CURTIS and<br />

FELIX, 1971. Also frog: WOODWARD et al., 1971), an alkaloid which does not<br />

<strong>in</strong>fluence <strong>the</strong> <strong>in</strong>hibitory effect of GABA (CURTIS, et al., 1971b) but is blocked<br />

by bicucull<strong>in</strong>e (CURTIS and FELIX, 1971 ; BISTI et al., 1971), bicucull<strong>in</strong>e methochloride<br />

(CURTIS and JOHNSTON, unpublished observations) or relatively large doses<br />

of picrotox<strong>in</strong><strong>in</strong> (Bisa~i et al., 1971). Fur<strong>the</strong>rmore <strong>the</strong> Golgi cell <strong>in</strong>hibition of<br />

cerebellar granule cells is not <strong>in</strong>fluenced by strychn<strong>in</strong>e (<strong>in</strong>travenous) but is reduced<br />

by bicucull<strong>in</strong>e or picrotox<strong>in</strong><strong>in</strong> (BISTI et al., 1971). Basket cell <strong>in</strong>hibition of Purk<strong>in</strong>je<br />

cells is also suppressed by tetanus tox<strong>in</strong> <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> cerebellar folium, but<br />

as <strong>the</strong> cells reta<strong>in</strong> sensitivity to electrophoretic GABA <strong>the</strong> tox<strong>in</strong> probably blocks<br />

synaptic release of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> ra<strong>the</strong>r than its postsynaptic action (CURTIS,<br />

FELIX, GAME, and McCULLOCH, 1973 a).<br />

In <strong>the</strong> absence of evidence for strychn<strong>in</strong>e-sensitive <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> cerebellar<br />

cortex, <strong>the</strong> role of glyc<strong>in</strong>e as an <strong>in</strong>hibitory transmitter is doubtful. Fur<strong>the</strong>rmore,<br />

although direct tests with taur<strong>in</strong>e have not been carried out, <strong>the</strong> suppression<br />

of <strong>the</strong> depressant effect of fl-alan<strong>in</strong>e on Purk<strong>in</strong>je cells by both bicucull<strong>in</strong>e and<br />

strychn<strong>in</strong>e (CURTIS et al., 1971b) probably <strong>in</strong>dicates that taur<strong>in</strong>e is unlikely to<br />

function as an <strong>in</strong>hibitory transmitter of bicucull<strong>in</strong>e-sensitive cerebellar <strong>in</strong>hibition.<br />

Thus, although <strong>the</strong>se studies have been ma<strong>in</strong>ly carried out on <strong>the</strong> cerebellar


130 D.R. CURTIS and G. A. R. JOHNSTOY :<br />

vermis it seems probable that all <strong>in</strong>hibitory Purk<strong>in</strong>je, basket, stellate and Golgi<br />

cells with<strong>in</strong> <strong>the</strong> <strong>mammalian</strong> cerebellum operate by releas<strong>in</strong>g GABA as an <strong>in</strong>hibitory<br />

transmitter.<br />

4.3. Rh<strong>in</strong>encephalon<br />

4.3.1. Excitation<br />

Little is known regard<strong>in</strong>g excitant am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong>, apart from many<br />

observations of excitation of neurones by L-glutamate (STEVANIS, 1964; HERZ<br />

and GOGOLAK, 1965; HERZ and NACIMIENTO, 1965; STRAUGHAN and LEGGE,<br />

1965; LEGGE, RANDI~ and STRAUG~AN, 1966; BISCOE and STRAUGHAN, 1966;<br />

STEIYER and RtJF, 1967). One noteworthy feature is <strong>the</strong> ease with which seizure-like<br />

activity can be triggered (Bxsco~ and STRAUGHAN, 1966; STEFANIS, 1969) by excit<strong>in</strong>g<br />

relatively few neurones with<strong>in</strong> <strong>the</strong> hippocampal cortex. A study of <strong>the</strong> sensitivity<br />

of neurones <strong>in</strong> hippocampal slices (Gu<strong>in</strong>ea pig, cat: DtJDAR, 1972) suggests that<br />

<strong>the</strong>re are glutamate receptors on both cell bodies and dendrites. The latter presumably<br />

are associated with axodendritic synapses, but this type of experiment,<br />

both <strong>in</strong> vitro and <strong>in</strong> vivo, requires correlation with <strong>the</strong> distribution of enzymes<br />

<strong>in</strong>volved <strong>in</strong> glutamate metabolism such as aspartate am<strong>in</strong>otransferase (BORRE<br />

and GENESER-JENSEN, 1972).<br />

4.3.2. Inhibition<br />

GABA is present <strong>in</strong> <strong>the</strong> hippocampus (Rabbit: 2.4 lamole/g. Rat: 3.6. Gu<strong>in</strong>ea<br />

pig: 2.7. Baboon: 2.8, O~ADA, NITSCH-HASSLER, KIM, BAK, and HASSLER, 1971),<br />

and although detailed studies have not been reported of <strong>the</strong> distribution of depressant<br />

am<strong>in</strong>o <strong>acid</strong>s with<strong>in</strong> various regions of <strong>the</strong> rh<strong>in</strong>encephalon, several <strong>in</strong>vestigations<br />

have been concerned with <strong>the</strong> distributions of GAD and GABA-T. In<br />

contrast to low activity <strong>in</strong> <strong>the</strong> fimbria, high levels of GAD occur <strong>in</strong> <strong>the</strong> molecular<br />

and pyramidal layers of area CA1, and <strong>in</strong> <strong>the</strong> molecular and granular layers<br />

of <strong>the</strong> area dentata (Rat: STORM-MATHISEN and FONNUM, 1971, 1972; see also<br />

ALBERS and BRADY, 1959). Fu<strong>the</strong>rmore surgical <strong>in</strong>terruption of afferent pathways<br />

to <strong>the</strong>se areas did not reduce GAD levels <strong>in</strong> ei<strong>the</strong>r CA1 or area dentata (STORM-<br />

MATH1SEN, 1972), suggest<strong>in</strong>g that <strong>the</strong> enzyme is associated with cells <strong>in</strong>tr<strong>in</strong>sic<br />

to <strong>the</strong> hippocampal cortex. A high proportion of <strong>the</strong> GAD from homogenized<br />

hippocampal tissue can be recovered <strong>in</strong> <strong>the</strong> synaptosomal fraction, <strong>the</strong> particles<br />

be<strong>in</strong>g denser than those conta<strong>in</strong><strong>in</strong>g chol<strong>in</strong>e acetyltransferase (FONNUM, 1972).<br />

All of <strong>the</strong>se results are consistent with <strong>the</strong> presence of GAD <strong>in</strong> <strong>the</strong> bodies of<br />

<strong>in</strong>hibitory basket cells and <strong>the</strong>ir axosomatic term<strong>in</strong>als upon hippocampal pyramidal<br />

cells (SToRN-MATmSEN and FONNtJM, 1971 ; STORM-MATHISEN, 1972; FONNtJN,<br />

1972). Support<strong>in</strong>g neurochemical evidence is provided by <strong>the</strong> presence of GABA-T<br />

<strong>in</strong> <strong>the</strong> hippocampal cortex (SALVADOR and ALBERS, 1959) which <strong>in</strong> <strong>the</strong> mouse<br />

surrounds pyramidal cell bodies (VAN GELDER, 1965b), and <strong>the</strong> similar distribution<br />

of radio-label when slices of hippocampal tissue are <strong>in</strong>cubated with [3H]-GABA


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 131<br />

<strong>in</strong> <strong>the</strong> presence of am<strong>in</strong>o-oxyacetic <strong>acid</strong> (Rat: HOKFELT and LJUNGDAHL,<br />

1971 b).<br />

Electrophoretically adm<strong>in</strong>istered GABA depresses <strong>the</strong> fir<strong>in</strong>g of neurones <strong>in</strong><br />

<strong>the</strong> many regions of <strong>the</strong> cat rh<strong>in</strong>encephaton which have been exam<strong>in</strong>ed--CA1,<br />

CA2, CA3 (STEEANIS, 1964; BISCOE and STRAUGHAN, 1966; CURTIS et al., 1971b):<br />

dentate gyrus (STEFANIS, 1964): septum (HERz and GOGOLAK, 1965): amygdala<br />

(STRAUGHAN and LEGGE, 1965): pyriform cortex (LEGGE, RANDI~, and STRAUGnAN,<br />

1966); and similar results have been observed <strong>in</strong> <strong>the</strong> rat (STEINER and<br />

RUE, 1967). Although GABA was a more effective depressant of <strong>the</strong> fir<strong>in</strong>g of<br />

pyramidal cells than ei<strong>the</strong>r glyc<strong>in</strong>e or fl-alan<strong>in</strong>e (CURTIS et al., 197 lb), hyperpolarization<br />

by GABA has yet to be demonstrated. However, bicucull<strong>in</strong>e blocks <strong>the</strong><br />

<strong>in</strong>hibition of pyramidal cells by GABA (and by fl-alan<strong>in</strong>e, CURTIS et al., 1971b)<br />

and reduces <strong>the</strong> prolonged synaptic <strong>in</strong>hibition (ANDERSEN, ECCLES, and LOYNING,<br />

1964) of <strong>the</strong>se neurones which follows excitation of basket cells (CURTIS, FELIX,<br />

and MCLENNAN, 1970C). This synaptic <strong>in</strong>hibition is not affected by strychn<strong>in</strong>e<br />

(ANDERSEN et al., 1963), an alkaloid which appeared to have little selectivity<br />

as an am<strong>in</strong>o <strong>acid</strong> antagonist <strong>in</strong> this region (CURTISet al., 1971b). The effects<br />

of <strong>system</strong>ic or topical convulsants on hippocampal responses are complex (BAKER,<br />

KRATKY and BENEDICT, 1965; GESSI, RABINI, and VOLTA, 1967).<br />

4.4. Ret<strong>in</strong>a<br />

Although a number of am<strong>in</strong>o <strong>acid</strong>s are present <strong>in</strong> <strong>the</strong> vertebrate ret<strong>in</strong>a, toge<strong>the</strong>r<br />

with relevant enzymes and transport processes (LOLLEr, 1969), <strong>the</strong> precise nature<br />

of <strong>the</strong> neurones syn<strong>the</strong>sis<strong>in</strong>g and releas<strong>in</strong>g particular am<strong>in</strong>o <strong>acid</strong>s has yet to<br />

be determ<strong>in</strong>ed. The organization and structure of <strong>the</strong> vertebrate ret<strong>in</strong>a has been<br />

reviewed recently by DOWLING (1970).<br />

The high levels of both GABA and GAD <strong>in</strong> <strong>the</strong> ganglion cell layer of <strong>the</strong><br />

rabbit were considered to reflect technical difficulties <strong>in</strong> <strong>the</strong> physical separation<br />

of ret<strong>in</strong>al layers ra<strong>the</strong>r than an association of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> with excitatory<br />

neurones (KuRIYAMA, SISKEN, HABEN and ROBERTS, 1968). The distribution of<br />

<strong>the</strong> enzyme and am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> <strong>the</strong> frog ret<strong>in</strong>a led to <strong>the</strong> suggestion that amacr<strong>in</strong>e,<br />

and probably also horizontal, cells may syn<strong>the</strong>sise GABA (GRAHAM, 1972). Glutamate<br />

is evenly distributed between <strong>the</strong> receptor, bipolar and ganglion cell layers<br />

of <strong>the</strong> frog ret<strong>in</strong>a, and <strong>the</strong> levels are not significantly different <strong>in</strong> ret<strong>in</strong>ae adapted<br />

to light or to darkness. In contrast GABA levels <strong>in</strong> both bipolar and ganglion<br />

cell layers are decreased <strong>in</strong> dark adapted frog ret<strong>in</strong>a (GRAHAM, BAXTER, and<br />

LOLLEY, 1970). Similarly, <strong>in</strong> <strong>the</strong> goldfish, light stimulation enhances <strong>the</strong> syn<strong>the</strong>sis<br />

of GABA from glutamate (LAM, 1972).<br />

Ret<strong>in</strong>al tissue takes up am<strong>in</strong>o <strong>acid</strong>s, both <strong>in</strong> vivo and <strong>in</strong> vitro, and use has<br />

been made of radiolabelled compounds to determ<strong>in</strong>e both <strong>the</strong> k<strong>in</strong>etics of <strong>the</strong><br />

processes (GABA-Rat: GOODCHILD and NEAL, 1973: high aff<strong>in</strong>ity, STARR and<br />

VOADEN, 1972a; NEAL and STARR, 1973. Glyc<strong>in</strong>e-Rabbit: high aff<strong>in</strong>ity, BRUUN<br />

and EHINGER, 1972. Taur<strong>in</strong>e-Rat: low aff<strong>in</strong>ity, STARR and VOADEN, 1972 b ; Chicken:<br />

PASANTES-MORALES, KLETHI, URBAN, and MANDEL, 1972. Glutamate-Rat:<br />

high aff<strong>in</strong>ity, NEAL and WHITE, 1971) and sites of am<strong>in</strong>o <strong>acid</strong> accumulation.


132 D.R. CURTlS and G. A. R. JOHNSTON :<br />

Although GABA accumulated by rat ret<strong>in</strong>ae, <strong>in</strong> vitro <strong>in</strong> <strong>the</strong> presence of am<strong>in</strong>ooxyacetic<br />

<strong>acid</strong>, is located predom<strong>in</strong>antly <strong>in</strong> Miiller type glial cells (NEAL and<br />

IVERSEN, 1972), <strong>the</strong> major location <strong>in</strong> <strong>the</strong> rabbit, ei<strong>the</strong>r <strong>in</strong> vitro or after <strong>in</strong>travitreal<br />

<strong>in</strong>jection <strong>in</strong> vivo appears to be amacr<strong>in</strong>e cells with some located <strong>in</strong> ret<strong>in</strong>al ganglion<br />

cells (EmNGER and FALCK, 1971). On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong> major site of uptake<br />

<strong>in</strong> <strong>the</strong> goldfish ret<strong>in</strong>a is horizontal cells (LAM and STEINMAN, 1971). Glyc<strong>in</strong>e<br />

is also accumulated by some amacr<strong>in</strong>e cells (Rabbit: EHINGER and FALCK, 1971;<br />

BRUU~ and EHINGER, 1972; EHINGER, 1972a. Human, rat, gu<strong>in</strong>ea pig: EHINGER,<br />

1972 b) whereas aspartate and glutamate are found <strong>in</strong> Mtiller and ret<strong>in</strong>al pigment<br />

cells (EmNGER and FALCK, 1971 ; EmNGER, 1972a).<br />

In <strong>the</strong> goldfish, both <strong>in</strong> vitro and after <strong>in</strong>travitreal <strong>in</strong>jection, little GABA<br />

is located <strong>in</strong> amacr<strong>in</strong>e cells, <strong>the</strong> major site of accumulation be<strong>in</strong>g external and<br />

<strong>in</strong>ternal horizontal cells, particularly when <strong>the</strong> ret<strong>in</strong>ae are stimulated with light<br />

(LAM and STEINMAN, 1971). Follow<strong>in</strong>g <strong>the</strong> uptake of labelled GABA by rat<br />

ret<strong>in</strong>ae <strong>in</strong> vitro, although exposure to light does not enhance GABA effiux, more<br />

GABA is released by dark adapted ret<strong>in</strong>ae than by those <strong>in</strong> <strong>the</strong> light (VOADEN<br />

and STARR, t972).<br />

When adm<strong>in</strong>istered electrophoretically L-glutamate enhances and GABA<br />

depresses <strong>the</strong> fir<strong>in</strong>g of ret<strong>in</strong>al ganglion cells (Rabbit: NOELL, 1959. Cat: STRAS-<br />

CHILL and PERWEIN, 1969), effects consistent with observations made after <strong>in</strong>tra-arterial<br />

(Cat: STRASCHIH~, 1968), <strong>in</strong>travenous (Chicken: SCnOLES and ROBERTS,<br />

1964), or topical (Limulus: ADOLPH, 1966. Bullfrog: KISmDA and NAKA, 1967.<br />

Rabbit: AMES and POLLEN, 1969. Carp: horizontal cells, MURAKAMI, OHTSU,<br />

and Om'SUKA, 1972) adm<strong>in</strong>istration of <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s. Intravitreal GABA<br />

decreases <strong>the</strong> sensitivity of <strong>the</strong> rat ret<strong>in</strong>a to light stimuli, whereas picrotox<strong>in</strong><br />

and bicucuU<strong>in</strong>e <strong>in</strong>crease light sensitivity (GRAHAM and PON6, 1972 a) and produce<br />

rhythmic potentials orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> <strong>the</strong> ret<strong>in</strong>a (GRAHAM and PONG, 1972b).<br />

Conflict<strong>in</strong>g results have been obta<strong>in</strong>ed of <strong>the</strong> <strong>in</strong>fluence of strychn<strong>in</strong>e and<br />

picrotox<strong>in</strong> (BORNSCHEIN and HEISS, 1966; Cnu, 1968; VORKEL and HANITZSCH,<br />

1971; BURKnnRDT, 1972) on ret<strong>in</strong>al responses to light, and although GABA<br />

may be <strong>the</strong> <strong>in</strong>hibitory transmitter of amacr<strong>in</strong>e cells, and probably also of horizontal<br />

cells, fur<strong>the</strong>r <strong>in</strong>vestigation is required of <strong>the</strong> role of this and related am<strong>in</strong>o<br />

<strong>acid</strong>s <strong>in</strong> <strong>the</strong> ret<strong>in</strong>a. A function for glutamate as an excitatory transmitter is<br />

suggested by <strong>the</strong> association between glutamate and ret<strong>in</strong>al spread<strong>in</strong>g depression<br />

(VAN HARREVELD and FIFKOVA, 1970, 1971, 1972).<br />

4.5. Olfactory Bulb<br />

The ma<strong>in</strong> physiological and pharmacological <strong>in</strong>terest <strong>in</strong> am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong><br />

<strong>in</strong> <strong>the</strong> olfactory bulb <strong>in</strong>volves <strong>the</strong> participation of GABA as an <strong>in</strong>hibitory transmitter<br />

released at granule cell synapses on mitral cells. The rat olfactory bulb<br />

(PoPov, POHLE, ROSLER, and MATTHIES, 1967) conta<strong>in</strong>s high levels of glutamate<br />

(13 ~tmole]g), moderate levels of GABA (3 ~tmole/g) and relatively low levels<br />

of aspartate (2 pmole/g).<br />

Glyc<strong>in</strong>e, /~-alan<strong>in</strong>e and GABA depress <strong>the</strong> fir<strong>in</strong>g rate of mitral cells, and<br />

GABA is usually more potent than ei<strong>the</strong>r glyc<strong>in</strong>e or/%alan<strong>in</strong>e (Cat: FELIX and


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 133<br />

MCLENNAN, 1971; Rabbit: NICOLL, 1971). Electrophoretic strychn<strong>in</strong>e reduces<br />

<strong>the</strong> <strong>in</strong>hibitory action of glyc<strong>in</strong>e but not that of GABA (FELIX and MCLENNAN,<br />

1971 ; NICOLL, 1971), whereas bicucull<strong>in</strong>e (FELIX and MCLENNAN, 1971; NICOLL,<br />

1971) and picrotox<strong>in</strong> (NICOLL, 1971) are antagonists of GABA but not of glyc<strong>in</strong>e.<br />

Although some bulb neurones are excited by aspartate, glutamate and DLH,<br />

<strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s often <strong>in</strong>hibit mitral cell fir<strong>in</strong>g (Rabbit: voN BAUM~ARTEN,<br />

BLOOM, OLIVER and SALMOIRAGHI, 1963; NICOLL, 1971. Cat: FELIX and MCLENnan,<br />

1971; McLENNAN, 1971). Such an effect is considered to be mediated via<br />

GABA-releas<strong>in</strong>g <strong>in</strong>hibitory <strong>in</strong>terneurones, presumably granule cells, s<strong>in</strong>ce <strong>the</strong><br />

<strong>in</strong>hibition is occasionally preceded by brief excitation of mitral cells and is often<br />

associated with excitation of neighbour<strong>in</strong>g neurones hav<strong>in</strong>g small action potentials.<br />

Moreover, <strong>the</strong> <strong>in</strong>hibition can be blocked or even reversed <strong>in</strong>to excitation<br />

by rais<strong>in</strong>g <strong>the</strong> extracellular magnesium concentration (NICOLL, 1971), or by bicucull<strong>in</strong>e<br />

(FELIX and MCLENNAN, 1971 ; MCLENNAN, 1971 ; NICOLL, 1971) or picrotox<strong>in</strong><br />

(NICOLL, 1971).<br />

The antidromic excitation of mitral cells by electrical stimulation of <strong>the</strong> lateral<br />

olfactory tract (LOT) is followed by prolonged <strong>in</strong>hibition which is considered<br />

to arise ma<strong>in</strong>ly from <strong>the</strong> <strong>in</strong>hibitory action of granule cells at reciprocal dendrodendritic<br />

synapses (SHEPHERO, 1972). Strychn<strong>in</strong>e does not affect this <strong>in</strong>hibition (Rabbit:<br />

GREEN, MANCIA, and voN BAUMGARTEN, 1962; NICOLL, 1971. Cat: FELIX<br />

and McLENNAN, 1971), nor that evoked by stimulat<strong>in</strong>g <strong>the</strong> anterior commissure<br />

(Rabbit: voN BAUMGARTEN, GREEN, and MANCIA, 1962). The effects of picrotox<strong>in</strong><br />

and bicucull<strong>in</strong>e on LOT <strong>in</strong>hibition of mitral cells are complex. Nei<strong>the</strong>r agent<br />

has been shown to reduce <strong>the</strong> duration of <strong>in</strong>hibition of s<strong>in</strong>gle mitral cells after<br />

electrophoretic adm<strong>in</strong>istration (FELIX and MCLENNAN, 1971 ; NICOLL, 1971) and<br />

<strong>in</strong> <strong>the</strong> cat <strong>the</strong> duration was frequently enhanced (FELIX and MCLENNAN, 1971 ;<br />

MCLENNAN, 1971). A similar enhancement occurred when <strong>in</strong>hibition was evoked<br />

by stimulat<strong>in</strong>g <strong>the</strong> olfactory mucosa (McLENNAN, 1971) or when bicucull<strong>in</strong>e<br />

was adm<strong>in</strong>istered <strong>in</strong>travenously (LOT <strong>in</strong>hibition, McLENNAN, 1971). In contrast,<br />

when LOT <strong>in</strong>hibition of mitral cells is detected as a reduction <strong>in</strong> <strong>the</strong> amplitude<br />

of LOT-evoked field potentials (N2 wave) by a previous LOT stimulus, both<br />

bicucull<strong>in</strong>e and picrotox<strong>in</strong>, <strong>system</strong>ically adm<strong>in</strong>istered, effectively reduce <strong>the</strong> <strong>in</strong>hibition<br />

(McLENNAN, 1971 ; NICOLL, 1971).<br />

A number of explanations, <strong>in</strong> terms of anatomical complexities with<strong>in</strong> <strong>the</strong><br />

bulb, have been offered to account for <strong>the</strong> discrepancy between <strong>the</strong> effects of<br />

GABA antagonists upon synaptica!ly <strong>in</strong>duced <strong>in</strong>hibition of mitral cells and that<br />

which follows am<strong>in</strong>o <strong>acid</strong> excitation of granule cells (NICOLL, 1971 ; McLENNAN,<br />

1971; FELIX and MCLENNAN, 1971), but all results seem to be consistent with<br />

mediation of granule cell <strong>in</strong>hibition of mitral cells by GABA. The <strong>in</strong>hibition<br />

ofmitral cells by noradrenal<strong>in</strong>e has been expla<strong>in</strong>ed as secondary to <strong>the</strong> excitation<br />

of granule cells (MCLENNAN, 1971).<br />

The <strong>in</strong>hibition of field potentials recorded <strong>in</strong> <strong>the</strong> external plexiform layer<br />

by a preced<strong>in</strong>g LOT volley is enhanced and prolonged by pentobarbitone and<br />

o<strong>the</strong>r anaes<strong>the</strong>tics (WESTECKER, 1971 ; NICOLL, 1972). Such an effect, considered<br />

to be related to <strong>the</strong> enhancement of sp<strong>in</strong>al prolonged <strong>in</strong>hibition by <strong>the</strong>se agents,<br />

may arise from facilitation of <strong>the</strong> release of GABA from <strong>in</strong>hibitory term<strong>in</strong>als,<br />

modification of processes <strong>in</strong>activat<strong>in</strong>g released GABA, or an enhancement of


134 D.R. CURTIS and G. A. R. JOHNSTON :<br />

<strong>the</strong> postsynaptic action of <strong>the</strong> transmitter (NICOLL, 1972). Interference with GABA<br />

metabolism appears unlikely s<strong>in</strong>ce <strong>the</strong> effect could not be produced by adm<strong>in</strong>ister<strong>in</strong>g<br />

am<strong>in</strong>o-oxyacetic <strong>acid</strong> (NICOLL, 1972).<br />

4.6. Thalamus<br />

4.6.1. Neurochemistry<br />

Few detailed studies have been made of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> content of various thalamic<br />

nuclei. In general glyc<strong>in</strong>e, taur<strong>in</strong>e and GABA levels are relatively low (Table 6),<br />

although <strong>the</strong> taur<strong>in</strong>e content of <strong>the</strong> fel<strong>in</strong>e lateral geniculate nucleus is higher<br />

than that of o<strong>the</strong>r nuclei (GUDOTTI et al., 1972).<br />

Table 6. Thalamic am<strong>in</strong>o <strong>acid</strong> levels (lamole/g)<br />

Thalamus Human 2.5 8.4 2.5 2.3 l.l<br />

Human<br />

2.4<br />

Thalamus Rhesus<br />

3.0<br />

medial monkey<br />

lateral<br />

anterior<br />

Thalamus Baboon<br />

Cat 2.7 12.4<br />

2.7<br />

2.5<br />

3.5<br />

3.7 1.7 1.1<br />

Cat<br />

Cat<br />

4.5<br />

2.3<br />

Lateral Cat<br />

4.3<br />

geniculate<br />

Medial Cat<br />

1,7<br />

geniculate<br />

Cat<br />

~4.8<br />

Diencephalon Cat<br />

1.6<br />

Rat 2.4 8.6 3.5 0.9 4.5<br />

Thalamus Ox<br />

Mouse<br />

2.1<br />

2.3 2.2<br />

1.8 1.0 PERRY et al.<br />

(1971 a)<br />

BOEHME et al.<br />

(1973)<br />

FAHN and C6T~<br />

(1968)<br />

FAHN and COT~<br />

(1968)<br />

FAHN and COT~<br />

(1968)<br />

OKADA et al.<br />

(1971)<br />

0.6 0.4 BATTISTIN et al.<br />

(1969)<br />

KR£ALI~? et al.<br />

(1962)<br />

GUIDOTTI et al.<br />

(1972)<br />

GUIDOTTI et al.<br />

(1972)<br />

GUIDOTTI et al.<br />

(1972)<br />

UTLEY (1963)<br />

APRISON et al.<br />

(1969)<br />

0.5 SHANK and<br />

APRISON (1970)<br />

LOVELL and<br />

ELLIOTT (1963)<br />

1.2 SH1MADA et al.<br />

(1972)


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 135<br />

Thalamic levels of GAD are not high when compared with that of <strong>the</strong> substantia<br />

nigra (LOwE et al., I958 ; MOLLER and LANGEMANN, 1962 ; ALBERS and BRADY,<br />

1959), whereas <strong>the</strong> activity of GABA-T <strong>in</strong> <strong>the</strong> monkey is relatively high, <strong>the</strong><br />

levels be<strong>in</strong>g higher <strong>in</strong> <strong>the</strong> medial than <strong>in</strong> <strong>the</strong> lateral thalamus (SALVADOR and<br />

ALBERS, 1959). As <strong>in</strong> o<strong>the</strong>r areas, glutamate is <strong>the</strong> most abundant am<strong>in</strong>o <strong>acid</strong><br />

present <strong>in</strong> <strong>the</strong> rat diencephalon (8.6 gmole/g, SHANI~ and APRISON, 1970). The<br />

aspartate and glutamate contents of optic nerves (Rat: 2.8, CASOLA and DI MATa'EO,<br />

1972. Cat: 3.5, JOHNSON and APRISON, 1971) are similar to those of dorsal<br />

roots (Table 8). The relatively high optic nerve content of taur<strong>in</strong>e (CASOLA and<br />

DI MATa'EO, 1972), and also that of <strong>the</strong> lateral geniculate nucleus (Cat: GtJIDOT'rI<br />

et al., 1972), may be related to <strong>the</strong> high ret<strong>in</strong>al levels of this am<strong>in</strong>o <strong>acid</strong> (Kum~EK<br />

and DOLENg¢, 1958).<br />

Section of <strong>the</strong> optic nerve alone produces no significant alterations <strong>in</strong> lateral<br />

geniculate levels of ei<strong>the</strong>r GABA, aspartic <strong>acid</strong>, glutam<strong>in</strong>e or glutamic <strong>acid</strong> <strong>in</strong><br />

<strong>the</strong> rabbit (MARGOLIS, HELLER, and MOORE, 1968). Observations of <strong>the</strong> effect<br />

of ablation of <strong>the</strong> visual cortex suggested that as.partate and glutamate are largely<br />

conta<strong>in</strong>ed <strong>in</strong> lateral geniculate cell bodies ra<strong>the</strong>r than <strong>in</strong> term<strong>in</strong>als of optic fibres<br />

(MARGOI.IS et al., 1968). An association of GABA with <strong>in</strong>trathalamic <strong>in</strong>terneurones<br />

ra<strong>the</strong>r than with neurones project<strong>in</strong>g from or to thalamic nuclei is suggested<br />

by <strong>the</strong> m<strong>in</strong>imal changes <strong>in</strong> GABA levels which follow optic nerve section and<br />

visual cortex ablation (Rabbit: lateral geniculate, MARGOLIS et al., 1968) and<br />

removal of cortical auditory projection areas (Cat: medial geniculate, Ua'r~Ey,<br />

1963).<br />

4.6.2. Excitation<br />

Thalamic neurones are excited by aspartate, glutamate and related am<strong>in</strong>o <strong>acid</strong>s<br />

(Cat: CURTIS and DAvIs, 1962; CURTIS and WATKINS, 1963; ANDERSEN and<br />

CURTIS, 1964a; MCCANCE, PHILLIS, TEB~CIS, and WESTERMAN, 1968; MCLEN-<br />

NAN, HUFFMAN, and MARSrIALL, 1968; TEB~CIS, 1970). Differences <strong>in</strong> relative<br />

am<strong>in</strong>o <strong>acid</strong> sensitivity have been reported <strong>in</strong> <strong>the</strong> ventrolateral nucleus, where<br />

neurones excited synaptically by impulses <strong>in</strong> <strong>the</strong> brachium conjunctivum were<br />

more sensitive to glutamate, relative to DL-homocysteate and N-methyl-DLaspartate,<br />

than those outside <strong>the</strong> nucleus (MCLENNAN et al., 1968; HALDEMAN<br />

et al., 1972). A gradient <strong>in</strong> sensitivity to aspartate and glutamate has also been<br />

demonstrated <strong>in</strong> <strong>the</strong> lateral geniculate nucleus: cells receiv<strong>in</strong>g an <strong>in</strong>put from<br />

near <strong>the</strong> centre of <strong>the</strong> visual field tend<strong>in</strong>g to be more sensitive to L-glutamate<br />

than to L-aspartate, those with more peripheral receptive fields were more sensitive<br />

to L-aspartate than L-glutamate (Cat: MORGAN, VRBOVA, and WOLSTENCROFT,<br />

1972). Such differences suggest <strong>the</strong> possible <strong>in</strong>volvement of both aspartate and<br />

glutamate as excitatory <strong>transmitters</strong> with<strong>in</strong> thalamic nuclei, which, <strong>in</strong> <strong>the</strong> lateral<br />

geniculate nucleus, may be associated with different types of optic nerve fibre<br />

(HOFFMANN, STONE, and SHERMAN, 1972).<br />

The participation of L-glutamate as a transmitter has also been suggested<br />

from a study of <strong>the</strong> effects of excitant am<strong>in</strong>o <strong>acid</strong> antagonists. Both DL-~-methylglutamic<br />

<strong>acid</strong> and L-glutamate diethylester reversibly reduced <strong>the</strong> excitant effects


136 D.R. CuRz~S and G. A. R. JOHNSTON :<br />

of L-glutamate on neurones of <strong>the</strong> ventralis lateralis nucleus to a greater extent<br />

than <strong>the</strong> effects of ei<strong>the</strong>r L-aspartate, DL-homocysteate or acetylchol<strong>in</strong>e (HALDE-<br />

MAN et al., 1972; HALDEMAN and McLENNAN, 1972). Fur<strong>the</strong>rmore, L-glutamate<br />

diethylester reversibly depressed <strong>the</strong> synaptic excitation of nucleus ventralis posterolateralis<br />

neurones by impulses from cutaneous nerves (HALDEMAN et al.,<br />

1972), and <strong>the</strong> synaptic excitation of ventralis lateralis neurones by brachium<br />

conjunctivum volleys (HALDEMAN and MCLENNAN, 1972). In contrast, nei<strong>the</strong>r<br />

of <strong>the</strong>se glutamate analogues were found to be selective glutamate antagonists<br />

<strong>in</strong> <strong>the</strong> ventrobasal and lateral geniculate nuclei, and, although some selectivity<br />

towards glutamate and aspartate was demonstrated for L-methion<strong>in</strong>e-DL-sulphoxim<strong>in</strong>e<br />

and 2-methoxyaporph<strong>in</strong>e, this was considered <strong>in</strong>adequate to be of<br />

assistance <strong>in</strong> elucidat<strong>in</strong>g possible transmitter functions of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s (CURTIS<br />

et al., 1972a).<br />

The synaptic excitation of fel<strong>in</strong>e lateral geniculate neurones by impulses <strong>in</strong><br />

<strong>the</strong> optic nerve is blocked by low concentrations of 5-hydroxytryptam<strong>in</strong>e and<br />

a number of structurally related substances, <strong>in</strong> <strong>the</strong> absence of a change <strong>in</strong> neurone<br />

sensitivity to L-glutamate (CURTIS, and DAVIS, 1962; TEB~:CIS and DIMARIA,<br />

1972a) and o<strong>the</strong>r excitatory am<strong>in</strong>o <strong>acid</strong>s, <strong>in</strong>clud<strong>in</strong>g D-glutamate, D-, L-aspartate,<br />

D-, L-cysteate, DL-homocysteate and N-methyl-D-aspartate (TEBECIS, 1973a).<br />

S<strong>in</strong>ce 5-hydroxytryptam<strong>in</strong>e may suppress <strong>the</strong> release of optic nerve <strong>transmitters</strong><br />

ra<strong>the</strong>r than block <strong>the</strong>ir postsynaptic action <strong>the</strong>se observations do not necessarily<br />

exclude <strong>the</strong> <strong>transmitters</strong> be<strong>in</strong>g excitant am<strong>in</strong>o <strong>acid</strong>s. Such a selective action of<br />

5-hydroxytryptam<strong>in</strong>e has not been demonstrated on <strong>the</strong> excitation of ventrobasal<br />

neurones by impulses <strong>in</strong> <strong>the</strong> medial lemniscus (ANDERSON and CURTIS, 1964b)<br />

or of medial geniculate neurones by impulses <strong>in</strong> <strong>the</strong> brachium of <strong>the</strong> <strong>in</strong>ferior<br />

colliculus (TEBECIS, 1973 a). The <strong>transmitters</strong> of <strong>the</strong>se afferent pathways may thus<br />

differ from those of <strong>the</strong> optic nerve.<br />

4.6.3. Inhibition<br />

The fir<strong>in</strong>g of thalamic neurones is readily depressed by neutral am<strong>in</strong>o adds,<br />

and <strong>in</strong> general GABA is more effective than ei<strong>the</strong>r fl-alan<strong>in</strong>e or glyc<strong>in</strong>e (Cat:<br />

Ventrobasal thalamus, ANDERSEN and CURTIS, 1964b; CURTIS et al., 1971b;<br />

DUGGAN and MCLENNAN, 1971. Lateral geniculate, TEB~CIS and DI MARIA, 1972a.<br />

Medial geniculate, TEB~ZCIS, 1970). Fur<strong>the</strong>rmore, antagonism has been demonstrated<br />

between bicucull<strong>in</strong>e and GABA, and between strychn<strong>in</strong>e and glyc<strong>in</strong>e<br />

(TEBF:CIS, 1970; Curtis et al., 1971b; DUGGAN and McLENNAN, 1971; CURTIS<br />

and TEB~:CIS, 1972). S<strong>in</strong>ce <strong>the</strong> prolonged postsynaptic <strong>in</strong>hibition of thalamic neurones<br />

which follows ei<strong>the</strong>r an orthodromic or antidromic volley is not blocked<br />

by strychn<strong>in</strong>e (Ventrobasal complex, ANDERSEN et al., 1963 ; DUGOAN and MCLEN-<br />

NAN, 1971. Lateral geniculate, CURTIS and TEBgCIS, 1972) but can be depressed<br />

by bicucull<strong>in</strong>e (DUGGAN and MCLENNAN, 1971; CURTIS and TEBECIS, 1972),<br />

GABA seems most likely to be <strong>the</strong> <strong>in</strong>hibitory transmitter released at <strong>the</strong> term<strong>in</strong>als<br />

of thalamic <strong>in</strong>terneurones excited by impulses <strong>in</strong> axon collaterals of thalamo<br />

cortical relay neurones <strong>in</strong> <strong>the</strong> fel<strong>in</strong>e ventrobasal complex and lateral geniculate<br />

nucleus. S<strong>in</strong>ce <strong>the</strong> <strong>in</strong>hibitory effects of fl-alan<strong>in</strong>e on ventrobasal neurones


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 137<br />

(CURTIS et al., 197l b), and fl-alan<strong>in</strong>e and taur<strong>in</strong>e on lateral geniculate neurones<br />

(CURTIS and TEBECIS, 1972), appear to be reduced by both bicucull<strong>in</strong>e and<br />

strychn<strong>in</strong>e, <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s seem unlikely to be <strong>transmitters</strong> at <strong>in</strong>hibitory<br />

synapses selectively sensitive to bicucull<strong>in</strong>e.<br />

4.7. Hypothalamus<br />

Although GABA levels <strong>in</strong> <strong>the</strong> <strong>mammalian</strong> hypothalamus are relatively high (Dog:<br />

5.7~tmole/g, HAULICA, CAP,~LNA, NESTIANU, BORDE1ANU, and BADESCU, 1964.<br />

Rhesus monkey:6.2, FAHN and C6T~, 1968. Baboon: 4.48; rabbit, 5.33, OKADA<br />

et al., 1971) <strong>the</strong> distribution of this and o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s with<strong>in</strong> various nuclei<br />

has yet to be determ<strong>in</strong>ed. Aspartate, glutamate and GABA were released from<br />

electrically stimulated synaptosomes isolated from <strong>the</strong> hypothalamus (Sheep:<br />

EDWARDSON, BENNETT, and BRADFORD, 1972).<br />

Neurones of <strong>the</strong> paraventricular and supraoptic nuclei are excited by L-glutamate<br />

and related am<strong>in</strong>o <strong>acid</strong>s, and fir<strong>in</strong>g is depressed by GABA and glyc<strong>in</strong>e<br />

(Cat: BRODY, DEFEUDIS, and DEFEUDIS, 1969; BARKER, CRAYTON, and NICOLL,<br />

1971 ; NICOLL and BARKER, 1971. Rat: Moss, DYBALL, and CRoss, 1971 ; DREIFUSS<br />

and KELLY, 1972. Rabbit: Moss, URBAN, and CROSS, 1972). Excitation by L-<br />

glutamate and depression by GABA has also been observed <strong>in</strong> <strong>the</strong> ventromedial<br />

and lateral hypothalamic nuclei (Rat: OOMURA, OOYAMA, YAMAMOTO, ONO, and<br />

KOBAYASHI, 1969). The effect of glyc<strong>in</strong>e on supraoptic neurones is blocked by<br />

strychn<strong>in</strong>e, that of GABA by picrotox<strong>in</strong> and bicucull<strong>in</strong>e, and s<strong>in</strong>ce none of<br />

<strong>the</strong>se antagonists (microelectrophoretic, <strong>in</strong>travenous) reduce <strong>the</strong> recurrent <strong>in</strong>hibition<br />

of supraoptic neurones evoked by stimulat<strong>in</strong>g <strong>the</strong>ir axons with<strong>in</strong> <strong>the</strong> neurohypophysis,<br />

nei<strong>the</strong>r glyc<strong>in</strong>e nor GABA appear to be <strong>in</strong>volved as <strong>transmitters</strong> <strong>in</strong><br />

<strong>the</strong> <strong>in</strong>hibitory pathway (NICOLL and BARKER, 1971). Similar selective antagonism<br />

by strychn<strong>in</strong>e and bicucull<strong>in</strong>e has been demonstrated <strong>in</strong> <strong>the</strong> ventromedial hypothalamus<br />

(Rat: DREIFUSS and MATTHEWS, 1972). The effects of <strong>in</strong>traventricular<br />

GABA on <strong>the</strong> activity of reticulo-hypothalamic-hypophysical pathways had earlier<br />

been <strong>in</strong>terpreted <strong>in</strong> terms of a metabolic ra<strong>the</strong>r than a transmitter function<br />

(HAULICA et al., 1964).<br />

4.8. Basal Ganglia and Red Nucleus<br />

4.8.1. Substantia Nigra<br />

The very high levels of both GABA (Table 7) and GAD (Human: MULLER<br />

and LANGEMANN, 1962. Monkey: ALBERS and BRADY, 1959. Cat and human:<br />

MCGEER, MCGEER, WADA, and JUNG, 1971) <strong>in</strong> this region contrasts with only<br />

moderate amounts of GABA-T (Monkey: SALVADOR and ALBERS, 1959). In <strong>the</strong><br />

human substantia nigra <strong>the</strong> highest GABA levels (5.1-5.5/~mole/g) occur <strong>in</strong> <strong>the</strong><br />

middle portion of pars reticulata, border<strong>in</strong>g on <strong>the</strong> pars compacta (KANAZAWA,<br />

MIYATA, TOYOKURA, and OTSUKA, 1973).<br />

Most (80%) of <strong>the</strong> GAD <strong>in</strong> <strong>the</strong> cat substantia nigra seems to be localized<br />

<strong>in</strong> nerve end<strong>in</strong>gs, and <strong>the</strong> levels are only slightly higher <strong>in</strong> pars reticulata than


138 D.R. CURXIS and G.A.R. JOHNSTON :<br />

pars compacta (FoNNUM, 1972). Unilateral subthalamic hemisection <strong>in</strong>volv<strong>in</strong>g<br />

strio-nigral pathways <strong>in</strong> <strong>the</strong> rat reduces nigral GABA levels by approximately<br />

50%, unilateral striatal destruction lower<strong>in</strong>g nigral levels by only 30% (KIM,<br />

BAK, HASSLER, and OKADA, 1971). Additionally, after striatal coagulation <strong>in</strong><br />

<strong>the</strong> rat, degenerat<strong>in</strong>g boutons have been observed <strong>in</strong> <strong>the</strong> proximal axodendritic<br />

and axosomatic regions of substantia nigral neurones, some of which <strong>in</strong> aldehyde<br />

fixed tissue conta<strong>in</strong> flattened vesicles (KIM et al., 1971). There is thus neurochemical<br />

and morphological support for a GABA-releas<strong>in</strong>g strio-nigral <strong>in</strong>hibitory pathway<br />

<strong>in</strong> <strong>the</strong> rat.<br />

Table 7. Basal ganglia GABA levels (pmole/g, * Biopsy)<br />

Region Animal Level Reference<br />

Substantia nigra Human 5.8 GJESS1NG and TORVICK (1966)<br />

Human 5,3 PERRY et al. (1971 a)<br />

Human .4.2 KANAZAWA et al. (1973)<br />

Rhesus monkey 9.7 FAHN and C6T~ (1968)<br />

Baboon 9.6 OKADA et al. (1971)<br />

Rabbit 8.5 OKADA et al. (1971)<br />

Rat 10.1 OKADA et al. (1971)<br />

Gu<strong>in</strong>ea pig 9.7 OKADA et al. (1971)<br />

Ox 2.7 LOVELL and ELLIOTT (1963)<br />

Caudate Human 1.9 GJESSING and TORVICK (1966)<br />

Human 3.0 PERRY et al. (1971 a)<br />

Rhesus monkey 3.2 FAHN and C6T~ (1968)<br />

Cat 1.3" PERRY et al. (1972)<br />

Ox 3.8 LOVELL and ELLIOTT (1963)<br />

Caudate/Putamen Mouse 2.7 SHIMADA et al. (1972)<br />

Striatum Rabbit 3.5 OKADA et al. (1971)<br />

Rat 3.6 OKADA et al, (1971)<br />

Gu<strong>in</strong>ea pig 2.9 O~ADA et al. (1971)<br />

Putamen Human 2.9 GJESSING and TORVICK (1966)<br />

Putamen]Globus pallidus Human 5.7 PERRY et aI. (1971 a)<br />

Putamen Rhesus monkey 3.6 FAHN and C6T~ (1968)<br />

Globus pallidus Human 7,3 GJESSING and TORVICK (1966)<br />

Rhesus monkey 9.5 FAHN and C6T~ (1968)<br />

Baboon 8.9 O~ADA et al. (1971)<br />

Rabbit 6.4 OKADA et al. (1971)<br />

Rat 7,7 OKADA et al. (1971)<br />

Gu<strong>in</strong>ea pig 8.2 OKADA et al. (1971)<br />

Red nucleus Human 1.9 PERRY et al. (1971a)<br />

In cats, however, destruction of <strong>the</strong> striatum, exclud<strong>in</strong>g <strong>the</strong> globus pallidus,<br />

has been reported to result <strong>in</strong> no substantial reduction <strong>in</strong> nigral GAD activity<br />

(FONNUM, 1972). Unilateral lesions <strong>in</strong> <strong>the</strong> globus pallidus region lowers nigral<br />

GAD levels <strong>in</strong> cats by almost 60%, without significantly affect<strong>in</strong>g those of <strong>the</strong><br />

caudate nucleus, an observation which has been correlated with low levels of GAD<br />

<strong>in</strong> both <strong>the</strong> globus pallidus and substantia nigra of patients with Park<strong>in</strong>son's


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 139<br />

disease, and may <strong>in</strong>dicate <strong>the</strong> <strong>in</strong>volvement of GABA <strong>in</strong> a pallidal-nigral <strong>in</strong>hibitory<br />

pathway (MCGEER et al., 1971). In <strong>the</strong> presence of am<strong>in</strong>o-oxyacetic<br />

<strong>acid</strong>, slices of rat substantia nigra accumulate GABA to a greater extent than<br />

ei<strong>the</strong>r glyc<strong>in</strong>e or leuc<strong>in</strong>e (OKADA and HASSLER, 1973).<br />

Cells of <strong>the</strong> fel<strong>in</strong>e substantia nigra are excited by electrophoretic glutamate<br />

and aspartate, and fir<strong>in</strong>g is <strong>in</strong>hibited by GABA, <strong>the</strong> cells be<strong>in</strong>g relatively <strong>in</strong>sensitive<br />

to glyc<strong>in</strong>e (FELTZ, 1971). Inhibitory hyperpolariz<strong>in</strong>g potentials have been recorded<br />

from nigral neurones after stimulation with<strong>in</strong> <strong>the</strong> caudate nucleus, <strong>the</strong> long latency<br />

IPSP's (14.6-20 msec) be<strong>in</strong>g considered monosynaptic with a conduction velocity<br />

of <strong>the</strong> afferent fibres approximat<strong>in</strong>g 0.9 ms- t (Cat: YOSHIDA and PRECHT, 1971).<br />

The f<strong>in</strong>d<strong>in</strong>g that <strong>the</strong> accompany<strong>in</strong>g positive extracellular field potentials and<br />

<strong>the</strong> <strong>in</strong>hibition of spontaneously active neurones were reduced by <strong>in</strong>travenous<br />

picrotox<strong>in</strong> (2.5 mg/kg), but not by strychn<strong>in</strong>e (0.6 mg/kg), (PRECHT and YOSHIDA,<br />

1971) supports <strong>the</strong> participation of GABA as <strong>the</strong> <strong>in</strong>hibitory transmitter of this<br />

caudato-nigral pathway.<br />

4.8.2. Caudate and O<strong>the</strong>r Nuclei<br />

Table 7 <strong>in</strong>dicates that <strong>in</strong> a number of species GABA levels are moderate <strong>in</strong><br />

<strong>the</strong> caudate and putamen and higher <strong>in</strong> <strong>the</strong> globus pallidus. These figures are<br />

consistent with <strong>the</strong> levels of GAD <strong>in</strong> <strong>the</strong> caudate (16.2 gmole GABA/g dry weight/<br />

hour, putamen 16.4, and globus pallidus 33.4, Monkey: LOWE et al., 1958).<br />

Similarly high enzyme levels have been reported <strong>in</strong> <strong>the</strong> human (MrOLLER and<br />

LANGEMANN, 1962; MCGEER et al., 1971). In contrast, however, <strong>the</strong> levels of<br />

GABA-T are relatively low <strong>in</strong> <strong>the</strong> monkey globus pallidus, but higher <strong>in</strong> <strong>the</strong><br />

putamen and caudate (SALVADOR and ALBERS, 1959). High levels of GABA-T<br />

have been found <strong>in</strong> <strong>the</strong> human basal ganglia (SHERIDAN, SIMS, and PITTS, 1967).<br />

The caudate content of o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s is listed'by DEFEUDIS et al., (1970),<br />

PERRY et al., (1971 a, b, 1972) and SHIMADA et al., (1972). The uptake of GABA,<br />

aspartate and glutamate by subcellular particles of <strong>the</strong> rat striatum has been<br />

studied by GFELLER, KUHAR, and SNYDER (1971).<br />

Striatal GABA levels <strong>in</strong> <strong>the</strong> rat are not altered by transection of nigrostriatal<br />

pathways (KIM et al., 1971), and <strong>the</strong> GAD content of <strong>the</strong> cat<br />

caudate is not altered after mid-bra<strong>in</strong> lesions <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> substantia<br />

nigra (HOCKMAN, LLOYD, FARLEY, and HORNYKIEWICZ, 1971). Apart from <strong>the</strong>se<br />

observations no <strong>in</strong>formation is avai.lable regard<strong>in</strong>g <strong>the</strong> possible orig<strong>in</strong> of GABA<br />

releas<strong>in</strong>g <strong>in</strong>hibitory pathway project<strong>in</strong>g to <strong>the</strong>se basal ganglia nuclei, although<br />

if caudato-pallidal fibres are axon collaterals of <strong>the</strong> <strong>in</strong>hibitory caudato-nigral<br />

pathway, GABA may be <strong>in</strong>volved as an <strong>in</strong>hibitory transmitter with<strong>in</strong> <strong>the</strong> pallidum<br />

as well as <strong>in</strong> <strong>the</strong> substantia nigra (see YOSHIDA, RABIN, and ANDERSON, 1972).<br />

Caudate neurones are readily excited by L-glutamate or DL-homocysteate<br />

(Cat: BLOOM, COSTA, and SALMOIRAGm, 1965; MCLENNAN and YORK, 1967;<br />

CONNOR, 1970. Rabbit: HERZ and YON FREYTAG-LORINGHOVEN, 1968) and<br />

depressed by GABA (BLooM et al., 1965 ; HERZ and VON FREYTAG-LORINGHOVEN,<br />

1968). The excitant am<strong>in</strong>o <strong>acid</strong>s are also effective <strong>in</strong> <strong>the</strong> globus pallidus-putamen<br />

(Cat:YORK, 1968. Monkey: YORK, 1972).


140 D.R. CURTIS and G, A. R. JOHNSTON :<br />

4.8.3. Red Nucleus<br />

Dissected red nucleus neurones conta<strong>in</strong> moderate levels of GABA (Cat: 3.5 mM,<br />

MIYATA, OBATA, TANAKA, and OTSUKA, 1970), and overall levels of o<strong>the</strong>r am<strong>in</strong>o<br />

<strong>acid</strong>s <strong>in</strong> <strong>the</strong> human nucleus are listed by PERRY et al. (1971a). L-glutamate and<br />

L-aspartate excite neurones of <strong>the</strong> nucleus (Cat: DAVIS and VAUGHAN, 1969;<br />

ALTMANN, STEINBERG, BRUGGENCATE, and SONNHOF, 1972. Baboon: parvicellular<br />

and magnocellular neurones, DAVIS and HUFFMAN, 1969), and fur<strong>the</strong>r <strong>in</strong>vestigation<br />

seems warranted of <strong>in</strong>hibitory pathways project<strong>in</strong>g to this region as glyc<strong>in</strong>e<br />

was a more potent depressant than GABA <strong>in</strong> <strong>the</strong> baboon (DAvis and HUFFMAN,<br />

1969), but <strong>the</strong> <strong>in</strong>hibitory actions of GABA were more pronounced than those<br />

of glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> cat (ALTMANN et al., 1972).<br />

4.9. Vestibular Nuclei<br />

There is very acceptable evidence that GABA is <strong>the</strong> <strong>in</strong>hibitory transmitter released<br />

at <strong>the</strong> term<strong>in</strong>als of Purk<strong>in</strong>je cell axons <strong>in</strong> <strong>the</strong> dorsal portion of <strong>the</strong> lateral vestibular<br />

nucleus (Deiters' nucleus), although <strong>the</strong> orig<strong>in</strong> of pathways which could account<br />

for <strong>the</strong> <strong>in</strong>hibitory effect of glyc<strong>in</strong>e upon Deiters' cells rema<strong>in</strong>s unknown.<br />

In <strong>the</strong> cat, axons of anterior vermal Purk<strong>in</strong>je cells term<strong>in</strong>ate <strong>in</strong> Deiters' nucleus,<br />

<strong>the</strong> ventral portion of <strong>the</strong> lateral vestibular nucleus (LVN) be<strong>in</strong>g devoid of such<br />

afferents (WALBERG and JANSEN, 1961). The term<strong>in</strong>al portion of Purk<strong>in</strong>je axons<br />

form basket-like structures around Deiters' neurones (BRODAL, POMPEIANO, and<br />

WALBERG, 1962), <strong>the</strong> synaptic term<strong>in</strong>als are somatic and dendritic upon all types<br />

of neurone <strong>in</strong> <strong>the</strong> nucleus and conta<strong>in</strong> flattened vesicles (MUGNAINI and WALBERG,<br />

1967).<br />

4.9.1. Neurochemistry<br />

When dissected free from freeze dried tissue, <strong>the</strong> mean GABA content of s<strong>in</strong>gle<br />

neurones and adher<strong>in</strong>g term<strong>in</strong>als from <strong>the</strong> dorsal LVN is 6.3 lamole/g, that of<br />

ventral neurones be<strong>in</strong>g 2.7 gmole/g, <strong>the</strong> overall level <strong>in</strong> <strong>the</strong> vestibular nuclei<br />

be<strong>in</strong>g 1.8 gmole/g (Cat: OTSUKA et al., 1971). Similar analyses performed 9 and<br />

40 days after total removal of <strong>the</strong> vermis yielded mean values of 1.7 lamole/g<br />

for dorsal neurones, <strong>the</strong> levels for ventral neurones be<strong>in</strong>g unaltered (OTSUKA<br />

et al., 1971). The suggestion that GABA is concentrated <strong>in</strong> Purk<strong>in</strong>je term<strong>in</strong>als<br />

on Deiters' neurones ga<strong>in</strong>ed support from estimations of <strong>the</strong> levels of GAD<br />

<strong>in</strong> <strong>the</strong> vestibular nucleus before and after cerebellar ablation (FoNNUM, STORM-<br />

MATrIISEN, and WALBERG, 1970; see also FONNUM, 1972). Us<strong>in</strong>g tissue samples<br />

dissected from freeze-dried material, <strong>the</strong> activity of GAD <strong>in</strong> <strong>the</strong> dorsal portion<br />

of <strong>the</strong> nucleus (16.1 + 3.4 ~tmoles CO2/h/g dry weight) exceeded that <strong>in</strong> <strong>the</strong> ventral<br />

portion by a ratio of 2.54, and was approximately three times <strong>the</strong> activity of<br />

<strong>the</strong> enzyme <strong>in</strong> white matter dorsal to <strong>the</strong> LVN, a site expected to be rich <strong>in</strong><br />

Purk<strong>in</strong>je axons. Subsequent to destruction ofvermal Purk<strong>in</strong>je cells, <strong>the</strong> dorsal/ventral<br />

ratio of GAD activities fell to approximately 1, activity <strong>in</strong> <strong>the</strong> ventral portion


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 141<br />

rema<strong>in</strong><strong>in</strong>g unaltered and <strong>the</strong>re be<strong>in</strong>g no major disturbance of <strong>the</strong> distributions<br />

of chol<strong>in</strong>e-acetyltransferase, acetylchol<strong>in</strong>esterase, lactate dehydrogenase or succ<strong>in</strong>ate<br />

dehydrogenase. The major proportion (approx. 60%) of GAD was found<br />

<strong>in</strong> <strong>the</strong> particulate fraction of LVN homogenates (FONNUM et al., 1970), and<br />

calculations based on <strong>the</strong>se studies, and those of OTSUKA and his colleagues,<br />

suggest that <strong>the</strong> concentration of GABA with<strong>in</strong> Purk<strong>in</strong>je cell term<strong>in</strong>als on Deiters'<br />

neurones is approximately 58 raM, and <strong>the</strong> GAD activity is capable of syn<strong>the</strong>siz<strong>in</strong>g<br />

350mM GABA/h (Cat: FONNUM and WALBERG, 1973). Similar high levels of<br />

<strong>the</strong> am<strong>in</strong>o <strong>acid</strong> and enzyme have been proposed for Purk<strong>in</strong>je term<strong>in</strong>als <strong>in</strong> <strong>the</strong><br />

nucleus <strong>in</strong>terpositus, and <strong>the</strong>se values are comparable with GABA concentrations<br />

of 100-150 mM proposed for <strong>in</strong>vertebrate <strong>in</strong>hibitory axon term<strong>in</strong>als (KRAVITZ<br />

and POTTER, 1965).<br />

Detailed analyses are not available for <strong>the</strong> distribution of o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s<br />

or <strong>the</strong>ir associated enzymes <strong>in</strong> <strong>the</strong> LVN.<br />

4.9.2. Inhibition<br />

Monosynaptic <strong>in</strong>hibitory hyperpolarizations have been recorded from Deiters'<br />

neurones <strong>in</strong> response to impulses <strong>in</strong> Purk<strong>in</strong>je cell axons evoked by electrical<br />

stimulation of <strong>the</strong> anterior lobe of <strong>the</strong> cerebellum; <strong>the</strong> reversal potential of <strong>the</strong>se<br />

IPSP's is more negative than <strong>the</strong> rest<strong>in</strong>g potential and <strong>the</strong> IPSP's are reversed<br />

to depolarizations by elevation of <strong>the</strong> <strong>in</strong>tracellular chloride ion concentration<br />

(Cat: Ixo and YOSHIDA, 1966; see also ECCLES et al., 1967). Electrophoretic<br />

hydroxylam<strong>in</strong>e, but not am<strong>in</strong>o-oxyacetic <strong>acid</strong>, occasionally enhanced <strong>the</strong> amplitude<br />

of IPSP's without any modification of time course (OBATA et al., 1967).<br />

Electrophoretic GABA, which depresses <strong>the</strong> fir<strong>in</strong>g of Deiters' neurones, also hyperpolarizes<br />

<strong>the</strong> membrane, an effect associated with an <strong>in</strong>creased conductance and<br />

a reversal potential similar to that of IPSP's evoked by cerebellar stimulation<br />

(Cat: OBATA et al., 1967; OBATA, TAKEDA, and SHINOZAKI, 1970; BRUGGENCATE<br />

and ENGBERG, 1971). A hyperpolariz<strong>in</strong>g action has also been demonstrated for<br />

glyc<strong>in</strong>e, fl-alan<strong>in</strong>e, c~-am<strong>in</strong>ovaleric and e-am<strong>in</strong>ocaproic <strong>acid</strong>s, <strong>the</strong> reversal potential<br />

for hyperpolarization by glyc<strong>in</strong>e be<strong>in</strong>g <strong>in</strong>dist<strong>in</strong>guishable from that by GABA<br />

(OBATA et al,, 1970; BRUGGENCATE and ENGBERG, 1971). In all studies, however,<br />

GABA has been <strong>the</strong> most potent depressant of Deiters' neurones (see also CURTIS<br />

et al., 1971 b).<br />

A clear association between <strong>in</strong>hibition by Purk<strong>in</strong>je cell impulses and GABA<br />

has been established by <strong>the</strong> effects of strychn<strong>in</strong>e, picrotox<strong>in</strong>, and bicucull<strong>in</strong>e.<br />

The synaptic <strong>in</strong>hibition (Purk<strong>in</strong>je cell) of Deiters' neurones is <strong>in</strong>sensitive to strychn<strong>in</strong>e<br />

(Cat: Intravenous, to 0.7 mg/kg, OBATA et al., 1967. Electrophoretic, OBATA<br />

et al., 1970) but is reduced or blocked completely by picrotox<strong>in</strong> (Cat: Intravenous,<br />

5 10 mg/kg, OBATA et al., 1970) or bicucull<strong>in</strong>e (Cat: Intravenous, 0.05-0.1 mg/kg,<br />

CURTIS, DUGGAN, and FELIX, 1970a). Stychn<strong>in</strong>e reduces <strong>the</strong> <strong>in</strong>hibitory effect<br />

of glyc<strong>in</strong>e without modification of that of GABA (Electrophoretic, <strong>in</strong>travenous,<br />

OBATA et al., 1970. Electrophoretic, BRUGGENCATE and ENGBERG, 1971 ; CURTIS<br />

et al., 1970a). In contrast, selective antagonism of GABA but not of glyc<strong>in</strong>e<br />

has been demonstrated with bicucull<strong>in</strong>e (CURTIS et al., 1971 b) and with a propor-


142 D.R. CURTIS and G. A. R. JOHNSTON :<br />

tion of cells tested with picrotox<strong>in</strong> (OBATA et al., 1970; BRUGGENCATE and EN6-<br />

BERG, 1971). Diphenylam<strong>in</strong>oethanol has also been proposed as an antagonist<br />

of both synaptic and GABA <strong>in</strong>hibition of Deiters' cells (HuFEMAN and Y~M,<br />

1969; KEE et al., 1971).<br />

These pharmacological observations thus provide strong support for GABA<br />

as a major <strong>in</strong>hibitory transmitter regulat<strong>in</strong>g <strong>the</strong> fir<strong>in</strong>g of Deiters' neurones. It<br />

is probable that a proportion of GABA released <strong>in</strong>to <strong>the</strong> fourth ventricle by<br />

stimulation of <strong>the</strong> cerebellar cortex orig<strong>in</strong>ates <strong>in</strong> Deiters' nucleus (OBATA and<br />

TAKEDA, 1969), release of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> <strong>the</strong> nucleus has also been detected<br />

with push-pull cannulae (OBATA, 1972 b). GABA also appears to be <strong>the</strong> transmitter<br />

released on neurones of <strong>the</strong> superior vestibular nucleus by axons of Purk<strong>in</strong>je<br />

cells from <strong>the</strong> flocculus s<strong>in</strong>ce this <strong>in</strong>hibition is blocked by picrotox<strong>in</strong> (10-15 mg/kg)<br />

but not by strychn<strong>in</strong>e (0.3 mg/kg. Rabbit: FUKUDA, HIGHSTEIN, and ITO, 1972).<br />

It is of <strong>in</strong>terest that whereas Deiters' neurones are considered excitatory <strong>in</strong> nature<br />

(WILSON, 1971, 1972), axons of <strong>the</strong> superior vestibular nucleus probably <strong>in</strong>hibit<br />

both oculomotor and trochlear motoneurones by releas<strong>in</strong>g GABA as a transmitter<br />

(Rabbit: HIGHSTEIN, ITO, and TSUCHIYA, 1971. Cat: PRECHT, BAKER, and OKADA,<br />

1973; see Section 4.t0.1), and <strong>the</strong> reduction by strychn<strong>in</strong>e (0.15-0.6 mg/kg) and<br />

<strong>the</strong> <strong>in</strong>sensitivity to picrotox<strong>in</strong> (6 mg/kg) and bicucull<strong>in</strong>e (0.4 mg/kg) of <strong>the</strong> <strong>in</strong>hibition<br />

of cervical motoneurones follow<strong>in</strong>g activation of cells <strong>in</strong> <strong>the</strong> medial vestibular<br />

nucleus suggest that cells of this nucleus release glyc<strong>in</strong>e as an <strong>in</strong>hibitory transmitter<br />

(Cat: FELPEL, 1972).<br />

4.10. Bra<strong>in</strong> Stem<br />

Because of <strong>the</strong> complex nature of <strong>the</strong> bra<strong>in</strong> stem and medulla it is not unexpected<br />

that little data exists regard<strong>in</strong>g <strong>the</strong> detailed distribution of particular am<strong>in</strong>o <strong>acid</strong>s<br />

and related enzymes. Levels of free am<strong>in</strong>o <strong>acid</strong>s for <strong>the</strong> rat are given by SHANK<br />

and APRISON (1970) and for <strong>the</strong> mouse by SHIMADA et al., (1972).<br />

In <strong>the</strong> rat GABA levels are highest <strong>in</strong> <strong>the</strong> midbra<strong>in</strong> (3.6 gmole/g), <strong>the</strong> levels<br />

fall<strong>in</strong>g <strong>in</strong> <strong>the</strong> pons (1.7 lamole/g) and medulla (1.6 gmole/g, SHANK and AI'RISON,<br />

1970). In contrast, glyc<strong>in</strong>e levels progressively <strong>in</strong>crease <strong>in</strong> a caudal direction<br />

towards <strong>the</strong> relatively high values of sp<strong>in</strong>al tissue both <strong>in</strong> <strong>the</strong> cat (APRISON et<br />

al., 1969, midbra<strong>in</strong> 2 ~mole/g, pons 3 and medulla 3.4) and rat (SHANK and<br />

APRISON, 1970, 1.6, 3 and 4 respectively). The presence <strong>in</strong> <strong>the</strong> pons and medulla,<br />

but not <strong>in</strong> <strong>the</strong> midbra<strong>in</strong> and more cranial tissue, of a high aff<strong>in</strong>ity uptake <strong>system</strong><br />

for glyc<strong>in</strong>e, similar to that of <strong>the</strong> cord, has suggested <strong>the</strong> importance of glyc<strong>in</strong>e<br />

as a bra<strong>in</strong> stem transmitter (JOHNSTON and IVERSEN, 1971 ; ARREGUI et al., 1972).<br />

Taur<strong>in</strong>e levels fall <strong>in</strong> a caudal direction whereas aspartate and glutamate are<br />

fairly evenly distributed throughout <strong>the</strong> bra<strong>in</strong> stem.<br />

4.10.1. Cranial Motor Nuclei<br />

The motor nuclei of <strong>the</strong> extraoeular muscles conta<strong>in</strong> relatively high levels of<br />

GABA (Rabbit: oculomotor, 4.5 ~tmole/g, OKADA et al., 1971. Cat: trochlear,


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 143<br />

3.6 lamole/g, PRECHT et al., 1973) and isolated s<strong>in</strong>gle oculomotor cells conta<strong>in</strong><br />

higher concentrations (5 mM, assum<strong>in</strong>g uniform distribution <strong>in</strong> dissected neurones<br />

with attached synaptic term<strong>in</strong>als. Cat: MIYATA et al., 1970) than ei<strong>the</strong>r<br />

trigem<strong>in</strong>al motoneurones (4.2 mM), nucleus ambiguus cells (3.0 mM), facial<br />

motoneurones (2.4 raM) or sp<strong>in</strong>al motoneurones (1 raM. Cat: MIYATA et al.,<br />

1970; OTSUKA and MIYATA, 1972). GABA levels <strong>in</strong> <strong>the</strong> region of <strong>the</strong> oculomotor<br />

and trochlear nuclei are reduced by section of <strong>the</strong> ipsilateral medial longitud<strong>in</strong>al<br />

fasciculus, and <strong>the</strong>re is physiological evidence for an <strong>in</strong>hibitory tract with<strong>in</strong> this<br />

fasciculus which orig<strong>in</strong>ates <strong>in</strong> <strong>the</strong> superior vestibular nucleus (Cat: PRECHT,<br />

et a1.,1973). Seventy five percent of <strong>the</strong> GAD of <strong>the</strong> oculomotor nucleus can<br />

be isolated <strong>in</strong> particulate fractions, and levels of <strong>the</strong> enzyme <strong>in</strong> both this and<br />

<strong>the</strong> trochlear nucleus fall after lesions <strong>in</strong> vestibular nuclei (FoNNUM, 1972), observations<br />

which suggest that a high proportion of GABA and GAD <strong>in</strong> <strong>the</strong>se ocular<br />

motor nuclei could be <strong>in</strong> term<strong>in</strong>als of fibres from <strong>the</strong> vestibular complex.<br />

Electrical stimulation of <strong>the</strong> vestibular nerve <strong>in</strong>hibits neurones of <strong>the</strong> ipsilateral<br />

oculomotor (Rabbit: HICHSTEIN, ITO and TSUCHIYA, 1971) and trochlear (Cat:<br />

PRE¢I4T and BAKER, 1972) nuclei, an effect mediated by <strong>in</strong>hibitory neurones<br />

with<strong>in</strong> <strong>the</strong> superior vestibular nucleus. The IPSP's of <strong>the</strong>se motoneurones were<br />

reversed by elevation of <strong>in</strong>tracellular chloride concentrations, and <strong>in</strong> <strong>the</strong> case<br />

of trochlear neurones axosomatic <strong>in</strong>hibitory synapses were proposed, activation<br />

of which selectively <strong>in</strong>creased membrane chloride conductance (LLINAS and<br />

BAKER, 1972). The fir<strong>in</strong>g ofoculomotor neurones was depressed by electrophoretic<br />

glyc<strong>in</strong>e and GABA, <strong>the</strong> effect of glyc<strong>in</strong>e be<strong>in</strong>g selectively blocked by electrophoretic<br />

strychn<strong>in</strong>e, that of GABA by picrotox<strong>in</strong> (Rabbit: OBATA and HIGHSTEIN,<br />

1970). S<strong>in</strong>ce strychn<strong>in</strong>e (Rabbit: 0.2 mg/kg <strong>in</strong>travenous, HIGHSTEIN et a1.,1971)<br />

does not affect vestibular <strong>in</strong>hibition of oculomotor neurones, whereas this <strong>in</strong>hibition<br />

was reduced by picrotox<strong>in</strong> (Rabbit: Intravenous, 3-10 mg/kg, abolished by<br />

10-20 mg/kg, HIGHSTEIN et al., 1971. Electrophoretic, OBATA and HIGHSTEIN,<br />

1970), and both picrotox<strong>in</strong> (4 mg/kg) and bicucull<strong>in</strong>e (1 mg/kg) block vestibular<br />

<strong>in</strong>hibition of trochlear neurones (Cat: PRECHT, BAKER, and OKADA, 1973), <strong>the</strong><br />

synaptically released transmitter seems most likely to be GABA.<br />

Both glyc<strong>in</strong>e and GABA may be <strong>in</strong>volved <strong>in</strong> <strong>the</strong> <strong>in</strong>hibition of masseter<br />

motoneurones: short latency <strong>in</strong>hibitions by impulses <strong>in</strong> <strong>the</strong> <strong>in</strong>ferior dental nerve<br />

(Cat: KIDOKORA, KUBOTA, SHUTO, and SUMtNO, 1968) or follow<strong>in</strong>g electrical<br />

stimulation of <strong>the</strong> contralateral orbital gyrus (Cat: SAUERLAND and MIZUNO,<br />

1969) were reduced by strychn<strong>in</strong>e, whereas longer latency <strong>in</strong>hibitions from <strong>the</strong>se<br />

sources were sensitive to picrotox<strong>in</strong> (see also GOLDBERG, 1972). A picrotox<strong>in</strong>sensitive<br />

<strong>in</strong>hibition of l<strong>in</strong>gual motoneurones by impulses <strong>in</strong> high threshold masseter<br />

afferents has also been described (NAKAMURA and Wu, 1970).<br />

There are relatively high levels of GABA <strong>in</strong> <strong>the</strong> <strong>in</strong>ferior collieuli of various<br />

mammals (Rhesus monkey: 4.7 gmole/kg, FAUN and C6T~, 1968. Baboon: 5.5,<br />

Rabbit: 3, Rat: 5, and Gu<strong>in</strong>ea pig: 4.7, OKADA et al., 1971), and alterations<br />

<strong>in</strong> <strong>the</strong> response of <strong>in</strong>ferior collicular neurones to auditory stimuli by locally<br />

<strong>in</strong>jected picrotox<strong>in</strong> (WATANABE and SIMADA, 1971) <strong>in</strong>dicate that GABA may<br />

be an <strong>in</strong>hibitory transmitter <strong>in</strong> this region.<br />

Both glyc<strong>in</strong>e and GABA <strong>in</strong>hibit <strong>the</strong> fir<strong>in</strong>g of hypoglossal motoneurones (Cat,<br />

rabbit: BRUGGENCATE and SONNHOF, 1971. Rat: DUGGAN, LODGE, and BISCOE,


144 D.R. CURTIS and G.A.R. JOHNSTON :<br />

1973), glyc<strong>in</strong>e usually be<strong>in</strong>g more effective than GABA when <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s<br />

are adm<strong>in</strong>istered near cell bodies, with a reverse order of relative potency when<br />

<strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s were adm<strong>in</strong>istered more dorsally near dendrites (Rabbit: ALa'-<br />

MANN, BRUGGENCATE, and SONNHOF, 1972). Both of <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s, and flalan<strong>in</strong>e<br />

and b-am<strong>in</strong>ovaleric <strong>acid</strong>, <strong>in</strong>crease <strong>the</strong> membrane conductance of hypoglossal<br />

motoneurones and hyperpolarize <strong>the</strong>se cells (BRUGGENCATE and SONNHOF,<br />

1972). Fur<strong>the</strong>rmore <strong>the</strong> <strong>in</strong>hibitory effect of glyc<strong>in</strong>e is selectively blocked by strychn<strong>in</strong>e<br />

(Cat: BRUGGENCATE and NONNHOF, 1972. Rat: DUGGAN et a1.,1973) and<br />

that of GABA by picrotox<strong>in</strong> (BRUGGENCATE and SONNHOF, 1972) and bicucull<strong>in</strong>e<br />

(DUGGAN et al., 1973). S<strong>in</strong>ce IPSP's recorded from hypoglossal motoneurones<br />

<strong>in</strong> response to impulses <strong>in</strong> <strong>the</strong> l<strong>in</strong>gual nerve are reduced by strychn<strong>in</strong>e (Cat:<br />

Intravenous 0.08 mg/kg, MORIMOTO, TAKATA, and KAWAMURA, 1968), and <strong>in</strong>hibition<br />

evoked by impulses <strong>in</strong> <strong>the</strong> glossopharyngeal nerve, and associated with<br />

chloride sensitive IPSP's, can be reduced by <strong>in</strong>travenous or electrophoretic strychn<strong>in</strong>e<br />

but not by electrophoretic bicucull<strong>in</strong>e (Rat: DUGGAN et al., 1973), glyc<strong>in</strong>e<br />

can be assumed to be an <strong>in</strong>hibitory transmitter <strong>in</strong>fluenc<strong>in</strong>g hypoglossal motoneurones<br />

most probably at axosomatic synapses. The relatively higher sensitivity<br />

of <strong>the</strong> dendritic regions of <strong>the</strong>se cells to GABA may be associated with an<br />

<strong>in</strong>hibitory transmitter function of this am<strong>in</strong>o <strong>acid</strong> at axodendritic synapses (see<br />

ALTMANN et al., 1972). It is thus significant that impulses <strong>in</strong> high threshold hypoglossal<br />

afferents have been reported to produce long latency and duration chloridesensitive<br />

IPSP's <strong>in</strong> hypoglossal motoneurones, an <strong>in</strong>hibitory effect blocked by<br />

picrotox<strong>in</strong> (2mg/kg) but not by strychn<strong>in</strong>e (0.2ms/ks, Cat: MORIMOTO and<br />

KAWAMURA, 1972).<br />

4.10.2. Reticular Formation<br />

In <strong>the</strong> bra<strong>in</strong> stem and medullary reticular formation most <strong>in</strong>vestigations have<br />

been concerned with anatomically located "reticular" neurones, although <strong>the</strong><br />

sensitivity of antidromically identified reticulosp<strong>in</strong>al neurones to depressant<br />

am<strong>in</strong>o <strong>acid</strong>s has been correlated with <strong>the</strong> operation of certa<strong>in</strong> <strong>in</strong>hibitory pathways.<br />

Medullary reticulosp<strong>in</strong>al neurones are approximately equally sensitive to L-<br />

glutamate and L-aspartate (Cat: TEB~:ClS, 1973b)as are reticular neurones (Cat:<br />

H/SSLI and TEB~CIS, 1970). In both of <strong>the</strong>se studies DL-homocysteate was a<br />

more potent excitant than ei<strong>the</strong>r naturally occurr<strong>in</strong>g <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>, although<br />

ano<strong>the</strong>r report suggests that unlike <strong>the</strong> situation elsewhere <strong>in</strong> <strong>the</strong> <strong>nervous</strong><br />

<strong>system</strong>, medullary reticular neurones excited by DL-homocysteate were not<br />

always excited by L-glutamate, and vice versa (Cat: BOAKES et al., 1970).<br />

Lysergic <strong>acid</strong> diethylamide (LSD) has been reported to block <strong>the</strong> excitation<br />

of medullary reticular neurones by 5-hydroxytryptam<strong>in</strong>e and L-glutamate, <strong>the</strong><br />

excitatory action of acetylchol<strong>in</strong>e, DL-homocysteate, noradrenal<strong>in</strong>e and of L-<br />

glutamate on cells depressed by 5-hydroxytryptam<strong>in</strong>e, be<strong>in</strong>g unaffected (Cat:<br />

BOAKES et al., 1970). In contrast, <strong>in</strong> <strong>the</strong> rat, LSD reduced <strong>the</strong> effect of L-glutamate<br />

on neurones with<strong>in</strong> <strong>the</strong> dorsal and median raph6 nuclei which were depressed<br />

by 5-hydroxytryptam<strong>in</strong>e (Rat: AGHAJANIAN, HAIGLER, and BLOOM, 1972).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 145<br />

Of <strong>the</strong> depressant am<strong>in</strong>o <strong>acid</strong>s, glyc<strong>in</strong>e was usually more effective than GABA<br />

<strong>in</strong> reduc<strong>in</strong>g <strong>the</strong> fir<strong>in</strong>g rate of reticular (H6sLI and TEBEClS, 1970) and reticulosp<strong>in</strong>al<br />

(TEB~CIS and DI MARIA, 1972 b) neurones <strong>in</strong> <strong>the</strong> cat. When adm<strong>in</strong>istered extracellulary<br />

glyc<strong>in</strong>e <strong>in</strong>creased <strong>the</strong> membrane conductance of reticular neurones, produc<strong>in</strong>g<br />

a chloride sensitive hyperpolarization: reticular neurones (HOsLI, TEBF.CIS, and<br />

HAAS, 1971 ; H6SLI and HAAS, 1972); reticulosp<strong>in</strong>al neurones (TEB~;ClS and ISHIKA-<br />

WA, 1973). The latter cells are also hyperpolarized by GABA. The <strong>in</strong>hibitory<br />

effect of glyc<strong>in</strong>e (and of fl-alan<strong>in</strong>e) is readily reduced by strychn<strong>in</strong>e which shows<br />

little antagonism towards GABA (H6sLI and TEB~CIS, 1970; TEB~CIS and<br />

DI MARIA, 1972). On <strong>the</strong> o<strong>the</strong>r hand selective antagonism of ei<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong><br />

has not been demonstrated us<strong>in</strong>g picrotox<strong>in</strong> (Electrophoretic, <strong>in</strong>travenous, Cat:<br />

H6SLI and TEB~ClS, 1970) and both bicucull<strong>in</strong>e (reticular neurones, TEB~ClS,<br />

H6SLI, and HAAS, 1971) and bicucull<strong>in</strong>e methochloride (reticulosp<strong>in</strong>al neurones,<br />

TEBEClS, 1973b) reduced <strong>the</strong> depressant action of glyc<strong>in</strong>e and GABA, although<br />

<strong>the</strong> effect of glyc<strong>in</strong>e was usually less sensitive to <strong>the</strong>se alkaloids than that of<br />

GABA. The selectivity of bicucull<strong>in</strong>e towards GABA receptors on reticular neurones<br />

is thus less than that demonstrated <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord. The relatively weak<br />

<strong>in</strong>hibitory effect of imidazole-4-acetate on reticular neurones was not affected<br />

by strychn<strong>in</strong>e, but was reduced by bicucull<strong>in</strong>e (HAAS et al., 1972). Fur<strong>the</strong>rmore<br />

strychn<strong>in</strong>e, but not bicucull<strong>in</strong>e, selectively blocked <strong>the</strong> <strong>in</strong>hibitory effect of taur<strong>in</strong>e<br />

on medullary reticular neurones (HAAS and H6SLI, 1973 a).<br />

On <strong>the</strong> basis of <strong>the</strong> effects of strychn<strong>in</strong>e on <strong>the</strong> <strong>in</strong>hibition of medulary reticulosp<strong>in</strong>al<br />

neurones by stimulation of reticulosp<strong>in</strong>al axons (and presumably mediated<br />

via axon collaterals: ITO, UDO, and MAYO, 1970) glyc<strong>in</strong>e has been proposed<br />

as an <strong>in</strong>hibitory transmitter released by one type of neurone <strong>in</strong> <strong>the</strong> ventrocaudal<br />

portion of <strong>the</strong> medial medullary reticular formation (TEBECIS and DIMARIA,<br />

1972; TEBECIS and ISHIKAWA, 1973). A strychn<strong>in</strong>e sensitive <strong>in</strong>hibition of reticulosp<strong>in</strong>al<br />

neurones could also be evoked by stimulation <strong>in</strong> <strong>the</strong> medial pont<strong>in</strong>e reticular<br />

formation (TEBF.CIS and DI MARIA, 1972). These types of relatively short latency<br />

and duration <strong>in</strong>hibition were usually <strong>in</strong>sensitive to bicucull<strong>in</strong>e (but see TEB~CIS,<br />

1973b) and some evidence has also been provided for a picrotox<strong>in</strong>-sensitive<br />

(2 mg/kg <strong>in</strong>travenous) long duration <strong>in</strong>hibition of reticulosp<strong>in</strong>al neurones, evoked<br />

by ventral sp<strong>in</strong>al cord stimulation, which may <strong>in</strong>volve GABA (Cat: TEBECIS<br />

and ISHIKAWA, 1973). Strychn<strong>in</strong>e also suppressed <strong>the</strong> <strong>in</strong>hibition of medullary<br />

reticular neurones by impulses <strong>in</strong> limb nerves (HAAS and HOSLI, 1973 b),<br />

4.11. Dorsal Column Nuclei<br />

4.11.1. Excitation<br />

In <strong>the</strong> cat, glutamate levels with<strong>in</strong> <strong>the</strong> dorsal medullary region conta<strong>in</strong><strong>in</strong>g primary<br />

sensory nuclei are significantly higher (6.93 +0.53 ~tmole/g) tkan those of <strong>the</strong><br />

ventral medulia (5.94+ 0.30, JOHNSON and APRISON, 1970), f<strong>in</strong>d<strong>in</strong>gs consistent<br />

with <strong>the</strong> high levels of this am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> dorsal roots and columns.<br />

Neurones of <strong>the</strong> gracile and cuneate nuclei are readily excited by L-glutamate<br />

(Cat: MEYER, 1965; STEINER and MEYER, 1966; GALINDO, KRNJEVIC, and


146 D.R. CURTIS and G. A. R. JOHNSTON :<br />

SCHWARTZ, 1967, 1968), <strong>the</strong> effect of D-glutamate be<strong>in</strong>g somewhat weaker<br />

(GALINDO et al., 1967). Although both <strong>the</strong> excitatory actions of L-glutamate,<br />

L-aspartate and <strong>the</strong> synaptic fir<strong>in</strong>g of cuneate neurones were reduced by 1-hydroxy-3-am<strong>in</strong>opyrrolidone-2,<br />

support<strong>in</strong>g an excitatory transmitter function for <strong>the</strong><br />

am<strong>in</strong>o <strong>acid</strong> (Cat: DAVIES and WATKINS, 1973), <strong>the</strong> specificity of <strong>the</strong> antagonist<br />

towards o<strong>the</strong>r excitants of <strong>the</strong>se neurones has not been determ<strong>in</strong>ed. When adm<strong>in</strong>istered<br />

topically to <strong>the</strong>se nuclei L-aspartate (10-2 M) was apparently without effect<br />

whereas, L-glutamate (10- 4-10 2 M) depolarized term<strong>in</strong>als of afferent fibres (Rat:<br />

DAVIDSON and SOVTHWICK, 1971). S<strong>in</strong>ce this effect was not observed after <strong>the</strong><br />

adm<strong>in</strong>istration of sufficient picrotox<strong>in</strong> to suppress <strong>the</strong> depolarization of term<strong>in</strong>als<br />

by condition<strong>in</strong>g volleys <strong>in</strong> afferent fibres, <strong>the</strong> depolarization of by L-glutamate<br />

has been considered to be unrelated to "presynaptic" <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> cuneate<br />

nucleus (DAVIDSON and SOUTHWICK, 1971).<br />

4.11.2. Inhibition<br />

Although <strong>the</strong> levels of <strong>in</strong>dividual am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> gracile and cuneate nuclei<br />

have not been determ<strong>in</strong>ed, both glyc<strong>in</strong>e and GABA have been considered as<br />

possible <strong>in</strong>hibitory <strong>transmitters</strong>. When adm<strong>in</strong>istered electrophoretically <strong>the</strong>se<br />

am<strong>in</strong>o <strong>acid</strong>s depress <strong>the</strong> activity of cuneate neurones; <strong>in</strong> general glyc<strong>in</strong>e is as<br />

effective as GABA although proprioceptive cells appear more sensitive to <strong>the</strong><br />

latter am<strong>in</strong>o <strong>acid</strong> (Cat: GALINOO et al., 1967). The effect ofglyc<strong>in</strong>e can be blocked<br />

by strychn<strong>in</strong>e, that of GABA by picrotox<strong>in</strong> (Cat: GALINOO, 1969) or bicucull<strong>in</strong>e<br />

(Cat: KELLY and RENAUD, 1971).<br />

A number of studies have been concerned with <strong>the</strong> effects of am<strong>in</strong>o <strong>acid</strong>s<br />

on <strong>the</strong> excitability of cuneate presynaptic term<strong>in</strong>als, particularly <strong>in</strong> relation to<br />

<strong>the</strong> possible role of GABA <strong>in</strong> "presynaptic" <strong>in</strong>hibition. Although both glyc<strong>in</strong>e<br />

and GABA (electrophoretic) have been shown to dim<strong>in</strong>ish <strong>the</strong> excitability of<br />

<strong>the</strong> term<strong>in</strong>als of primary afferent fibres with<strong>in</strong> <strong>the</strong> cuneate nucleus (GALINDO,<br />

1969), <strong>the</strong> effect of GABA be<strong>in</strong>g blocked by electrophoretic picrotox<strong>in</strong>, most<br />

experiments have <strong>in</strong>volved topical adm<strong>in</strong>istration of am<strong>in</strong>o <strong>acid</strong> solutions. Under<br />

<strong>the</strong>se conditions glyc<strong>in</strong>e (10- 2 M) reduced (Rat: DAVIDSON and SOUTHWICK,<br />

1971), whereas GABA (10 -4 10 1M) enhanced presynaptic excitability (Cat:<br />

GALINDO, 1969. Rat: DAVIDSON and SOUTHWICK, 1971). This effect of GABA<br />

was blocked by picrotox<strong>in</strong> (GALINDO, t969); alternatively topical GABA<br />

blocked <strong>the</strong> suppression by picrotox<strong>in</strong> of primary afferent depolarization (PAD)<br />

<strong>in</strong>duced by afferent volleys (DAvIDSON and SOUTHWlCK, 1971).<br />

Both short (20 msec) and long (about 200 msec) duration postsynaptic <strong>in</strong>hibition,<br />

and prolonged "presynaptic" <strong>in</strong>hibition have been proposed to account<br />

for <strong>the</strong> depression of transmission through <strong>the</strong> cuneate nucleus which follows<br />

cutaneous afferent volleys (ANDERSEN, ECCLES, OSHIMA, and SCHMIDT, 1964;<br />

ANOERSEN, ETr~OLM, and GORDON, 1970). "Presynaptic" <strong>in</strong>hibition has frequently<br />

been assessed by <strong>the</strong> presence of afferent term<strong>in</strong>al depolarization, and <strong>the</strong><br />

<strong>in</strong>volvement of GABA <strong>in</strong> <strong>the</strong>se <strong>in</strong>hibitory processes is suggested by <strong>the</strong><br />

follow<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs: semicarbazide lowered <strong>central</strong> GABA levels and reduced<br />

afferent term<strong>in</strong>al depolarization (Cat: BANNA and JABBUR, 1971); afferent


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 147<br />

term<strong>in</strong>al depolarization was reduced by picrotox<strong>in</strong> (Cat: BANNA and JABBUR,<br />

1969. Rat: DAVIDSON and REISINE, 1971) and bicucull<strong>in</strong>e (DAvIDSON and REISINE,<br />

1971. Cat: BANNA, NACCACHE, and JABBUR, 1972); <strong>the</strong> <strong>in</strong>hibition of <strong>the</strong> fir<strong>in</strong>g<br />

of cuneate neurones by a prior cutaneous volley was blocked by picrotox<strong>in</strong><br />

(Cat: BOYD, MERITT and GARDNER, 1966; BANNA and JABBUR, 1969) and bicucull<strong>in</strong>e<br />

(Cat: KELLY and RENAUD, 1971); bicucull<strong>in</strong>e also blocked <strong>the</strong> <strong>in</strong>hibition<br />

of cuneate neurones by volleys <strong>in</strong> <strong>the</strong> pyramidal tract (KELLY and RENAUD,<br />

1971). Although strychn<strong>in</strong>e has been reported to dim<strong>in</strong>ish short latency <strong>in</strong>hibition<br />

<strong>in</strong> <strong>the</strong> cuneate nucleus (BOYD et al., 1966; BANNA and JABBUR, 1969) no<br />

clear evidence has been provided for a glyc<strong>in</strong>e-releas<strong>in</strong>g <strong>in</strong>hibitory pathway<br />

term<strong>in</strong>at<strong>in</strong>g <strong>in</strong> this nucleus.<br />

The consensus of op<strong>in</strong>ion seems to be that <strong>in</strong>tra-nuclear <strong>in</strong>hibitory <strong>in</strong>terneurones<br />

release GABA as a hyperpolariz<strong>in</strong>g <strong>in</strong>hibitory transmitter upon cuneate<br />

relay neurones, and that GABA possibly also depolarizes <strong>the</strong> term<strong>in</strong>als of afferent<br />

fibres with<strong>in</strong> <strong>the</strong> nucleus, an effect which will be discussed <strong>in</strong> more detail <strong>in</strong><br />

<strong>the</strong> next section.<br />

4.12. Sp<strong>in</strong>al Cord<br />

The considerable body of <strong>in</strong>formation concerned with am<strong>in</strong>o <strong>acid</strong> <strong>transmitters</strong><br />

<strong>in</strong> <strong>the</strong> cord is largely <strong>the</strong> consequence of <strong>the</strong> relative ease with which this region<br />

can be studied chemically, physiologically and pharmacologically. Most <strong>in</strong>vestigations<br />

have been concerned with lumbar segments of <strong>the</strong> cat.<br />

4.12.1. Neurochemistry<br />

Overall am<strong>in</strong>o <strong>acid</strong> levels are of value only for comparison with o<strong>the</strong>r regions<br />

of <strong>the</strong> <strong>nervous</strong> <strong>system</strong>, and more useful <strong>in</strong>formation relative to sp<strong>in</strong>al mechanisms<br />

has been derived from analyses of <strong>in</strong>trasp<strong>in</strong>al am<strong>in</strong>o <strong>acid</strong> distributions. The<br />

major observations are summarized for lumbar segments of <strong>the</strong> cat <strong>in</strong> Table 8,<br />

limited but similar studies have been made on o<strong>the</strong>r mammals (APRISON et al.,<br />

1969; SHANK and APRISON, 1970; DUGGAN and JOHNSTON, 1970b). Some of<br />

<strong>the</strong> discrepancies between figures reported by different groups may be associated<br />

with different methods of am<strong>in</strong>o <strong>acid</strong> extraction and estimation. The distribution<br />

of enzymes associated with am<strong>in</strong>o <strong>acid</strong> metabolism is given <strong>in</strong> Table 9.<br />

Table 8 also <strong>in</strong>cludes figures for peripheral nerves (see also MARKS, DATTA,<br />

and LAJTHA, 1970), <strong>the</strong>se levels may represent am<strong>in</strong>o <strong>acid</strong>s required for metabolic<br />

purposes, <strong>the</strong> relatively high levels with<strong>in</strong> dorsal root ganglia possibly be<strong>in</strong>g<br />

associated with prote<strong>in</strong> syn<strong>the</strong>sis by cell bodies. It should also be recalled that<br />

DALE (t935) anticipated an association between <strong>the</strong> transmitter of axon-reflex<br />

vasodilation and that at <strong>central</strong> synapses of <strong>the</strong> same afferent fibres.<br />

One useful technique applicable to <strong>the</strong> cord is <strong>the</strong> analysis of alterations<br />

of am<strong>in</strong>o <strong>acid</strong>s after selective lesions of neurones or pathways. H<strong>in</strong>dlimb rigidity<br />

can be produced <strong>in</strong> <strong>the</strong> cat by temporary occlusion of <strong>the</strong> thoracic aorta which<br />

results <strong>in</strong> a loss of small neurones <strong>in</strong> <strong>the</strong> <strong>central</strong> portion of <strong>the</strong> lumbar grey<br />

matter, <strong>in</strong>volv<strong>in</strong>g dorsal and ventral grey, with little destruction of motoneurones


148 D.R. CURTIS and G.A.R. JOHNSTON:<br />

..-.,<br />

~o 2-<br />

~o 2-<br />

Z ~<br />

~'~ ~o<br />

~,~ z<br />

.~ ~,~ o <<br />

Z<br />

Z<br />

~o~ o<br />

~ <<br />

~,o<br />

~Zz~<br />

~z<br />

Z Z<br />

© ©<br />

2~<br />

©<br />

;><br />

~. o r-:<br />

er~<br />

"2. ~<br />

o.~.~<br />

;><br />

o, #" ,,~<br />

~.~<br />

,q. ~.<br />

o~a~a<br />

;><br />

-#'0o<br />

c9<br />

r',l ~<br />

m 0<br />

Z ~ N<br />

oG'~,<br />

cD<br />

~ ~,.h t¢3 t ~<br />

~.m.<br />

,d<br />

¢q<br />

"R.<br />

,q<br />

oq<br />

",O O'~ '-~<br />

o,<br />

m ~


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System<br />

149<br />

Table 9. Enzyme levels <strong>in</strong> extracts of cat sp<strong>in</strong>al cord and roots (~tmole/hr/g wet tissue)<br />

Enzyme Dorsal Dorsal Dorsal Ventral Ventral Ventral Reference<br />

roots white grey grey white roots<br />

Aspartate 545 2 454 5 412 5 418 2 480 537 GRAHAM and APRISON<br />

transam<strong>in</strong>ase (1969)<br />

Glutamate 17 149 446 448 139 16 GRAHAM and APRISON<br />

dehydrogenase (1969)<br />

Glutam<strong>in</strong>e 7 20 67 67 19 4 GRAHAM and APRISON<br />

syn<strong>the</strong>tase (I 969)<br />

Glutam<strong>in</strong>ase 12 67 397 331 66 13 GRAHAM and APRISON<br />

(1969)<br />

Glutamate 4 0 13 a 7 0 3 GRAHAM and APR1SON<br />

decarboxylase (1969)<br />

GABA 1 3 14 13 3 1 GRAHAM and APRISON<br />

transam<strong>in</strong>ase (1969)<br />

D-<strong>Am<strong>in</strong>o</strong> <strong>acid</strong> 0.8 2.2 2.1 0.4 DE MARCHI and<br />

oxidase JOHNSTON (1969)<br />

Glyc<strong>in</strong>e 6.6 9.9 9.6 7 JOHNSTON, VITALI<br />

transam<strong>in</strong>ase and ALEXANDER (1970)<br />

Ser<strong>in</strong>e hydroxy- 2.5 4.3 a 5 2.5 DAVIES and<br />

methyltransferase JOHNSTON (1973)<br />

a Levels <strong>in</strong> dorsal grey significantly different from those <strong>in</strong> ventral grey.<br />

(DAvIDOFF et al., 1967). In <strong>the</strong>se animals, which showed no response to nociceptive<br />

cutaneous stimulation <strong>in</strong> <strong>the</strong> affected segments, sp<strong>in</strong>al monosynaptic reflexes<br />

were enhanced, polysynaptic reflexes were reduced, and although some evidence<br />

has been obta<strong>in</strong>ed for antidromic <strong>in</strong>hibition mediated by Renshaw cells, details<br />

have not been published regard<strong>in</strong>g o<strong>the</strong>r types of sp<strong>in</strong>al <strong>in</strong>hibition (MuRAYAMA<br />

and SMITH, 1965). In <strong>the</strong> rat; however, h<strong>in</strong>dlimb rigidity produced <strong>in</strong> <strong>the</strong> same<br />

fashion is accompanied by reduced responses to pa<strong>in</strong>ful cutaneous stimulation,<br />

enhanced monosynaptic and reduced polysynaptic reflexes, and reduction of<br />

two types of <strong>in</strong>hibition of ankle extensor motoneurones: short latency ("postsynaptic")<br />

<strong>in</strong>hibition by impulses <strong>in</strong> <strong>the</strong> deep peroneal nerve and prolonged<br />

(" presynaptic ") <strong>in</strong>hibition by repetitive impulses <strong>in</strong> <strong>the</strong> posterior biceps nerve<br />

(MATSUSHITA and SMITH, 1970). There is thus evidence <strong>in</strong> <strong>the</strong>se studies of a loss<br />

of both excitatory and <strong>in</strong>hibitory sp<strong>in</strong>al mechanisms associated with <strong>in</strong>terneurones.<br />

Useful <strong>in</strong>formation might also. be provided by transection of dorsal roots,<br />

although subsequent alterations <strong>in</strong> am<strong>in</strong>o <strong>acid</strong> levels and associated enzymes<br />

may be complicated by disturbances of <strong>the</strong> blood supply (Rat: SUGAR and GER-<br />

ARD, 1940. Cat: CHAMBERS, ELDRED, and EGGETT, 1972) <strong>in</strong> addition to loss of<br />

primary afferent fibres. With both aortic occlusion and de-afferentation, histological<br />

control and unchanged levels of some metabolites are required to exclude<br />

"non-specific" loses of am<strong>in</strong>o <strong>acid</strong>s produced by <strong>in</strong>farction, oedema, gliosis or<br />

cavity formation (see DAVIDOEE et al., 1967).


150 D.R. CURTIS and G. A. R. JOHNSTON:<br />

4.12.1.1. Aspartate<br />

With<strong>in</strong> <strong>the</strong> cord ventral grey levels are higher than dorsal grey. An association<br />

with small neurones, presumably <strong>in</strong>terneurones, has been suggested by <strong>the</strong> significant<br />

reduction <strong>in</strong> aspartate produced by temporary aortic occlusion, <strong>the</strong> reduced<br />

levels of this am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> dorsal and ventral grey matter correlat<strong>in</strong>g with <strong>the</strong><br />

reduced count of small neurones <strong>in</strong> <strong>the</strong> <strong>central</strong> grey region (DAvIDOFF et al.,<br />

1967).<br />

As shown <strong>in</strong> Table 9 <strong>the</strong> activity of aspartate am<strong>in</strong>otransferase does not<br />

seem to correspond closely with that of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> (Table 8).<br />

4.12.1.2. Glutamate<br />

L-Glutamate is <strong>the</strong> only putative am<strong>in</strong>o <strong>acid</strong> transmitter for which dorsal root<br />

levels exceed those of <strong>the</strong> ventral root (Table 8), as might be expected of a<br />

transmitter released by primary afferent fibres. Similar differences occur <strong>in</strong> <strong>the</strong><br />

dog and rat (DUGGAN and JOHNSTON, 1970b). The high level of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong><br />

<strong>in</strong> dorsal root ganglia, and <strong>the</strong> gradient along <strong>the</strong> root (Cat': ganglion 4.5 #mole/g,<br />

dorsal root distal to cord 4.5, proximal to cord 3.4, DUGGAN and JOHNSTON,<br />

1970a), which contrasts to <strong>the</strong> approximately equal levels of o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s<br />

<strong>in</strong> peripheral nerves and dorsal roots (Table 8), suggests that glutamate syn<strong>the</strong>sised<br />

<strong>in</strong> ganglion cells is transported towards <strong>central</strong> term<strong>in</strong>als. No such dorsal root<br />

gradient was present <strong>in</strong> <strong>the</strong>dog (DuGGAN and JOHNSTON, 1970b). Fur<strong>the</strong>r <strong>in</strong>vestigation<br />

is warranted of <strong>the</strong> relationship to <strong>the</strong> possible transmitter function of glutamate<br />

of <strong>the</strong> <strong>in</strong>flux <strong>in</strong>to, and particularly <strong>the</strong> efflux from, stimulated peripheral<br />

nerves (WHEELER, BOYARSKY, and BROOKS, 1966; DEFEUDIS, 1971 ; WHEELER and<br />

BOYARSKY, 1971).<br />

After aortic occlusion, and loss of sp<strong>in</strong>al <strong>in</strong>terneurones, glutamate levels fall<br />

significantly <strong>in</strong> all segments of <strong>the</strong> cord, especially <strong>in</strong> <strong>the</strong> dorsal grey, but no<br />

correlation could be established between neurone loss and change <strong>in</strong> am<strong>in</strong>o <strong>acid</strong><br />

concentration (DAvIDOFF et al., 1967). Fur<strong>the</strong>rmore sp<strong>in</strong>al glutam<strong>in</strong>e levels were<br />

not modified (Table 8). The pattern of activity of glutam<strong>in</strong>e syn<strong>the</strong>tase and glutam<strong>in</strong>ase<br />

(Table 9), enzymes associated with glutamate-glutam<strong>in</strong>e <strong>in</strong>terconversion,<br />

and of glutamate dehydrogenase, correspond with <strong>the</strong> distribution of glutam<strong>in</strong>e,<br />

but not with that of glutamate (Table 8).<br />

Both high and low aff<strong>in</strong>ity uptake mechanisms are present <strong>in</strong> sp<strong>in</strong>al tissue<br />

for <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s, <strong>the</strong> same high aff<strong>in</strong>ity process transport<strong>in</strong>g L-glutamate<br />

and L-aspartate (Rat: LOGAN and SNYDER, 1972. Cat: BALCAR and JOHNSTON,<br />

1973). Osmotically sensitive particles of density similar to that of nerve end<strong>in</strong>gs<br />

are <strong>in</strong> part responsible for this uptake, which <strong>in</strong> <strong>the</strong> cat is less sensitive to<br />

<strong>in</strong>hibition by p-chloromercuriphenylsulphonate than <strong>the</strong> high aff<strong>in</strong>ity uptake<br />

of ei<strong>the</strong>r glyc<strong>in</strong>e or GABA. In <strong>the</strong> rat <strong>the</strong> particles accumulat<strong>in</strong>g aspartate and<br />

glutamate are denser than those accumulat<strong>in</strong>g glyc<strong>in</strong>e (ARREGUI et al., 1972).<br />

4.12.1.3. Glyc<strong>in</strong>e<br />

In contrast to relatively low levels <strong>in</strong> dorsal and ventral roots, higher levels<br />

of glyc<strong>in</strong>e are found <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al grey matter, particularly ventrally (Table 8).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 151<br />

Fur<strong>the</strong>rmore, glyc<strong>in</strong>e levels are higher <strong>in</strong> <strong>the</strong> cord, and medulla, than elsewhere<br />

<strong>in</strong> <strong>the</strong> fel<strong>in</strong>e (SHANK and APRISON, 1970) and o<strong>the</strong>r vertebrate <strong>nervous</strong> <strong>system</strong>s<br />

(APRISON et al., 1969), and <strong>the</strong> highest <strong>in</strong>trasp<strong>in</strong>al levels of glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> cat<br />

and o<strong>the</strong>r vertebrates correspond to regions of high grey matter to white matter<br />

ratio, regions conta<strong>in</strong><strong>in</strong>g neurones associated with limb <strong>in</strong>nervation (also Human:<br />

BOEHlVIE, FORDICE, MARKS and VOGEL, 1973).<br />

Sp<strong>in</strong>al white matter conta<strong>in</strong>s long descend<strong>in</strong>g and ascend<strong>in</strong>g tracts as well<br />

as <strong>the</strong> axons of propriosp<strong>in</strong>al fibres. The dorsal column content of <strong>the</strong> latter<br />

is m<strong>in</strong>imal (NATHAN and SMITH, 1959; SZENTAGOTHAI, 1964), and hence <strong>the</strong> low<br />

levels of glyc<strong>in</strong>e <strong>in</strong> this region (Cat: lumbar, 1.2 gravies/g) compared with dorsolateral<br />

(4.6), ventrolateral (5.6) and ventromedian white regions (3.5) (APRISON<br />

et al., 1969) suggests that glyc<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g propriosp<strong>in</strong>al axons account for<br />

<strong>the</strong> relatively high levets of this am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> <strong>the</strong> lateral and ventromedial tracts.<br />

A strong association between glyc<strong>in</strong>e and sp<strong>in</strong>al <strong>in</strong>terneurones was established<br />

by <strong>the</strong> very significant reduction observed <strong>in</strong> dorsal grey, ventral grey and ventral<br />

white segments (Table 8) follow<strong>in</strong>g temporary aortic occlusion <strong>in</strong> <strong>the</strong> cat and<br />

destruction of neurones <strong>in</strong> <strong>the</strong> <strong>central</strong> region of <strong>the</strong> cord (DAvIDOFF et al., 1967).<br />

The ventrolateral white area is rich <strong>in</strong> propriosp<strong>in</strong>al fibres, and <strong>the</strong>re was a<br />

statistically significant correlation between <strong>the</strong> concentration of glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong><br />

grey matter and <strong>the</strong> number of small neurones rema<strong>in</strong><strong>in</strong>g after anoxic destruction.<br />

Of enzyme activities associated with glyc<strong>in</strong>e metabolism, sp<strong>in</strong>al tissue conta<strong>in</strong>s<br />

glyc<strong>in</strong>e transam<strong>in</strong>ase (glyc<strong>in</strong>e: 2-oxoglutarate transam<strong>in</strong>ase: JOHNSTON and<br />

VITALI, 1969 a, JOHNSTON et al., 1970; BENUCK et al., 1972), ser<strong>in</strong>e hydroxymethyltransferase<br />

(SHANK and APRISON, 1970; DAVIES and JOHNSTON, 1973), D-glycerate<br />

dehydrogenase and D-3-phosphoglycerate dehydrogenase (UHR and SNEDDON,<br />

1971, 1972) and glyc<strong>in</strong>e decarboxylase (UHR, 1973). Glyc<strong>in</strong>e is also a poor substrate<br />

of D-am<strong>in</strong>o<strong>acid</strong> oxidase (Cat: DE MARCHI and JOHNSTON, 1969). The<br />

regional distributions of nei<strong>the</strong>r glyc<strong>in</strong>e transam<strong>in</strong>ase nor ser<strong>in</strong>e hydroxymethyltransferase<br />

correlate with that of glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> cord (Table 9). In vivo studies<br />

of glyc<strong>in</strong>e metabolism <strong>in</strong> <strong>the</strong> rat cord suggest that glyc<strong>in</strong>e is syn<strong>the</strong>sised only<br />

slowly from glucose (SHANt~ and APRISON, 1970; SHANK et al., 1973).<br />

A number of <strong>in</strong>vestigations have been concerned with <strong>the</strong> high aff<strong>in</strong>ity structurally<br />

specific uptake of glyc<strong>in</strong>e by sp<strong>in</strong>al tissue, a process ma<strong>in</strong>ly conf<strong>in</strong>ed to<br />

<strong>the</strong> cord, medulla and pons (Rat: NEAL, 1971; IVERSEN and JOHNSTON, 1971;<br />

JOHNSTON and IVERSEN, 1971; LOGAN and SNYDER, 1972; ARREGUI, et al., 1972;<br />

APRISON and MCBRIDE, 1973. Cat: BALCAR and JOHNSTON, 1973). The subcellular<br />

particles associated with this uptake are denser than those accumulat<strong>in</strong>g GABA<br />

but less dense than those tak<strong>in</strong>g up aspartate and glutamate (Rat: IVERSEN and<br />

JOHNSTON, 1971 ; ARREGVI et al., 1972). Radioautographic analyses of <strong>the</strong> uptake<br />

of labelled glyc<strong>in</strong>e by sp<strong>in</strong>al cord slices <strong>in</strong> vitro shows that <strong>the</strong> uptake is highest<br />

<strong>in</strong> <strong>the</strong> ventral horn particularly around motoneurone bodies, with <strong>in</strong>tense uptake<br />

<strong>in</strong>to nerve term<strong>in</strong>als (Rat: MATUS and DENNISON, 1972 ; H6KFELT and LJUNGDAHL,<br />

1971 a) which differ from those accumulat<strong>in</strong>g GABA (Rat: IVERSEN and BLOOM,<br />

1972). In one study all labelled term<strong>in</strong>als conta<strong>in</strong>ed flat vesicles, some 60%<br />

of flat vesicle synapses accumulat<strong>in</strong>g <strong>the</strong> labelled am<strong>in</strong>o <strong>acid</strong> (MATVS and DENNI-<br />

SON, 1972). Under <strong>in</strong> vivo conditions, follow<strong>in</strong>g direct <strong>in</strong>jection of labelled glyc<strong>in</strong>e<br />

<strong>in</strong>to <strong>the</strong> cat sp<strong>in</strong>al cord, <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> is present <strong>in</strong> nerve term<strong>in</strong>als conta<strong>in</strong><strong>in</strong>g


152 D.R. CURTIS and G. A. R. JOHNSTON :<br />

flat vesicles, <strong>in</strong> glial cells, <strong>in</strong>terneurones which appear not to accumulate <strong>the</strong><br />

am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> slices, whereas motoneurones show little activity (LJuNaDAHL<br />

and H6KFELT, 1973). Uptake <strong>in</strong>to Alia and neurones has also been found <strong>in</strong><br />

cultures of rat sp<strong>in</strong>al cord (H6SLI, LJUN~DAHL, H6KEELT, and H0SLI, 1972),<br />

and all of <strong>the</strong>se observations are consistent with <strong>the</strong> uptake of glyc<strong>in</strong>e by <strong>in</strong>hibitory<br />

nerve term<strong>in</strong>als and <strong>in</strong>terneurones.<br />

An enhanced effiux of glyc<strong>in</strong>e has been shown to follow direct electrical<br />

stimulation of sp<strong>in</strong>al cord slices (Rat: HOPKIN and NEAL, 1971; CUTLER, HAMMER-<br />

STAD, CORNICK, and MURRAY, 1971 ; HAMMERSTAD et al., 1971). A calcium dependent<br />

effiux of glyc<strong>in</strong>e (and GABA, glutamate and asparate) was produced by<br />

electrical stimulation of <strong>the</strong> rostral portion of isolated, hemisected frog or toad<br />

sp<strong>in</strong>al cords (ROBERTS and MITCHELL, 1972), or of dorsal roots (APRISON, 1970).<br />

It is difficult to relate <strong>the</strong>se studies directly to <strong>mammalian</strong> cord <strong>in</strong> vivo, and<br />

of more significance is <strong>the</strong> release of exogenous glyc<strong>in</strong>e <strong>in</strong>to <strong>the</strong> <strong>central</strong> canal<br />

of cats, <strong>in</strong> <strong>the</strong> presence of p-hydroxymercuribenzoate, and <strong>in</strong> association with<br />

acetylchol<strong>in</strong>e, by stimulation of <strong>the</strong> femoral and sciatic nerves (JORDAN and<br />

WEBSTER, 1971). The organic mercurial was essential to demonstrate this enhanced<br />

release ofglyc<strong>in</strong>e, suggest<strong>in</strong>g that a highly efficient uptake mechanism was present<br />

for <strong>the</strong> removal of this am<strong>in</strong>o <strong>acid</strong> after synaptic release.<br />

4.12.1.4. GABA<br />

The levels of GABA <strong>in</strong> <strong>the</strong> dorsal grey exceed those ventrally (Table 8), and<br />

detailed analysis of small blocks of tissue show that <strong>the</strong> highest levels (2.2-<br />

2.6/~mole/g) occur <strong>in</strong> lam<strong>in</strong>ae III and IV (Cat: MIYATA and OTSUKA, 1972;<br />

OTSUKA and MIYATA, 1972). Although low relative to <strong>the</strong> concentration with<strong>in</strong><br />

Deiters' (6.3 mM) and Purk<strong>in</strong>je (6.0 mM) cells, <strong>the</strong> GABA concentration of dissected<br />

motoneurones (0.9) exceeds that of sp<strong>in</strong>al ganglion cells (0.2, Cat: OTSUKA<br />

et al., 1971), and <strong>the</strong> technique almost certa<strong>in</strong>ly underestimates any contribution<br />

made by axodendritic synapses.<br />

The high dorsal concentrations of GABA correspond to those of GAD (Table 9,<br />

also Monkey: ALBERS and BRADY, 1959) whereas GABA-T is more uniformly<br />

distributed <strong>in</strong> <strong>the</strong> grey matter (Table 9). In <strong>the</strong> rhesus monkey, however, transam<strong>in</strong>ase<br />

levels are somewhat higher dorsally than ventrally (SALVADOR and ALBERS,<br />

1959).<br />

Follow<strong>in</strong>g aortic occlusion, no significant alterations occurred <strong>in</strong> sp<strong>in</strong>al GABA<br />

levels (Table 8), which is consistent with preservation of neurones <strong>in</strong> <strong>the</strong> superficial<br />

layers of <strong>the</strong> dorsal horn. On <strong>the</strong> o<strong>the</strong>r hand cauterization of <strong>the</strong> vessels supply<strong>in</strong>g<br />

<strong>the</strong> dorsal horn, which suppressed generation of dorsal root potentials by afferent<br />

volleys, significantly reduced <strong>the</strong> dorsal horn content of GABA, <strong>the</strong> levels of o<strong>the</strong>r<br />

am<strong>in</strong>o <strong>acid</strong>s not be<strong>in</strong>g reported (MIYATA and OTSUKA, 1972). Extensive deafferentation<br />

of <strong>the</strong> rat's cervical cord resulted <strong>in</strong> reduced GABA levels, a marked<br />

reduction of GAD activity, reduced GABA transam<strong>in</strong>ase activity and a reduced<br />

uptake of GABA <strong>in</strong>to synaptosomes of tissue located <strong>in</strong> <strong>the</strong> dorso-lateral portion<br />

of <strong>the</strong> cord. There was also considerable reduction of GAD activity <strong>in</strong> ventral<br />

segments, and although <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs are suggestive of a loss of GABA-conta<strong>in</strong><strong>in</strong>g<br />

nerve term<strong>in</strong>als of ei<strong>the</strong>r fibres <strong>in</strong> <strong>the</strong> dorsal root or of <strong>in</strong>hibitory <strong>in</strong>terneurones


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 153<br />

degenerat<strong>in</strong>g as a consequence of deafferentation (GoTTESFELD, KELLY, and<br />

RAYNER, 1973a), changes result<strong>in</strong>g from damage to <strong>the</strong> vascular supply need<br />

to be excluded. Only a high aff<strong>in</strong>ity uptake mechanism specific for GABA has<br />

been demonstrated <strong>in</strong> cat sp<strong>in</strong>al tissue (BALCAR and JOHNSTON, 1973), <strong>in</strong>to particles<br />

hav<strong>in</strong>g a density characteristic of nerve term<strong>in</strong>als (Rat: IVERSEN and JOHNSTON,<br />

1971 ; ARREGUI et al., 1972) which can be dist<strong>in</strong>guished from those accumulat<strong>in</strong>g<br />

o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s. In autographic studies of sp<strong>in</strong>al cord slices <strong>the</strong> pr<strong>in</strong>cipal<br />

site of GABA uptake appears to be nerve term<strong>in</strong>als (Rat: IVERSEN and BLOOM,<br />

1972) which could not be classified morphologically but differ from those tak<strong>in</strong>g<br />

up glyc<strong>in</strong>e. In sp<strong>in</strong>al cord cultures GABA is accumulated ma<strong>in</strong>ly by small neurones<br />

(HOSLI et al., 1972).<br />

4.12.1.5. O<strong>the</strong>r <strong>Am<strong>in</strong>o</strong> Acids<br />

The distribution of <strong>the</strong> o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s present <strong>in</strong> sp<strong>in</strong>al tissue does not suggest major roles<br />

as synaptic <strong>transmitters</strong>: ~-alan<strong>in</strong>e, cystathion<strong>in</strong>e and ser<strong>in</strong>e (Table 8), and taur<strong>in</strong>e (Rat: sp<strong>in</strong>al grey<br />

1.6 ,umole/g, white 1.9, SHANK and APRISON, 1970). There are additionally o<strong>the</strong>r unidentified am<strong>in</strong>o<br />

<strong>acid</strong>s which may require fur<strong>the</strong>r <strong>in</strong>vestigation (see BRIEL and NEUHOFF, 1972). A polypeptide has<br />

recently been extracted from bov<strong>in</strong>e dorsal roots, but not from ventral roots, which is similar chemically<br />

and pharmacologically to physalaem<strong>in</strong> (OTSUKA, KONISHI, and TAKAHASHI, 1972; see also LEMBECK<br />

and ZETLER, 1962) and which, like physalaem<strong>in</strong> (KONtSHI and O'rSUKA, 1971) has a direct depolariz<strong>in</strong>g<br />

action on motoneurones of <strong>the</strong> isolated frog sp<strong>in</strong>al cord and dilates blood vessels.<br />

4.12.2. Excitation<br />

S<strong>in</strong>ce <strong>the</strong> first demonstration of <strong>the</strong> direct depolariz<strong>in</strong>g action on sp<strong>in</strong>al motoneurones<br />

of electrophoretic L-glutamate, L-aspartate and L-cysteate (Cat: CURTIS<br />

et al, 1960), a number of <strong>in</strong>vestigations have been concerned with <strong>the</strong> excitation<br />

of sp<strong>in</strong>al motoneurones, <strong>in</strong>terneurones and Renshaw cells by <strong>the</strong>se and related<br />

am<strong>in</strong>o <strong>acid</strong>s. Most emphasis has naturally been placed on L-glutamate and L-<br />

aspartate because of <strong>the</strong> neurochemical evidence discussed earlier. Differences<br />

<strong>in</strong> relative potencies have been related to <strong>the</strong> effectiveness of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>receptor<br />

<strong>in</strong>teraction (CURTIS and WATKINS, 1960, 1963) and to <strong>the</strong> <strong>in</strong>activation<br />

of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> tissue (CURTIS et al., 1970b). However, whilst <strong>in</strong> general<br />

L-glutamate and L-aspartate are approximately equipotent as excitants of sp<strong>in</strong>al<br />

dorsal horn <strong>in</strong>terneurones, L-aspartate is significantly more active than L-glutamate<br />

as an excitant of Renshaw cells (Cat: DU6aAN, 1974). This important<br />

observation is consistent with <strong>the</strong> operation of L-glutamate as <strong>the</strong> transmitter<br />

of primary afferent fibres, which do not synapse directly with Renshaw cells<br />

(see CURTIS and RYALL, 1966a), whereas L-aspartate may be <strong>the</strong> transmitter<br />

of sp<strong>in</strong>al excitatory <strong>in</strong>terneurones (DAvIDOFF et al., 1967).<br />

Sympa<strong>the</strong>tic (Cat: HONCO and RYALL, 1966) and parasympa<strong>the</strong>tic (DE GROAT<br />

and RYALL, 1968) preganglionic sp<strong>in</strong>al neurones are excited by DL-homocysteate,<br />

and both L-glutamate and Dg-homocysteate <strong>in</strong>crease <strong>the</strong> excitability of <strong>the</strong> term<strong>in</strong>al<br />

portions of primary afferent fibres (Cat: CURTIS and RYALL, 1966b).<br />

Depolarization of primary afferent fibres by L-glutamate has also been<br />

demonstrated <strong>in</strong> isolated preparations of amphibian sp<strong>in</strong>al cord (SCHMIm',<br />

1963; TEBF, CIS and PHILLIS, 1969; DAVIDOFF, 1972 d; BARKER and NICOLL, 1973).


154 D.R. CURTIS and G. A, R. JOHNSTON :<br />

The depolarization of sp<strong>in</strong>al neurones by excitant am<strong>in</strong>o <strong>acid</strong>s is accompanied<br />

by an <strong>in</strong>creased membrane conductance (CURTIS et al., 1960; ZIEGLG~NSBERGER<br />

and PUIL, 1973) which seems to <strong>in</strong>volve an <strong>in</strong>creased permeability to at least<br />

sodium ions. A number of factors complicate studies of ,<strong>the</strong> ionic mechanism<br />

of neuronal depolarization, particularly <strong>the</strong> technical difficulty of uniformly alter<strong>in</strong>g<br />

ei<strong>the</strong>r <strong>in</strong>tracellular ion concentrations or <strong>the</strong> membrane potential. These<br />

factors are also important when attempt<strong>in</strong>g to compare am<strong>in</strong>o <strong>acid</strong> and synaptic<br />

depolarizations, particularly of neurones of complicated shape such as motoneurones:<br />

<strong>the</strong> site of am<strong>in</strong>o <strong>acid</strong> action dur<strong>in</strong>g electrophoretic adm<strong>in</strong>istration may<br />

be very restricted, synaptic excitation by impulses <strong>in</strong> group Ia afferents occurs<br />

predom<strong>in</strong>antly at dendrites (see CURTIS et al., 1972 a). Never<strong>the</strong>less <strong>the</strong> available<br />

evidence suggests that <strong>the</strong> ionic mechanisms for am<strong>in</strong>o <strong>acid</strong> depolarization and<br />

synaptic excitation may be similar, presumably <strong>in</strong>volv<strong>in</strong>g both sodium and potassium<br />

ions (EccLES, 1966). Thus elevation of <strong>in</strong>tracellular chloride concentrations<br />

does not modify am<strong>in</strong>o <strong>acid</strong> depolarization (CURTIS et al., 1972a), and both<br />

<strong>the</strong> reversal potential for <strong>the</strong> depolarization, measured by pass<strong>in</strong>g current through<br />

an <strong>in</strong>tracellular microelectrode, and <strong>the</strong> maximally depolarized membrane potential,<br />

achieved by high concentrations of L-glutamate or N-methyl-DL-aspartate,<br />

are of <strong>the</strong> order of-20 to -30 mV (CURTIS, 1965 ; CURTIS et al., 1972a; ZIEGLG,~NS-<br />

BERGER and PULL, 1973). The movement of sodium ions, however, is not that<br />

associated with <strong>the</strong> generation of action potentials s<strong>in</strong>ce concentrations of tetrodotox<strong>in</strong><br />

sufficient to block <strong>the</strong> latter process have little or no <strong>in</strong>fluence on ei<strong>the</strong>r<br />

am<strong>in</strong>o <strong>acid</strong> or synaptic depolarizations (CURTIS et al., 1972 a; ZIEGLGANSBERGER<br />

and PULL, 1972).<br />

No evidence has been obta<strong>in</strong>ed that enzymic modification is of major importance<br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>activation of electrophoretically adm<strong>in</strong>istered am<strong>in</strong>o <strong>acid</strong>s, <strong>in</strong>deed<br />

<strong>the</strong> similarity of <strong>the</strong> time course of action of optical isomers, <strong>the</strong> failure of<br />

thiosemicarbazide and L-methion<strong>in</strong>e-DL-sulphoxim<strong>in</strong>e to enhance <strong>the</strong> action of<br />

glutamate, and <strong>the</strong> observed enhancement of <strong>the</strong> actions of glutamate and aspartate<br />

by organic mercurials (CURTIS et al., 1970b; BALCAR and JOHNSTON, 1973)<br />

suggest <strong>the</strong> importance of transport processes <strong>in</strong> lower<strong>in</strong>g extracellular am<strong>in</strong>o<br />

<strong>acid</strong> levels. The potentiation of am<strong>in</strong>o <strong>acid</strong> excitation by p-chloromercuriphenylsulphonate,<br />

known to suppress am<strong>in</strong>o <strong>acid</strong> uptake <strong>in</strong> vitro, excludes ion movements<br />

associated with this uptake as a direct explanation of <strong>the</strong> depolarization.<br />

Under <strong>in</strong> vivo conditions organic mercurials are difficult to use electrophoretically<br />

and as yet no specific, non-excitatory, antagonist of <strong>the</strong> uptake of glutamate<br />

and aspartate has been found which could be used to compare <strong>the</strong> <strong>in</strong>activation<br />

of am<strong>in</strong>o <strong>acid</strong>s with that of synaptically released <strong>transmitters</strong>.<br />

Fur<strong>the</strong>r evidence of <strong>the</strong> nature of a sp<strong>in</strong>al excitatory transmitter would be<br />

provided by a selective antagonist capable of block<strong>in</strong>g both synaptic and am<strong>in</strong>o<br />

<strong>acid</strong> excitation without <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> effects of o<strong>the</strong>r <strong>transmitters</strong> such as acetylchol<strong>in</strong>e.<br />

The sp<strong>in</strong>al Renshaw cell, be<strong>in</strong>g excited by acetylchol<strong>in</strong>e, L-glutiamate<br />

and L-aspartate has proved a useful test situation for assess<strong>in</strong>g <strong>the</strong> selectivity<br />

of such antagonists prior to test<strong>in</strong>g on dorsal horn <strong>in</strong>terneurones excited synaptically<br />

and by <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s. Little success, however, has been achieved <strong>in</strong><br />

tests on a large number of anaes<strong>the</strong>tics, am<strong>in</strong>o <strong>acid</strong> analogues and o<strong>the</strong>r substances<br />

selected on <strong>the</strong> basis of <strong>the</strong>ir structure or depressant effect when adm<strong>in</strong>istered


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 155<br />

<strong>system</strong>ically (CURTIS et al., 1972 a; and unpublished observations). A major difficulty,<br />

necessitat<strong>in</strong>g a relatively high degree of selectivity of an antagonist, is<br />

<strong>the</strong> problem of achiev<strong>in</strong>g adequate concentrations at axodendritic synapses whilst<br />

preserv<strong>in</strong>g specificity with higher concentrations of <strong>the</strong> antagonist closer to <strong>the</strong><br />

site of electrophoretic adm<strong>in</strong>istration (see CURTIS, DUGGAN, and JOHNSTON,<br />

1971 C). The most promis<strong>in</strong>g compounds <strong>in</strong>clude L-glutamate diethylester (HALDE-<br />

MAN and MCLENNAN, 1972), 2-methoxyaporph<strong>in</strong>e, L-methion<strong>in</strong>e-DL-sulphoxim<strong>in</strong>e<br />

(CURTIS et al., 1972a) and 1-hydroxy-3-am<strong>in</strong>opyrrolidone-2 (CURTIS, JOHN-<br />

STON, GAME, and MCCULLOCH, 1973 b). All four compounds were found to antagonise<br />

excitation by L-glutamate and L-aspartate (and DL-homocysteate) to<br />

<strong>the</strong> same extent (CURTIS et al., 1972a, 1973), although L-glutamate diethylester<br />

has been reported to be more effective as an antagonist of <strong>the</strong> excitation of<br />

sp<strong>in</strong>al <strong>in</strong>terneurones by L-glutamate than of <strong>the</strong> excitation by <strong>the</strong> o<strong>the</strong>r am<strong>in</strong>o<br />

<strong>acid</strong>s (HALDEMAN and MCLENNAN, 1972). This diethylester reduced <strong>the</strong> synaptic<br />

excitation of dorsal horn <strong>in</strong>terneurones (HALDEMAN and MCLENNAN, 1972;<br />

CURTIS et al., 1972a), as also did L-methion<strong>in</strong>e-DL-sulphoxim<strong>in</strong>e (CURTIS et<br />

al., 1972a). additionally 1-hydroxy-3-am<strong>in</strong>opyrrolidone-2 reduced non-chol<strong>in</strong>ergic<br />

synaptic excitation of Renshaw cells to a slightly greater extent than <strong>the</strong><br />

excitation produced by ventral root volleys which release acetylchol<strong>in</strong>e at axon<br />

collateral term<strong>in</strong>als (CURTIS et al., 1973 b).<br />

These observations may be taken to support proposals that aspartate and<br />

glutamate are excitatory <strong>transmitters</strong> <strong>in</strong> <strong>the</strong> cord, but relatively low or <strong>in</strong>consistent<br />

degrees of selectivity (see CURTIS et al., 1972a), technical problems associated<br />

with electrophoretic ejection, and <strong>the</strong> need for relatively high currents, limit<br />

<strong>the</strong> usefulness of all of <strong>the</strong>se antagonists, and fur<strong>the</strong>r <strong>in</strong>vestigation is clearly<br />

necessary <strong>in</strong> order to f<strong>in</strong>d more selective excitant am<strong>in</strong>o <strong>acid</strong> antagonists.<br />

4.12.3. Inhibition<br />

Of <strong>the</strong> neutral am<strong>in</strong>o <strong>acid</strong>s present <strong>in</strong> sp<strong>in</strong>al tissue, ~-alan<strong>in</strong>e, ser<strong>in</strong>e, glyc<strong>in</strong>e,<br />

taur<strong>in</strong>e, cystathion<strong>in</strong>e and GABA depress <strong>the</strong> fir<strong>in</strong>g of sp<strong>in</strong>al neurones. However<br />

<strong>the</strong> available neurochemical f<strong>in</strong>d<strong>in</strong>gs favour <strong>the</strong> <strong>in</strong>volvement of only glyc<strong>in</strong>e and<br />

GABA as <strong>in</strong>hibitory <strong>transmitters</strong>. The fir<strong>in</strong>g of sp<strong>in</strong>al neurones is regulated<br />

by two types of <strong>in</strong>hibition- "postsynaptic" and "presynaptic", descriptions which<br />

presuppose <strong>the</strong> mechanism of <strong>the</strong> <strong>in</strong>hibitory process. There is, however, considerable<br />

debate regard<strong>in</strong>g <strong>the</strong> mechanism of "presynaptic" <strong>in</strong>hibition, although <strong>the</strong><br />

participation of GABA as a transmitter seems generally accepted. On <strong>the</strong> evidence<br />

to be discussed below <strong>the</strong> terms "postsynaptic", and strychn<strong>in</strong>e-sensitive are<br />

used synonymously to describe <strong>in</strong>hibition mediated by glyc<strong>in</strong>e, and "presynaptic",<br />

prolonged, remote and picrotox<strong>in</strong> (or bicucull<strong>in</strong>e)-sensitive to describe <strong>in</strong>hibition<br />

<strong>in</strong> which GABA is <strong>in</strong>volved.<br />

4.12.3.1. Glyc<strong>in</strong>e<br />

When adm<strong>in</strong>istered electrophoretically glyc<strong>in</strong>e and structurally related c~- and<br />

fl-am<strong>in</strong>o <strong>acid</strong>s depress <strong>the</strong> fir<strong>in</strong>g of sp<strong>in</strong>al <strong>in</strong>terneurones, parasympa<strong>the</strong>tic pregang-


156 D.R. CURTIS and G. A. R. JOHNSTON :<br />

lionic neurones, motoneurones and Renshaw cells (Cat: CURTIS, PHILLIS, and<br />

WATKINS, 1959; CURTIS and WATKINS, 1960; WERMAN et al., 1966, 1968; CURTIS<br />

et al., 1968b; BRUGGENCATE and ENGBERG, 1968; RYALL and DE GROAT, 1972.<br />

Rat: BlSCOE et al., 1972. Toad: ENDO and ARAKI, 1969). In part <strong>the</strong>se observations<br />

account for <strong>the</strong> effects of<strong>in</strong>tra<strong>the</strong>cal (DHAWAN, SHARMA, and SRIMAL, 1972) or <strong>system</strong>ic<br />

glyc<strong>in</strong>e WERMAN, DAVIDOFF, and APRISON, 1967 ; SXERN and HAD2OVI~, 1970;<br />

TAKANO and NEUMANN, 1972)and fl-alan<strong>in</strong>e (MUNEOKA, 1961) on sp<strong>in</strong>al reflexes.<br />

In general electrophoretic glyc<strong>in</strong>e was a more effective depressant of <strong>the</strong><br />

fir<strong>in</strong>g of fel<strong>in</strong>e <strong>in</strong>terneurones, and particularly of motoneurones, than GABA<br />

(CURTIS et al., 1968a, b; WERMAN et al., 1968; BRUGGENCATE and ENGBERG,<br />

1968) whereas <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>s were approximately equipotent when tested on<br />

Renshaw cells (CURTIS et al., 1968 a).<br />

The depression of neurone excitability by glyc<strong>in</strong>e is associated with a membrane<br />

hyperpolarization and conductance <strong>in</strong>crease (WERMAN et al., 1968; CURTIS<br />

et al., 1968b; BRUGGENCATE and ENGBERG, 1968). These changes are rapid <strong>in</strong><br />

both onset and offset, with prolonged ejection of glyc<strong>in</strong>e <strong>the</strong> hyperpolarization<br />

becomes reduced <strong>in</strong> magnitude <strong>in</strong> <strong>the</strong> presence of a susta<strong>in</strong>ed <strong>in</strong>crease <strong>in</strong> conductance,<br />

probably because protracted activation ofglyc<strong>in</strong>e receptors results <strong>in</strong> altered<br />

ion concentrations <strong>in</strong> both <strong>the</strong> <strong>in</strong>tra- and extracellular phases, so chang<strong>in</strong>g equilibrium<br />

potentials for <strong>in</strong>dividual ions. Intracellularly adm<strong>in</strong>istered glyc<strong>in</strong>e appears<br />

not to have a hyperpolariz<strong>in</strong>g effect on <strong>the</strong> motoneurone membrane (GLoBUS<br />

et al., 1968). The reversal potential for <strong>the</strong> glyc<strong>in</strong>e hyperpolarization of motoneurones<br />

was at a slightly more hyperpolarized level than <strong>the</strong> maximum hyperpolarization<br />

which could be achieved, and was ei<strong>the</strong>r approximately identical to or<br />

at a slightly less hyperpolarized level than <strong>the</strong> reversal potential for short latency,<br />

direct IPSP's (WERMAN et al., 1968; CURTIS et al., 1968b). A close similarity<br />

was also demonstrated for <strong>the</strong> reversal potentials of <strong>the</strong> glyc<strong>in</strong>e hyperpolarization<br />

of <strong>in</strong>terneurones and that of IPSP's evoked by impulses <strong>in</strong> h<strong>in</strong>d limb afferents<br />

and descend<strong>in</strong>g fibres <strong>in</strong> <strong>the</strong> cord (BRUGGECATE and ENGBERG, 1968). Such observations<br />

would suggest that <strong>the</strong> equilibrium potentials for <strong>the</strong> ionic permeability<br />

changes <strong>in</strong>duced by <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> and <strong>the</strong> synaptically released transmitter<br />

were identical, and hence that <strong>the</strong> changes <strong>in</strong> ion permeability were <strong>the</strong> same;<br />

<strong>the</strong> slight differences <strong>in</strong> reversal potentials would be expected from differences<br />

<strong>in</strong> <strong>the</strong> geometric distribution of membrane affected by glyc<strong>in</strong>e and by <strong>the</strong> transmitter<br />

<strong>in</strong> relation to <strong>the</strong> <strong>in</strong>tracellular polariz<strong>in</strong>g electrode. Close similarities <strong>in</strong> <strong>the</strong>se<br />

two mechanisms were also <strong>in</strong>dicated by a study of <strong>the</strong> effects of <strong>in</strong>tracellulafly<br />

<strong>in</strong>jected anions and potassium on <strong>the</strong> glyc<strong>in</strong>e hyperpolarization and <strong>the</strong> IPSP.<br />

In particular, synaptic membrane activated by glyc<strong>in</strong>e and <strong>the</strong> transmitter appear<br />

to discrim<strong>in</strong>ate between chloride, bromide and iodide <strong>in</strong> <strong>the</strong> same ratio (WERMAN<br />

et al., 1968). Fur<strong>the</strong>rmore those anions known to convert hyperpolariz<strong>in</strong>g IPSP's<br />

<strong>in</strong>to depolarizations--bromide, iodide, chloride, nitrite, thiocyanate, chlorate and<br />

formate (EccLES, 1966) had a similar effect on glyc<strong>in</strong>e hyperpolarization, whereas<br />

<strong>in</strong>tracellular <strong>in</strong>jection of bromate, sulphate and citrate were without effect on<br />

ei<strong>the</strong>r type of potential (CURTIS et al., 1968 b).<br />

Thus, with<strong>in</strong> <strong>the</strong> limits of <strong>the</strong> available techniques, glyc<strong>in</strong>e and <strong>the</strong> transmitter<br />

at certa<strong>in</strong> sp<strong>in</strong>al <strong>in</strong>hibitory synapses <strong>in</strong>itiate <strong>the</strong> same change <strong>in</strong> <strong>the</strong> permeability<br />

of <strong>the</strong> postsynaptic membrane to chloride, and possibly also to potassium ions


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 157<br />

(ECCLES, 1966). The types of <strong>in</strong>hibition used <strong>in</strong> <strong>the</strong>se comparisons were of relatively<br />

short latency and duration, such as "direct" IPSP's evoked by impulses <strong>in</strong> group<br />

Ia muscle afferents which are readily reversed <strong>in</strong> direction by polariz<strong>in</strong>g currents<br />

or ions passed from an <strong>in</strong>tracellular microelectrode, and hence are generated<br />

at synapses located predom<strong>in</strong>antly on <strong>the</strong> soma and proximal portion of<br />

motoneurone dendrites (EccLES, 1966; SMITH, WUERKER and FRANK, 1967; JAN-<br />

KOWSKA and ROBERTS, 1972). There is also evidence for a similar location of<br />

<strong>in</strong>hibitory term<strong>in</strong>als mediat<strong>in</strong>g <strong>the</strong> <strong>in</strong>hibition ofmotoneurones by volleys <strong>in</strong> groups<br />

Ib and III muscle afferents, cutaneous afferents and <strong>the</strong> recurrent <strong>in</strong>hibition<br />

ofmotoneurones (COOMBS, ECCLES, and FATT, 1955 a), although synapses mediat<strong>in</strong>g<br />

recurrent <strong>in</strong>hibition appear to be more distal from <strong>the</strong> soma than those<br />

of direct <strong>in</strong>hibition (BURKE, FEDINA, and LUNDBERG, 1971).<br />

On <strong>the</strong> forego<strong>in</strong>g evidence it might readily be concluded that <strong>the</strong> transmitter<br />

at" <strong>the</strong>se synapses was glyc<strong>in</strong>e, particularly if neurochemical evidence of <strong>the</strong> presence<br />

and distribution of this am<strong>in</strong>o <strong>acid</strong> is considered toge<strong>the</strong>r with <strong>the</strong> association<br />

established with small sp<strong>in</strong>al neurones <strong>in</strong> aortic occlusion experiments. However,<br />

similar changes <strong>in</strong> <strong>the</strong> membrane properties of motoneurones have been observed<br />

to result from electrophoretic adm<strong>in</strong>istration of fl-alan<strong>in</strong>e, GABA (CURTIS et al.,<br />

1968b) and 6-am<strong>in</strong>ovaleric <strong>acid</strong> (BRUGGENCATE and ENGBERG, 1968). Of <strong>the</strong>se<br />

substances only glyc<strong>in</strong>e and GABA warrant serious consideration as <strong>transmitters</strong><br />

on neurochemical grounds, although such a function for L-~-alan<strong>in</strong>e and taur<strong>in</strong>e<br />

cannot be fully excluded as <strong>the</strong>se depressant am<strong>in</strong>o <strong>acid</strong>s presumably have postsynaptic<br />

effects similar to those of glyc<strong>in</strong>e.<br />

One very important characteristic of <strong>the</strong>se types of short latency sp<strong>in</strong>al <strong>in</strong>hibition<br />

is sensitivity to strychn<strong>in</strong>e. In particular "direct" and recurrent <strong>in</strong>hibition<br />

ofmotoneurones are reversibly blocked by relatively low concentrations of strychn<strong>in</strong>e<br />

adm<strong>in</strong>istered <strong>in</strong>travenously (Cat: BRADLEY, EASTON, and ECCLES, 1953;<br />

ECCLES, FATT, and KOKETSU, 1954) or electrophoretically (CURTIS, 1962), <strong>in</strong> <strong>the</strong><br />

absence of significant modification of <strong>the</strong> activity of <strong>the</strong> appropriate <strong>in</strong>hibitory<br />

<strong>in</strong>terneurones. A close analysis of <strong>the</strong> effects of strychn<strong>in</strong>e on recurrent IPSP's<br />

supports previous proposals that <strong>the</strong> alkaloid probably h<strong>in</strong>ders <strong>the</strong> access of<br />

transmitter to receptor sites ra<strong>the</strong>r than <strong>in</strong>terferes with <strong>the</strong> flow of ions through<br />

<strong>the</strong> activated membrane (LARSON, 1969). O<strong>the</strong>r types of <strong>in</strong>hibition of <strong>the</strong>se cells<br />

are also affected, <strong>in</strong>clud<strong>in</strong>g those of sp<strong>in</strong>al (COOMBS, ECCLES, and FATT, 1955b,<br />

CURTIS, 1963) and suprasp<strong>in</strong>al (see CURTIS, 1969) orig<strong>in</strong>. The recurrent <strong>in</strong>hibition<br />

of gamma motoneurones is also blocked by strychn<strong>in</strong>e (ELLAWAY, 1971), as<br />

is also <strong>the</strong> <strong>in</strong>hibition of Renshaw cells by impulses orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> h<strong>in</strong>d paw<br />

afferents and from <strong>the</strong> medullary reticular formation (BISCOE and CURTIS, 1966).<br />

It is thus very significant <strong>in</strong> establish<strong>in</strong>g glyc<strong>in</strong>e, as a sp<strong>in</strong>al transmitter that<br />

strychn<strong>in</strong>e selectively and reversibly blocks <strong>the</strong> <strong>in</strong>hibitory effect of glyc<strong>in</strong>e (and<br />

of "glyc<strong>in</strong>e-like" a- and fl-am<strong>in</strong>o <strong>acid</strong>s) on sp<strong>in</strong>al motoneurones, <strong>in</strong>terneurones,<br />

Renshaw cells and autonomic neurones, but shows little or no antagonism towards<br />

<strong>the</strong> action of GABA and "GABA-like" 7- and higher ~o-am<strong>in</strong>o <strong>acid</strong>s (Cat:<br />

CURTIS et al., 1968b, 1971c; LARSON, 1969; DE GROAT, 1970b. Rat: BISCOE et<br />

al., 1972). Even <strong>the</strong> one apparently dissent<strong>in</strong>g report <strong>in</strong>dicates that <strong>the</strong> effect<br />

of glyc<strong>in</strong>e on sp<strong>in</strong>al neurones is suppressed more completely by strychn<strong>in</strong>e than<br />

is that of GABA (DAVIDOFF, APRISON, and WERMAN, 1969).


158 D.R. CURTIS and G.A.R. JOHNSTON:<br />

With<strong>in</strong> <strong>the</strong> limits of <strong>in</strong> vivo experiments, us<strong>in</strong>g both electrophoretic and <strong>in</strong>travenous<br />

adm<strong>in</strong>istration, low concentrations of strychn<strong>in</strong>e probably <strong>in</strong>terfere competitively<br />

with <strong>the</strong> <strong>in</strong>teraction between glyc<strong>in</strong>e and postsynaptic receptors (CURTIS<br />

et al., 1971a). Additionally a number of alkaloids and a series of syn<strong>the</strong>tic compounds<br />

which block this type of short latency sp<strong>in</strong>al <strong>in</strong>hibition, and hence are<br />

convulsants when adm<strong>in</strong>istered <strong>in</strong>travenously, are also glyc<strong>in</strong>e antagonists, <strong>the</strong><br />

relative potencies for <strong>the</strong>se two actions be<strong>in</strong>g similar. The substances (Fig. 2)<br />

<strong>in</strong>clude bruc<strong>in</strong>e, <strong>the</strong>ba<strong>in</strong>e (FATT, 1954; PINTO CORRADO, and LONGO, 1961;<br />

CURTIS, 1962); morph<strong>in</strong>e (CURTIS and DUGGAN, 1969); diabol<strong>in</strong>e (see WEST,<br />

1937); Weiland-Gumlich aldehyde; laudanos<strong>in</strong>e, dendrob<strong>in</strong>e, gelsem<strong>in</strong>e (CURTIS<br />

et al., 1971 a); 4-phenyl-4-formyl-N-methylpiperid<strong>in</strong>e (LONGO and PINTO COR-<br />

RADO, 1961 ; CURTIS, 1962) ; 5,7-diphenyl-l,3-diazadamantan-6-ol (LONGO, SILVES-<br />

TRINI, and BOVET, 1959 ; CURTIS, 1962) ; and hexahydro-2'-methylspiro [cyclohexane-l,8'-(6H)-oxaz<strong>in</strong>o<br />

(3,4-A)pyraz<strong>in</strong>e] (CHEN and HAUCK, 1961). It is also relevant<br />

that o<strong>the</strong>r convulsants which are selective GABA antagonists <strong>in</strong> <strong>the</strong> cord,<br />

bicucull<strong>in</strong>e (Cat: CURTIS et al., 1971a. Rat: BISCOE et al., 1972) and penicill<strong>in</strong><br />

(Cat: DAVIDOFF, 1972C; CURTIS et al., 1972b), do not block sp<strong>in</strong>al <strong>in</strong>hibitions<br />

of <strong>the</strong> strychn<strong>in</strong>e sensitive type. Picrotox<strong>in</strong><strong>in</strong> has no effect on "direct" <strong>in</strong>hibition<br />

(ECCLES, SCHMIDT, and WILUS, 1963) and although picrotox<strong>in</strong>-sensitive recurrent<br />

IPSP's ofmotoneurones have been reported (KELLERTn, 1968), and <strong>the</strong>re is some<br />

controversy regard<strong>in</strong>g <strong>the</strong> effectiveness and specificity of electrophoretic picrotox<strong>in</strong><strong>in</strong><br />

as an am<strong>in</strong>o <strong>acid</strong> antagonist <strong>in</strong> <strong>the</strong> cord (Cat: DAVIDOFF and APRISON,<br />

1969; CURTIS, DUGGAN, and JOHNSTON, 1969; DE GROAT, 1970; ENGBERG and<br />

THALLER, 1970. Rat: BISCOE et al., 1972), <strong>the</strong> general consensus of op<strong>in</strong>ion<br />

seems to be that this substance is a GABA antagonist (see Section 2.4).<br />

There is thus very good evidence for <strong>the</strong> presence <strong>in</strong> <strong>the</strong> cord of glyc<strong>in</strong>ergic<br />

<strong>in</strong>hibitory <strong>in</strong>terneurones of several types: "Ia" <strong>in</strong>terneurones mediat<strong>in</strong>g "direct"<br />

or reciprocal <strong>in</strong>hibition of motoneurones (JANKOWSKA and ROBERTS, 1972 ; JAN-<br />

KOWS~ZA and LINDSTR6M, 1972); Renshaw cells mediat<strong>in</strong>g recurrent <strong>in</strong>hibition<br />

(EccLEs et al., 1954; JANg:OWSKA and LINDSTROM, 1971), and o<strong>the</strong>r <strong>in</strong>terneurones<br />

<strong>in</strong>volved <strong>in</strong> <strong>the</strong> relatively short latency <strong>in</strong>hibition of motoneurones, o<strong>the</strong>r <strong>in</strong>terneurones<br />

and Renshaw cells by impulses of muscular and cutaneous orig<strong>in</strong>. It is<br />

relevant to <strong>the</strong> disturbances of sp<strong>in</strong>al glyc<strong>in</strong>e levels, reflexes and <strong>in</strong>hibitions produced<br />

by temporary aortic occlusion that Ia <strong>in</strong>terneurones and Renshaw cells lie<br />

dorsomedial and ventromedial respectively to motoneurones, and are possibly not<br />

affected to <strong>the</strong> same extent by such a procedure. The location of o<strong>the</strong>r <strong>in</strong>hibitory<br />

<strong>in</strong>terneurones, and <strong>the</strong> connections between <strong>the</strong>m and <strong>the</strong> convergence upon<br />

<strong>the</strong>m of pathways, of both local sp<strong>in</strong>al and descend<strong>in</strong>g orig<strong>in</strong>, rema<strong>in</strong> to be<br />

determ<strong>in</strong>ed.<br />

Evidence has recently been provided that <strong>in</strong> addition to motoneurones and<br />

"Ia" <strong>in</strong>terneurones (HULTBORN, JANKOWSKA, and LINDSTROM, 1971) Renshaw cells<br />

<strong>in</strong>hibit o<strong>the</strong>r Renshaw cells (RYALL, 1970). This '" mutual" <strong>in</strong>hibition is probably<br />

related to <strong>the</strong> "pause" <strong>in</strong> <strong>the</strong> fir<strong>in</strong>g of Renshaw cells and <strong>the</strong> reduced chemical<br />

excitability which follows <strong>the</strong> <strong>in</strong>itial chol<strong>in</strong>ergic excitation evoked by a ventral<br />

root volley (CURTIS and RYALL, 1966 a). In contrast to <strong>the</strong> sensitivity to strychn<strong>in</strong>e<br />

of <strong>the</strong> <strong>in</strong>hibition of Renshaw cells by volleys <strong>in</strong> h<strong>in</strong>d limb afferents (BIscoE<br />

and CURTIS, 1966; WILSON and TALBOT, 1963), this "mutual" <strong>in</strong>hibition is resis-


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 159<br />

tant to strychn<strong>in</strong>e and to bicucull<strong>in</strong>e (RYALL, PIERCEY and POLOSA, 1972; CURTIS,<br />

GAME and MCCULLOCH, unpublished observations). Although an explanation<br />

has been offered <strong>in</strong> terms of <strong>the</strong> presence on Renshaw cells of strychn<strong>in</strong>e-<strong>in</strong>sensitive<br />

glyc<strong>in</strong>e receptors which would be compatible with all Renshaw cells be<strong>in</strong>g glyc<strong>in</strong>ergic<br />

(RYALL et al., 1972), <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g that tetanus tox<strong>in</strong> abolishes <strong>the</strong> <strong>in</strong>hibition of<br />

Renshaw cells by h<strong>in</strong>d limb impulses, but does not modify "mutual" <strong>in</strong>hibition,<br />

(CURTIS, GAME, and MCCULLOCH, unpublished observations) tends to exclude<br />

glyc<strong>in</strong>e (and GABA) as an <strong>in</strong>hibitory transmitter for this process. Fur<strong>the</strong>r <strong>in</strong>vestigation<br />

of both "mutual" <strong>in</strong>hibition and <strong>the</strong> pause seems warranted, particularly<br />

as hyperpolariz<strong>in</strong>g IPSP's have not been demonstrated for ei<strong>the</strong>r phenomenon.<br />

The effects of tetanus tox<strong>in</strong> on sp<strong>in</strong>al <strong>in</strong>hibition are relevant to transmitter<br />

functions of both glyc<strong>in</strong>e and GABA. With respect to glyc<strong>in</strong>e, sp<strong>in</strong>al <strong>in</strong>hibitions<br />

sensitive to strychn<strong>in</strong>e are also reduced by tetanus tox<strong>in</strong> (Cat: BROOKS, CURTIS<br />

and ECCLES, 1957; CURTIS and DE GROAT, 1968). However, unlike <strong>the</strong> situation<br />

after strychn<strong>in</strong>e, sp<strong>in</strong>al neurones reta<strong>in</strong> sensitivity to glyc<strong>in</strong>e (CURTIS and DE<br />

GROAT, 1968; GUSHCHIN, KOZHECHKIN and SVERDLOV, 1969). S<strong>in</strong>ce <strong>the</strong> levels<br />

of glyc<strong>in</strong>e with<strong>in</strong> <strong>the</strong> cord are little <strong>in</strong>fluenced (Cat: JOHNSTON, DE GROAT, and<br />

CURTIS, 1969; FEDINEC and SHANK, 1971; see also SEMBA and KANO, 1969),<br />

tetanus tox<strong>in</strong> apparently <strong>in</strong>terferes with <strong>the</strong> release of this am<strong>in</strong>o <strong>acid</strong> from <strong>in</strong>hibitory<br />

term<strong>in</strong>als.<br />

4.12.3.2 GABA<br />

The depression of <strong>the</strong> fir<strong>in</strong>g of sp<strong>in</strong>al <strong>in</strong>terneurones, parasympa<strong>the</strong>tic preganglionic<br />

neurones, motoneurones and Renshaw cells by electrophoretic GABA<br />

(Cat: CURTIS et al., 1959; DE GROAT, 1970. Rat: BISCOE et al., 1972) is associated<br />

with an <strong>in</strong>creased membrane potential and a conductance <strong>in</strong>crease similar to<br />

that <strong>in</strong>duced by glyc<strong>in</strong>e (CURTIS et al., 1968b). This, toge<strong>the</strong>r with <strong>the</strong> effects<br />

of <strong>in</strong>tra<strong>the</strong>cal and <strong>system</strong>ic GABA on sp<strong>in</strong>al reflexes (KuNo and MUNEOKA,<br />

1962 ; BHARGAVA and SRIVASTAVA, 1964 ; DHAWAN et al., 1972), and <strong>the</strong> <strong>in</strong>trasp<strong>in</strong>al<br />

distribution of <strong>the</strong> am<strong>in</strong>o <strong>acid</strong>, suggests that GABA is an <strong>in</strong>hibitory transmitter<br />

<strong>in</strong> <strong>the</strong> cord. Fur<strong>the</strong>rmore, <strong>the</strong> relative <strong>in</strong>sensitivity of depression of sp<strong>in</strong>al neurone<br />

fir<strong>in</strong>g by GABA to strychn<strong>in</strong>e (CURTIS et al., 1968a, b; DE GROAT, 1970; LARSON,<br />

1969; CURTIS et al., 1971c; BlSCOE et al., 1972), and <strong>the</strong> antagonism of <strong>the</strong><br />

postsynaptic effects of GABA by bicucull<strong>in</strong>e (CURTIS et al., 1971a; B1sco~<br />

et al., 1972), related alkaloids (JOHNSTON et .al., 1972), and penicill<strong>in</strong> (DAVI-<br />

DOFF, 1972C; CURTIS et al., 1972b), <strong>in</strong>dicate that GABA is unlikely to be <strong>the</strong><br />

transmitter of <strong>in</strong>hibitions suppressed by strychn<strong>in</strong>e and strychn<strong>in</strong>e-like glyc<strong>in</strong>e<br />

antagonists.<br />

Consideration of <strong>the</strong> transmitter role of GABA <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord is closely<br />

related to <strong>the</strong> controversial subject of" presynaptic" <strong>in</strong>hibition, a process reviewed<br />

recently <strong>in</strong> depth (ScHt~IDT, 1971). Although <strong>the</strong>re is general agreement that<br />

this type of <strong>in</strong>hibition is of longer latency and duration than that discussed<br />

<strong>in</strong> <strong>the</strong> previous section, and is <strong>in</strong>sensitive to strychn<strong>in</strong>e but reduced by picrotox<strong>in</strong><strong>in</strong><br />

and bicucull<strong>in</strong>e, <strong>the</strong>re is still debate regard<strong>in</strong>g <strong>the</strong> mechanism of <strong>the</strong> process.<br />

The <strong>in</strong>hibition has been measured by <strong>the</strong> reduction <strong>in</strong> amplitude of ei<strong>the</strong>r <strong>in</strong>tracellularly<br />

recorded EPSP's or monosynaptic reflexes, and is dim<strong>in</strong>ished by picrotox<strong>in</strong>


160 D.R. CURTIS and G.A.R. JortmsToY :<br />

(ECCLES et al., 1963; KELLERTH and SZUMSKI, 1966 ; SCHMIDT, 1971), bicucull<strong>in</strong>e<br />

(CURTIS et al., 1971a; HUFEMAN and MCFADIN, 1972) and penicill<strong>in</strong> (DAVIDOEF,<br />

1972C).<br />

Prolonged sp<strong>in</strong>al <strong>in</strong>hibition has been held to be essentially entirely presynaptic<br />

<strong>in</strong> nature, depolarization at axo-axonic synapses on <strong>the</strong> term<strong>in</strong>als of primary<br />

afferent fibres be<strong>in</strong>g responsible for a reduced release of excitatory transmitter<br />

and hence a dim<strong>in</strong>ished effectiveness of excitatory volleys (SCHMIDT, 1971). Primary<br />

afferent depolarization (PAD), detected by direct <strong>in</strong>trafibre record<strong>in</strong>g,<br />

measurement of fibre and term<strong>in</strong>al excitability or <strong>the</strong> record<strong>in</strong>g of dorsal root<br />

potentials and reflexes, is thus considered a primary event, generated at axo-axonic<br />

synapses. The participation of GABA <strong>in</strong> this process is suggested by <strong>the</strong> depolarization<br />

of afferent term<strong>in</strong>als demonstrated <strong>in</strong> amphibian sp<strong>in</strong>al cord preparations<br />

(SCHMIDT, 1963; TEBECIS and PHILLIS, 1969; DAVIDOEE, 1972a; BARKER and<br />

N1COLL, 1973), an effect which is dependent on sodium ions, unaffected by tetrodotox<strong>in</strong><br />

(BARKER and NICOLL, 1973), and like PAD is blocked by picrotox<strong>in</strong><strong>in</strong>,<br />

bicucull<strong>in</strong>e and penicill<strong>in</strong> (ScHMIDT, 1971 ; DAVIDOFE, 1972 a, b; DAVIDOEF, SILVEY,<br />

KOBETZ and SPIRA, 1972; BARKER and NICOLL, 1973). Such direct evidence for<br />

term<strong>in</strong>al depolarization by GABA has not been obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> cat, <strong>in</strong> fact<br />

electrophoretic GABA depressed term<strong>in</strong>al excitability (CURXlS and RYALL,<br />

1966b). Never<strong>the</strong>less picrotox<strong>in</strong><strong>in</strong>, bicucull<strong>in</strong>e and penicill<strong>in</strong> reduce both PAD<br />

and <strong>the</strong> <strong>in</strong>hibitory effect on reflexes of <strong>in</strong>com<strong>in</strong>g volleys (ScHMIDT, 1971 ; CURTIS<br />

et al., 1971a; LEVY and ANDERSON, 1972; DAVIDOEF, 1972c). Additionally,<br />

adm<strong>in</strong>istration of semicarbazide to acute sp<strong>in</strong>al cats, which reduces sp<strong>in</strong>al GABA<br />

levels, suppresses dorsal root potentials and reflexes, and "presynaptic" <strong>in</strong>hibition<br />

(BELL and ANDERSON, 1972).<br />

On <strong>the</strong> o<strong>the</strong>r hand prolonged <strong>in</strong>hibition is considered to be postsynaptic <strong>in</strong><br />

nature, at synapses on dendrites so distant from <strong>the</strong> soma of motoneurones<br />

that changes <strong>in</strong> membrane potential and conductance are not readily detected<br />

by an <strong>in</strong>tracellular microelectrode (GRANIT, 1968; KELLERTH, 1968). Evidence<br />

has been provided of <strong>in</strong>hibitory hyperpolarizations which are reversed by <strong>in</strong>tracellular<br />

chloride ion <strong>in</strong>jection and which are reduced by picrotox<strong>in</strong> but not by<br />

strychn<strong>in</strong>e (KELLERTH, 1968; COOK and CANGIANO, 1972). The participation of<br />

GABA as an <strong>in</strong>hibitory transmitter at such synapses would be entirely consistent<br />

with its <strong>in</strong>hibitory effect when adm<strong>in</strong>istered electrophoretically near sp<strong>in</strong>al neutones,<br />

and for <strong>the</strong> reduction of this synaptic <strong>in</strong>hibition by bicucull<strong>in</strong>e. Fur<strong>the</strong>rmore,<br />

elevation of <strong>the</strong> extracellular potassium concentration as a consequence<br />

of prolonged activation of GABA receptors could account for <strong>the</strong> depolarization<br />

of neighbour<strong>in</strong>g synaptic term<strong>in</strong>als and hence for PAD (see CURTIS et al., 1971a).<br />

Increases <strong>in</strong> extracellular po'tassium levels have been demonstrated <strong>in</strong> sp<strong>in</strong>al tissue<br />

to follow afferent volleys which produce "presynaptic" <strong>in</strong>hibition (Cat: SOMJEN,<br />

1970; KRNJEVIC and MORRIS, 1972. Rat: VYKLICK~(, SYKOVA I(l~I~, and UJEC,<br />

1972), and <strong>the</strong> depolarization would be reduced by GABA antagonists and by<br />

substances <strong>in</strong>terfer<strong>in</strong>g with GABA release. The only observation <strong>in</strong>consistent<br />

with this explanation of PAD is <strong>the</strong> apparent dependence on sodium ions of<br />

<strong>the</strong> depolarization of amphibian sp<strong>in</strong>al afferent term<strong>in</strong>als by GABA (BARKER<br />

and NICOLL, 1973), and fur<strong>the</strong>r <strong>in</strong>vestigation is necessary oflhe ionic mechanism<br />

of PAD <strong>in</strong> mammals.


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 161<br />

The effects of tetanus tox<strong>in</strong> on sp<strong>in</strong>al <strong>in</strong>hibitions are relevant to <strong>the</strong> role<br />

of GABA as an <strong>in</strong>hibitory transmitter s<strong>in</strong>ce <strong>the</strong> tox<strong>in</strong> suppresses GABA-mediated<br />

<strong>in</strong>hibition <strong>in</strong> <strong>the</strong> cerebellum (Section 4.2.2). Follow<strong>in</strong>g <strong>in</strong>tramuscular (SVERDLOV<br />

and ALEKSEEVA, 1965 ; SVFRDLOV and KOZHECNKIN, 1969) or <strong>in</strong>trasp<strong>in</strong>al (CURTIS<br />

et al., 1973 a) adm<strong>in</strong>istration, short latency glyc<strong>in</strong>e-mediated <strong>in</strong>hibitions of motoneurones<br />

are dim<strong>in</strong>ished, and subsequently <strong>the</strong>re is a reduction <strong>in</strong> prolonged<br />

<strong>in</strong>hibitions accompanied by reduced PAD (CURTIS et al., 1973 a). S<strong>in</strong>ce Renshaw<br />

cells affected by <strong>the</strong> tox<strong>in</strong> rema<strong>in</strong> sensitive to GABA (CURxIS and DE GROAT,<br />

1968), and sp<strong>in</strong>al levels of GABA are unaffected (JOHNSTON et al., 1969; SEMBA<br />

and KANO, 1969; FEDINEC and SHANK, 1971), <strong>the</strong> tox<strong>in</strong> presumably <strong>in</strong>terferes<br />

with <strong>the</strong> synaptic release of GABA, an action similar to that occurr<strong>in</strong>g at glyc<strong>in</strong>ereleas<strong>in</strong>g<br />

term<strong>in</strong>als. The differences <strong>in</strong> <strong>the</strong> latency of <strong>the</strong> action of this tox<strong>in</strong><br />

on <strong>the</strong> two types of sp<strong>in</strong>al <strong>in</strong>hibition may be related to <strong>the</strong> predom<strong>in</strong>antly somatic<br />

location of glyc<strong>in</strong>e releas<strong>in</strong>g term<strong>in</strong>als and <strong>the</strong> probable association of GABA<br />

with axodendritic <strong>in</strong>hibitory synapses.<br />

Several processes thus appear responsible for <strong>the</strong> long latency and prolonged<br />

<strong>in</strong>hibition of sp<strong>in</strong>al motoneurones by afferent volleys <strong>in</strong> segmental afferents and<br />

from higher centres (Sc~MIDT, 1971). The <strong>central</strong> effects of <strong>the</strong>se volleys are<br />

complex, both presynaptic and postsynaptic factors may be <strong>in</strong>volved, but <strong>the</strong><br />

release of GABA from <strong>the</strong> term<strong>in</strong>als of a particular type of <strong>in</strong>hibitory <strong>in</strong>terneurone<br />

appears to be essential to <strong>the</strong> prolonged <strong>in</strong>hibitory process. To what extent<br />

this type of <strong>in</strong>hibition normally regulates <strong>the</strong> activity of sp<strong>in</strong>al neurones o<strong>the</strong>r<br />

than motoneurones rema<strong>in</strong>s to be elucidated, as does <strong>the</strong> location and characterization<br />

of <strong>the</strong> <strong>in</strong>terneurones and <strong>the</strong>ir synaptic <strong>in</strong>terconnections with different<br />

types of afferent fibre, fibres from suprasp<strong>in</strong>al regions and <strong>the</strong> axons of o<strong>the</strong>r<br />

sp<strong>in</strong>al <strong>in</strong>terneurones. Neurochemical evidence suggests that most of <strong>the</strong>se GABA<br />

releas<strong>in</strong>g <strong>in</strong>terneurones, or <strong>the</strong>ir synaptic end<strong>in</strong>gs, are located <strong>in</strong> <strong>the</strong> dorsal horn.<br />

O<strong>the</strong>r features requir<strong>in</strong>g fur<strong>the</strong>r <strong>in</strong>vestigation are <strong>the</strong> prolonged time course of<br />

this type of <strong>in</strong>hibition and its enhancement by anaes<strong>the</strong>tics and o<strong>the</strong>r agents<br />

(ScHMIDT, 1971), an effect which may be common to o<strong>the</strong>r synapses operated<br />

by GABA where transmitter action is similarly of long duration (NICOLL, 1972).<br />

4.13. Non-Central Neurones<br />

Although possibly not strictly relevant to <strong>the</strong> <strong>central</strong> <strong>the</strong>me of this review, <strong>the</strong><br />

effects of am<strong>in</strong>o <strong>acid</strong>s upon dorsal root sensory ganglia and autonomic ganglia<br />

are of considerable <strong>in</strong>terest, and may be of significance <strong>in</strong> relation to transmitter<br />

functions of am<strong>in</strong>o <strong>acid</strong>s.<br />

4.13.1. Dorsal Root Ganglia<br />

Analyses of lumbar dorsal ganglia <strong>in</strong>dicate relatively high <strong>in</strong>traganglionic levels<br />

of a number of am<strong>in</strong>o <strong>acid</strong>s, <strong>in</strong>clud<strong>in</strong>g aspartate, glutamate and glyc<strong>in</strong>e (Table 8),<br />

but extremely low levels of GABA (< 0.06 gmole/g, concentration approx.<br />

0.2 mM, Cat: OTSUKA et al., 1971. Rat: 0.3 gmole/g, GOTa'ESFELD, KELLY, and


162 D.R. CURTIS and G. A. R. JOHNSTON :<br />

SCHON, 1973 b). When <strong>in</strong>cubated with labelled am<strong>in</strong>o <strong>acid</strong>s cat and rat ganglia<br />

accumulate GABA by a high aff<strong>in</strong>ity <strong>system</strong> (Kmapprox. 2.5 x 10-5M) which<br />

is facilitated by am<strong>in</strong>o-oxyacetic <strong>acid</strong> and occurs predom<strong>in</strong>antly <strong>in</strong>to satellite<br />

glial cells (GOTTESFELD et al., 1973 b). In contrast, e-alan<strong>in</strong>e and glyc<strong>in</strong>e transport<br />

is less rapid and occurs <strong>in</strong>to both glial cells and neurones.<br />

When adm<strong>in</strong>istered by close <strong>in</strong>tra-arterial <strong>in</strong>jection, GABA depolarizes <strong>the</strong><br />

nodose ganglion of <strong>the</strong> cat, <strong>the</strong> threshold dose be<strong>in</strong>g 0.05-2 gg (DE GROAT, 1972).<br />

No action could be demonstrated for higher doses of glyc<strong>in</strong>e, L-glutamate, L-<br />

aspartate or DL-homocysteate, and <strong>the</strong> depolariz<strong>in</strong>g action of GABA was abolished<br />

by picrotox<strong>in</strong> (100 300 lag) or bicucull<strong>in</strong>e (100-300 lag) but was unaffected<br />

by strychn<strong>in</strong>e (200-400 lag). Essentially similar results were obta<strong>in</strong>ed us<strong>in</strong>g lumbar<br />

dorsal root ganglia when GABA was adm<strong>in</strong>istered <strong>in</strong>tra-arterially or <strong>in</strong>travenously<br />

(Cat: DE GROAT, LALLEY, and SAUM, 1972), threshold concentrations<br />

of GABA after <strong>in</strong>travenous adm<strong>in</strong>istration be<strong>in</strong>g of <strong>the</strong> order of 10-7-10-6 M.<br />

Depolarization by 3-am<strong>in</strong>opropane sulphonic <strong>acid</strong>, fl-alan<strong>in</strong>e and &am<strong>in</strong>ovaleric<br />

<strong>acid</strong> were also demonstrated (DE GROAT et al., 1972). Fur<strong>the</strong>rmore electrophoretic<br />

GABA depolarizes cultured dorsal root ganglion cells, an effect also blocked<br />

by picrotox<strong>in</strong> (O~ATA, 1972 a).<br />

This depolariz<strong>in</strong>g action of GABA, which appears not to modify impulse<br />

transmission through sensory ganglia (DE GROAT et al., 1972), has been <strong>in</strong>terpreted<br />

<strong>in</strong> terms of enhanced chloride permeability (DE GROAT, 1972), and <strong>the</strong> relevance<br />

of this apparently non-synaptic change <strong>in</strong> membrane potential to <strong>the</strong> depolarization<br />

of <strong>central</strong> term<strong>in</strong>als of afferent fibres dur<strong>in</strong>g "presynaptic" <strong>in</strong>hibition (see<br />

Section 4.12.3.2) rema<strong>in</strong>s to be determ<strong>in</strong>ed. Neuronal or glial uptake with a<br />

subsequent elevation of extracellular potassium levels seems unlikely s<strong>in</strong>ce nei<strong>the</strong>r<br />

picrotox<strong>in</strong> nor bicucull<strong>in</strong>e <strong>in</strong>terfere with GABA uptake elsewhere <strong>in</strong> <strong>the</strong> <strong>nervous</strong><br />

<strong>system</strong>.<br />

4.13.2. Autonomic Ganglia<br />

Earlier evidence of <strong>the</strong> effects of am<strong>in</strong>o <strong>acid</strong>s upon autonomic ganglia has been<br />

discussed previously (CURTIS and WATKINS, 1965).<br />

The very low concentrations ofGABA ( < 0.1 lamole/g, Rat: NAGATA, YOKOI,<br />

and TSUKADA, 1966; MASI, PAGGI, POCCHIAR, and ToscHL 1969; MCBRIDE and<br />

KL~NGNAN, 1972) and GAD (NAGATA et al., 1966) with<strong>in</strong> <strong>the</strong> superior cervical<br />

ganglion could be considered to exclude a functional role of this am<strong>in</strong>o <strong>acid</strong><br />

<strong>in</strong> such ganglia. Never<strong>the</strong>less, isolated ganglia accumulate GABA by a relatively<br />

high aff<strong>in</strong>ity sodium dependent <strong>system</strong> which however differs <strong>in</strong> substrate specificity<br />

from that of bra<strong>in</strong> tissue (Rat: superior cervical ganglion, BOWERY and<br />

BROWN, 1972 b). The uptake is not modified by preganglionic denervation (Bow-<br />

ERY and BROWN, 1972b) and uptake <strong>in</strong>to nerve term<strong>in</strong>als also seems excluded<br />

<strong>in</strong> radio-autographic studies, <strong>the</strong> am<strong>in</strong>o <strong>acid</strong> be<strong>in</strong>g located <strong>in</strong> neurones and capsular<br />

cells (BowERY and BROWN, 1971). An equivalent or greater accumulation<br />

of GABA was demonstrated for <strong>the</strong> preganglionic cervical sympa<strong>the</strong>tic trunk<br />

and <strong>the</strong> vagus nerve (BOWERY and BROWN, 1972 b). Although electrical stimulation<br />

of pre- or postganglionic trunks, or treatment with carbamylchol<strong>in</strong>e, did not


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 163<br />

release labelled GABA from <strong>the</strong> ganglion, an efflux was demonstrated dur<strong>in</strong>g<br />

high frequency electrical stimulation of <strong>the</strong> ganglion body or elevation of <strong>the</strong><br />

extracellular potassium concentration; this potassium-<strong>in</strong>duced efflux not be<strong>in</strong>g<br />

affected by preganglionic denervation (BowERY and BROWN, 1972b).<br />

Studies of o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> ganglia have been largely concerned with<br />

metabolism (NAGATA et al., 1966; MCBRIDE and KLINGMAN, 1972; MASI<br />

et al., 1969). The level of glutamate <strong>in</strong> <strong>the</strong> cat <strong>in</strong>ferior cervical and thoracic<br />

ganglia (3 ~tmole/g, JOHNSON and AVRISON, 1970) is less than that of dorsal root<br />

ganglia (Table 8). Glyc<strong>in</strong>e values are relatively high ( > 3 gmole/g, Rat: MCBRIDE<br />

and KLINGMAN, 1972) and glyc<strong>in</strong>e is accumulated by isolated ganglia (BowERY<br />

and BROWN, 1972 b).<br />

Although <strong>the</strong>se neurochemical studies with GABA support <strong>the</strong> non-<strong>in</strong>volvement<br />

of this am<strong>in</strong>o <strong>acid</strong> as a transmitter <strong>in</strong> autonomic ganglia, <strong>the</strong>re is strong<br />

evidence that GABA (and closely related analogues) depresses ganglionic<br />

transmission and depolarizes ganglionic neurones (Cat: superior cervical, <strong>in</strong>ferior<br />

mesenteric, pelvic ganglia <strong>in</strong> vivo, DE GROAT, 1970a, Rat: superior cervical ganglion<br />

<strong>in</strong> vitro, BOWERY and BROWN, 1972a; see also SRIMAL and BHARGAVA,<br />

1966). Threshold concentrations were of <strong>the</strong> order of 0.02 pg (<strong>in</strong>tra-arterial,<br />

DE GROAT, 1970 a) and 10-6 M (isolated, BOWZRY and BROWN, 1972 a), and <strong>in</strong>tracellular<br />

studies <strong>in</strong>dicate a depolarization and an <strong>in</strong>creased membrane conductance<br />

which is most probably due to an enhanced permeability of <strong>the</strong> membrane to<br />

chloride ions (Rat: ADAr~S and BROWN, 1973). Ganglia are <strong>in</strong>sensitive to glyc<strong>in</strong>e<br />

and <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s (DE GROAT, 1970a; BOWERY and BROWN, 1972a) and<br />

<strong>the</strong> effects of GABA were not altered by strychn<strong>in</strong>e (OE GROAT, 1970a) but<br />

were antagonized by picrotox<strong>in</strong> and bicucull<strong>in</strong>e (DE GROAT, 1970a; DE GROAT,<br />

LALLEY and BLOCK, ! 971 ; BOWERY and BROWN, 1972 a) nei<strong>the</strong>r of which seriously<br />

affected ganglionic transmission.<br />

A picrotox<strong>in</strong>-sensitive depolarization by GABA has also been demonstrated<br />

us<strong>in</strong>g cultured rat sympa<strong>the</strong>tic ganglion cells (O~AXA, 1972 a).<br />

Chronic preganglionic denervation has no effect on <strong>the</strong> depolariz<strong>in</strong>g action<br />

of GABA on <strong>the</strong> cat superior cervical ganglion (DE GROAT, 1969) and <strong>the</strong> relevance<br />

of <strong>the</strong>se pharmacological observations to synaptic transmission with<strong>in</strong> ganglia<br />

by ei<strong>the</strong>r GABA or a related am<strong>in</strong>o <strong>acid</strong> seems ra<strong>the</strong>r remote. However fur<strong>the</strong>r<br />

<strong>in</strong>vestigation is warranted.<br />

5. Summariz<strong>in</strong>g and Conclud<strong>in</strong>g Remarks<br />

5.1. Glyc<strong>in</strong>e<br />

There are reasonable grounds for consider<strong>in</strong>g glyc<strong>in</strong>e as <strong>the</strong> transmitter mediat<strong>in</strong>g<br />

"direct" and "recurrent" <strong>in</strong>hibition of sp<strong>in</strong>al motoneurones, as well as o<strong>the</strong>r<br />

strychn<strong>in</strong>e-sensitive <strong>in</strong>hibitions of both segmental and suprasp<strong>in</strong>al orig<strong>in</strong> which<br />

<strong>in</strong>fluence <strong>the</strong> fir<strong>in</strong>g of medullary and sp<strong>in</strong>al motoneurones and <strong>in</strong>terneurones.<br />

There is at present little evidence to <strong>in</strong>dicate that glyc<strong>in</strong>e operates as an <strong>in</strong>hibitory<br />

transmitter <strong>in</strong> o<strong>the</strong>r areas of <strong>the</strong> CNS, and <strong>the</strong> importance of this am<strong>in</strong>o <strong>acid</strong><br />

appears to be its <strong>in</strong>volvement <strong>in</strong> <strong>the</strong> regulation of sp<strong>in</strong>al and bra<strong>in</strong> stem reflexes.


164 D.R. CURTIS and G. A, R. JOHNSTON :<br />

5.2. GABA<br />

The most fully documented case for an am<strong>in</strong>o <strong>acid</strong> transmitter, and <strong>in</strong>deed for<br />

any <strong>central</strong> transmitter, is that for GABA, released at term<strong>in</strong>als of Purk<strong>in</strong>je<br />

cell axons to <strong>in</strong>hibit Deiters' neurones. Somewhat less, though adequate, evidence<br />

is available that GABA is an <strong>in</strong>hibitory transmitter <strong>in</strong> <strong>the</strong> cerebral, cerebellar<br />

and hippocampal cortices released by basket type cells. In addition, GABA seems<br />

likely to be an <strong>in</strong>hibitory transmitter <strong>in</strong> <strong>the</strong> substantia nigra (which conta<strong>in</strong>s<br />

<strong>the</strong> highest levels of this am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> <strong>the</strong> bra<strong>in</strong>), <strong>in</strong> <strong>the</strong> ret<strong>in</strong>a, olfactory bulb,<br />

thalamic relay nuclei, dorsal column nuclei and <strong>the</strong> sp<strong>in</strong>al cord. In <strong>the</strong> two<br />

latter regions GABA is associated with prolonged <strong>in</strong>hibition, a process sensitive<br />

to picrotox<strong>in</strong><strong>in</strong> and bicucull<strong>in</strong>e, and which may be at least partially presynaptic<br />

<strong>in</strong> nature.<br />

5.3. Aspartate and Glutamate<br />

Glutamate, <strong>the</strong> most abundant am<strong>in</strong>o <strong>acid</strong> <strong>in</strong> <strong>the</strong> adult bra<strong>in</strong>, and aspartate,<br />

may be excitatory <strong>transmitters</strong> of <strong>the</strong> ma<strong>in</strong> afferent and efferent pathways with<strong>in</strong><br />

<strong>the</strong> CNS. The evidence is far from conv<strong>in</strong>c<strong>in</strong>g, <strong>the</strong> proposal be<strong>in</strong>g based largely<br />

on negative evidence for <strong>the</strong> <strong>in</strong>volvement of o<strong>the</strong>r substances, <strong>the</strong> distribution<br />

of <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> bra<strong>in</strong> and sp<strong>in</strong>al cord, and <strong>the</strong> excitation by both<br />

of neurones <strong>in</strong> all regions.<br />

Neurochemical studies suggest that glutamate could be <strong>the</strong> excitatory transmitter<br />

of sp<strong>in</strong>al primary afferent fibres and aspartate a transmitter released by sp<strong>in</strong>al<br />

excitatory <strong>in</strong>terneurones. Fur<strong>the</strong>r <strong>in</strong>vestigations are required of <strong>the</strong> relative sensitivities<br />

of <strong>central</strong> neurones to <strong>the</strong>se excitants, a study conf<strong>in</strong>ed so far to <strong>the</strong> thalamus<br />

and sp<strong>in</strong>al cord. Additionally <strong>the</strong>re is a vital need for selective antagonists of<br />

both <strong>the</strong> excitation by, and <strong>the</strong> uptake of, aspartate and glutamate <strong>in</strong> order<br />

to establish <strong>the</strong> <strong>central</strong> pathways which operate by releas<strong>in</strong>g <strong>the</strong>se am<strong>in</strong>o <strong>acid</strong>s.<br />

5.4. O<strong>the</strong>r <strong>Am<strong>in</strong>o</strong> Acids<br />

It is possible that am<strong>in</strong>o <strong>acid</strong>s o<strong>the</strong>r than glyc<strong>in</strong>e, GABA, aspartate and glutamate<br />

function as synaptic <strong>transmitters</strong>. These <strong>in</strong>clude ~- and fl-alan<strong>in</strong>e, 7-am<strong>in</strong>obutyrylchol<strong>in</strong>e,<br />

cystathion<strong>in</strong>e, cysteate, cyste<strong>in</strong>e sulph<strong>in</strong>ate, hypotaur<strong>in</strong>e, taur<strong>in</strong>e, imidazole-4-acetate<br />

and ser<strong>in</strong>e. All <strong>in</strong>fluence <strong>the</strong> fir<strong>in</strong>g of neurones when adm<strong>in</strong>istered<br />

electrophoretically, and even <strong>the</strong> levels of those which occur <strong>in</strong> "trace" amounts,<br />

<strong>in</strong> relation to GABA, are comparable with <strong>the</strong> amounts of acetylchol<strong>in</strong>e, noradrenal<strong>in</strong>e,<br />

dopam<strong>in</strong>e and 5-hydroxytryptam<strong>in</strong>e <strong>in</strong> <strong>nervous</strong> tissue.<br />

5.5. Conclud<strong>in</strong>g Remarks<br />

This review has been concerned with <strong>the</strong> function of am<strong>in</strong>o <strong>acid</strong>s of relatively<br />

simple chemical structure as excitatory and <strong>in</strong>hibitory <strong>transmitters</strong> regulat<strong>in</strong>g


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 165<br />

<strong>the</strong> activity of neurones throughout <strong>the</strong> <strong>mammalian</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. The<br />

evidence presented suggests that <strong>the</strong>se substances deserve consideration as major<br />

<strong>central</strong> <strong>transmitters</strong> <strong>in</strong>volved with <strong>the</strong> relay of afferent <strong>in</strong>formation from <strong>the</strong><br />

sp<strong>in</strong>al to <strong>the</strong> cortical level, <strong>the</strong> control of cerebral pyramidal and cerebellar<br />

Purk<strong>in</strong>je cells, and of o<strong>the</strong>r cortical, subcortical and sp<strong>in</strong>al neurones. The case<br />

could even be argued that o<strong>the</strong>r substances such as acetylchol<strong>in</strong>e, noradrenal<strong>in</strong>e,<br />

dopam<strong>in</strong>e and 5-hydroxytryptam<strong>in</strong>e, widely acknowledged as <strong>central</strong> <strong>transmitters</strong>,<br />

are of relatively m<strong>in</strong>or but none<strong>the</strong>less vital importance, be<strong>in</strong>g associated with<br />

<strong>the</strong> f<strong>in</strong>er control of functions such as movement, mood and behaviour. Due<br />

consideration is thus required of am<strong>in</strong>o <strong>acid</strong>s and <strong>the</strong> "am<strong>in</strong>es" when attempt<strong>in</strong>g<br />

to understand <strong>the</strong> "magic loom" of synaptic <strong>in</strong>terconnections that constitutes<br />

<strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>.<br />

With fur<strong>the</strong>r elucidation and appreciation of <strong>the</strong> essential role of am<strong>in</strong>o <strong>acid</strong>s<br />

as <strong>transmitters</strong>, and of disturbances of CNS function result<strong>in</strong>g from abnormalities<br />

at <strong>the</strong> synaptic level, <strong>in</strong>creas<strong>in</strong>g opportunities will arise for <strong>the</strong>rapeutic measures<br />

based on chemical manipulation of <strong>the</strong> syn<strong>the</strong>sis, storage, release, postsynaptic<br />

action or <strong>in</strong>activation of particular am<strong>in</strong>o <strong>acid</strong>s.<br />

Acknowledgement. The authors are <strong>in</strong>debted to Mrs. R. MACLACHLAN, Mrs. P. SEARLE, Mrs. A. STE-<br />

PHANSON, and particularly Mrs. H. WALSr~ for <strong>in</strong>valuable assistance <strong>in</strong> prepar<strong>in</strong>g this manuscript,<br />

and are grateful for material provided prior to publication by colleagues <strong>in</strong> North America, Europe<br />

and Japan.<br />

References<br />

ADAMS, P.R., BROWN, D.A.: Action of ";-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) on rat sympa<strong>the</strong>tic ganglion<br />

cells. Brit. J. Pharmacol. 47, 639-640P (1973).<br />

ADOLPH, A. R. : Excitation and <strong>in</strong>hibition of electrical activity <strong>in</strong> <strong>the</strong> limulus eye by neuropharmacological<br />

agents. In: The functional organization of <strong>the</strong> compound eye, p. 465 482. Oxford: Pergamon<br />

Press 1966.<br />

AGHAJANIAN, G. K., HAIGLER, H.J., BLOOM, F. E. : Lysergic <strong>acid</strong> diethylamide and seroton<strong>in</strong> : direct<br />

actions on seroton<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g neurons <strong>in</strong> rat bra<strong>in</strong>. Life Sci. 11, Part I, 615-622 (1972).<br />

AGRAWAL, H.C., DAVlS, J.M., HIMWICH, W.A.: Postnatal changes <strong>in</strong> free am<strong>in</strong>o <strong>acid</strong> pool of<br />

rat bra<strong>in</strong>. J. Neurochem. 13, 607-615 (1966).<br />

AGRAWAL, H. C., DAVISON, A. N., KACZM~REK, L. K. : Subcellular distribution of taur<strong>in</strong>e and cyste<strong>in</strong>esulph<strong>in</strong>ate<br />

decarboxylase <strong>in</strong> develop<strong>in</strong>g rat bra<strong>in</strong>. Biochem. J. 122, 759-763 (1971).<br />

AJMONE-MARSAN, C.: Acute effects of topical epileptogenic agents. In: Basic mechanisms of <strong>the</strong><br />

epilepsies, eds. H.H. Jasper, A.A. Ward, Jr., and A. Pope, p. 299 319. Boston: Little, Brown<br />

& Co. 1969.<br />

ALBERS, R.W., BRADY, R.O.: Distribution of glutamic decarboxylase <strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong> of<br />

<strong>the</strong> Rhesus monkey. J. biol. Chem. 234, 926-928 (1959).<br />

ALBERT, A.: Quantitative studies of <strong>the</strong> avidity of naturally occurr<strong>in</strong>g substances for trace metals.<br />

1. <strong>Am<strong>in</strong>o</strong>-<strong>acid</strong>s hav<strong>in</strong>g only two ioniz<strong>in</strong>g groups. Biochem. J. 47, 531-538 (1950).<br />

ALTMANN, H., BRUGGENCATE, G. TEN, SONNHOF, U.: Differential strength of action of glyc<strong>in</strong>e and<br />

GABA <strong>in</strong> hypoglossus nucleus. Pflfigers Arch. 331, 90-94 (1972).<br />

ALTMANN, H., STEINBERG, R., BRUGGENCATE, G. TEN, SONNHOF, U.: Actions of am<strong>in</strong>o <strong>acid</strong>s applied<br />

iontophoretically <strong>in</strong> <strong>the</strong> red nucleus. Pfliigers Arch. 335, Suppl., Abstract 132 (1972).<br />

AMES, A., III, POLLEN, D.A. : Neurotransmission <strong>in</strong> <strong>central</strong> <strong>nervous</strong> tissue; a pharmacologic study<br />

of isolated rabbit ret<strong>in</strong>a. J. Neurophysiol. 32, 424-442 (1969).<br />

ANDERSEN, P,, CURTIS, D. R.: The excitation of thalamic neurones by acetylchol<strong>in</strong>e. Acta physiol.<br />

scand. 61, 85-99 (1964a).


166 D.R. CURTIS and G.A.R. JOHNSTON :<br />

ANDERSEN, P., CURTIS, D. R. : The pharmacology of <strong>the</strong> synaptic and acetylchol<strong>in</strong>e-<strong>in</strong>duced excitation<br />

of ventrobasal thalamic neurones. Acta physiol, scand. 61, 100 120 (1964b).<br />

ANDERSEN, P., ECCLES, J.C., LOYNING,Y. : Pathway of postsynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> hippocampus.<br />

J. Neurophysiol. 27, 608-619 (1964).<br />

ANDERSEN, P., ECCLES, J.C., LOYNING, Y., VOORHOEVE, P. E. : Strychn<strong>in</strong>e-resistant <strong>in</strong>hibition <strong>in</strong> <strong>the</strong><br />

bra<strong>in</strong>. Nature (Lond.) 200, 843 845 (1963).<br />

ANDERSEN, P., ECCLES, J.C., OSHIMA, T., SCHM1DT, R.F.: Mechanisms of synaptic transmission<br />

<strong>in</strong> <strong>the</strong> cuneate nucleus. J. Neurophysiol. 27, 1096-1116 (1964).<br />

ANDERSEN, P., ETHOLM, B., GORDON, G.: Presynaptic and postsynaptic <strong>in</strong>hibition elicited <strong>in</strong> <strong>the</strong><br />

cat's dorsal column nuclei by mechanical stimulation of sk<strong>in</strong>. J. Physiol. (Lond.) 210, 433 455<br />

(1970).<br />

APRISON, M.H.: Evidence of <strong>the</strong> release of C14-glyc<strong>in</strong>e from hemisectioned toad sp<strong>in</strong>al cord with<br />

dorsal root stimulation. Pharmacologist 12, No. 2, 126 (1970).<br />

APRISON, M.H., DAVIDOFF, R.A., WERMAN, R.: Glyc<strong>in</strong>e: its metabolic and possible transmitter<br />

roles <strong>in</strong> <strong>nervous</strong> tissue. In : Handbook of neurochemistry, v01.3, Metabolic reactions <strong>in</strong> <strong>the</strong> <strong>nervous</strong><br />

<strong>system</strong>, ed. A. Lajtha, p. 381 397. New York: Plenum Press 1970.<br />

APR1SON, M.H., McBRJDE, W.J. : Evidence for <strong>the</strong> net accumulation of glyc<strong>in</strong>e <strong>in</strong>to a synaptosomal<br />

fraction isolated from <strong>the</strong> telecephalon and sp<strong>in</strong>al cord of <strong>the</strong> rat. Life Sci. 12, Part I, 449 458<br />

(1973).<br />

APrtISON, M.H., SHANK, R.P., DAVIDOEV, R.A.: A comparison of <strong>the</strong> concentration of glyc<strong>in</strong>e.<br />

a transmitter suspect, <strong>in</strong> different areas of <strong>the</strong> bra<strong>in</strong> and sp<strong>in</strong>al cord <strong>in</strong> seven different vertebrates.<br />

Comp. Biochem, Physiol. 28, 1345--1355 (1969).<br />

APR1SON, M. H., WERMAN, R. : A comb<strong>in</strong>ed neurochemical and neurophysiological approach to identification<br />

of <strong>central</strong> <strong>nervous</strong> <strong>system</strong> <strong>transmitters</strong>. In : Neurosciences research, vol. 1, eds. S. Ehrenpeels<br />

and P.C. Solnitzky, p. 143 174. New York: Academic Press t968.<br />

ARNFRED, T., HERZ, L.: Effects of potassium and glutamate on bra<strong>in</strong> cortex slices: uptake and<br />

release of glutamic and o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s. J. Neurochem. 18, 259 265 (1971).<br />

ARRE~UI, A., LOGAN, W.J., BENNETT, J.P., SNYDER~ S. H. : Specific glyc<strong>in</strong>e - accumulat<strong>in</strong>g synaptosomes<br />

<strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord of rats. Proc. nat. Acad. Sci. (Wash.) 69, 3485-3489 (1972).<br />

AWAPURA, J.: The taur<strong>in</strong>e concentration of organs from fed and fasted rats. J. biol. Chem. 218,<br />

571-576 (1956).<br />

BAKER, W.W., KRATKY, M., BENEDICT, F. : Electrographic responses to <strong>in</strong>trahippocampal <strong>in</strong>jections<br />

of convulsant drugs. Exp. Neurol. 12, 136-145 (1965).<br />

BAL~,ZS, R., MACHIYAMA, Y., HAMMOND, B.J., JULIAN, T., RICHTER, D.: The operation of <strong>the</strong> 7-<br />

am<strong>in</strong>obutyrate bypath of <strong>the</strong> tricarboxylic <strong>acid</strong> cycle <strong>in</strong> bra<strong>in</strong> tissue <strong>in</strong> vitro. Biochem. J. 116,<br />

445-467 (1970).<br />

BAL.kZS, R., PATEL, A.J., RICHTER, D. : Metabolic compartments <strong>in</strong> <strong>the</strong> bra<strong>in</strong>: <strong>the</strong>ir properties and<br />

relation to morphological structures. In : Metabolic compartmentation <strong>in</strong> <strong>the</strong> bra<strong>in</strong>, eds. R. Balfizs<br />

and J.E. Cremer, p. 167-184. London: Macmillan 1973.<br />

BALCAR, V. J., JOHNSTON, G. A. R. : Glutamate uptake by bra<strong>in</strong> slices and its relation to <strong>the</strong> depolarization<br />

of neurones by <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s. J. Neurobiot. 3, 295-301 (1972a).<br />

BALCAR, V. J., JOHNSTON, G. A. R. : The structural specificity of <strong>the</strong> high aff<strong>in</strong>ity uptake of L-glutamate<br />

and L-aspartate by rat bra<strong>in</strong> slices. J. Neurochem. 19, 2657-2666 (1972b).<br />

BALCAR, V.J., JOHNSTON, G.A.R.: High aff<strong>in</strong>ity uptake of <strong>transmitters</strong>: studies on <strong>the</strong> uptake of<br />

L-aspartate, GABA, L-glutamate and glyc<strong>in</strong>e <strong>in</strong> cat sp<strong>in</strong>al cord. J. Neurochem. 20, 529-539<br />

(1973).<br />

BANNA, N.R., JABBUR, S.J.: Pharmacological studies on <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> cuneate nucleus of <strong>the</strong><br />

cat. Int. J. Neuropharmacol. 8, 299 307 (1969).<br />

BANNA, N.R., JABBUR, S.J.: The effects of deplet<strong>in</strong>g GABA on cuneate presynaptic <strong>in</strong>hibition.<br />

Bra<strong>in</strong> Res. 33, 530 532 (1971).<br />

BANNA, N. R., NACCACHE, A., JABBUR, S. J. : Picrotox<strong>in</strong>-like action of bicucull<strong>in</strong>e. Europ. J. Pharmacol.<br />

17, 301-302 (1972).<br />

BANDS, G., DANIEL, P.M., MOORHOUSE, S.R., PRATT, O.E.: The entry of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong>to <strong>the</strong><br />

bra<strong>in</strong> of <strong>the</strong> rat dur<strong>in</strong>g <strong>the</strong> postnatal period. J. Physiol. (Lond.) 213, 45-46P (1971).<br />

BARKER, J. L., CRAYTON, J. W., N1COLL, R. A. : Noradrenal<strong>in</strong>e and acetylchol<strong>in</strong>e responses of supraoptic<br />

neurosecretory cells. J. Physiol. (Load.) 218, 19-32 (1971).<br />

BARKER, J.L., NICOLE, R.A.: The pharmacology and ionic dependency of am<strong>in</strong>o <strong>acid</strong> responses<br />

<strong>in</strong> <strong>the</strong> frog sp<strong>in</strong>al cord. J. Physiol. (Lond.) 228, 259-277 (1973).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 167<br />

BATTISTIN, L., GRYNBAUM, A., LAJTHA, A.: Distribution and uptake of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> various<br />

regions of <strong>the</strong> cat bra<strong>in</strong> <strong>in</strong> vitro. J. Neurochem. 16, 1459-1468 (1969a).<br />

BATTIST1N, L., GRYNBAUM, A., LAJTHA, A. : Energy dependence of am<strong>in</strong>o <strong>acid</strong> uptake <strong>in</strong> bra<strong>in</strong> slices.<br />

Bra<strong>in</strong> Res. 16, 187-197 (1969b).<br />

BAXTER, C.F.: The nature of 7-am<strong>in</strong>obutyric <strong>acid</strong>. In: Handbook of neurochemistry, vol. 3, ed.<br />

A. Lajtha, p. 289-353. New York: Plenum Press 1970.<br />

BAXTER, C. F. : ASSAY OF ?-am<strong>in</strong>obutyric <strong>acid</strong> and enzymes <strong>in</strong>volved <strong>in</strong> its metabolism. In: Methods<br />

of neurochemistry, vol. 3, ed. R. Fried, p. 1-73. New York: Marcel Dekker 1972.<br />

BAXTER, C.F., TEWARI, S.: Regulation by am<strong>in</strong>o <strong>acid</strong>s of prote<strong>in</strong> syn<strong>the</strong>sis <strong>in</strong> a cell free <strong>system</strong><br />

from immature rat bra<strong>in</strong>: stimulatory effect of 7-am<strong>in</strong>obutyric <strong>acid</strong> and glyc<strong>in</strong>e. In: Prote<strong>in</strong><br />

metabolism of <strong>the</strong> <strong>nervous</strong> <strong>system</strong>, p. 439456. New York: Plenum Press 1970.<br />

BAXTER, C.F., TEWAR1, S., RAEBURN, S.: The possible role of gamma-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> <strong>the</strong><br />

syn<strong>the</strong>sis of prote<strong>in</strong>. In : Advances <strong>in</strong> biochemical psychopharmacology, vol. 4, eds. M.S. Ebadi<br />

and E. Costa, p. 195-216. New York: Raven Press (1972).<br />

BEART, P.M., CURTIS, D.R., JOHNSTON, G.A.R.: 4-<strong>Am<strong>in</strong>o</strong>tetrolic <strong>acid</strong>: a new conformationallyrestricted<br />

analogue of 7-am<strong>in</strong>obutyric <strong>acid</strong>. Nature (Lond.) New Biol. 234, 80-81 (1971 ).<br />

BEART, P.M., JOHNSTON, G.A.R. : Transm<strong>in</strong>ation of analogues of ";-am<strong>in</strong>obutyric <strong>acid</strong> by extracts<br />

of rat bra<strong>in</strong> mitochondria. Bra<strong>in</strong> Res. 49, 459-462 (1973a).<br />

BEART, P. M., JOHNSTON, G. A. R. : GABA uptake <strong>in</strong> rat bra<strong>in</strong> slices : <strong>in</strong>hibition by GABA analogues<br />

and by various drugs. J. Neurochem. 20, 319 324 (1973b).<br />

BEART, P. M.; JOHNSTON, G. A. R., UHR, M. L. : Competitive <strong>in</strong>hibition of GABA uptake <strong>in</strong> rat bra<strong>in</strong><br />

slices by some GABA analogues of restricted conformation. J. Neurochem. 19, 1855-1861 (1972).<br />

BELL, J.A., ANDERSON, E.G. : The <strong>in</strong>fluence of semicarbazide-<strong>in</strong>duced depletion of ?-am<strong>in</strong>obutyric<br />

<strong>acid</strong> on presynaptic <strong>in</strong>hibition. Bra<strong>in</strong> Res. 43, 161-169 (1972).<br />

BENJAMIN, A. M., QUASTEL, J. H. : Locations of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> bra<strong>in</strong> slices from <strong>the</strong> rat. Tetrodotox<strong>in</strong>sensitive<br />

release of am<strong>in</strong>o <strong>acid</strong>s. Biochem. J. 128, 631-646 (1972).<br />

BENNETT, J. P., JR., LOGAN, W.J., SNYDER, S.H. : <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> neurotransmitter candidates: sodiumdependent<br />

high-aff<strong>in</strong>ity uptake by unique synaptosomal fractions. Science 178, 997-999 (1972).<br />

BENUCK, M., STERN, F., LAJTHA, A.: Transam<strong>in</strong>ation of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> homogenates of rat bra<strong>in</strong>.<br />

J. Neurochem. 18, 1555 1567 (1971).<br />

BENUCK, M., STERN, F., LAJTHA, A.: Regional and subcellular distribution of am<strong>in</strong>otransferases<br />

<strong>in</strong> rat bra<strong>in</strong>. J. Neurochem. 19, 949-957 (1972).<br />

BERGERET, B., CHATAGNE, F.: Sur la pr6sence d'<strong>acid</strong>e cyste<strong>in</strong>esulf<strong>in</strong>ique darts le cerveau du rat<br />

normal. Biochim. biophys. Acta (Amst.) 14, 297 (1954).<br />

BERt, S., CLARKE, D.D.: Compartmentation of am<strong>in</strong>o <strong>acid</strong> metabolism. In: Handbook of neurochemistry,<br />

vol. 2, ed. A. Lajtha, p. 447-472. New York: Plenum Press 1969.<br />

BERL, S., MCMURTRY, J. G. : Isolated cerebral cortex : changes <strong>in</strong> levels of glutamic <strong>acid</strong>, glutam<strong>in</strong>e,<br />

aspartic <strong>acid</strong>, and y-am<strong>in</strong>obutyric <strong>acid</strong>. Arch. Biochem. Biophys. 118, 645-648 (1967).<br />

BERL, S., N1CKLAS, W.J., CLARKE, D.D.: Compartmentation of glutamic <strong>acid</strong> metabolism <strong>in</strong> bra<strong>in</strong><br />

slices. J. Neurochem. 15, 131-140 (1968).<br />

BHAGAVAN, H. N., COURS1N, D.B., STEWART, C. N. : Monosodium glutamate <strong>in</strong>duces convulsiize disorders<br />

<strong>in</strong> rats. Nature (Lond.) 232, 275-276 (1971).<br />

BnARGAVA, K. P., SRIVASTAVA, R. K. : Nonspecific depressant action of T-am<strong>in</strong>obutyric <strong>acid</strong> on somatic<br />

reflexes. Brit. J. Pharmacol. 23, 391-398 (1964).<br />

BlSCOE, T.J., CURTIS, D. R. : Noradrenal<strong>in</strong>e and <strong>in</strong>hibition of Renshaw cells. Science 151, 1230-1231<br />

(1966).<br />

BISCOE, T.J., Ct;RTlS, D. R. : Strychn<strong>in</strong>e and cortical <strong>in</strong>hibition. Nature (Lond.) 214, 914-915 (1967).<br />

BJSCOE, T. J., DUGGAN, A.W., LODGE, D. : Antagonism between bicucull<strong>in</strong>e, strychn<strong>in</strong>e and picrotox<strong>in</strong><br />

and depressant am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> rat <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Comp. J. Gen. Phannac. 3, 423<br />

(1972).<br />

B1SCOE, T.J., STRAUGHAN, D. W. : Micro-electrophoretic studies of neurones <strong>in</strong> <strong>the</strong> cat hippocampus.<br />

J. Physiol. (Lond.) 183, 341-359 (1966).<br />

BISTI, S., IOSW, G., MARCHESh G.F., STRATA, P. : Pharmacological properties of <strong>in</strong>hibitions <strong>in</strong> <strong>the</strong><br />

cerebeUar cortex. Exp. Bra<strong>in</strong> Res. 14, 24-37 (1971).<br />

BLAS~ERG, R.G. : Specificity of cerebral am<strong>in</strong>o <strong>acid</strong> transport : a k<strong>in</strong>etic analysis. Progr. Bra<strong>in</strong> Res.<br />

29, 245-256 (1968).<br />

BLOOM, F. E. : <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s and polypeptides <strong>in</strong> neuronal function. A report based on an NRP work<br />

session. Neurosci. Res. Prog. Bull. 10, 121-251 (1972).


168 D.R. CURTIS and G. A. R. JOHNSTON :<br />

BLOOM, F. E., COSTA, E., SALMOIRAGH1, G. C. : Anes<strong>the</strong>sia and <strong>the</strong> responsiveness of <strong>in</strong>dividual neurons<br />

of <strong>the</strong> caudate nucleus of <strong>the</strong> cat to acetylchol<strong>in</strong>e, norep<strong>in</strong>ephr<strong>in</strong>e and dopam<strong>in</strong>e adm<strong>in</strong>istered<br />

by microelectrophoresis. J. Pharmacol. exp. Ther. 150, 244-252 (1965).<br />

BOAKES, R.J., BRADLEY, P.B., BRIGGS, 1., DRAY, A.: Antagonism of 5-hydroxytryptam<strong>in</strong>e by LSD<br />

25 <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>: a possible neuronal basis for <strong>the</strong> actions of LSD 25. Brit.<br />

J. Pharmacol. 40, 202-218 (1970).<br />

BOEHME, D.H., FORDICE, M.W., MARKS, N., VOGEL, W.: Distribution of glyc<strong>in</strong>e <strong>in</strong> human sp<strong>in</strong>al<br />

cord and selected regions of bra<strong>in</strong>. Bra<strong>in</strong> Res. 50, 353-359 (1973).<br />

BORNSCHEIN, 'H., HEISS, W.D.: Strychn<strong>in</strong>e-resistant <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> ret<strong>in</strong>a. Experientia, (Basel)<br />

22, 49 (1966).<br />

BORRE, C., GENESER-JENSEN, F.A.: Distribution of aspartate am<strong>in</strong>otransferase <strong>in</strong> <strong>the</strong> hippocampal<br />

region of <strong>the</strong> gu<strong>in</strong>ea pig. Z. Zellforsch. 127, 209-219 (1972).<br />

BOWERY, N.G., BROWN, D.A.: Observations on [3H]-am<strong>in</strong>obutyric <strong>acid</strong> accumulation and efflux<br />

<strong>in</strong> isolated sympa<strong>the</strong>tic ganglia. J. Physiol. (Lond.) 218, 32-33P (1971).<br />

BOWERY, N.G., BROWN, D.A. : Depolarization of isolated rat ganglia by ,/-am<strong>in</strong>obutyric <strong>acid</strong> and<br />

related compounds. Brit. J. Pharmacol. 45, 160-161 P (1972a).<br />

BOWERY, N.G., BROWN, D. A. : 7-<strong>Am<strong>in</strong>o</strong>butyric <strong>acid</strong> uptake by sympa<strong>the</strong>tic ganglia. Nature (Lond.)<br />

New Biol. 238, 89-91 (1972b).<br />

BOYD, E.S., MERITT, D.A., GARDNER, C. : The effect of convulsant drugs on transmission through<br />

<strong>the</strong> cuneate nucleus. J. Pharmacol. exp. Ther. 154, 398-409 (1966).<br />

BRADFORD, H.F.: Metabolic response of synaptosomes to electrical stimulation: release of am<strong>in</strong>o<br />

<strong>acid</strong>s. Bra<strong>in</strong> Res. 19, 239-247 (1970).<br />

BRADFORD, H. F. : Cerebral cortex slices and synaptosomes: <strong>in</strong> vitro approaches to bra<strong>in</strong> metabolism.<br />

In: Methods of neurochemistry, vol. 3, ed. R. Fried, p. 155-202. New York: Marcel Dekker<br />

1972.<br />

BRADLEY, K., EASTON, D.M., ECCLES, J.C.: An <strong>in</strong>vestigation of primary or direct <strong>in</strong>hibition. J.<br />

Physiol. (Lond.) 122, 474-488 (1953).<br />

BRIDGERS, W. F. : Ser<strong>in</strong>e transhydroxymethylase <strong>in</strong> develop<strong>in</strong>g mouse bra<strong>in</strong>. J. Neurochem. 15, 1325-<br />

1328 (1968).<br />

BRIDGERS, W. F. : Purification of mouse bra<strong>in</strong> phosphoser<strong>in</strong>e phosphohydrolase and phosphotransfer 7<br />

ase. Arch. Biochem. Biophys. 133, 201-207 (1969).<br />

BRIEL, G., NEUHOFE, V. : Microanalysis of am<strong>in</strong>o <strong>acid</strong>s and <strong>the</strong>ir determ<strong>in</strong>ation <strong>in</strong> biological material<br />

us<strong>in</strong>g dansyl chloride. Hoppe-Seyler's Z. Physiol. Chem. 353, 540 553 (1972).<br />

BRIGGS, I. : Ergothione<strong>in</strong>e <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. J. Neurochem. 19, 27-35 (1972).<br />

BRODAL, A., POMPEIANO, O., WALBERG, A.: The vestibular nuclei and <strong>the</strong>ir connections. Anatomy<br />

and functional correlations. Ed<strong>in</strong>burgh: Oliver & Boyd 1962.<br />

BRODERJCK, D.S., CANDLAND, K.L., NORTH, J.A., MANGUM, J. H. : The isolation of ser<strong>in</strong>e transhydroxymethylase<br />

from bov<strong>in</strong>e bra<strong>in</strong>. Arch. Biochem. Biophys. 148, 196-198 (1972).<br />

BRODY, J. F., DeFEUDIS, P.A., DEFEUDIS, F.V.: Effects of micro<strong>in</strong>jections of L-glutamate <strong>in</strong>to <strong>the</strong><br />

hypothalamus on attack and flight behaviour <strong>in</strong> cats. Nature (Lond.) 224, 1330 (1969).<br />

BROOKS, V. B., ASANUMA, H. : Pharmacological studies of recurrent cortical <strong>in</strong>hibition and facilitation.<br />

Amer. J. Physiol. 208, 674-681 (1965).<br />

BROOKS, V. B., CURTIS, D. R., ECCLES, J. C. : The action of tetanus tox<strong>in</strong> on <strong>the</strong> <strong>in</strong>hibition of motoneurones.<br />

J. Physiol. (Lond.) 135, 655 672 (1957).<br />

BROWN, F.C., GORDON, P.H.: A study of L-14C-cystathion<strong>in</strong>e metabolism <strong>in</strong> <strong>the</strong> bra<strong>in</strong>, kidney<br />

and liver of pyridox<strong>in</strong>e-deficient rats. Biochim. biophys. Acta (Amst.) 230, 434-445 (1971).<br />

BRUGGENCATE, G. TEN, ENGBERG, I. : Analysis of glyc<strong>in</strong>e actions on sp<strong>in</strong>al <strong>in</strong>terneurones by <strong>in</strong>tracellular<br />

record<strong>in</strong>g. Bra<strong>in</strong> Res. 11,446-450 (1968).<br />

BRUGGENCATE, G. TEN, ENGBERG, I.: lontophoretic studies <strong>in</strong> Deiters' nucleus of <strong>the</strong> <strong>in</strong>hibitory<br />

actions of GABA and related am<strong>in</strong>o <strong>acid</strong>s and <strong>the</strong> <strong>in</strong>teractions of strychn<strong>in</strong>e and picrotox<strong>in</strong>.<br />

Bra<strong>in</strong> Res. 25, 431-448 (1971).<br />

BRUGGENCATE, G. TEN, SONNHOF, U. : Glyc<strong>in</strong>e and GABA actions <strong>in</strong> hypoglossus nucleus and block<strong>in</strong>g<br />

effects of strychn<strong>in</strong>e and picrotox<strong>in</strong>. Experientia (Basel) 27, 1109 (1971).<br />

BRUGGENCATE, G. TEN, SONNHOF, U. : Effects ofglyc<strong>in</strong>e and GABA, and block<strong>in</strong>g actions of strychn<strong>in</strong>e<br />

and picrotox<strong>in</strong> <strong>in</strong> <strong>the</strong> hypoglossus nucleus. Pflfigers Arch. 334, 240-252 (1972).<br />

BRUUN, A., EH1NGER, B.: Uptake of <strong>the</strong> putative neurotransmitter, glyc<strong>in</strong>e, <strong>in</strong>to <strong>the</strong> rabbit ret<strong>in</strong>a.<br />

Invest. Ophthal. 11, 191-198 (1972).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 169<br />

BURKE, R.E., FED1NA, L., LUNDBERG, A.: Spatial synaptic distribution of recurrent and group I a<br />

<strong>in</strong>hibitory <strong>system</strong>s <strong>in</strong> cat sp<strong>in</strong>al motoneurones. J. Physiol. (Lond.) 214, 305-326 (1971).<br />

BURKHARDT, D.A.: Effects of picrotox<strong>in</strong> and strychn<strong>in</strong>e upon electrical activity of <strong>the</strong> proximal<br />

ret<strong>in</strong>a. Bra<strong>in</strong> Res. 43, 246-249 (1972).<br />

CACIAPPO, F., PANDOLFO, L., DI CHIARA, G.: Transam<strong>in</strong>ation reaction between 4-am<strong>in</strong>obutyric<br />

<strong>acid</strong> and a-ketoglutaric <strong>acid</strong> <strong>in</strong> certa<strong>in</strong> rat tissues. Boll. Soc. Ita[. Biol. Sper. 36, 465~,67 (1959).<br />

CASOLA, L., DI MATTEO, G. : Studies on <strong>the</strong> dansylation reaction by <strong>the</strong> use of ~4C dansyl chloride:<br />

application to analysis of free am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> rat optic nerve. Analyt. Biochem. 49, 416-429<br />

(1972).<br />

CAVANAtJGH, J.R.: The rotational isomerism of phenylalan<strong>in</strong>e by nuclear magnetic resonance. J.<br />

Amer. chem. Soc., 89, 1558-1563 (1967).<br />

CHAMBERS, G., ELDRED, E., EGGETT, C.: Anatomical observations on <strong>the</strong> arterial supply to <strong>the</strong><br />

lumbosacral sp<strong>in</strong>al cord of <strong>the</strong> cat. Anat. Rec. 174, 421~,34 (1972).<br />

CHAPMAN, J.B., MCCANCE, I. : Acetylchol<strong>in</strong>e sensitive cells <strong>in</strong> <strong>the</strong> <strong>in</strong>tracerebellar nuclei of <strong>the</strong> cat.<br />

Bra<strong>in</strong> Res. 5, 535-538 (1967).<br />

CHEN, G., HAUCK, F. P. : The <strong>central</strong> effect of hexahydro-2'-methylspiro[cyclohexane-l,8'(6H)-oxaz<strong>in</strong>o(3,4-A)pyraz<strong>in</strong>e].<br />

Fed. Proc. 20, 323 (1961).<br />

CHRISTENSEN, H.N.: L<strong>in</strong>ked ion and am<strong>in</strong>o <strong>acid</strong> transport. In: Membrane and ion transport, vol.<br />

1, p. 365-394, ed. H.H. Bittar. London-New York: Wiley-Interscience 1970.<br />

CHRISTENSEN, H.N. : Nature and role of receptor sites for am<strong>in</strong>o <strong>acid</strong> transport. In: Advances <strong>in</strong><br />

biochemical psychopharmacology vol. 4, Role of vitam<strong>in</strong> B6 <strong>in</strong> neurobiology, eds. M.S. Ebadi<br />

and E. Costa, p. 39 62. New York: Raven Press 1972.<br />

CHU, S.: Strychn<strong>in</strong>e-sensitive and -<strong>in</strong>sensitive <strong>in</strong>hibitions <strong>in</strong> cats ret<strong>in</strong>a. Tohoku J. exp. Med. 96,<br />

37-43 0968).<br />

CLARKE, G., HILL, R. G. : Effects of a focal penicill<strong>in</strong> lesion on responses of rabbit cortical neurones<br />

to putative neuro<strong>transmitters</strong>. Brit. J. Pharmacol. 44, 435 441 (1972).<br />

COHEN, S.R., LAJTHA, A.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> transport. In: Handbook of nenrochemistry, vol. 7, ed.<br />

A. Lajtha, p. 543 572. New York: Plenum Press 1972.<br />

COLLINS, G. D. S. : Effect of am<strong>in</strong>ooxyacetic <strong>acid</strong>, thiosemicarbazide and haloperidol on <strong>the</strong> metabolism<br />

and half-lives of glutamate and GABA <strong>in</strong> rat bra<strong>in</strong>. Biochem. Pharmacol. 22, 101-111<br />

(1973).<br />

CONNOR, J. D. : Caudate nucleus neurones: correlation of <strong>the</strong> effects of substantia nigra stimulation<br />

with iontophoretic dopam<strong>in</strong>e. J. Physiol. (Lond.) 208, 691 703 (1970).<br />

CONSTANTINESCU, E., FEORESCU, D., HATEGANU, D. : Level of some am<strong>in</strong>o<strong>acid</strong>s <strong>in</strong> <strong>the</strong> cerebral cortex<br />

of <strong>the</strong> cat follow<strong>in</strong>g tetanization of <strong>the</strong> ventralis lateralis nucleus. Rev. roum. Neurol. 7, 115-121<br />

(1970).<br />

COOK, W.A., JR., CANGIANO, A.: Presynaptic and postsynaptic <strong>in</strong>hibition of sp<strong>in</strong>al motoneurones.<br />

J. Neurophysiol. 35, 389-403 (1972).<br />

COOMBS, J.S., ECCLES, J.C., FATT, P.: The specific ionic conductances and <strong>the</strong> ionic movements<br />

across <strong>the</strong> motoneuronal membrane that produce <strong>the</strong> <strong>in</strong>hibitory post-synaptic potential. J. Physiol.<br />

(Lond.) 130, 326 373 (1955a).<br />

COOMBS, J. S., ECCLES, J. C., FATT, P. : The <strong>in</strong>hibitory suppression of reflex discharges from motoneurones.<br />

J. Physiol. (Lond.) 130, 396413 (1955b).<br />

CORRIGAN, J. J. : D-<strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s <strong>in</strong> animals. Science 164, 142-149 (1969).<br />

COTMA~, C.W.: Pr<strong>in</strong>ciples for <strong>the</strong> optimization of centrifugation conditions for fractionation of<br />

bra<strong>in</strong> tissue. In: Research methods <strong>in</strong> neurochemistry, vol. 1, eds. N. Marks and R. Rodnight,<br />

p. 45-93. New York: Plenum Press 1972.<br />

COTMAN, C.W., HERSCHMAN, H., TAYLOR, D.: Subcellular fractionation of cultured glial cells. J.<br />

Neurobiol. 2, 169 180 (1971).<br />

CRAWEORD, J.M.: The effect upon mice of <strong>in</strong>tra-ventricular <strong>in</strong>jection of excitant and depressant<br />

am<strong>in</strong>o <strong>acid</strong>s. Biochem. Pharmacol. 12, 1443-1444 (1963).<br />

CRAWEORD, J.M.: The sensitivity of cortical neurones to <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s and acetylchol<strong>in</strong>e.<br />

Bra<strong>in</strong> Res. 17, 287 296 (1970).<br />

CRAWEORD, J.M., CURTIS, D.R.: The excitation and depression of <strong>mammalian</strong> cortical neurones<br />

by am<strong>in</strong>o <strong>acid</strong>s. Brit. J. Pharmacol. 23, 313-329 (1964).<br />

CRAWEORD, J. M., CURTIS, D. R., VOORHOEVE, P. E., WILSON, V. J. : Strychn<strong>in</strong>e and cortical <strong>in</strong>hibition.<br />

Nature (Lond.) 200, 845-846 (1963).


170 D.R. CURTIS and G.A.R. JOHNSTON :<br />

CRAWFORD, J. M., CURTIS, D. R., VOORHOEVE, P. E., WILSON, V. J. : Acetylchol<strong>in</strong>e sensitivity of cerebellar<br />

neurones <strong>in</strong> <strong>the</strong> cat. J. Physiol. (Lond.) 186, 139-165 (1966).<br />

CROWSHAW, K., JESSUP, S.J., RAMWELL, P. W. : Th<strong>in</strong>-layer chromatography of 1 -dimethylam<strong>in</strong>onaphthalen-5-sulphonyl<br />

derivatives of am<strong>in</strong>o <strong>acid</strong>s present <strong>in</strong> superfusates of cat cerebral cortex. Biochem.<br />

J. 103, 79-85 (1967).<br />

CS1LLIK, B., GEREBTZOFF, A. M., KISS, J., KNYIH/kR, E. : Zur Histochemie der limbischen Hemmung.<br />

Zytochemische und autoradiographische Untersuchungen fiber die Lokalisation der Enzyme des<br />

Gamma-am<strong>in</strong>oButters/iure-Stoffwechsels im Hippocampus der Ratte. Histochemie 28, 38-54<br />

(1971).<br />

CURTJS, D.R.: The depression of sp<strong>in</strong>al <strong>in</strong>hibition by electrophoretically adm<strong>in</strong>istered strychn<strong>in</strong>e.<br />

lnt. J. Neuropharmacol. 1,239 250 (1962).<br />

CURTIS, D. R. : The pharmacology of <strong>central</strong> and peripheral <strong>in</strong>hibition. Pharmacol. Rev. 15, 333-364<br />

(1963).<br />

CURTIS, D.R.: Microelectrophoresis. In: Physical techniques <strong>in</strong> biological research, voh 5, ed. W.L.<br />

Nastuk, p. 144-190. New York: Academic Press 1964.<br />

CURTIS, D.R.: The actions of am<strong>in</strong>o <strong>acid</strong>s upon <strong>mammalian</strong> neurones. In: Studies <strong>in</strong> physiology,<br />

presented to J.C. Eccles, eds. D.R. Curtis and A.K. Mclntyre, p. 34M2. Berl<strong>in</strong>-Heidelberg-<br />

New York: Spr<strong>in</strong>ger 1965.<br />

CURTIS, D.R.: The pharmacology of sp<strong>in</strong>al postsynaptic <strong>in</strong>hibition. Progr. Bra<strong>in</strong> Res. 31, 171-189<br />

(1969).<br />

CURTIS, D.R.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> <strong>transmitters</strong> <strong>in</strong> <strong>the</strong> <strong>mammalian</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Proc. IV Int.<br />

Cong. Pharmac. 1, 9-31 (1970).<br />

CURTIS, D.R.: Neutral am<strong>in</strong>o <strong>acid</strong>s as <strong>central</strong> <strong>transmitters</strong>. The use of am<strong>in</strong>o <strong>acid</strong> antagonists.<br />

In: Research <strong>in</strong> physiology, eds. F.F. Kao, K. Koizumi and M. Vassalle, p. 403-411. Bologna:<br />

Aulo Gaggi 1971.<br />

CURT1S, D.R., CRAWFORD, J.M.: Central synaptic transmission microelectrophoretic studies.<br />

Ann. Rev. Pharmacoh 9, 209-240 (1969).<br />

CURTIS, D. R., DAVIS, R. : Pharmacological studies upon neurones of <strong>the</strong> lateral geniculate nucleus<br />

of <strong>the</strong> cat. Brit. J. Pharmacol. 18, 217-246 (1962).<br />

CURns, D.R., DEGROAT, W.C.: Tetanus tox<strong>in</strong> and sp<strong>in</strong>al <strong>in</strong>hibition. Bra<strong>in</strong> Res. 10, 208-212<br />

(1968).<br />

CURTIS, D. R., DUGGAN, A. W. : The depression of sp<strong>in</strong>al <strong>in</strong>hibition by morph<strong>in</strong>e. Agents and Action<br />

1, 14-19 (1969).<br />

CURTIS, D.R., DUGGAN,A.W., FELIX, D. : GABA and <strong>in</strong>hibition of Deiters" neurones. Bra<strong>in</strong> Res.<br />

23, 117 120(1970a).<br />

CURTIS, D.R., DUGGAN, A. W., FELIX, D., JOHNSTON, G. A. R. : Bicucull<strong>in</strong>e, an antagonist of GABA<br />

and synaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord. Bra<strong>in</strong> Res. 32, 69-96 (1971 a).<br />

CURTIS, b. R., DUGGAN, A. W., FELIX, D., JOHNSTON, G. A. R., MCLENNAN, H. : Antagonism between<br />

bicucull<strong>in</strong>e and GABA <strong>in</strong> <strong>the</strong> cat bra<strong>in</strong>. Bra<strong>in</strong> Res. 33, 57-73 (1971 b).<br />

CURTIS, D. R., DUGGAN, A. W., FELIX, D., JOHNSTON, G. A. R., TEBECIS, A. K., WATKINS, J. C. : Excitation<br />

of <strong>mammalian</strong> <strong>central</strong> neurones by <strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s. Bra<strong>in</strong> Res. 41, 283-301 (t972a).<br />

CURTIS, D. R., DUGGAN, A.W., JOHNSTON, G. A. R. : Glyc<strong>in</strong>e, strychn<strong>in</strong>e, picrotox<strong>in</strong> and sp<strong>in</strong>al <strong>in</strong>hibition.<br />

Bra<strong>in</strong> Res. 14, 759-762 (1969).<br />

CURTIS, D. R., DUGGAN, A. W., JOHNSTON, G. A. R. : The <strong>in</strong>activation of extracellularly adm<strong>in</strong>istered<br />

am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> fel<strong>in</strong>e sp<strong>in</strong>al cord. Exp. Bra<strong>in</strong> Res. 10, 447462 (1970b).<br />

CURTIS, D.R., DUGGAN, A.W., JOHNSTON, G.A.R. : The specificity of strychn<strong>in</strong>e as a glyc<strong>in</strong>e antagonist<br />

<strong>in</strong> <strong>the</strong> <strong>mammalian</strong> sp<strong>in</strong>al cord. Exp. Bra<strong>in</strong> Res. 12, 547 565 (1971 c).<br />

CURTIS, D.R., FELIX, D.: The effect of bicucull<strong>in</strong>e upon synaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> cerebral and<br />

cerebellar cortices of <strong>the</strong> cat. Bra<strong>in</strong> Res. 34, 301-321 (1971).<br />

CURTIS, D. R., FELIX, D., GAME, C.J.A., MCCULLOCH, R. M. : Tetanus tox<strong>in</strong> and <strong>the</strong> synaptic release<br />

of GABA. Bra<strong>in</strong> Res. 51,358 362 (1973a).<br />

CURTIS, D.R., FELIX, D., MCLENNAN, H. : GABA and hippocampal <strong>in</strong>hibition. Brit. J. Pharmacol.<br />

40, 881 883 (1970c).<br />

CURTIS, D. R., GAME, C. J. A., .JOHNSTON, G. A. R., MCCULLOCH, R. M., MACLACHLAN, R. M. : Convulsive<br />

action of penicill<strong>in</strong>. Bra<strong>in</strong> Res. 43, 242~45 (1972 b).<br />

CURTIS, D.R., HOSLI, L., JOHNSTON, G.A.R. : A pharmacological study of <strong>the</strong> depression of sp<strong>in</strong>al<br />

neurones by glyc<strong>in</strong>e and related am<strong>in</strong>o <strong>acid</strong>s. Exp. Bra<strong>in</strong> Res. 6, 1 18 (1968a).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 171<br />

CURTIS, D. R., H6SEI, L., JOHNSTON, G. A. R., JOHNSTON, I. H. : The hyperpolarization of sp<strong>in</strong>al motoneurones<br />

by glyc<strong>in</strong>e and related am<strong>in</strong>o <strong>acid</strong>s. Exp. Bra<strong>in</strong> Res. 5, 235~58 (1968 b).<br />

CURTIS~ D.R., JOHNSTON, G.A.R.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> <strong>transmitters</strong>. In: Handbook of neurochemistry,<br />

vol. 4, ed. A. Lajtha, p. 115 135. New York: Plenum Press 1970.<br />

CURTIS, D.R., JOHNSTON, G.A.R., GAME, C.J.A., McCULLOCH, R.M. : Antagonism of neuronal<br />

excitation by 1-hydroxy-3-am<strong>in</strong>o-pyrrolidone-2. Bra<strong>in</strong> Res. 49, 467 470 (1973b).<br />

CURTIS, D. R., PHILLIS, J. W., WATKINS, J. C. : The depression of sp<strong>in</strong>al neurones by 7-am<strong>in</strong>o-n-butyric<br />

<strong>acid</strong> and fl-alan<strong>in</strong>e. J. Physiol. (Lond.) 146, 185-203 (1959).<br />

CURTIS, D.R., PHILLIS, J.W., WATKINS, J. C. : The chemical excitation of sp<strong>in</strong>al neurones by certa<strong>in</strong><br />

<strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s. J. Physiol. (Lond.) 150, 656-682 (1960).<br />

CURTIS, D.R., RYALL, R.W.: The synaptic excitation of Renshaw cells. Exp. Bra<strong>in</strong> Res. 2, 81-96<br />

(1966 a).<br />

CURTIS, D.R., RYALL, R.W.: Pharmacological studies upon sp<strong>in</strong>al presynaptic fibres. Exp. Bra<strong>in</strong><br />

Res. 1, 195 204 (1966b).<br />

CURTIS, D.R., TEBEClS, A.K. : Bicucull<strong>in</strong>e and thalamic <strong>in</strong>hibition. Exp. Bra<strong>in</strong> Res. 16, 210-218<br />

(1972).<br />

CURTIS, D.R., WATKINS, J. C. : The excitation and depression of sp<strong>in</strong>al neurones by structurally<br />

related am<strong>in</strong>o <strong>acid</strong>s. J. Neurochem. 6, 117-141 (1960).<br />

CURTIS, D.R., WATKINS, J.C. : Acidic am<strong>in</strong>o <strong>acid</strong>s with strong excitatory actions on <strong>mammalian</strong><br />

neurones. J. Physiol. (Lond.) 166, 1-14 (1963).<br />

CURTIS, D.R., WATKINS, J.C. : The pharmacology of am<strong>in</strong>o <strong>acid</strong>s related to gamma-am<strong>in</strong>obutyric<br />

<strong>acid</strong>. Pharmacol. Rev. 17, 347-392 (1965).<br />

CUTLER, R. W. P., HAMMERSTAD, J. P., CORNICK, L. R., MURRAY, J. E. : Efflux of am<strong>in</strong>o <strong>acid</strong> neuro<strong>transmitters</strong><br />

from rat sp<strong>in</strong>al cord slices. I. Factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> spontaneous efflux of [14C]glyc<strong>in</strong>e<br />

and 3H-GABA. Bra<strong>in</strong> Res. 35, 337 355 (1971).<br />

DALE, H. H. : Nomenclature of fibres <strong>in</strong> <strong>the</strong> autonomic <strong>system</strong> and <strong>the</strong>ir effects. J. Physiol. (Lond.)<br />

80,10 11P(1933).<br />

DALE, H. H. : Pharmacology and nerve-end<strong>in</strong>gs. Proc. roy. Soc. Med. 28, 319 332 (1935).<br />

DAVIDOFF, R.A.: The effects of bicucull<strong>in</strong>e on <strong>the</strong> isolated sp<strong>in</strong>al cord of <strong>the</strong> frog. Exp. Neurol.<br />

35, 179-193 (1972a).<br />

DAVIDOFV, R.A.: Penicill<strong>in</strong> and presynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> amphibian sp<strong>in</strong>al cord. Bra<strong>in</strong> Res.<br />

36, 218-222 (1972b).<br />

DAVIDOFF, R.A.: Penicill<strong>in</strong> and <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> cat sp<strong>in</strong>al cord. Bra<strong>in</strong> Res. 45, 638-642 (1972c).<br />

DAVIDOFF, R. A. : Gamma-am<strong>in</strong>obutyric <strong>acid</strong> antagonism and presynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> frog sp<strong>in</strong>al<br />

cord. Science 175, 331 333 (1972d).<br />

DAVlDOFV, R. A., APRISON, M. H. : Picrotox<strong>in</strong> antagonism of <strong>the</strong> <strong>in</strong>hibition of <strong>in</strong>terneurones by glyc<strong>in</strong>e.<br />

Life Sci. 8, 107-112 (1969).<br />

DAVIDOFF, R.A., APRISON, M.H., WERMAN, R. : The effects of strychn<strong>in</strong>e on <strong>the</strong> <strong>in</strong>hibition of <strong>in</strong>terneurons<br />

by glyc<strong>in</strong>e and 7-am<strong>in</strong>obutyric <strong>acid</strong>. Int. J. NeuropharmacoL 8. 191-194 (1969),<br />

DAVIDOFF, R.A., GRAHAM, L. T. JR., SHANK, R.P., WERMAN, R., APRISON, M.H. : Changes <strong>in</strong> am<strong>in</strong>o<br />

<strong>acid</strong> concentrations associated with loss of sp<strong>in</strong>al <strong>in</strong>terneurons. J. Neurochem. 14, 1025-1031<br />

(1967).<br />

DAVlDOEF, R.A., SILVEY, G.E., KOBETZ, S.A., SPIRA, H.M.: N-Methyl bicucull<strong>in</strong>e and primary<br />

afferent depolarization. Exp. Neurol. 38, 525 528 (1973).<br />

DAVlDSON, N., REISINE, H. : Presynaptic <strong>in</strong>hibition <strong>in</strong> cuneate blocked by GABA antagonists. Nature<br />

(Lond.) New Biol. 234, 223-224 (1971).<br />

DAVlDSON, N., SOUTHWICK, C.A.P.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s and presynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> rat cuneate<br />

nucleus. J. Physiot. (Lond.) 219, 689-708 (1971).<br />

DAVIES, J., WATK1NS, J. C. : Is 1-hydroxy-3-am<strong>in</strong>opyrrolidone-2 (HA-966) a selective excitatory am<strong>in</strong>o<br />

<strong>acid</strong> antagonist? Nature (Lond.i New Biol. 238, 61 63 (1972).<br />

DAVIES, J., WATKINS, J.C.: Microelectrophoretic studies on <strong>the</strong> depressant action of HA-966 on<br />

chemically and synaptically-excited neurones <strong>in</strong> <strong>the</strong> cat cerebral cortex and cuneate nucleus.<br />

Bra<strong>in</strong> Res. 59, 311-322 (1973).<br />

DAVIES, L.P., JOHNSTON, G.A.R. : Ser<strong>in</strong>e hydroxymethyltransferase <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>:<br />

regional and subcellular distribution studies. Bra<strong>in</strong> Res. 54, 149-156 (1973).<br />

DAVIS, R., HUFFMAN, R. D. : Pharmacology of <strong>the</strong> brachium conjunctivum-red nucleus synaptic <strong>system</strong><br />

<strong>in</strong> <strong>the</strong> baboon. Fed. Proc. 28, 775 (1969).


172 D.R. CURTIS and G.A.R. JOHNSTON"<br />

DAVIS, R., VAUGHAN, P. C. : Pharmacological properties of fel<strong>in</strong>e red nucleus. Int. J. Neuropharmacol.<br />

8, 475-488 (1969).<br />

DAVSON, H.: The cerebrosp<strong>in</strong>al fluid. In: Handbook of neurochemistry, vol. II, chap. 3, ed. A.<br />

Lajtha, p. 23-48. New York: Plenum Press 1969.<br />

DEFEUDIS, F. V. : Effects of electrical stimulation on <strong>the</strong> efflux of L-glutamate from peripheral nerve<br />

<strong>in</strong> vitro. Exp. Neurol. 30, 291-296 (1971).<br />

DEFEUDIS, F.V., DELGADO, J.M.R., ROTH, R.H.: Content, syn<strong>the</strong>sis and collectability of am<strong>in</strong>o<br />

<strong>acid</strong>s <strong>in</strong> various structures of <strong>the</strong> bra<strong>in</strong>s of rhesus monkeys. Bra<strong>in</strong> Res. 18, 15 23 (1970).<br />

DE GROAT, W. C. : Action of gamma-am<strong>in</strong>o butyric <strong>acid</strong> (GABA) and related am<strong>in</strong>o <strong>acid</strong>s on <strong>mammalian</strong><br />

autonomic ganglia. Pharmacologist ll, 286 (1969).<br />

DEGROAT, W.C.: The actions of y-am<strong>in</strong>obutyric <strong>acid</strong> and related am<strong>in</strong>o <strong>acid</strong>s on <strong>mammalian</strong><br />

autonomic ganglia. J. Pharmacol. exp. Ther. 172, 384 396 (1970a).<br />

DE GROAT, W. C. : The effects of glyc<strong>in</strong>e, GABA and strychn<strong>in</strong>e on sacral parasympa<strong>the</strong>tic preganglionic<br />

neurones. Bra<strong>in</strong> Res. 18, 542-544 (1970b).<br />

DE GROAT, W. C. : GABA-depolarization of a sensory ganglion : antagonism by picrotox<strong>in</strong> and bicucull<strong>in</strong>e.<br />

Bra<strong>in</strong> Res. 38, 429-432 (1972).<br />

DE GROAT, W.C., LALLEV, P. M., BLOCK, M. : The effects of bicucull<strong>in</strong>e and GABA on <strong>the</strong> superior<br />

cervical ganglion of <strong>the</strong> cat. Bra<strong>in</strong> Res. 25, 665-668 (1971).<br />

DE GROAT, W.C., LALLEY, P.M., SAUM, W.R.: Depolarization of dorsal root ganglia <strong>in</strong> <strong>the</strong> cat<br />

by GABA and related am<strong>in</strong>o <strong>acid</strong>s: antagonism by picrotox<strong>in</strong> and bicucull<strong>in</strong>e. Bra<strong>in</strong> Res. 44,<br />

273-277 (1972).<br />

DE GROAT, W.C., RYALL, R.W. : The identification and characteristics of sacral parasympa<strong>the</strong>tic<br />

preganglionic neurones. J. Physiol. (Lond.) 196, 563-577 (1968).<br />

DE MARCHI, W. J., JOHNSTON, G. A. R. : The oxidation of glyc<strong>in</strong>e by D-am<strong>in</strong>o <strong>acid</strong> oxidase <strong>in</strong> extracts<br />

of <strong>mammalian</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. J. Neurochem. 16, 355 361 (1969).<br />

DERISSEN, J.L., ENDEMAN, H.J., PEERDEMAN, A.F.: The crystal structure of L-aspartic <strong>acid</strong>. Acta<br />

Cryst., Sect. B. 24, 1349 1354 (1968).<br />

DE ROBERTlS, E.: Isolation of <strong>in</strong>hibitory nerve end<strong>in</strong>gs from bra<strong>in</strong>. In: Structure and function of<br />

<strong>in</strong>hibitory neuronal mechanisms, vol. 10, eds. C. von Euler, S. Skoglund and U. S6derberg,<br />

p. 511-522. Oxford: Pergamon Press 1968.<br />

Dr~AWAN, B. N., SHARMA, J. N., SRIMAL, R. C. : Selective <strong>in</strong>hibition by glyc<strong>in</strong>e of some somatic reflexes<br />

<strong>in</strong> <strong>the</strong> cat. Brit. J. Pharmacol. 44, 404-412 (1972).<br />

DtAMOND, J. : The activation and distribution of GABA and L-glutamate receptors on goldfish<br />

Mauthner neurones: an analysis of dendritic remote <strong>in</strong>hibition. J. Physiol. (Lond.) 194, 669-723<br />

(1968).<br />

Do CAR~O, R.J., LE~,O, A.A.P.: On <strong>the</strong> relation of glutamic <strong>acid</strong> and some allied compounds<br />

to cortical spread<strong>in</strong>g depression. Bra<strong>in</strong> Res. 39, 515 518 (1972).<br />

DOWLING, J. E. : Organization of vertebrate ret<strong>in</strong>as. Invest. Opthal. 9, 655-680 (1970).<br />

DREIFUSS, J.J., KELLY, J.S.: The activity of identified supraoptic neurones and <strong>the</strong>ir response to<br />

acetylchol<strong>in</strong>e applied by iontophoresis. J. Physiol. (Lond.) 220, 105-118 (1972).<br />

DREIFUSS, J.J., KELLY, J.S., KRNJEVI(, K. : Cortical <strong>in</strong>hibition and ~,-am<strong>in</strong>obutyric <strong>acid</strong>. Exp. Bra<strong>in</strong><br />

Res. 9, 137-154 (1969).<br />

DREIFUSS, J.J., MATTHEWS, E. K. : Antagonism between strychn<strong>in</strong>e and glyc<strong>in</strong>e, and bicucuUiue and<br />

GABA, <strong>in</strong> <strong>the</strong> ventromedial hypothalamus. Bra<strong>in</strong> Res. 45, 599-603 (1972).<br />

DUDAR, J.D. : Glutamic <strong>acid</strong> sensitivity of hippocampal pyramidal cell dendrites. Acta physiol.<br />

scand. 84, 28A (1972).<br />

DUGGAN, A.W. : The differential sensitivity to L-glutamate and L-aspartate of sp<strong>in</strong>al <strong>in</strong>terneurones<br />

and Renshaw cells. Exp. Bra<strong>in</strong> Res., <strong>in</strong> press (1974).<br />

DUGGAN, A. W., JOHNSTON, G. A. R. : Glutamate and related am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> cat sp<strong>in</strong>al roots, dorsal<br />

root ganglia and peripheral nerves. J. Neurochem. 17, 1205-1208 (1970a).<br />

DUGGAN, A. W., JOHNSTON, G. A. R. : Glutamate and related am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> cat, dog, and rat sp<strong>in</strong>al<br />

roots. Comp. Gen. Pharmac. I, 127-128 (1970b).<br />

DUGGAN, A.W., LODGE, D., BISCOE, T.J. : The <strong>in</strong>hibition of hypoglossal motoneurones by impulses<br />

<strong>in</strong> <strong>the</strong> glossopharyngeal nerve of <strong>the</strong> rat. Exp. Bra<strong>in</strong> Res. 17, 261-270 (1973).<br />

DUGGAN, A.W., MCLENNAN, H. : Bicucull<strong>in</strong>e and <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> thalamus. Bra<strong>in</strong> Res. 25, 188-191<br />

(1971).<br />

ECCLES, J. C. : The ionic mechanisms of excitatory and <strong>in</strong>hibitory synaptic action. Ann. N.Y. Acad.<br />

Sci. 137, 473-494 (1966).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 173<br />

ECCLES, J.C., FATT, P., KOKETSU, K. : Chol<strong>in</strong>ergic and <strong>in</strong>hibitory synapses <strong>in</strong> a pathway from motoraxon<br />

collaterals to motoneurones. J. Physiol. (Lond.) 126, 524-562 (1954).<br />

ECCLES, J.C., ITO, M., SZENTAGOTHAI, J. : The cerebellum as a neuronal mach<strong>in</strong>e. Berl<strong>in</strong>-Heidelberg-<br />

New York: Spr<strong>in</strong>ger 1967.<br />

ECCLES, J.C., SCHMIDT, R.F., WILLIS, W.D.: Pharmacological studies on presynaptic <strong>in</strong>hibition.<br />

J. Physiol. (Lond.) 168, 500-530 (1963).<br />

EDWARDSON, J.A., BENNETT, G.W., BRADFORD, U.F.: Release of am<strong>in</strong>o-<strong>acid</strong>s and neurosecretory<br />

substances after stimulation of nerve end<strong>in</strong>gs (synaptosomes). Nature (Lond.) 240, 554-556 (1972).<br />

EHINGER, B.: Cellular location of <strong>the</strong> uptake of some am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong>to <strong>the</strong> rabbit ret<strong>in</strong>a. Bra<strong>in</strong><br />

Res. 46, 297-311 (1972a).<br />

EHINGER, B.: Uptake of tritiated glyc<strong>in</strong>e <strong>in</strong>to neurons of <strong>the</strong> human ret<strong>in</strong>a. Experientia (Basel)<br />

28, 1042-1043 (1972b).<br />

EHINGER, B., FALCK, B. : Autoradiography of some suspected neurotransmitter substances: GABA,<br />

glyc<strong>in</strong>e, glutamic <strong>acid</strong>, histam<strong>in</strong>e, dopam<strong>in</strong>e, and L-Dopa. Bra<strong>in</strong> Res. 33, 157-172 (1971).<br />

ELLAWAY, P.H.: Recurrent <strong>in</strong>hibition of fusimotor neurones exhibit<strong>in</strong>g background discharges <strong>in</strong><br />

<strong>the</strong> decerebrate and <strong>the</strong> sp<strong>in</strong>al cat. J. Physiol. (Lond.) 216, 419 439 (1971).<br />

ELLIOTT, K. A. C., JASPER, /-I. H. : Gamma-am<strong>in</strong>obutyric <strong>acid</strong>. Physiol. Rev. 39, 383-406 (1959).<br />

ELLIOTT, K.A.C., PAGE, I.H., QUASTEL, J. H. : Neurochemistry, 2nd edn. Spr<strong>in</strong>gfield: Charles C.<br />

Thomas 1962.<br />

ELLIOTT, K. A. C., VAN GELDER, N.M. : Occlusion and metabolism of 7-am<strong>in</strong>obutyric <strong>acid</strong> by bra<strong>in</strong><br />

tissue. J. Neurochem. 3, 28-40 (1958).<br />

ENDO, K., ARAK1, T.: Study of glyc<strong>in</strong>e <strong>in</strong>duced potentials <strong>in</strong> motoneurones. J. Physiol. Soc. Japan<br />

31, 118 (1969).<br />

ENGBERG, I., THALLER, A.: On <strong>the</strong> <strong>in</strong>teraction of picrotox<strong>in</strong> with GABA and glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al<br />

cord. Bra<strong>in</strong> Res. 19, 151-154 (1970).<br />

FAHN, S., COTI~, L.J. : Regional distribution of 7-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) <strong>in</strong> bra<strong>in</strong> of <strong>the</strong> Rhesus<br />

monkey. J. Neurochem. 15, 209 213 (1968).<br />

FASTIER,. F. N. : Tutu poison<strong>in</strong>g. In : Research <strong>in</strong> physiology, a liber memorialis <strong>in</strong> honor of Professor<br />

C. McC. Brooks, eds. F.F. Kao, K. Koizumi and M. Vassalle, p. 653-659. Bologna: Aulo Gaggi<br />

Publ. 1971.<br />

FATT, P. : Biophysics of junctional transmission. Physiol. Rev. 34, 674-710 (1954).<br />

FEDINEC, A. A., SHANK, R. P. : Effect of tetanus tox<strong>in</strong> on <strong>the</strong> content of glyc<strong>in</strong>e, gamma-am<strong>in</strong>obutyric<br />

<strong>acid</strong>, glutamate, glutam<strong>in</strong>e and aspartate <strong>in</strong> <strong>the</strong> rat sp<strong>in</strong>al cord. J. Neurochem. 18, 2229-2234<br />

(1971).<br />

FELIX, D., MCLENNAN, H. : The effect of bicucull<strong>in</strong>e on <strong>the</strong> <strong>in</strong>hibition of mitral cells of <strong>the</strong> olfactory<br />

bulb. Bra<strong>in</strong> Res. 25, 661-664 (1971).<br />

FELVEL, L.P.: Effects of strychn<strong>in</strong>e, bicucull<strong>in</strong>e and picrotox<strong>in</strong> on labyr<strong>in</strong>th<strong>in</strong>e-evoked <strong>in</strong>hibition<br />

<strong>in</strong> neck motoneurons of <strong>the</strong> cat. Exp. Bra<strong>in</strong> Res. 14, 494-502 (1972).<br />

FELTZ, P.: ~-<strong>Am<strong>in</strong>o</strong>butyric <strong>acid</strong> and a caudato-nigral <strong>in</strong>hibition. Can. J. Physiol. Pharmac. 49,<br />

1114-1115 (1971).<br />

FLOREY, E.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s as transmitter substances. In: Major problems <strong>in</strong> neuroendocr<strong>in</strong>ology,<br />

eds. E. Bajusz and G. Jasm<strong>in</strong>, p. 17-4t. Basel: S, Karger 1964.<br />

FONNUM, F. : The distribution of glutamate decarboxylase and aspartate transm<strong>in</strong>ase <strong>in</strong> subcellular<br />

fractions of rat and gu<strong>in</strong>ea-pig bra<strong>in</strong>. Biochem. J., 106, 401-412 (1968).<br />

FONNUM, F.: Localization of chol<strong>in</strong>ergic and 7-am<strong>in</strong>obutyric <strong>acid</strong> conta<strong>in</strong><strong>in</strong>g pathways <strong>in</strong> bra<strong>in</strong>.<br />

In : Metabolic compartmentation <strong>in</strong> <strong>the</strong> bra<strong>in</strong>, eds. J. Cremer and R. Balfizs, p. 243~55. London :<br />

MacMillan 1972.<br />

FONNUM, F., STORM-MATHISEN, J., WALBERG, F. : Glutamate decarboxylase <strong>in</strong> <strong>in</strong>hibitory neurons.<br />

A study of <strong>the</strong> enzyme <strong>in</strong> Purk<strong>in</strong>je cell axons and boutons <strong>in</strong> <strong>the</strong> cat. Bra<strong>in</strong> Res. 20, 259-275<br />

(1970).<br />

FONNUM, F., WALBERG, F. : An estimation of <strong>the</strong> concentration of 7-am<strong>in</strong>obutyric <strong>acid</strong> and glutamate<br />

decarboxylase <strong>in</strong> <strong>the</strong> <strong>in</strong>hibitory Purk<strong>in</strong>je axon term<strong>in</strong>als <strong>in</strong> <strong>the</strong> cat. Bra<strong>in</strong> Res. 54, 115-127 (1973).<br />

FUKUDA, J., HIGHSTEIN, S. M., 1TO, M. : Cerebellar <strong>in</strong>hibitory control of <strong>the</strong> vestibulo-ocular reflex<br />

<strong>in</strong>vestigated <strong>in</strong> rabbit IIIrd nucleus. Exp. Bra<strong>in</strong> Res. 14, 511 526 (1972).<br />

GAITONDE, M. K. : Sulfur am<strong>in</strong>o <strong>acid</strong>s. In: Handbook of neurochemistry, vol. 3, metabolic reactions<br />

<strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong>, ed. A. Lajtha, p. 225-287. New York: Plenum Press 1970.<br />

GALINDO, A.: GABA-picrotox<strong>in</strong> <strong>in</strong>teraction <strong>in</strong> <strong>the</strong> <strong>mammalian</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Bra<strong>in</strong> Res.<br />

14, 763-767 (1969).


174 D.R. CURTIS and G. A. R. JOHNSTON :<br />

GALINDO, A., KRNJEVIC, K., SCHWARTZ, S. : Micro-iontophoretic studies on neurones <strong>in</strong> <strong>the</strong> cuneate<br />

nucleus. J. Physiol. (Lond.) 192, 359-377 (1967).<br />

GALINDO, A., KRNJEVI~, K., SCHWARTZ, S. : Patterns of fir<strong>in</strong>g <strong>in</strong> cuneate neurones and some effects<br />

of flaxedil. Exp. Bra<strong>in</strong> Res. 5, 87 101 (1968).<br />

G~ssI, T., RAmNI, C., VOLTA, F.: Effects of strychn<strong>in</strong>e, picrotox<strong>in</strong> and y-am<strong>in</strong>obutyric <strong>acid</strong> on<br />

synaptic and antidromic responses of hippocampal pyramidal neurons and granule cells. Arch. Sci.<br />

biol. 51, 1-23 (1967).<br />

GFELLER, E., KUHAR, M.J., SNYDER, S. H. : Neurotransmitter-specific synaptosomes <strong>in</strong> rat corpus<br />

striatum: morphological variations. Proc. nat. Acad. Sci. (Wash.) 68, 155 159 (1971).<br />

GINSBORG, B. L. : Ion movements junctional transmission. Pharmacol. Rev. 19, 289 316 (1967).<br />

GJESSING, L. R., GJESDAHL, P., SHAASTAD, O.: The free am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> human cerebrosp<strong>in</strong>al fluid.<br />

J. Neurochem. 19, 1807-1808 (1972).<br />

GJESSING, L. R., TORVICK, A.: Distribution of cystathion<strong>in</strong>e <strong>in</strong> human bra<strong>in</strong>. Scand J. cl<strong>in</strong>. Lab.<br />

Invest. 18, 565 (1966).<br />

GLAGOLEVA, A. A. : Aqueous solutions of aspartic and glutamic <strong>acid</strong>s. Zh.Obshch. Khim. 37, 43 47<br />

(1967).<br />

GLOBUS, A., Lux, H. D., SCHUBERT, P.: Somadendritic spread of <strong>in</strong>tracellulary <strong>in</strong>jected tritiated<br />

glyc<strong>in</strong>e <strong>in</strong> cat sp<strong>in</strong>al motoneurons. Bra<strong>in</strong> Res. 11,440-445 (1968).<br />

GOLDBERG, L. J. : Excitatory and <strong>in</strong>hibitory effects of l<strong>in</strong>gual nerve stimulation on reflexes controll<strong>in</strong>g<br />

<strong>the</strong> activity of masseteric motoneurons. Bra<strong>in</strong> Res. 39, 95-108 (1972).<br />

GOODCI-IILD, M., NEAL, M. J. : The uptake of -' H-~;-am<strong>in</strong>obutyric <strong>acid</strong> by <strong>the</strong> ret<strong>in</strong>a. Brit. J. Pharmacol.<br />

47, 529-542 (1973).<br />

GOTTESFELD, Z., ELLIOTT, K. A. C. : Factors that affect <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g and uptake of GABA by bra<strong>in</strong><br />

tissue. J. Neurochem. 18, 683 690 (1971).<br />

GOTTESFELD, Z., KELLY, J. S., RAYNER, C.N.: Depletion of glutamic <strong>acid</strong> decarboxylase (GAD<br />

1) activity from <strong>the</strong> sp<strong>in</strong>al cord follow<strong>in</strong>g dorsal-root section. J. Physiol. (Lond.) 231, 25~6P<br />

(1973a).<br />

GOTTESFELD, Z., KELLY, J. S., RENAUD, LI P.: The <strong>in</strong> vivo neuropharmacology of am<strong>in</strong>o-oxyacetic<br />

<strong>acid</strong> <strong>in</strong> <strong>the</strong> cerebral cortex of <strong>the</strong> cat. Bra<strong>in</strong> Res. 42, 311-318 (1972).<br />

GOTTESFELD, Z., KELLY, J. S., SCHON, F. : Uptake of v-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) by sensory root<br />

ganglia. Brit. J. Pharmacol. 47, 640P (1973b).<br />

GRAHAM, L. T., JR. : Intraret<strong>in</strong>al distribution of GABA content and GAD activity. Bra<strong>in</strong> Res. 36,<br />

476-479 (1972).<br />

GRAHAM, L. T., JR., APRISON, M. H. : Distribution of some enzymes associated with <strong>the</strong> metabolism<br />

of glutamate, aspartate, 7-am<strong>in</strong>obutyrate and glutam<strong>in</strong>e <strong>in</strong> cat sp<strong>in</strong>al cord. J. Neurochem. 16,<br />

559 566 (1969).<br />

GRAHAM, L. T., JR., BAXTER, C. F., LOLLEY, R. N. : In vivo <strong>in</strong>fluence of light or darkness on <strong>the</strong><br />

GABA <strong>system</strong> <strong>in</strong> <strong>the</strong> ret<strong>in</strong>a of <strong>the</strong> frog (Ranapipiens). Bra<strong>in</strong> Res. 20, 379 388 (1970).<br />

GRAHAM, L. T., JR., PONG, S. F.: Evidence for a function of 7-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) <strong>in</strong> <strong>the</strong><br />

neural mechanism of light adaptation <strong>in</strong> rat ret<strong>in</strong>a. Trans. Amer. Soc. Neurochem. 3, 82 (1972 a).<br />

GRAHAM, L. T., JR., PONG, S. F.: Rhythmic potentials orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> rat ret<strong>in</strong>a. Exp. Neurol. 36,<br />

399~,03 (1972 b).<br />

GRAHAM, L. T., JR., SHANK, R. P., WERMAN, R., APRISON, M. H.: Distribution of some synaptic<br />

transmitter suspects <strong>in</strong> cat sp<strong>in</strong>al cord : glutamic <strong>acid</strong>, aspartic <strong>acid</strong>, ~/-am<strong>in</strong>obutyric <strong>acid</strong>, glyc<strong>in</strong>e<br />

and glutam<strong>in</strong>e. J. Neurochem. 14, 465-472 (1967).<br />

GRANIT, R. : The case for presynaptic <strong>in</strong>hibition by synapses on <strong>the</strong> term<strong>in</strong>als of motoneurons.<br />

In: Structure and function of <strong>in</strong>hibitory neuronal mechanisms, eds. C. von Euler, S. Skoglund<br />

and U. S6derberg, p. 183-195. Oxford: Pergamon Press 1968.<br />

GREEN, J. D., MANC1A, M., VON BAUMGARTEN, R. : Recurrent <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> olfactory bulb. I.<br />

Effects of antidromic stimulation of <strong>the</strong> lateral olfactory tract. J. Neurophysiol. 25, 467-488<br />

(1962).<br />

GRUNDFEST, H. : The role of GABA <strong>in</strong> modern concepts of neurophysiology and pharmacology<br />

of <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. In: Recent advances <strong>in</strong> biological psychiatry, p.76 93. U.S.A.:<br />

Grune & Stratton, Inc. 1960.<br />

GUIDOTTI, A., BADIANI, G., PEPEU, G. : Taur<strong>in</strong>e distibution <strong>in</strong> cat bra<strong>in</strong>. J. Neurochem. 19, 431-435<br />

(1972),<br />

GUSHCHIN, 1. S., KOZHECHKIN, S. N., SVERDLOV, Y. S. : On <strong>the</strong> presynaptic nature of <strong>the</strong> suppression<br />

of postsynaptic <strong>in</strong>hibition by tetanus tox<strong>in</strong>. Dokl. Akad. Nauk SSSR 187, No. 3, 685 688 (1969).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 175<br />

HAAS, H. L., ANDERSON, E. G., HOSLI, L. : Histam<strong>in</strong>e and metabolites: <strong>the</strong>ir effects and <strong>in</strong>teractions<br />

with convulsants on bra<strong>in</strong> stem neurones. Bra<strong>in</strong> Res. 51,269-278 (1972).<br />

HAAS, H. L., HGSLI, L. : The depression of bra<strong>in</strong> stem neurones by taur<strong>in</strong>e and its <strong>in</strong>teraction with<br />

strychn<strong>in</strong>e and bicucull<strong>in</strong>e. Bra<strong>in</strong> Res. 52, 399-402 (1973a).<br />

HAAS, H.L., HGsLI, L.: Strychn<strong>in</strong>e and <strong>in</strong>hibition of bulbar reticular neurones. Experientia 29,<br />

542 544 (1973b).<br />

HABER, B., KURIYAMA, K., ROBERTS, E. : L-Glutamic <strong>acid</strong> decarboxylase: a new type <strong>in</strong> glial cells<br />

and human bra<strong>in</strong> gliomas. Science 168, 598-599 (1970).<br />

HAGEN, J. : Schwere Vergiftungen <strong>in</strong> e<strong>in</strong>er Polsterm6belfabrik durch e<strong>in</strong>en neuartigen hochtoxischen<br />

Giftstoff (Tetramethylendisulfotetram<strong>in</strong>). Dtsch. med. Wschr. 75, 183-184 (1950).<br />

HALDEMAN, S., HUFFMAN, R. D., MARSHALL, K. C., MCLENNAN, H. : The antagonism of <strong>the</strong> glutamate<strong>in</strong>duced<br />

and synaptic excitation of thalamic neurones. Bra<strong>in</strong> Res. 39, 419-425 (1972).<br />

HALDEMAN, S., McLENNAN, H. : The antagonistic action of glutamic <strong>acid</strong> diethylester towards am<strong>in</strong>o<br />

<strong>acid</strong>-<strong>in</strong>duced and synaptic excitations of <strong>central</strong> neurones. Bra<strong>in</strong> Res. 45, 393 400 (1972).<br />

HAMMERSCHLAG, R., WEINREICH, D.: Glutamic <strong>acid</strong> and primary afferent transmission. Advanc.<br />

Biochem. Psychopharm. 6, 165-180 (1972).<br />

HAMMERSTAD, J. P., MURRAY, J. E., CUTLER, R. W. P. : Efflux of am<strong>in</strong>o <strong>acid</strong> neuro<strong>transmitters</strong> from<br />

rat sp<strong>in</strong>al cord slices. II. Factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> electrically <strong>in</strong>duced effiux of [l~C]-glyc<strong>in</strong>e and<br />

[3H]GABA. Bra<strong>in</strong> Res. 35, 357 367 (1971).<br />

HARRIS, M., HOPKIN, J. M., NEAL, M. J. : Effect of <strong>central</strong>ly act<strong>in</strong>g drugs on <strong>the</strong> uptake of 7-am<strong>in</strong>obutyric<br />

<strong>acid</strong> (GABA) by slices of rat cerebral cortex. Brit. J. Pharmacol. 47, 229 239 (1973).<br />

HARVEY, J. A., MCILWAIN, H. : Electrical phenomena and isolated tissues from <strong>the</strong> bra<strong>in</strong>. In : Handbook<br />

of neurochemistrv, vol. 2, ed. A. Lajtha, p. 115 136. New York: Plenum Press 1969.<br />

HAULIC.~, I.,CAP~,LNA, S., NESTIANU, V., BORDEIANU, A., BADESCU, A. : Contributions to <strong>the</strong> study<br />

of gamma-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) <strong>in</strong> <strong>the</strong> hypothalamo-hypophyseal pathways. Int. J. Neuropharmacol.<br />

3, 465472 (1964).<br />

HAYASH1, T.: A physiological study of epileptic seizures follow<strong>in</strong>g cortical stimulation <strong>in</strong> animals<br />

and its application to human cl<strong>in</strong>ics. Jap. J. Physiol. 3, 46 64 (1952).<br />

HAYASHI, T. : Neurophysiology and neurochemistry of convulsion. Tokyo: Da<strong>in</strong>ihon-Tosho Co.Ltd.<br />

1959.<br />

HAYASHI, T. : Gamma-am<strong>in</strong>obutyric <strong>acid</strong> and its derivatives <strong>in</strong> mental health. In : Enzymes <strong>in</strong> mental<br />

health, eds. G. J. Mart<strong>in</strong> and B. Kisch, p. 160-170. Philadelphia: J. B. Lipp<strong>in</strong>cott Co. 1966.<br />

HENDRICK, J. L., SALLACH, U. J. : The non-oxidative decarboxylation of hydroxypyruvate <strong>in</strong> <strong>mammalian</strong><br />

<strong>system</strong>s. Arch. Biochem. Biophys. 105, 261-269 (1964).<br />

HENN, F. A., HAMBERGER, A. : Glial cell function: uptake of transmitter substances. Proc. nat. Acad.<br />

Sci. (Wash.) 68, 26865690 (1971).<br />

HENNECKE, H., WIECHERT, P. : Seizures and <strong>the</strong> dose of L-glutamic <strong>acid</strong> <strong>in</strong> rats. Epilepsia 11,327 331<br />

(1970).<br />

HENSCHEN, A., S6DERBERG, U.: Net exchange of free am<strong>in</strong>o <strong>acid</strong>s between blood and bra<strong>in</strong> and<br />

its significance for <strong>the</strong> electrical activity. In: Structure and function of <strong>in</strong>hibitory neuronal<br />

mechanisms, eds. C. von Euler, S. Skoglund and U. S6derberg, p. 505-509. London: Pergamon<br />

Press 1968.<br />

HERZ, A., GOGOLAK, G.: Mikroelektrophoretische Untersuchungen am Septum des Kan<strong>in</strong>chens.<br />

Pflfigers Arch. ges. Physiol. 285, 317 330 (1965).<br />

HERZ, A., NAC1MIENTO, A. : f£ber die Wirkung von Pharmaka auf Neurone des Hippocampus nach<br />

mikroelektrophoretischer Verabfolgung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 250,<br />

258-259 (1965).<br />

HERZ, A., VON FREYTAG-LORINGHOVEN, HJ.: Ober die synaptische Erregung im Corpus striatum<br />

und deren antagonistische Bee<strong>in</strong>flussun~ durch mikroelektrophoretisch verabfolgte Glutam<strong>in</strong>s~ure<br />

und Gamma-<strong>Am<strong>in</strong>o</strong>butters/iure. Pfliigers Arch. ges. Physiol. 299, 167 184 (1968).<br />

HIGHSTEIN, S. M., ITO, M., TSUCHIYA, T. : Synaptic l<strong>in</strong>kage <strong>in</strong> <strong>the</strong> vestibulo-ocular reflex pathway<br />

of rabbit. Exp. Bra<strong>in</strong> Res. 13, 306 326 (1971).<br />

HILL, R. G., SlMMONDS, M. A., STAUGHAN, D. W. : Convulsive properties of d-tubocurar<strong>in</strong>e and<br />

cortical <strong>in</strong>hibition. Nature (Lond.) 240, 51 52 (1972a).<br />

HILL, R. G., SIMMONDS, M. A., STRAUGHAN, D. W.: Antagonism of GABA by picrotox<strong>in</strong> <strong>in</strong> <strong>the</strong><br />

fel<strong>in</strong>e cerebral cortex. Brit. J. Pharmacol. 44, 807-809 (1972b).<br />

HIRSCH, H., GREENBERG, D. M. : Studies on phosphoser<strong>in</strong>e am<strong>in</strong>otransferase of sheep bra<strong>in</strong>. J. biol.<br />

Chem. 242, 2283-2287 (1967).


176 D.R. CURTIS and G. A. R. JOHNSTON :<br />

HIRSCH, H. E., ROSINS, E. : Distribution of 7-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> <strong>the</strong> layers of <strong>the</strong> cerebral and<br />

cerebellar cortex. Implications for its physiological role. J. Neurochem. 9, 63 70 (1962).<br />

HOCKMAN, C. H., LLOYD, K. G., FARLEY, I. J., HORNYK1EWICZ, O. : Experimental midbra<strong>in</strong> lesions :<br />

neurochemical comparison between <strong>the</strong> animal model and Park<strong>in</strong>son's disease. Bra<strong>in</strong> Res. 35,<br />

613-618 (1971).<br />

HOFFMANN, K.-P., STONE, J., SHERMAN, S. M. : Relay of receptive field properties <strong>in</strong> dorsal lateral<br />

geniculate nucleus of <strong>the</strong> cat. J. Neurophysiol. 35, 518-531 (1972).<br />

HOKFELT, T., JONSSON, G., LJUNGDAHL, A.: Regional uptake and subcellular localization of (3H)-<br />

gamma-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) <strong>in</strong> rat bra<strong>in</strong> slices. Life Sci. 9, Part 1,203-212 (1970).<br />

H~KFELT, T., LJUNGDAHL, A. : Light and electron microscopic autoradiography on sp<strong>in</strong>al cord slices<br />

after <strong>in</strong>cubation with labeled glyc<strong>in</strong>e. Bra<strong>in</strong> Res. 32, 189 194 (1971 a).<br />

H6KFELT, T., LJUNGDAHL, A. : Uptake of [3H]noradrenal<strong>in</strong>e and 7-[3H]am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> isolated<br />

tissues of rat: an autoradiographic and fluorescence microscopic study. Progr. Bra<strong>in</strong> Res. 34,<br />

87 102 (1971b).<br />

HOKFELT, T., LJUNGDAHL, A.: Autoradiographic identification of cerebral and cerebellar cortical<br />

neurons accumulat<strong>in</strong>g labeled gamma-am<strong>in</strong>obutyric <strong>acid</strong> (3H-GABA). Exp. Bra<strong>in</strong> Res. 14, 354-362<br />

(1972a).<br />

Hf)KFELT, T., LJUNGDAHL, A.: Histochemical determ<strong>in</strong>ation of neurotransmitter distribution. Res.<br />

Publ. Ass. nerv. Ment. Dis. 50, 1-24 (1972b).<br />

HOKFELT, T., LJUNGDAHL, A.: Application of cytochemical techniques to <strong>the</strong> study of suspected<br />

transmitter substances <strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong>. Advanc. Biochem. Psychopharmac~ 6, 1-36 (1972c).<br />

HONGO, T., RYALL, R. W.: Electrophysiological and micro-electophoretic studies on sympa<strong>the</strong>tic<br />

preganglionic neurones <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord. Acta physiol, scand. 68, 96 104 (1966).<br />

HOPKIN, J., NEAL, M.J.: Effect of electrical stimulation and high potassium concentrations on<br />

<strong>the</strong> efflux of 1'C glyc<strong>in</strong>e from slices of sp<strong>in</strong>al cord. Brit. J. Pharmacol. 42, 215-223 (1971).<br />

HOSL1, E., LJUNGDAHL, A., HOKFELT, T., H6SLI, L. : Sp<strong>in</strong>al cord tissue culture~a model for autoradiographic<br />

studies on uptake of putative neuro<strong>transmitters</strong> like glyc<strong>in</strong>e and GABA, Experientia<br />

(Basel) 28, 1342-1344 (1972).<br />

HOSLk L., HAAS, H. L.: The hyperpolarization of neurones of <strong>the</strong> medulla oblongata by glyc<strong>in</strong>e.<br />

Experientia (Basel) 28, 1057-1058 (1972).<br />

H6SLI, L., TEBECIS, A. K.: Actions of am<strong>in</strong>o <strong>acid</strong>s and convulsants on bulbar reticular neurones.<br />

Exp. Bra<strong>in</strong> Res. 11, 111 127 (1970).<br />

H6SLI, L., TEBgClS, A. K., HAAS, H. L. : Depressant am<strong>in</strong>o <strong>acid</strong>s and possible antagonists on medullary<br />

reticular neurones. Experientia (Basel) 27, 732-733 (1971).<br />

HUEEMAN, R. D., MCFADIN, L. S. : Effects of bicucull<strong>in</strong>e on <strong>central</strong> <strong>in</strong>hibition. Neuropharmacology<br />

11, 789 799 (1972).<br />

HUFFMAN, R. D., YIM, G. K. W. : Effects of diphenylam<strong>in</strong>oethanol and lidoca<strong>in</strong>e on <strong>central</strong> <strong>in</strong>hibition.<br />

Int. J. Neuropharmacol. 8, 217-225 (1969).<br />

HULTBORN, H., JANKOWSKA, E., LINDSTROM, S. : Recurrent <strong>in</strong>hibition of <strong>in</strong>terneurones monosynaptically<br />

activated from Group Ia afferents. J. Physiol. (Lond.) 215, 613-656 (1971).<br />

ITO, M., UDo, M., MANO, N.: Long <strong>in</strong>hibitory and excitatory pathways converg<strong>in</strong>g onto cat<br />

reticular and Deiters' neurons and <strong>the</strong>ir relevance to reticulofugal axons. J. Neurophysiol. 32,<br />

210-226 (1970).<br />

ITO, M., YOSmDA, M. : The orig<strong>in</strong> of cerebellar-<strong>in</strong>duced <strong>in</strong>hibition of Deiters neurones. I. Monosynaptic<br />

<strong>in</strong>itation of <strong>the</strong> <strong>in</strong>hibitory postsynaptic potentials. Exp. Bra<strong>in</strong> Res. 2, 330-349 (1966).<br />

ITO, M., YOSHIDA, M., OBATA, K., KAWAI, N., UDO, M. : Inhibitory control of <strong>in</strong>tracerebellar nuclei<br />

by <strong>the</strong> Purk<strong>in</strong>je cell axons. Exp. Bra<strong>in</strong> Res. 10, 64-80 (1970).<br />

ITO, S., TANI, M., SATO, S., ODA, M. : Chemical stimulation due to sodium glutamate and aspartate<br />

on <strong>the</strong> motor cortex and subcortical nuclei. J. Physiol. Soc. Japan, 14, 392 394 (1952).<br />

IVERSEN, L. L.: The uptake, storage, release and metabolism of GABA <strong>in</strong> <strong>in</strong>hibitory nerves. In:<br />

Perspectives <strong>in</strong> nenropharmacology, a tribute to Julius Axelrod, ed. S. H. Snyder, p. 75-111~<br />

Oxford: Univ. Press 1972.<br />

IVERSEN, L. L., BLOOM, F. E.: Studies of <strong>the</strong> uptake of [3H]GABA and [3H]glyc<strong>in</strong>e <strong>in</strong> slices and<br />

homogenates of rat bra<strong>in</strong> and sp<strong>in</strong>al cord by electron microscopic autoradiography. Bra<strong>in</strong> Res.<br />

41, 131-143 (1972).<br />

IVERSEN, L. t., JOHNSTON, G. A. R.: GABA uptake <strong>in</strong> rat <strong>central</strong> <strong>nervous</strong> <strong>system</strong>: comparison of<br />

uptake <strong>in</strong> slices and homogenates and <strong>the</strong> effects of some <strong>in</strong>hibitors. J. Neurochem. 18, 1939-1950<br />

(1971).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 177<br />

IVERSEN, L. L., MITCHELL, J. F., NEAL, M. J., SRINIVASAN, V. : The effect of stimulation of <strong>in</strong>hibitory<br />

pathways on <strong>the</strong> release of endogenous 7-arn<strong>in</strong>obutyric <strong>acid</strong> from <strong>the</strong> cat cerebral cortex. Brit.<br />

J. Pharrnacol. 38, 452P (1970).<br />

IVERSEN, L. L., MITCHELL, J. F., SR1NIVASAN, V. : The release of 7-am<strong>in</strong>obutyric <strong>acid</strong> dur<strong>in</strong>g <strong>in</strong>hibition<br />

<strong>in</strong> <strong>the</strong> cat visual cortex. J. Physiol. (Lond.) 212, 519-534 (1971).<br />

IVERSEN, L. L., NEAL, M. J. : The uptake of [3H]GABA by slices of rat cerebral cortex. J. Neurochern.<br />

15, 1141-1149 (1968).<br />

JANKOWSKA, E., LINDSTRt3M, S, : Morphological identification of Renshaw cells. Acta physiol, scand.<br />

81,428-430 0971).<br />

JANKOWSKA, E., LINDSTR6M, S. : Morphology of <strong>in</strong>terneurones mediat<strong>in</strong>g Ia reciprocal <strong>in</strong>hibition of<br />

motoneurones <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord of <strong>the</strong> cat. J. Physiol. (Lond.) 226, 805-823 (1972).<br />

JANKOWSKA, E., ROBERTS, W. J.: Synaptic actions of s<strong>in</strong>gle <strong>in</strong>terneurones mediat<strong>in</strong>g reciprocal Ia<br />

<strong>in</strong>hibition of motoneurones. J. Physiol. (Lond.) 222, 623-642 (1972).<br />

JARBOE, C. H., PORTER, L. A., BUCKLER, R. T. : Structural aspects of picrotox<strong>in</strong><strong>in</strong> action. J. Med.<br />

Chem. 11,729-731 (1968).<br />

JASPER, H. H., KHAN, R.T., ELLIOTT, K. A. C.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s released from <strong>the</strong> cerebral cortex<br />

<strong>in</strong> relation to its state of activation. Science 147, 1448-1449 (1965).<br />

JASPER, H. H., KOYAMA, I.: Rate of release of am<strong>in</strong>o <strong>acid</strong>s from <strong>the</strong> cerebral cortex <strong>in</strong> <strong>the</strong> cat<br />

as affected by bra<strong>in</strong>stem and thalamic stimulation. Canad. J. Physiol. Pharmac. 47, 889-905<br />

(1969).<br />

JOHNSON, E. S., ROBERTS, M. H. T., STRAU~HAN, D. W. : <strong>Am<strong>in</strong>o</strong>-<strong>acid</strong> <strong>in</strong>duced depression of cortical<br />

neurones. Brit. J. Pharrnacol. 38, 659-666 (1970).<br />

JOHNSON, J. L.: Glutarnic <strong>acid</strong> as a synaptic transmitter <strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong>. A review. Bra<strong>in</strong><br />

Res. 37, 1-19 (1972a).<br />

JOHNSON, J. L.: An analysis of <strong>the</strong> activities of 3 key enzymes concerned with <strong>the</strong> <strong>in</strong>terconversion<br />

of ~-ketoglutarate and glutamate: correlations with free glutamate levels <strong>in</strong> 20 specific regions<br />

of <strong>the</strong> <strong>nervous</strong> <strong>system</strong>. Bra<strong>in</strong> Res. 45, 205 215 (1972b).<br />

JOHNSON, J. L., APRISON, M. H. : The distribution of glutamic <strong>acid</strong>, a transmitter candidate, and o<strong>the</strong>r<br />

am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> <strong>the</strong> dorsal sensory neuron of <strong>the</strong> cat. Bra<strong>in</strong> Res. 24, 285-292 (1970).<br />

JOHNSON, J. L., APRISON, M. H. : The distribution of glutamate and total free am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> thirteen<br />

specific regions of <strong>the</strong> cat <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Bra<strong>in</strong> Res. 26, 141-148 (1971).<br />

JOHNSTON, G.A.R. : The <strong>in</strong>trasp<strong>in</strong>al distribution of some depressant am<strong>in</strong>o <strong>acid</strong>s. J. Neurochem.<br />

15, 1013 1017(1968).<br />

JOHNSTON, G. A. R. : Convulsions <strong>in</strong>duced <strong>in</strong> 10-day old rats by <strong>in</strong>traperitoneal <strong>in</strong>jection of monosodium<br />

glutamate and related excitant am<strong>in</strong>o <strong>acid</strong>s. Biochem. Pharmacol. 22, 137-140 (1973).<br />

JOHNSTON, G. A. R., BEART, P. M., CURTIS, D.R., GAME, C. J.A., McCuLLOCH, R. M., MACLACHLAN,<br />

R. M. : Bicucull<strong>in</strong>e methochloride as a GABA antagonist. Nature (Lond.) New Biol. 240, 219-220<br />

(1972).<br />

JOHNSTON, G. A. R., CURTIS, D. R. : 7-<strong>Am<strong>in</strong>o</strong>butyrylchol<strong>in</strong>e and <strong>central</strong> <strong>in</strong>hibition. J. Pharm. Pharmacol.<br />

24, 251 (1972).<br />

JOHNSTON, G.A.R., DEGROAT, W.C., CURTIS, D.R.: Tetanus tox<strong>in</strong> and am<strong>in</strong>o <strong>acid</strong> levels <strong>in</strong> cat<br />

sp<strong>in</strong>al cord. J. Neurochern. 16, 797-800 (1969).<br />

JOHNSTON, G. A. R., IVERSEN, L. L. : Glyc<strong>in</strong>e uptake <strong>in</strong> rat <strong>central</strong> <strong>nervous</strong> <strong>system</strong> slices and homogenates:<br />

evidence for different uptake <strong>system</strong>s <strong>in</strong> sp<strong>in</strong>al cord and cerebral cortex. J. Neurochern.<br />

lg, 1951-1961 (1971).<br />

JOHNSTON, G. A. R., VITALI, M. V. " Glyc<strong>in</strong>e-produc<strong>in</strong>g transrn<strong>in</strong>ase activity <strong>in</strong> extracts of sp<strong>in</strong>al cord.<br />

Bra<strong>in</strong> Res. 12, 471-472 (1969a).<br />

JOHNSTON, G. A. R., VITALI, M.V. ; Glyc<strong>in</strong>e : 2-oxoglutarate transarn<strong>in</strong>ase <strong>in</strong> rat cerebral cortex. Bra<strong>in</strong><br />

Res. 15, 201-208 (1969b),<br />

JOHNSTON, G. A. R., VITALI, M.V., ALEXA~qD'~, H. M. : Regional and subcellular distribution studies<br />

on glyc<strong>in</strong>e: 2-oxoglutarate transam<strong>in</strong>ase activity <strong>in</strong> cat sp<strong>in</strong>al cord. Bra<strong>in</strong> Res. 20, 361-367 (1970).<br />

JORDAN, C.C., WEBSTER, R.A. : Release of acetylchol<strong>in</strong>e and 14C-glyc<strong>in</strong>e from <strong>the</strong> cat sp<strong>in</strong>al cord<br />

<strong>in</strong> vivo. Brit. J. Pharmacol. 43, 441P (1971).<br />

KACZMAREK, L. K., AGRAWAL~ H. C., DAV1SON, A. N. : Biochemical studies of taur<strong>in</strong>e <strong>in</strong> <strong>the</strong> develop<strong>in</strong>g<br />

rat bra<strong>in</strong>. Biochern. J. 119, 45~6P (1970).<br />

KACZMAREK, L.K., AGRAWAL, H.C., DAVISON, A.N. : The biochemistry of taur<strong>in</strong>e <strong>in</strong> develop<strong>in</strong>g<br />

rat bra<strong>in</strong>. In: Inherited disorders of sulphur metabolism, eds. N.A.J. Carson and D.N. Ra<strong>in</strong>e,<br />

p. 63-68. London: Churchill-Liv<strong>in</strong>gston 1971.


178 D.R. CURTIS and G. A. R. JOHNSTON :<br />

KACZMAREK, L. K., DAVlSOtq, A. N. : Uptake and release of taur<strong>in</strong>e from rat bra<strong>in</strong> slices. J. Neurochem.<br />

19, 2355-2362 (1972).<br />

KAItLSON, G., ROSENGREN, E.: Biogenesis and physiology of histam<strong>in</strong>e. London: Edward Arnold<br />

Ltd. 1971.<br />

KAJtMOTO, Y., FUJIMORI, H., HIROTA, K. : Study on <strong>the</strong> toxic components of "Shikimi ". I. Chemical<br />

study. Tokushima J. exp. Med. 2, 104-107 (1955).<br />

KA~AZAWA, I., M1YATA, Y., TOYOKURA, Y., OTSU~:A, M.: The distribution of 7-am<strong>in</strong>obutyric <strong>acid</strong><br />

(GABA) <strong>in</strong> <strong>the</strong> human substantia nigra. Bra<strong>in</strong> Res. 51,363-365 (1973).<br />

KANDERA, J., LEVI, G., LAJTHA, A. : Control of cerebral metabolite levels. II. <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> uptake<br />

and levels <strong>in</strong> various areas of <strong>the</strong> rat bra<strong>in</strong>. Arch. Biochem. Biophys. 126, 249-260 (1968).<br />

KAWAMtJRA, H., PROVInI, L. : Depression of cerebellar Purk<strong>in</strong>je cells by microiontophoretic application<br />

of GABA and related am<strong>in</strong>o <strong>acid</strong>s. Bra<strong>in</strong> Res. 24, 293 304 (1970).<br />

KEE, R.D., WELLS, J.N., YI~a, G. K. M. : Antagonism by diphenylam<strong>in</strong>oethanol of GABA <strong>in</strong>hibition<br />

of Deiters neurones. Fed. Proc. 30, 317 A (1971).<br />

KELLERTH, J.-O.: Aspects on <strong>the</strong> relative significance of pre- and postsynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong><br />

sp<strong>in</strong>al cord. In: Structure and function of <strong>in</strong>hibitory neuronal mechanisms, eds. C. von Euler,<br />

S. Skoglund and U. S6derberg, p. 197 212. Oxford: Pergamon Press 1968.<br />

KELLERTIq, J.-O., SZUMSKI, A. J. : Effects of picrotox<strong>in</strong> on stretch activated postsynaptic <strong>in</strong>hibitions <strong>in</strong><br />

sp<strong>in</strong>al motoneurones. Acta physiol, scand. 66, 146-156 (1966).<br />

KELLY, J. S., KRNJEVl~;, K. : The action of glyc<strong>in</strong>e on cortical neurones. Exp. Bra<strong>in</strong> Res. 9, 155-163<br />

(1969).<br />

KELLY, J. S., KRNJEVI~, K., MORRIS, M. E., Y1M, G. K. W. : Anionic permeability of cortical neurones.<br />

Exp. Bra<strong>in</strong> Res. 7, 11 31 (1969).<br />

KELLY, J.S., RENAUD, L.P. : Post-synaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> cuneate blockade by GABA antagonist.<br />

Nature (Lond.) New Biol. 232, 25-26 (1971).<br />

KIDOKORO, J., KUBOTA, K., SHUTO, S., SUMINO, R. : Reflex organization of cat masticatory muscles. J.<br />

Neurophysiol. 31, 695-708 (1968).<br />

KIM, J. S., BAK, L. J., HASSEER, R., OKADA, Y. : Role of 7-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) <strong>in</strong> <strong>the</strong> extrapyramidal<br />

motor <strong>system</strong>. 2. Evidence for <strong>the</strong> existence of type of GABA-rich strio-nigral neurons.<br />

Exp. Bra<strong>in</strong> Res. 14, 95-104 (1971).<br />

KING, E. J. : The ionization constants of glyc<strong>in</strong>e and <strong>the</strong> effect of sodium chloride upon its second<br />

ionization. J. Amer. chem. Soc. 73, 155-159 (1951).<br />

KING, E. J. : The ionization constants of taur<strong>in</strong>e and its activity coefficient <strong>in</strong> hydrochloric <strong>acid</strong><br />

solutions from electromotive force measurements. J. Amer. chem. Soc. 75, 2204-2209 (1953).<br />

K1NG, E.J.: The <strong>the</strong>rmodynamics of ionization of am<strong>in</strong>o <strong>acid</strong>s. I. The ionization constants of 7-<br />

am<strong>in</strong>obutyric <strong>acid</strong>. J. Amer. chem. Soc. 76, 1006 1008 (1954).<br />

KISHIDA, K., NAKA, K. I. : <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s and <strong>the</strong> spikes from <strong>the</strong> ret<strong>in</strong>al ganglion cells. Science 156,<br />

648-650 (1967).<br />

KONISHI, S., OTSUKA, M. : Actions of certa<strong>in</strong> polypeptides on frog sp<strong>in</strong>al neurons. Jap. J. Pharmacol.<br />

21, 685-687 (1971).<br />

KOYAMA, I. : <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s <strong>in</strong> <strong>the</strong> cobalt-<strong>in</strong>duced epileptogenic and nonepileptogenic cat's cortex.<br />

Canad. J. Physiol. Pharmac. 50, 740-752 (1972).<br />

KOVAMA, I., JASPER, H.H.: The release of GABA from cerebral cortex <strong>in</strong> <strong>the</strong> cat. Proc. Canad.<br />

Fed. Biol. Soc. 15, Abstr. 315 (1972).<br />

KRAVITZ, E.A., POTTER, D. D. : A fur<strong>the</strong>r study of <strong>the</strong> distribution of y-am<strong>in</strong>obutyric <strong>acid</strong> between<br />

excitatory and <strong>in</strong>hibitory axons of <strong>the</strong> lobster. J. Neurochem. 12, 323-328 (1965).<br />

KRNJEVI6, K. : Micro-iontophoretic studies on cortical neurones. Int. Rev. Neurobiol. 7, 41~8 (1964).<br />

KRNJEW~:, K. : Glutamate and 7-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> bra<strong>in</strong>. Nature (Lond.) 228, 119-124 (1970).<br />

KRNJEVI(:, K. : Microiontophoresis. In: Methods of neurochemistry vol. 1, ed. R. Fried, p. 129-172.<br />

New York: Marcel Dekker Inc. 1971.<br />

KRNJ~VI~:, K., MORRIS, M. E. : Extracellular K + activity and slow potential changes <strong>in</strong> sp<strong>in</strong>al cord<br />

and medulla. Canad. J. Physiol. Pharmac. 50, 1214 1217 (1972).<br />

KRNJeVIb, K., PHILLIS, J. W. : Iontophoretic studies of neurones <strong>in</strong> <strong>the</strong> <strong>mammalian</strong> cerebral cortex.<br />

J. Physiol. (Lond.) 165, 274-304 (1963).<br />

KRNJEVI(;, K., RANDI~, M., STRAUGHAN, D.W.: Pharmacology of cortical <strong>in</strong>hibition. J. Physiol.<br />

(Lond.) 184, 78-105 (1966).<br />

KRNJEVI~, K., SCHWARTZ, S.: Some properties of unresponsive cells <strong>in</strong> <strong>the</strong> cerebral cortex. Exp.<br />

Bra<strong>in</strong> Res. 3, 306 319 (1967a).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 179<br />

KRNJEVIC, K., SCHWARTZ, S." The action of ?-am<strong>in</strong>obutyric <strong>acid</strong> on cortical neurones. Exp. Bra<strong>in</strong><br />

Res. 3, 320-336 (1967b).<br />

KRNJEVI~, K., WHITTAKER., V. P. : Excitation and depression of cortical neurones by bra<strong>in</strong> fractions<br />

released from micropipettes. J. Physiol. (Lond.) 179, 298-322 (1965).<br />

KR~ALIC, L., MANDIC, V., MIHAILOVIC, L.: On <strong>the</strong> glutam<strong>in</strong>e and ?-am<strong>in</strong>obutyric <strong>acid</strong> contents of<br />

various regions of <strong>the</strong> cat bra<strong>in</strong>. Experientia (Basel) 18, 368-369 (1962).<br />

KUBI~EK, R., DOLI~NEK, A.: Taur<strong>in</strong>e et <strong>acid</strong>es am<strong>in</strong>6s dans la r6t<strong>in</strong>e des animaux. J. Chromat. 1,<br />

266-268 (1958).<br />

KUNO, M., MUNEOKA, A.: Fur<strong>the</strong>r studies on site of action of <strong>system</strong>atic omega-am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong><br />

<strong>the</strong> sp<strong>in</strong>al cord. Jap. J. Physiol. 12, 397-410 (1962).<br />

KURIYAMA, K., HABER, B., ROBERTS, E. : Occurrence of a new L-glutamic <strong>acid</strong> decarboxylase <strong>in</strong> several<br />

blood vessels of <strong>the</strong> rabbit. Bra<strong>in</strong> Res. 23, 121-123 (1970).<br />

KURIYAMA, K., HABER, B., SISKEN, B., ROBERTS, E. : The ?-am<strong>in</strong>obutyric <strong>acid</strong> <strong>system</strong> <strong>in</strong> rabbit cerebellum.<br />

Proc. nat. Acad. Sci. (Wash.) 55, 846-852 (1966).<br />

KURIYAMA, K., ROBERTS, E., KAKEFUDA, T.; Association of <strong>the</strong> ?-am<strong>in</strong>obutyric <strong>acid</strong> <strong>system</strong> with<br />

a synaptic vesicle fraction from mouse bra<strong>in</strong>. Bra<strong>in</strong> Res. 8, 132-152 (1968).<br />

KURIYAMA, K., SISKEN, B., HABER, B., ROBERTS, E. : The ~,-am<strong>in</strong>obutyric <strong>acid</strong> <strong>system</strong> <strong>in</strong> rabbit ret<strong>in</strong>a.<br />

Bra<strong>in</strong> Res. 9, 165-168 (1968).<br />

LABELLA, F., VIVlAN, S., QUEEN, G. : Abundance of cystathion<strong>in</strong>e <strong>in</strong> <strong>the</strong> p<strong>in</strong>eal body. Free am<strong>in</strong>o<br />

<strong>acid</strong>s and related compounds of bov<strong>in</strong>e p<strong>in</strong>eal, anterior and posterior pituitary and bra<strong>in</strong>. Biochim.<br />

biophys. Acta (Amst.) 158, 286-288 (1968).<br />

L~IHDESM~,KI, P., OJA, S. S. : Effect of electrical stimulation on <strong>the</strong> <strong>in</strong>flux and efflux of taur<strong>in</strong>e <strong>in</strong><br />

bra<strong>in</strong> slices of newborn and adult rats. Exp. Bra<strong>in</strong> Res. 15, 430-438 (1972).<br />

LAM, D.M.K.: The biosyn<strong>the</strong>sis and content of gamma-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> <strong>the</strong> goldfish ret<strong>in</strong>a.<br />

J. Cell Biol. 54, 225-231 (1972).<br />

LAM, D. M. K., STEINMAN, L. : The uptake of [?_3 H] am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> <strong>the</strong> goldfish ret<strong>in</strong>a. Proc.<br />

nat. Acad. Sci. (Wash.) 68, 2777--2781 (1971).<br />

LARSON, M.D.: An analysis of <strong>the</strong> action of strychn<strong>in</strong>e on <strong>the</strong> recurrent IPSP and am<strong>in</strong>o <strong>acid</strong><br />

<strong>in</strong>duced <strong>in</strong>hibitions <strong>in</strong> <strong>the</strong> cat sp<strong>in</strong>al cord. Bra<strong>in</strong> Res. 15, I85-200 (1969).<br />

LEGGE, K. F., RANDIC, M., STRAUGHAN, D. W. : The pharmacology ofneurones <strong>in</strong> <strong>the</strong> pyriform cortex.<br />

Brit. J. Pharmacol. 26, 87-107 (1966).<br />

LEMBECK, F., ZETLER, G. : Substance P, a polypeptide of possible physiological significance, especially<br />

with<strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong>. Int. Rev. Neurobiol. 4, 159-215 (1962).<br />

LEVl, G.: Regional differences <strong>in</strong> cerebral am<strong>in</strong>o <strong>acid</strong> transport. Progr. Bra<strong>in</strong> Res. 29, 219-228<br />

(1968).<br />

LEVI, G., AMALDI, P., MORISI, G.: Gamma-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) uptake by <strong>the</strong> develop<strong>in</strong>g<br />

mouse bra<strong>in</strong> <strong>in</strong> vivo. Bra<strong>in</strong> Res. 41, 435-451 (1972).<br />

LEVI, G., RAITERI, M. : Detectability of high and low aff<strong>in</strong>ity uptake <strong>system</strong>s for GABA and glutamate<br />

<strong>in</strong> rat bra<strong>in</strong> slices and synaptosomes. Life Sci. 12, Part I, 81-88 (1973).<br />

LEVY, R.A., ANDERSON, E. G. : The effect of <strong>the</strong> GABA antagonists bicucull<strong>in</strong>e and picrotox<strong>in</strong> on<br />

primary afferent term<strong>in</strong>al excitability. Bra<strong>in</strong> Res. 43, 171-180 (1972).<br />

LJUNGDAHL, A., Ht)KFELT, T.: Accumulation of aH-glyc<strong>in</strong>e <strong>in</strong> <strong>in</strong>terneurons of <strong>the</strong> cat sp<strong>in</strong>al cord.<br />

Histochemie 33, 277 (1973).<br />

LLINAS, B., BAKER, R.: A chloride-dependent <strong>in</strong>hibitory postsynaptic potential <strong>in</strong> cat trochlear<br />

motoneurons. J. Neurophysiol. 35, 484-492 (1972).<br />

LOGAN, W.J., SNYDER, S. H. : High aff<strong>in</strong>ity uptake <strong>system</strong>s for glyc<strong>in</strong>e, glutamic and aspartic <strong>acid</strong>s<br />

<strong>in</strong> synaptosomes of rat <strong>central</strong> <strong>nervous</strong> tissue. Bra<strong>in</strong> Res. 42, 413-431 (1972).<br />

LOLLEY, R. N. : Metabolic and anatomical specialization with<strong>in</strong> <strong>the</strong> ret<strong>in</strong>a. In: Handbook of neurochemistry,<br />

vol. 2, ed. A. Lajtha, p. 473 504. New York: Plenum Press 1969.<br />

LONGO, V.G., PINTO CORRADO, A.: A neuropharmacological <strong>in</strong>vestigation of <strong>the</strong> convulsant action<br />

of 4-phenyl-4-formyl-N-methylpiperid<strong>in</strong>e (1762 I.S.). Proc. Soc. exp. Biol. (N.Y.) 107, 272-274<br />

(1961).<br />

LONGO, V.G., SILVESTRINI, B., BOVET, D.: An <strong>in</strong>vestigation of convulsant properties of <strong>the</strong> 5-7-<br />

diphenyl-l-3-diazadamantan-6-ol (1757 I.S.). J. Pharmacol. exp. Ther. 126, 41-49 (1959).<br />

LOVELL, R.A., ELLIOTT, K. A. C. : The ?-am<strong>in</strong>obutyric <strong>acid</strong> and Factor I content of bra<strong>in</strong>. J. Neurochem.<br />

10, 479-488 (1963).<br />

LOWE, I.P., ROBINS, E., EYERMAN, G. S. : The fluorometric measurement of glutamic decarboxylase<br />

and its distribution <strong>in</strong> bra<strong>in</strong>. J. Neurochem. 3, 8-18 (1958).


180 D.R. CURTIS and G.A.R. JOHNSTON :<br />

MANDEL, P., MARK, J.: The <strong>in</strong>fluence of nitrogen deprivation on free am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> rat bra<strong>in</strong>.<br />

J. Neurochem. 12, 987-992 (1965).<br />

MANGAN, J.L., WHITTAKER, V.P.: The distribution of free am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> subcellular fractions of<br />

gu<strong>in</strong>ea-pig bra<strong>in</strong>. Biochem. J. 98, 128-138 (1966).<br />

MARGOLIS, R.K., HEELER, A., MOORE, R.Y.: Effects of changes <strong>in</strong> cellular composition follow<strong>in</strong>g<br />

neuronal degeneration on am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> bra<strong>in</strong>. Bra<strong>in</strong> Res. 11, 19-31 (1968).<br />

MARKS, N. : Peptide hydrolases. In : Handbook of neurochemistry, vol. 3, ed. A. Lajtha, p. 133-171.<br />

New York: Plenum Press 1970.<br />

MARKS, N., DATTA, R.K., LAJTHA, A. : Distribution of am<strong>in</strong>o <strong>acid</strong>s and of exo- and endopeptidases<br />

along vertebrate nerves. J. Neurochem. 17, 53-63 (1970).<br />

MAS1, |., PAGG1, P., POCCHIAR, F., TOSCH1, G. : Metabolism of labelled glucose <strong>in</strong> sympa<strong>the</strong>tic ganglia<br />

<strong>in</strong> vitro, at rest and dur<strong>in</strong>g susta<strong>in</strong>ed activity. Bra<strong>in</strong> Res. 12, 467-470 (1969).<br />

MATSUSH1TA, A., SMITH, C. M.: Sp<strong>in</strong>al cord function <strong>in</strong> postischemic rigidity <strong>in</strong> <strong>the</strong> rat. Bra<strong>in</strong> Res.<br />

19, 395-410 (1970).<br />

MATUS, A.I., DENNISON, M. E.: An autoradiographic study of uptake of exogenous glyc<strong>in</strong>e by<br />

vertebrate sp<strong>in</strong>al cord slices <strong>in</strong> vitro. J. Neurocytol. 1, 27 34 (1972).<br />

McBRIDE, W.J., KLINGMAN, J. D. : The effects of electrical stimulation and ionic alterations on <strong>the</strong><br />

metabolism of am<strong>in</strong>o <strong>acid</strong>s and prote<strong>in</strong>s <strong>in</strong> excised superior cervical ganglia of <strong>the</strong> rat. J. Neurochem.<br />

19, 865-880 (1972).<br />

MCCANCE, I., PHILLIS, J. W. : Chol<strong>in</strong>ergic mechanisms <strong>in</strong> <strong>the</strong> cerebellar cortex. Int. J. Neuropharmacol.<br />

7, 447-462 (1968).<br />

MCCANCE, I., PHILLIS, J. W., TEBECIS, A. K., Westerman, R.A. : The pharmacology of acetylchol<strong>in</strong>eexcitation<br />

of thalamic neurones. Brit. J. Pharmacol. 32, 652-662 (1968).<br />

MCGEER, P. L., MCGEER, E. G., WADA, J. A., JUNG, E. : Effects of globus pallidus lesions and Park<strong>in</strong>son's<br />

disease on bra<strong>in</strong> glutamic <strong>acid</strong> decarboxylase. Bra<strong>in</strong> Res. 32, 425-431 (1971).<br />

MCLENNAN, H. : Inhibition of long duration <strong>in</strong> <strong>the</strong> cerebral cortex. A quantitative difference between<br />

excitatory am<strong>in</strong>o <strong>acid</strong>s. Exp. Bra<strong>in</strong> Res. 10, 417-426 (1970).<br />

MCLENNAN, H.: The pharmacology of <strong>in</strong>hibition of mitral cells <strong>in</strong> <strong>the</strong> olfactory bulb. Bra<strong>in</strong> Res.<br />

29, 177-184 (1971).<br />

MCLENNAN, H., HUFFMAN, R~ D., MARSHALL, K. C. : Patterns of excitation of thalamic neurones by<br />

am<strong>in</strong>o-<strong>acid</strong>s and by acetylchol<strong>in</strong>e. Nature (Lond.) 219, 387-388 (1968).<br />

MCLENNAN, H., YORK, D. H. : The action of dopam<strong>in</strong>e on neurones of <strong>the</strong> caudate nucleus. J. Physiol.<br />

(Lond.) 189, 393-402 (1967).<br />

MElSTER, A. : The enzymology of am<strong>in</strong>o <strong>acid</strong> transport. Science 180, 33-39 (1973~.<br />

MELDRUM, B. S., HORTON, R. W. : Consulsive effects of 4-deoxypyridox<strong>in</strong>e and of bicucull<strong>in</strong>e <strong>in</strong> photosensitive<br />

baboons (Papiopapio) and <strong>in</strong> rhesus monkeys (Macaca mulatta). Bra<strong>in</strong> Res. 35, 419 ~136<br />

(1971).<br />

MEYER, M. : Die Wirkung yon Acetylchol<strong>in</strong>, L-Glutam<strong>in</strong>s~ure und Dopam<strong>in</strong> auf Neurone im Gebiet<br />

der Nuclei cuneatus und gracilis der Katze. Helv. physiol, pharmacol. Acta. 23, 325 340<br />

(1965).<br />

MITCHELL, J.F., NEAL, M.J., SRINIVASAN, V. : The release of am<strong>in</strong>o-<strong>acid</strong>s from electrically stimulated<br />

rat cerebral cortex slices. Brit. J. Pharmacol. 36, 201-202P (1969).<br />

MIYATA, Y., OBATA, K., TANAKA, Y., OTSUKA, M. : Determ<strong>in</strong>ation of 7-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> isolated<br />

nerve cells of <strong>the</strong> bra<strong>in</strong> stem of <strong>the</strong> cat. J. Physiol. Soc~ Japan, 32, 377-378 (1970).<br />

MIYATA, Y., OTSUKA, M. : Distribution of ~/-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> cat sp<strong>in</strong>al cord and <strong>the</strong> alteration<br />

produced by local ischaemia. J. Neurochem. 19, 1833-1834 (1972).<br />

MORGAN, R., VRBOVA, G., WOLSTENCROFT, J. H. : Correlation between <strong>the</strong> ret<strong>in</strong>al <strong>in</strong>put to lateral<br />

geniculate neurones and <strong>the</strong>ir relative response to glutamate and aspartate. J. Physiol. (Lond.)<br />

224, 41-42P (1972).<br />

MORIMOTO, T., KAWAMURA, Y. : Inhibitory postsynaptic potentials of hypoglossal motoneurons of<br />

<strong>the</strong> cat. Exp. Neurol. 37, 188-198 (1972).<br />

MORIMOTO, T., TAKATA, U., KAWAMURA, Y.: Effect of l<strong>in</strong>gual nerve stimulation on hypoglossal<br />

motoneurons. Exp. Neurol. 22, 174~190 (1968).<br />

Moss, R.L., DYBALL, R.E.,I., CROSS, B.A.: Responses of antidromically identified supraoptic and<br />

paraventricular units to acetylchol<strong>in</strong>e, noradrenal<strong>in</strong>e and glutamate applied iontophoretically.<br />

Bra<strong>in</strong> Res. 35, 573-575 (1971).<br />

Moss, 1~. L., URBAN, I., CROSS, B.A. : Microelectrophoresis of chol<strong>in</strong>ergic and am<strong>in</strong>ergic drugs on<br />

paraventricular neurons. Amer. J. Physiol. 223, 310-318 (1972).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 181<br />

MUONAINI, E., WALBERG, F. : An experimental electron microscopical study on <strong>the</strong> mode of term<strong>in</strong>ation<br />

of cerebellar cortico-vestibular fibres <strong>in</strong> <strong>the</strong> cat lateral vestibular nucleus (Deiters' nucleus).<br />

Exp. Bra<strong>in</strong> Res. 4, 212-236 (1967).<br />

MOLLER, P. B., LANGEMANN, H. : Distribution ofglutamic <strong>acid</strong> decarboxylase activity <strong>in</strong> human bra<strong>in</strong>.<br />

J. Neurochem. 9, 399-401 (1962).<br />

MUNEOKA, A.: Depression and facilitation of sp<strong>in</strong>al reflexes by <strong>system</strong>ic omega-am<strong>in</strong>o <strong>acid</strong>s. Jap.<br />

J. Physiol. 11,555-563 (1961).<br />

MURAKAMI, U., OHTSU, K., OHTSUKA, T.: Effects of chemicals on receptors and horizontal cells<br />

<strong>in</strong> <strong>the</strong> ret<strong>in</strong>a. J. Physiol. (Lond.) 227, 899-913 (1972).<br />

MURAYAMA, S., SMITH, C.M.: Rigidity of h<strong>in</strong>d limbs of cats produced by occlusion of sp<strong>in</strong>al cord<br />

blood supply. Neurology (M<strong>in</strong>neap.) 15, 565 577 (1965).<br />

MURRAY, J. E., CUTLER, R. W. P. : Transport ofglyc<strong>in</strong>e from <strong>the</strong> cerebrosp<strong>in</strong>al fluid. Factors regulat<strong>in</strong>g<br />

am<strong>in</strong>o <strong>acid</strong> concentration <strong>in</strong> fel<strong>in</strong>e cerebrosp<strong>in</strong>al fluid. Arch. Neurol. Chic. 23, 23-31 (1970a).<br />

MURRAY, J.E., CUTLER, R. W. P. : Clearance of glyc<strong>in</strong>e from cat cerebrosp<strong>in</strong>al fluid : faster clearance<br />

from sp<strong>in</strong>al subarachnoid than from ventricular compartment. J. Neurochem. 17, 703 704<br />

(1970b).<br />

MUSHAHWAR, I. K., KOEPPE, R. E. : The toxicity of monosodium glutamate <strong>in</strong> young rats. Biochim.<br />

biophys. Acta (Amst.) 244, 318-321 (1971).<br />

MUSSINI, E., MARCUCCI, F.: Free am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> bra<strong>in</strong> after treatment with psychotropic drugs.<br />

In : <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> pools, ed. d.T. Holden, p. 486-492. Amsterdam : Elsevier 1962.<br />

NADLER, J. V., COOPER, J. R. : Metabolism of <strong>the</strong> aspartyl moiety of N-acetyl-L-aspartic <strong>acid</strong> <strong>in</strong> <strong>the</strong><br />

rat bra<strong>in</strong>. J. Neurochem. 19, 2091-2105 (1972).<br />

NAGATA, Y., YOKOI, Y., TSUKADA, Y. ; Studies on fi'ee am<strong>in</strong>o <strong>acid</strong> metabolism <strong>in</strong> excised cervical<br />

sympa<strong>the</strong>tic ganglia from <strong>the</strong> rat. J. Neurochem. 13, 1421 1431 (1966).<br />

NAKAJIMA, T., WOLFGRAM, F., CLARK, W. G. : Identification of 1,4-methylhistam<strong>in</strong>e, 1,3-diam<strong>in</strong>opropane<br />

and 2,4-diam<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> bov<strong>in</strong>e bra<strong>in</strong>. J. Neurochem. 14, 1113-1118 (1967).<br />

NAKAMURA, Y., Wu, C.Y. : Presynaptic <strong>in</strong>hibition of jaw-open<strong>in</strong>g reflex by high threshold afferents<br />

from <strong>the</strong> masseter muscle of <strong>the</strong> cat. Bra<strong>in</strong> Res. 23, 193-211 (1970).<br />

NATHAN, P.W., SMZTH, M. C. : Fasciculi proprii of <strong>the</strong> sp<strong>in</strong>al cord <strong>in</strong> man. Bra<strong>in</strong>, 82, 610 668 (1959).<br />

NEAL, M.J.: The uptake of [14C] glyc<strong>in</strong>e by slices of <strong>mammalian</strong> sp<strong>in</strong>al cord. J. Physiol. (Lond.)<br />

215, 103-117 (1971).<br />

NEAL, M.J., IVERSEN, L. L. : Subcellular distribution of endogenous and 3H-GABA <strong>in</strong> rat cerebral<br />

cortex. J. Neurochem. 16, 1245 1252 (1969).<br />

NEAL, M.J., IVERSEN, L. L. : Autoradiographic localization of 3H-GABA <strong>in</strong> rat ret<strong>in</strong>a. Nature (Lond.)<br />

New Biol. 235, 217-218 (1972).<br />

NEAL, M. J., STARR, M. S. : Effect of <strong>in</strong>hibitors of 7-am<strong>in</strong>obutyrate am<strong>in</strong>otransferase on <strong>the</strong> accumulation<br />

of 3H-7-am<strong>in</strong>obutyric <strong>acid</strong> by <strong>the</strong> ret<strong>in</strong>a. Brit. J. Pharmacol. 47, 543 555 (1973).<br />

NEAL, M. L, WHITE, R. D. : Uptake of 14C-L-glutamate by rat ret<strong>in</strong>a. Brit. J. Pharmacol. 43, 442-443P<br />

(1971).<br />

NEUBERGER, A.: Dissociation constants and structures of glutamic <strong>acid</strong> and its esters. Biochem.<br />

J. 30, 2085-2094 (1936).<br />

NICOLL, R.A.: Pharmacological evidence for GABA as <strong>the</strong> transmitter <strong>in</strong> granule cell <strong>in</strong>hibition<br />

<strong>in</strong> <strong>the</strong> olfactory bulb. Braiu Res. 35, 137-149 (1971).<br />

N1COLL, R. A. : The effects of anes<strong>the</strong>tics on synaptic excitation and <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> olfactory bulb.<br />

J.Physiol. (Lond.) 223, 803-814 (1972).<br />

NICOLL R.A., BARKER, J. L. : The pharmacology of recurrent <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> supraoptic neurosecretory<br />

<strong>system</strong>. Bra<strong>in</strong> Res. 35, 501-511 (1971).<br />

NOELL, W. K. : The visual cell: electric and metabolic manifestations of its life processes. Amer.<br />

J. Ophthal. 48, 347-370 (1959).<br />

OBATA, K. : Acetylchol<strong>in</strong>e and gamma-am<strong>in</strong>obutyric <strong>acid</strong> action on tissue-cultured cells from sympa<strong>the</strong>tic<br />

ganglion, dorsal-root ganglion and diaphragm muscle. Fed. Proc. 31, 231 (1972a).<br />

OBAXA, K. : The <strong>in</strong>hibitory action of 7-am<strong>in</strong>obutyric <strong>acid</strong>, a probable synaptic transmitter. Int. Rev.<br />

Neurobiol. 15, 167-187 (1972b).<br />

OBATA, K., HIGHSTEIN, S. M. : Block<strong>in</strong>g by picrotox<strong>in</strong> of both vestibular <strong>in</strong>hibition and GABA action<br />

of rabbit oculomotor neurones. Bra<strong>in</strong> Res. 18, 538-541 (1970).<br />

OSATA, K., ITO, M., OCHI, R., SATO, N.: Pharmacological properties of <strong>the</strong> postsynaptic <strong>in</strong>hibition<br />

by Purk<strong>in</strong>je cell axons and <strong>the</strong> action of 7-am<strong>in</strong>obutyric <strong>acid</strong> on Deiters neurones. Exp. Bra<strong>in</strong><br />

Res. 4, 43-57 (1967).


182 D.R. CURTIS and G. A. R. JOHNSTON :<br />

OBATA, K., TAKEDA, K. : Release of 7-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong>to <strong>the</strong> fourth ventricle <strong>in</strong>duced by stimulation<br />

of <strong>the</strong> cat's cerebellum. J. Neurochem. 16, 1043 1047 (1969).<br />

OBATA, K., TAKEDA, K., SmNOZAKI, H. : Fur<strong>the</strong>r study on pharmacological properties of <strong>the</strong> cerebellar-<strong>in</strong>duced<br />

<strong>in</strong>hibition of Deiters neurones. Exp. Bra<strong>in</strong> Res. 11,327-342 (1970).<br />

OKADA, Y., HASSLER, R. : Uptake and release of ~;-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) <strong>in</strong> slices of substantia<br />

nigra of rat. Bra<strong>in</strong> Res. 49, 214-217 (1973).<br />

OKADA, Y., NITSCH-HASSLER, C., KIM, J.S., BAK, I.J., HASSLER, R.: Role of 7-am<strong>in</strong>obutyric <strong>acid</strong><br />

(GABA) <strong>in</strong> <strong>the</strong> extrapyramidal motor <strong>system</strong>. 1. Regional distribution of GABA <strong>in</strong> rabbit, rat,<br />

gu<strong>in</strong>ea pig and baboon CNS. Exp. Bra<strong>in</strong> Res. 13, 514-518 (1971).<br />

OKAYA, W. : Ref<strong>in</strong>ement of <strong>the</strong> crystal structure of taur<strong>in</strong>e. An example of computer-controlled experimentation.<br />

Acta Cryst. 21, 726-735 (1966).<br />

OKOMOm, S. : Epileptogenic action of glutamate directly applied <strong>in</strong>to <strong>the</strong> bra<strong>in</strong> of animals and <strong>in</strong>hibitory<br />

effect of prote<strong>in</strong>s and tissue emulsions on its action. J. Physiol. Soc. Japan, 13, 555-562<br />

(1951).<br />

OLDENDORF, W.H.: Bra<strong>in</strong> uptake of radiolabeled am<strong>in</strong>o <strong>acid</strong>s, am<strong>in</strong>es and hexoses after arterial<br />

<strong>in</strong>jection. Amer. J. Physiol. 221, 1629-1639 (1971).<br />

OLNEY, J.W., HO, O.L., RHEE, V. : Cytotoxic effects of <strong>acid</strong>ic and sulphur conta<strong>in</strong><strong>in</strong>g am<strong>in</strong>o <strong>acid</strong>s<br />

on <strong>the</strong> <strong>in</strong>fant mouse <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Exp. Bra<strong>in</strong> Res. 14, 61-76 (1971).<br />

OLNEY, J.W., SHARPE, L.G., FEIGIN, R.D.: Glutamate-<strong>in</strong>duced bra<strong>in</strong> damage <strong>in</strong> <strong>in</strong>fant primates.<br />

J. Neuropath. exp. Neurol. 31, 464-488 (1972).<br />

OOMDRA, Y., OOYAMA, H., YAMAMOTO, T., ONO, T., KOBAYASHI, N. : Behavior of hypothalamic unit<br />

activity dur<strong>in</strong>g electrophoretic application of drugs. Ann. N. Y. Acad. Sci. 157, 642-665<br />

(1969).<br />

ORREGO, F., LII'MANN, F. : Prote<strong>in</strong> syn<strong>the</strong>sis <strong>in</strong> bra<strong>in</strong> slices. Effects of electrical stimulation and<br />

<strong>acid</strong>ic am<strong>in</strong>o <strong>acid</strong>s. J. biol. Chem. 242, 665 671 (1967).<br />

OTSUKA, M. : ,;-<strong>Am<strong>in</strong>o</strong>butyric <strong>acid</strong> <strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong>. In : The structure and function of <strong>nervous</strong><br />

tissue, vol. 4, ed. G. H. Bourne, p. 249-289. New York : Academic press 1972.<br />

OTSUKA, M., KONISHI, S., TAKAHASHI, T.: The presence of a motoneuron-depolariz<strong>in</strong>g peptide <strong>in</strong><br />

bov<strong>in</strong>e dorsal roots of sp<strong>in</strong>al nerves. Proc. Jap. Acad. 48, 342-346 (1972).<br />

OTSUKA, M., MIYATA, Y. : Application of enzymatic cycl<strong>in</strong>g to <strong>the</strong> measurement of gamma-am<strong>in</strong>obu-<br />

Lyric <strong>acid</strong> <strong>in</strong> s<strong>in</strong>gle neurons of <strong>the</strong> <strong>mammalian</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Advanc. Biochem. Psychopharmac.<br />

6, 61-74 (1972).<br />

OTSUKA, M. OuA'rA, K., MIYATA, Y., TANAKA, Y. : Measurement of 7-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> isolated<br />

nerve cells of cat <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. J. Neurochem. 18, 287~95 (1971).<br />

PARRY JONES, G., ROBERTS, R.T., AHMED, A.I. : A nuclear magnetic resonance <strong>in</strong>vestigation of 7-<br />

am<strong>in</strong>obutyric <strong>acid</strong> (GABA). Molec. Physiol. 22, 547 549 (1971).<br />

PASANTES-MORALES, H., KLETHI, J., URBAN, P.F., MANDEL, P.: The physiological role of taur<strong>in</strong>e<br />

<strong>in</strong> ret<strong>in</strong>a: uptake and effect on electroret<strong>in</strong>ogram (ERG). Physiol. Chem. Phys. 4, 339-348 (1972).<br />

PECK, E.J., AWAPARA, J.: Formation of taur<strong>in</strong>e and isethionic <strong>acid</strong> <strong>in</strong> rat bra<strong>in</strong>. Biochim. biophys.<br />

Acta (Amst.) 141, 499-506 (1967).<br />

PEREZ, V. J., OLNEY, J. W. : Accumulation of glutamic <strong>acid</strong> <strong>in</strong> <strong>the</strong> arcuate nucleus of <strong>the</strong> hypothalamus<br />

of <strong>the</strong> <strong>in</strong>fant mouse follow<strong>in</strong>g subcutaneous adm<strong>in</strong>istration of monosodium glutamate. J. Neurochem.<br />

19, 1777-1782 (1972).<br />

PERRY, T.L., BERRY, K., DIAMOND, S., MOK, C.: Regional distribution of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> human<br />

bra<strong>in</strong> obta<strong>in</strong>ed at autopsy. J. Neurochem. 18, 513-519 (1971 a).<br />

PERRY, T.L., HANSEN, S., BERRY, K., MOK, C., LESI


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 183<br />

PONNUSWAMY, P. K., SASISEK, LARAN, V. : Conformation of am<strong>in</strong>o <strong>acid</strong>s. II. Potential energy of conformations<br />

of glyc<strong>in</strong>e, alan<strong>in</strong>e and am<strong>in</strong>obutyric <strong>acid</strong>. Int. J. Prote<strong>in</strong> Res. 2, 3745 (1970).<br />

PoPOV, N., POHLE, W., R6SLER, V., MATTHIES, H.: Regional distribution of 7-am<strong>in</strong>obutyric <strong>acid</strong>,<br />

glutamic <strong>acid</strong>, aspartic <strong>acid</strong>, dopam<strong>in</strong>e, noradrenal<strong>in</strong>e and seroton<strong>in</strong> <strong>in</strong> rat bra<strong>in</strong>. Acta biol.<br />

med. germ. 18, 695-702 (1967).<br />

PORTER, L. L. : Picrotox<strong>in</strong><strong>in</strong> and related substances. Chem. Rev. 67, 441-464 (1967).<br />

PRECHT, W., BAKER, R. : Synaptic organization of <strong>the</strong> vestibulo-trochlear pathway. Exp. Bra<strong>in</strong> Res.<br />

14, 158-184 (1972).<br />

PRECHT, W., BAKER, R., OKADA, Y. : Evidence for GABA as <strong>the</strong> synaptic transmitter of <strong>the</strong> <strong>in</strong>hibitory<br />

vestibulo-ocular pathway. Exp. Bra<strong>in</strong> Res. <strong>in</strong> press (1973).<br />

PRECHT, W., BAKER, R., YOSHIDA, M.: Blockage of caudate-evoked <strong>in</strong>hibition of neurons <strong>in</strong> <strong>the</strong><br />

substantia nigra by picrotox<strong>in</strong>. Bra<strong>in</strong> Res. 32, 229-233 (1971).<br />

PURPURA, D.P., GIRADO, M., SMITH, T.G., CALLAN, D.A., GRUNDFEST, H. : Structure activity determ<strong>in</strong>ants<br />

of pharmacological effects of am<strong>in</strong>o <strong>acid</strong>s and related compounds on <strong>central</strong> synapses.<br />

J. Neurochem. 3, 238 268 (1959).<br />

RAMWELL, P.W., SHAW, J. E. : Some observations on <strong>the</strong> physical and pharmacological properties<br />

of picrotox<strong>in</strong> solutions. J. Pharm. Pharmacol. 15, 611-619 (1963).<br />

RICHTER, J.J., WAINER, A.: Evidence for separate <strong>system</strong>s for <strong>the</strong> transport of neutral and basic<br />

am<strong>in</strong>o <strong>acid</strong>s across <strong>the</strong> blood bra<strong>in</strong> barrier. J. Neurochem. 18, 613-620 (1971).<br />

ROBERTS, E. : Formation and liberation of 7-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong> bra<strong>in</strong>. In: Progress <strong>in</strong> neurobiology;<br />

1. Neurochemistry.eds. S. R. Korey and J. I. Nurnberger, p. I l 25. New York : Hoeber-Harper 1956.<br />

ROBERTS, E. : Inhibition <strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong> and gamma-am<strong>in</strong>obutyric <strong>acid</strong>. New York : Pergamon<br />

Press 1960.<br />

ROBERTS, E.: Some biochemical-physiological correlations <strong>in</strong> studies of ~/-am<strong>in</strong>obutyric <strong>acid</strong>. In:<br />

Structure and function of <strong>in</strong>hibitory neuronal mechanisms, eds. C. yon Euler, S. Skoglund and<br />

U. S6derberg, p. 401-418. Oxford: Pergamon Press 1968.<br />

ROBERTS, E.: The GABA <strong>system</strong> <strong>in</strong> bra<strong>in</strong> development. In: Chemistry and bra<strong>in</strong> development,<br />

advances <strong>in</strong> experimental medic<strong>in</strong>e and biology, vol. 13, eds. R. Paoletti and A.N. Davison,<br />

p. 207-214. New York: Plenum Press 1971.<br />

ROBERTS, E., EIDELBERG, E.: Metabolic and neurophysiological roles of ~/-am<strong>in</strong>obutyric <strong>acid</strong>. Int.<br />

Rev. Neurobiol. 2, 279-332 (1960).<br />

ROBERTS, E., KURIYAMA, K. : Biocherilical-physiological correlations <strong>in</strong> studies of <strong>the</strong> 7-am<strong>in</strong>obutyric<br />

<strong>acid</strong> <strong>system</strong>. Bra<strong>in</strong> Res. 8, 1-35 (1968).<br />

ROBERTS, P.J., MITCHELL, J. F. : The release of am<strong>in</strong>o <strong>acid</strong>s from <strong>the</strong> hemisected sp<strong>in</strong>al cord dur<strong>in</strong>g<br />

stimulation. J. Neurochem. 19, 2473-2481 (1972).<br />

RUBIN, R, P. : The role of calcium <strong>in</strong> <strong>the</strong> release of neurotransmitter substances and hormones. Pharmacol.<br />

Rev. 22, 389428 (1970).<br />

RYALL, R. W. : The subcellular distributions of acetylchol<strong>in</strong>e, substance P, 5-hydroxytryptam<strong>in</strong>e, 7-<br />

am<strong>in</strong>obutyric <strong>acid</strong> and glutamic <strong>acid</strong> <strong>in</strong> bra<strong>in</strong> homogenates. J. Neurochem. 11, 131-145 (1964).<br />

RYALL, R. W, : Renshaw cell mediated <strong>in</strong>hibition of Renshaw cells: patterns of excitation and <strong>in</strong>hibition<br />

from impulses <strong>in</strong> motor axon collaterals. J. Neurophysiol. 32, 256-270 (1970).<br />

RYALL, R.W., DE GROAT, W. C. : The microelectrophoretic adm<strong>in</strong>istration of noradrenat<strong>in</strong>e, 5-hydroxytryptam<strong>in</strong>e,<br />

acetylchol<strong>in</strong>e and glyc<strong>in</strong>e to sacral parasympa<strong>the</strong>tic preganglionic neurones. Bra<strong>in</strong><br />

Res. 37, 345-347 (1972).<br />

RYALL, R.W., P1ERCEY, M.F., POLOSA, C. : Strychn<strong>in</strong>e-resistant mutual <strong>in</strong>hibition of Renshaw cells.<br />

Bra<strong>in</strong> Res. 41, 119 129 (1972).<br />

SALVADOR, R.A., ALBERS, R. W. : The distribution of glutamic-7-am<strong>in</strong>obutyric transam<strong>in</strong>ase <strong>in</strong> <strong>the</strong><br />

<strong>nervous</strong> <strong>system</strong> of <strong>the</strong> Rhesus monkey. J. bioL Chem. 234, 922~25 (1959).<br />

SAVERLAND, E. K., MIZUNO, N. : Cortically <strong>in</strong>duced presynaptic <strong>in</strong>hibition of trigem<strong>in</strong>al proprioceptive<br />

afferents. Bra<strong>in</strong> Res. 13, 556-568 (1969).<br />

SCHENCK, J. R. : A note on <strong>the</strong> distribution of/3-alan<strong>in</strong>e. Proc. Soc. exp. Biol. (N. Y.) 54, 6-7 (1943).<br />

SCHMIDT, R.F.: Pharmacological studies on <strong>the</strong> primary afferent depolarization of <strong>the</strong> toad sp<strong>in</strong>al<br />

cord. Pflfigers Arch. ges. Physiol. 277, 325 346 (1963).<br />

SCHMIDT, R. F. ; Presynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> vertebrate <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Ergebn. Physiol.<br />

63, 20-101 (1971).<br />

SCHOLES, N.W., ROBERTS, E.: Pharmacological studies of <strong>the</strong> optic <strong>system</strong> of <strong>the</strong> chick: effect of<br />

7-am<strong>in</strong>obutyric <strong>acid</strong> and pentobarbital. Biochem. Pharmacol. 13, 1319-1329 (1964).


184 D.R. CtJRT1S and G. A. R. JOrINSTON :<br />

SCHON, F,, IVERSEN, L. L. : Selective accumulation of [3HI GABA by stellate cells <strong>in</strong> rat cerebellar<br />

<strong>in</strong> vivo. Bra<strong>in</strong> Res. 42, 503-507 (1972).<br />

SCHUBERT, P., KREUTZBERG, G.W., LUX, H. D. : Use of microelectrophoresis <strong>in</strong> <strong>the</strong> autoradiographic<br />

demonstration of fiber projections. Bra<strong>in</strong> Res. 39, 274-277 (t 972).<br />

SEILER, N., WIECHMANN, M. : Zum Vorkommen der 7-am<strong>in</strong>o-butters/iure und der 7-am<strong>in</strong>o-/Lhydroxybutters/iure<br />

<strong>in</strong> tierischem Gewebe. Hoppe-Seyler's Z. physiol. Chem. 350, 1493-1500 (1969).<br />

SEMBA, T., KANO, M. : Glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord of cats with local tetanus rigidity. Science 164,<br />

571-572 (1969).<br />

SETA, K., SERSHEN, H., LAJTHA, A.: Cerebral am<strong>in</strong>o <strong>acid</strong> uptake <strong>in</strong> vivo <strong>in</strong> newborn mice. Bra<strong>in</strong><br />

Res. 47, 415425 (1972).<br />

SHANK, R.P., APRISON, M.H.: The metabolism <strong>in</strong> vivo of glyc<strong>in</strong>e and ser<strong>in</strong>e <strong>in</strong> eight areas of <strong>the</strong><br />

rat <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. J. Neurochem. 17, 1461-1475 (1970).<br />

SHANK, R.P., APRISON, M.H.: Post mortem changes <strong>in</strong> <strong>the</strong> content and specific radioactivity of<br />

several am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> four areas of <strong>the</strong> rat bra<strong>in</strong>. J. Neurobiol. 2, 145-151 (1971).<br />

SHANK, R. P., APRISON, M. H.,BAXTER, C. F. : Precursors of glyc<strong>in</strong>e <strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong> : comparison<br />

of specific activities <strong>in</strong> glyc<strong>in</strong>e and o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s after adm<strong>in</strong>istration of [U-'4C]glucose,<br />

[3.4- l 4C]glucose ' [1 - i 4C]glucose, [U-'4C]ser<strong>in</strong>e or [1.5-14C]citrat e to <strong>the</strong> rat. Bra<strong>in</strong> Res. 52, 301-308<br />

(1973).<br />

SHAW, R.K., HEINE, J.D.: N<strong>in</strong>hydr<strong>in</strong> positive substances present <strong>in</strong> different areas of normal rat<br />

bra<strong>in</strong>. J. Neurochem. 12, 151-155 (1965).<br />

SHEPHERD, G. M. : Synaptic organization of <strong>the</strong> <strong>mammalian</strong> olfactory bulb. Physiol. Rev. 52, 864-917<br />

(1972).<br />

SHERIDAN, J.J., SIMS, K.L., P~TTS, F.N.: Bra<strong>in</strong> 7-am<strong>in</strong>obutyrate-~-oxoglutarate transam<strong>in</strong>ase--II.<br />

Activities <strong>in</strong> twenty-four regions of human bra<strong>in</strong>. J. Neurochem. 14, 571-578 (1967).<br />

SHIMADA, M., K~HARA, T., KURIt~OTO, K., MARUVAMA, Y., IJJcnl, H.: Topographic separation of<br />

lyophilized mouse bra<strong>in</strong> and gas liquid chromatographic analysis of free am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> bra<strong>in</strong><br />

divisions. Acta anat. nippon., 47, 138 153 (1972)<br />

SHIMADA, M., KURIMOTO, K., WADA, E., HINO, O., SUGINOSHITA, K., KIHARA, T. : Quantitative trial<br />

of free am<strong>in</strong>o <strong>acid</strong> concentrations <strong>in</strong> <strong>the</strong> mouse bra<strong>in</strong> loci by gas-liquid chromatography. Acta<br />

anat. nippon., 46, 125-135 (1971).<br />

SIGGINS, G.R., OLIVER, A.P., HOFFeR, B.J., BLOOM, F.E.: Cyclic adenos<strong>in</strong>e monophosphate and<br />

norep<strong>in</strong>ephr<strong>in</strong>e: effects on transmembrane properties of cerebellar Purk<strong>in</strong>je cells. Science 171,<br />

192-194 (1971).<br />

SIMS, K.L., WEIXSEN, H.A., BLOOr~, F. E. : Histochemical localization of bra<strong>in</strong> succ<strong>in</strong>ic semialdehyde<br />

dehydrogenase-A 7-am<strong>in</strong>obutyric <strong>acid</strong> degradative enzyme. J. Histochem. Cytochem. 19, 405~,15<br />

(1971).<br />

SIraMS, H. S. : The effect of salts on weak electrolytes. I. Dissociation of weak electrolytes <strong>in</strong> <strong>the</strong><br />

presence of salts. J. Phys. Chem. 32, 1121-1141 (1928).<br />

Sr~ALL, N.A., HOLTON, J. B., ANCILL, R. J. : In vitro <strong>in</strong>hibition of seroton<strong>in</strong> and 7-am<strong>in</strong>obutyric <strong>acid</strong><br />

syn<strong>the</strong>sis <strong>in</strong> rat bra<strong>in</strong> by histid<strong>in</strong>e metabolites. Bra<strong>in</strong> Res. 21, 55-62 (1970).<br />

SMITH, S. E. : K<strong>in</strong>etics of neutral am<strong>in</strong>o <strong>acid</strong> transport <strong>in</strong> rat bra<strong>in</strong> <strong>in</strong> vitro. J. Neurochem. 14, 291-300<br />

(1967).<br />

SMITH, T.G., WUERKER, R. B., FRANK, K. ; Membrane impedance changes dur<strong>in</strong>g synaptic transmission<br />

<strong>in</strong> cat sp<strong>in</strong>al motonenrons. J. Neurophysiol. 30, 1072 1096 (1967).<br />

SMYTHIES, J. R. : The. chemical anatomy of synaptic mechanisms: receptors. Int. Rev. Neurobiol.<br />

14, 233-331 (1971).<br />

SNODGRASS, S. R., CUTLER, R. W. P., KANG, E.S., LORENZO, A. V. : Transport of neutral am<strong>in</strong>o <strong>acid</strong>s<br />

from fel<strong>in</strong>e cerebrosp<strong>in</strong>al fluid. Amer. J. Physiol. 217, 974-980 (1969).<br />

SNODGRASS, S.R., IVERSEN, L.L.: A sensitive double isotope derivative assay to measure release<br />

of am<strong>in</strong>o <strong>acid</strong>s from bra<strong>in</strong> <strong>in</strong> vivo. Nature (Lond.) New Biol. 241, 154-156 (1973a).<br />

SNODGRASS, S. R., IVERSEN, L. L. : Effects of am<strong>in</strong>o-oxyacetic <strong>acid</strong> on [3H]GABA uptake by rat bra<strong>in</strong><br />

slices. J. Neurochem. 20, 431439 ((1973b).<br />

SNYDER, S.H., LOGAN, W.J., BENNETT, J.P., ARREGUI, A.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s as <strong>central</strong> <strong>nervous</strong> <strong>transmitters</strong>:<br />

Biochemical studies. Neurosciences Research 5, (1972).<br />

SOMJEN, G. G. : Evoked susta<strong>in</strong>ed focal potentials and membrane potential of neurons and of unresponsive<br />

cells of <strong>the</strong> sp<strong>in</strong>al cord. J. Neurophysiol. 33, 562 582 (1970).<br />

SOTELO, C., PRIVAT, A., DRIAN, M.-J. : Localization of [3H] GABA <strong>in</strong> tissue culture of rat cerebellum<br />

us<strong>in</strong>g electron microscopy radioautography. Bra<strong>in</strong> Res. 45, 302-308 (1972).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 185<br />

SRIMAL, R.C., BHARGAVA, K.P.: Peripheral neural effects of gamma am<strong>in</strong>obutyric <strong>acid</strong>. Arch.<br />

<strong>in</strong>t. Pharmacodyn. 164, 444450 (1966).<br />

STARR, M.S., VOADEN, M.J.: The uptake of [~4C] 7-am<strong>in</strong>obutyric <strong>acid</strong> by <strong>the</strong> isolated ret<strong>in</strong>a of<br />

<strong>the</strong> rat. Vision Res. 12, 549-557 (1972a).<br />

STARR, M.S., VOADEN, M.J.: The uptake, metabolism and release of 14C-taur<strong>in</strong>e by rat ret<strong>in</strong>a<br />

<strong>in</strong> vitro. Vision Res. 12, 1261-1269 (1972b).<br />

STEFANIS, C. : Hippocampal neurons: <strong>the</strong>ir responsiveness to microelectrophoretically adm<strong>in</strong>istered<br />

endogenous am<strong>in</strong>es. The Pharmacologist, 6, 171 (1964).<br />

STEEANIS, C.: Discussion. In: The <strong>in</strong>terneuron, ed. M.A. Brazier, p. 442M47. Los Angeles: Univ.<br />

Calif. Press 1969.<br />

STEINER, F.A., MEYER, M. : Actions of L-glutamate, acetylchol<strong>in</strong>e and dopam<strong>in</strong>e on s<strong>in</strong>gle neurones<br />

<strong>in</strong> <strong>the</strong> nuclei cuneatus and gracilis of <strong>the</strong> cat. Experientia (Basel) 22, 58-59 (1966).<br />

STEINER, E. A., RUF, K. : Interactions of L-glutamic <strong>acid</strong>, gamma-am<strong>in</strong>obutyric <strong>acid</strong> and pyridoxal-5'-<br />

phosphate at <strong>the</strong> neuronal level. Schweiz. Arch. Neurol. Psychiat. 100, 310-320 (1967).<br />

STERN, P., HAD~OVI~, S. : Effect of glyc<strong>in</strong>e on experimental h<strong>in</strong>dlimb rigidity <strong>in</strong> rats. Life Sci.<br />

9, Part I, 955-959 (1970).<br />

STEWARD, E. G., PLAYER, R., QUILLIAM, J. P., BROWN, D.A., PRINGLE, M. J. : Molecular conformation<br />

of GABA. Nature (Lond.) New Biol. 233, 87-88 (1971).<br />

STEWART, C.N., COURSIN, D.B., BHAGAVAN, H.N. : Electroencephalographic study of L-glutamate<br />

<strong>in</strong>duced seizures <strong>in</strong> rats. Toxicol. appl. Pharmacol. 23, 635-639 (1972).<br />

STORM-MATHISEN, J.: Glutamate decarboxylase <strong>in</strong> <strong>the</strong> rat hippocampal region after lesions of <strong>the</strong><br />

afferent fibre <strong>system</strong>s. Evidence that enzyme is localized <strong>in</strong> <strong>in</strong>tr<strong>in</strong>sic neurones. Bra<strong>in</strong> Res. 40,<br />

215-235 (1972).<br />

STORM-MATHISEN, J., FONNUM, F.: Quantitative histochemistry of glutamate decarboxylase <strong>in</strong> <strong>the</strong><br />

rat hippocampal region. J.Neurochem. 18, 1105-1111 (1971).<br />

STORM-MATHISEN, J., FONNUM, F. : Localization of transmitter candidates <strong>in</strong> <strong>the</strong> hippocampal region.<br />

Progr. Bra<strong>in</strong> Res. 36, 40 57 (1972).<br />

STRASCHILL, M. : Action of drugs on s<strong>in</strong>gle neurons <strong>in</strong> <strong>the</strong> cat's ret<strong>in</strong>a. Vision Res. 8, 3547 (1968).<br />

STRASCHILL, M., PERWE1N, J.: The <strong>in</strong>hibition of ret<strong>in</strong>al ganglion cells by catecholam<strong>in</strong>es and 7-<br />

am<strong>in</strong>obutyric <strong>acid</strong>. Pfliigers Arch. 312, 45-54 (1969).<br />

STRAUGHAN, D. W., LEGGE, K. F. : The pharmacology of amygdaloid neurones. J. Pharm. Pharmacol.<br />

17, 675-677 (1965).<br />

STRAUGHAN, D.W., NEAL, M.J., SIMMONDS, M.A., COLLINS, G.G.S., HILL, R.G.: Evaluation of<br />

bicucull<strong>in</strong>e as a GABA antagonist. Nature (Lond.) 233, 352-354 (1971).<br />

SUCAR, O., GERARD, R.W.: Sp<strong>in</strong>al cord regeneration <strong>in</strong> <strong>the</strong> rat. J.Neurophysiol. 3, 1-19 (1940).<br />

SVERDLOV, YU. S., ALEKSEEVA, V. I. : Effect of tetanus tox<strong>in</strong> on presynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al<br />

cord. Fed. Proc. 25, 931-935 (1966).<br />

SVERDLOV, YU. S., KOZHECH~IN, S.N. : On presynaptic <strong>in</strong>hibitory mechanisms of monosynaptic reflexes.<br />

In: Mechanisms of <strong>the</strong> <strong>nervous</strong> <strong>system</strong>, eds. D.A. Birjukova, D.G. Kvasova and N.V.<br />

Zimk<strong>in</strong>a, p. 136-143. Len<strong>in</strong>grad: Nauka 1969.<br />

SYTINKSY, I.A.: The gamma-am<strong>in</strong>obutyric <strong>acid</strong> (GABA) <strong>system</strong> of <strong>the</strong> cerebral white matter and<br />

of bra<strong>in</strong> tumours. Neuropath. pol. 7, 371-375 (1969).<br />

SYTIN~SY, I.A.: y-<strong>Am<strong>in</strong>o</strong>butyric <strong>acid</strong> on <strong>the</strong> activity of <strong>the</strong> <strong>nervous</strong> <strong>system</strong>. Len<strong>in</strong>grad: Nauka<br />

1972.<br />

SYTINKSY, [. A., VASILIJEV, V. Y. : Some catalytic properties of purified 7-am<strong>in</strong>obutyrate-ct-oxoglutarate<br />

transm<strong>in</strong>ase from rat bra<strong>in</strong>. Enzymologia 39, 1-11 (1970).<br />

SZE, P.Y.: Possible repression of L-glutamic <strong>acid</strong> decarboxylase by gamma-am<strong>in</strong>obutyric <strong>acid</strong> <strong>in</strong><br />

develop<strong>in</strong>g mouse bra<strong>in</strong>. Bra<strong>in</strong> Res. 19, 322-325 (1970).<br />

SZE, P.Y., LOVELL, R.A. : Reduction of level of L-glutamate decarboxylase by ;~-am<strong>in</strong>obutyric <strong>acid</strong><br />

<strong>in</strong> mouse bra<strong>in</strong>. J. Neurochem. 17, 1657-1664 (1970).<br />

SZENTAGOTHAI, J. : Propriosp<strong>in</strong>al pathways and <strong>the</strong>ir synapses. In: Organization of <strong>the</strong> sp<strong>in</strong>al cord,<br />

eds. J. C. Eccles and J.P. Schade, p. 155-174. Amsterdam: Elsevier 1964.<br />

SZENT/kGOTHAI, J. : Structure-function relationships <strong>in</strong> <strong>in</strong>hibitory synapses. In: Advances <strong>in</strong> cytopharmacology,<br />

vol. 1, eds. F. Clementi and B. Ceccarelli, p. 401-417. New York: Raven Press 1971.<br />

TACHIKI, K. H., DEFEUDIS, F. V., APRISON, M. H. : Studies on <strong>the</strong> subcellular distribution of y-am<strong>in</strong>obutyric<br />

<strong>acid</strong> <strong>in</strong> slices of rat cerebral cortex. Bra<strong>in</strong> Res. 36, 215-217 (1972).<br />

TAKANO, K., NEUNANN, K.: Effect of glyc<strong>in</strong>e upon stretch reflex tension. Bra<strong>in</strong> Res. 36, 474-475<br />

(1972).


186 D.R. CURTIS and G. A. R. JOHNSTON :<br />

TALLAN, H.H.: A survey of am<strong>in</strong>o <strong>acid</strong>s and related compounds <strong>in</strong> <strong>nervous</strong> tissue. In: <strong>Am<strong>in</strong>o</strong><br />

<strong>acid</strong> pools, ed. J.T. Holden, p. 471-485. Amsterdam: Elsevier 1962.<br />

TALLAN, H.H., MOORE, S., STEIN, W. H. : Studies on <strong>the</strong> free am<strong>in</strong>o <strong>acid</strong>s and related compounds<br />

<strong>in</strong> <strong>the</strong> tissues of <strong>the</strong> cat. J. biol. Chem. 211, 927-939 (1954).<br />

TEBP.ClS, A. K. : Effects of monoam<strong>in</strong>es and am<strong>in</strong>o <strong>acid</strong>s on medial geniculate neurones of <strong>the</strong> cat.<br />

Neuropharmacol. 9, 381-390 (1970).<br />

TEB~ClS, A.K.: Studies on optic nerve <strong>transmitters</strong>. Proc. aust. physiol, pharmacol. Soc. 4, 86-87<br />

(1973a).<br />

TEB~.ClS, A. K.: Transmitters and retieulosp<strong>in</strong>al neurones. Exp. Neurol. 40, 297-308 (1973 b).<br />

TEBF, CIS, A.K., DI MARIA, A.: A re-evaluation of <strong>the</strong> mode of action of 5-hydroxytryptam<strong>in</strong>e on<br />

lateral geniculate neurones: comparison with catecholam<strong>in</strong>es and LSD. Exp. Bra<strong>in</strong> Res. 14,<br />

480 493 (1972a).<br />

TEB~CIS, A. K. : DI MARIA, A. : Strychn<strong>in</strong>e-sensitive <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> medullary reticular formation :<br />

evidence for glyc<strong>in</strong>e as an <strong>in</strong>hibitory transmitter. Bra<strong>in</strong> Res. 40, 373-383 (1972b).<br />

TEBECIS, A. K., H6SLI, L., HAAS, H. L. : Bicucull<strong>in</strong>e and <strong>the</strong> depression of medullary reticular neurones<br />

by GABA and glyc<strong>in</strong>e. Experientia (Basel) 27, 548 (1971).<br />

TEB~CIS, A. K., lSmKAWA, T. : Glyc<strong>in</strong>e and GABA as <strong>in</strong>hibitory <strong>transmitters</strong> <strong>in</strong> <strong>the</strong> medullary reticular<br />

formation: studies <strong>in</strong>volv<strong>in</strong>g <strong>in</strong>tra- and extra-cellular record<strong>in</strong>g. Pfltigers Arch. 338, 273-278<br />

(1973).<br />

TEBECIS, A. K., PmLUS, J. W. : The use of convulsants <strong>in</strong> study<strong>in</strong>g possible functions of am<strong>in</strong>o <strong>acid</strong>s<br />

<strong>in</strong> <strong>the</strong> toad sp<strong>in</strong>al cord. Comp. Biochem. Physiol. 28, 1303-1315 (1969).<br />

TEWS, J.K., CARTER, S.H., ROA, P.D., STONE, W.E. : Free am<strong>in</strong>o <strong>acid</strong>s and related compounds<br />

<strong>in</strong> dog bra<strong>in</strong>. Postmortem and anoxic changes, effects of ammonium chloride <strong>in</strong>fusion, and<br />

levels dur<strong>in</strong>g seizures <strong>in</strong>duced by picrotox<strong>in</strong> and by pentylenetetrazol. J. Neurochem. 10, 641 653<br />

(1963).<br />

TOMITA, K. : Crystal data and some structural feature of ?-am<strong>in</strong>obutyric <strong>acid</strong>, 3-am<strong>in</strong>opropane sulfonic<br />

<strong>acid</strong> and <strong>the</strong>ir derivatives. Tetrahedron Letters No. 27, 2587-2588 (1971).<br />

TUNNICLIFF, G., WEIN, J., ROBERTS, E.: Effects of imidazole-acetic <strong>acid</strong> on bra<strong>in</strong> am<strong>in</strong>o <strong>acid</strong>s and<br />

body temperature <strong>in</strong> mice. J. Neurochem. 19, 2017-2023 (t 972).<br />

UHR, M.L.: Glyc<strong>in</strong>e decarboxylase <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. J. Neurochem. 20, 1005 1010<br />

(1973).<br />

UHR, M.L., SNEDDON, M.K.: Glyc<strong>in</strong>e and ser<strong>in</strong>e <strong>in</strong>hibition of D-glycerate dehydrogenase and 3-<br />

phosphoglycerate dehydrogenase. FEBS Letters, 17, 137 140 (1971).<br />

UHR, M.L., SNEDDON, M.K.: The regional distribution of D-glycerate dehydrogenase and 3-phosphoglycerate<br />

dehydrogenase <strong>in</strong> <strong>the</strong> cat <strong>central</strong> <strong>nervous</strong> <strong>system</strong>: correlation with glyc<strong>in</strong>e levels.<br />

J. Neurochem. 19, 1495-1500 (1972).<br />

UTLEV, J. : Gamma-am<strong>in</strong>obutyric <strong>acid</strong> and 5-hydroxytryptam<strong>in</strong>e concentration <strong>in</strong> neurons and glial<br />

cells <strong>in</strong> <strong>the</strong> medial geniculate body of <strong>the</strong> cat. Biochem. Pharmacol. 12, 1228-1230 (1963).<br />

VAN DEN BERG, C.J.: Glutamate and glutam<strong>in</strong>e. In: Handbook of neurochemistry, vol. 3, Metabolic<br />

reactions <strong>in</strong> <strong>the</strong> <strong>nervous</strong> <strong>system</strong>, ed. A. Lajtha, p. 355-379. New York: Plenum Press 1970.<br />

VAN DEN BERG, C.J. : A model of compartmentation <strong>in</strong> mouse bra<strong>in</strong> based on glucose and acetate<br />

metabolism. In: Metabolic compartmentation <strong>in</strong> <strong>the</strong> bra<strong>in</strong>, eds. R. Balfizs and J.E. Cremer,<br />

p. 129-136. London: Macmillan 1973.<br />

VAN GELDER, N. M. : The histochemical demonstration of "y-am<strong>in</strong>obutyric <strong>acid</strong> metabolism by reduction<br />

of a tetrazolium salt. J. Neurochem. 12, 231-237 (1965 a).<br />

VAN GELDER, N. M. : A comparison of 7-am<strong>in</strong>obutyric <strong>acid</strong> metabolism <strong>in</strong> rabbit and mouse <strong>nervous</strong><br />

tissue. J. Neurochem. 12, 239-244 (1965b).<br />

VAN GELDER, N. M : The effect of am<strong>in</strong>ooxyacetic <strong>acid</strong> on <strong>the</strong> metabolism of 7-am<strong>in</strong>obutyric <strong>acid</strong><br />

<strong>in</strong> bra<strong>in</strong>. Biochem. Pharmacol. 15, 533-539 (1966).<br />

VAN GELDER, N.M.: Antagonism by taur<strong>in</strong>e of cobalt <strong>in</strong>duced epilepsy <strong>in</strong> cat and mouse. Bra<strong>in</strong><br />

Res. 47, 157-165 (1972).<br />

VAN HARREVELD, A. : Compounds <strong>in</strong> bra<strong>in</strong> extracts caus<strong>in</strong>g spread<strong>in</strong>g depression of cerebral cortical<br />

activity and contraction of crustacean muscle. J. Neurochem. 3, 300 315 (1959).<br />

VAN HARREVELD, A.: A mechanism for fluid shifts specific for <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. In:<br />

Current research <strong>in</strong> neurosciences, topical problems <strong>in</strong> psychiatric neurology, vol. 10, ed. H.T.<br />

Wycis, p. 62-70. Basel-New York: Karger 1970.<br />

VAN HARREVELD, A., FIFKOVA, E.: Glutamate release from <strong>the</strong> ret<strong>in</strong>a dur<strong>in</strong>g spread<strong>in</strong>g depression.<br />

J. Neurobiol. 2, 13-29 (1970).


<strong>Am<strong>in</strong>o</strong> Acid Transmitters <strong>in</strong> <strong>the</strong> Mammalian Central Nervous System 187<br />

VAN HARREVELD, A., F1FKOVA, E.: Effects of glutamate and o<strong>the</strong>r am<strong>in</strong>o <strong>acid</strong>s on <strong>the</strong> ret<strong>in</strong>a. J.<br />

Neurochem. 18, 2145~154 (1971).<br />

VAN HARREVELD, A., FIEKOVA, E. : Effects of metabolic <strong>in</strong>hibitors on <strong>the</strong> release of glutamate from<br />

<strong>the</strong> ret<strong>in</strong>a. J. Neurochem. 19, 1439 1450 (1972).<br />

VAN HARREVELD, A., KOOIMAN, M.: <strong>Am<strong>in</strong>o</strong> <strong>acid</strong> release from <strong>the</strong> cerebral cortex dur<strong>in</strong>g spread<strong>in</strong>g<br />

depression and asphyxiation. J. Neurochem. 12, 431 439. (1965).<br />

VOADEY, M.J., STARR, M.S. : The efflux of radioactive GABA from rat ret<strong>in</strong>a <strong>in</strong> vitro. Vision Res.<br />

12, 559-566 (1972).<br />

WON BAUMGARTEN, R., BLOOM, F.E., OLIVER, A.P., SALMOIRAGHI, G.C. ; Response of <strong>in</strong>dividual<br />

olfactory nerve cells to microelectrophoretically adm<strong>in</strong>istered chemical substances. Pfliigers Arch.<br />

ges. Physiol. 277, 125-140 (1963).<br />

VON BAUMGARTEN, R., GREEN, J.D., MANCIA, M.: Recurrent <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> olfactory bulb. II.<br />

Effects of antidromic stimulation of commisural fibres. J. Neurophysiol. 25, 489-500 (1962).<br />

VORKEL, W., HANITZSCH, R.: Effect of strychn<strong>in</strong>e on <strong>the</strong> electroret<strong>in</strong>ogram of <strong>the</strong> isolated rabbit<br />

ret<strong>in</strong>a. Experientia (Basel) 27, 296~97 (1971).<br />

VYKLICKq, L., SYKOVA, E., K~I~, N., UJEC, E. : Post-stimulation changes of extracellular potassium<br />

concentration <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord of <strong>the</strong> rat. Bra<strong>in</strong> Res. 45, 608-611 (1972).<br />

WAKSMAN, A., BLOCH, M. ; Identification of multiple forms of am<strong>in</strong>obutyrate transam<strong>in</strong>ase <strong>in</strong> mouse<br />

and rat bra<strong>in</strong>: subcellular localization. J. Neurochem. 15, 99-105 (1968).<br />

WAKSMAN, A., ROBERTS, E.: Purification and some properties of mouse bra<strong>in</strong> ),-am<strong>in</strong>obutyric-~ketoglutaric<br />

<strong>acid</strong> transm<strong>in</strong>ase. Biochemistry, 4, 2132-2139 (1965).<br />

WALBERG, F., JANSEN, J.: Cerebellar cortico-vestibular fibers <strong>in</strong> <strong>the</strong> cat. Exp. Neurol. 3, 32-52<br />

(1961).<br />

WALSH, D. A., SALLACH, H. J. : Comparative studies on <strong>the</strong> pathways for ser<strong>in</strong>e biosyn<strong>the</strong>sis <strong>in</strong> animal<br />

tissues. J. biol. Chem. 241, 4068-4076 (1966).<br />

WATANABE, T., SIMADA, Z. : Picrotox<strong>in</strong> : effect on collicular auditory neurons. Bra<strong>in</strong> Res. 28, 586-590<br />

(1971).<br />

WATKINS, J.C.: Metabolic regulation <strong>in</strong> <strong>the</strong> release and action of excitatory and <strong>in</strong>hibitory am<strong>in</strong>o<br />

<strong>acid</strong>s <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>nervous</strong> <strong>system</strong>. Biochem. Soc. Symp. 36, 33 37 (1972).<br />

WATKINS, J.C., CURTIS, D.R., BISCOE, T.J. : Central effects of ]3-N-oxalyl-~,fl-diam<strong>in</strong>opropionic<br />

<strong>acid</strong> and o<strong>the</strong>r Lathyrus thctors. Nature (Lond.) 211, 637 (1966).<br />

WEIGHT, F.F.; Mechanisms of synaptic transmission. In: Neurosciences research, vol. 4, p. 1-27.<br />

New York: Academic Press 1971.<br />

WEINSTEIN, H., VARON, S., ROBERTS, E.: Effects of imipram<strong>in</strong>e on <strong>the</strong> Na+-dependent exchange<br />

and retention ofy-am<strong>in</strong>obutyric <strong>acid</strong> by mouse bra<strong>in</strong> subcellular particles. Biochem. Pharmacol.<br />

20, 103-117 (1971).<br />

WELCH, A. D., HENDERSON, V. E.: A comparative study of hydrast<strong>in</strong>e, bicucull<strong>in</strong>e and adlum<strong>in</strong>e.<br />

J. Pharmacol. exp. Ther. 51, 482-491 (1934).<br />

WERMAN, R. ; Criteria for identification of a <strong>central</strong> <strong>nervous</strong> <strong>system</strong> transmitter. Comp. Biochem.<br />

Physiol. 18, 745-766 (1966).<br />

WERMAN, R. : <strong>Am<strong>in</strong>o</strong> <strong>acid</strong>s as <strong>central</strong> neuro<strong>transmitters</strong>. Res. Publ. Ass. nerv. ment. Dis. 50, 147-180<br />

(1972).<br />

WERMAN, R., DAVIDOFE, R. A., AVRISON, M. H.: The <strong>in</strong>hibitory action of <strong>the</strong> cystathion<strong>in</strong>e. Life<br />

Sci. 5, 1431-1440 (1966).<br />

WERMAN, R., DAVIDOFF, R. A., AVRISON, M. H.: Evidence for glyc<strong>in</strong>e as <strong>the</strong> pr<strong>in</strong>cipal transmitter<br />

mediat<strong>in</strong>g postsynaptic <strong>in</strong>hibition <strong>in</strong> <strong>the</strong> sp<strong>in</strong>al cord of <strong>the</strong> cat. J. gen. Physiol. 50, 1093-1094<br />

(1967).<br />

WERMAN, R., DAVlDOEF, R. A., AVRlSO~, M. H.: Inhibitory action of glyc<strong>in</strong>e on sp<strong>in</strong>al neurons<br />

<strong>in</strong> <strong>the</strong> cat. J. Neurophysiol. 31, 81-95 (1968).<br />

WEST, R. : A pharmacological study of derivatives of two specimens oftubo-curare, and an exam<strong>in</strong>ation<br />

of four members of genus Strychnos and one rubiaceous plant associated with <strong>the</strong> curares of<br />

British Guiana. Arch. <strong>in</strong>t. Pharmac. Ther. 56, 81-116 (1937).<br />

WESTECKER, M. E. : Reciprocal activation of two evoked potential components <strong>in</strong> <strong>the</strong> olfactory bulb.<br />

Pflfigers Arch. 324, 297-310 (1971).<br />

WHEELER, D. D., BOYARSKY, L. L.: Influx of glutamic <strong>acid</strong> <strong>in</strong> peripheral nerve. Energy, ionic, and<br />

pH dependence. J. Neurobiol. 2, 181-190 (1971).<br />

WHEELER, D. D., BOYARSKY, L. L., BROOKS, W. H. : Release ofam<strong>in</strong>o <strong>acid</strong>s from nerve dur<strong>in</strong>g stimulation.<br />

J. cell. Physiol. 67, 141-148 (1966).


188 D.R. CURTIS and G. A. R. JOHNSTON :<br />

WHITTAKER, V. P. : The application of subcellular fractionation techniques to <strong>the</strong> study of bra<strong>in</strong><br />

function. Prog. Biophys. molec. Biol. 15, 39-96 (1965).<br />

WHITTAKER, V. P. : The subcellular distribution of am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> bra<strong>in</strong> and its relation to a possible<br />

transmitter function for <strong>the</strong>se compounds. In: Structure and function of <strong>in</strong>hibitory neuronal<br />

mechanisms, eds. C. von Euler, S. Skoglund, and U. S6derberg, p. 487 504. Oxford: Pergamon<br />

Press 1968.<br />

WHTTAKER, V. P., BARKER, L. A. : The subcellular fractionation of bra<strong>in</strong> tissue with special reference<br />

to <strong>the</strong> preparation of synaptosomes and <strong>the</strong>ir component organelles. In : Methods of neurochemistry,<br />

vol. 2, ed. R. Fried, p. 1 52. New York: Marcel Dekker 1972.<br />

WILSON, V. J.: The vestibular nuclei and sp<strong>in</strong>al motor activity. J. psychiat. Res. 8, 259-272 (1971).<br />

WILSON, V. J. : Physiological pathways through <strong>the</strong> vestibular nuclei. Int. Rev. Neurobiol. 15, 27-81<br />

(1972).<br />

WILSON, V. J., TALBOT, W. H.: Integration at an <strong>in</strong>hibitory <strong>in</strong>terneurone: <strong>in</strong>hibition of Renshaw<br />

cells. Nature (Lond.) 200, 1325-1327 (1963).<br />

WOFSEY, A. R., KUHAR, M. J., SNYDER, S. H.: A unique synaptosomal fraction, which accumulates<br />

glutamic and aspartic <strong>acid</strong>s, <strong>in</strong> bra<strong>in</strong> tissue. Proc. nat. Acad. Sci. (Wash.) 68, 1102-1106 (1971).<br />

WOLMAN, M.: A fluorescent histochemical procedure for gamma-am<strong>in</strong>obutyric <strong>acid</strong>. Histochemie,<br />

28, 118-130 (1971).<br />

WOODWARD, D. J., HOFFER, B. J., SIGGINS, G. R., BLOOM, F. E.: The ontogenetic development of<br />

synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances <strong>in</strong> rat<br />

cerebellar Purk<strong>in</strong>je ceils. Bra<strong>in</strong> Res. 34, 73-97 (1971).<br />

WOODWARD, D.J., HOFFER, B. J., SIGGINS, G. R., OLIVER, A.P.: Inhibition of Purk<strong>in</strong>je cells <strong>in</strong><br />

<strong>the</strong> frog cerebellum. II. Evidence for GABA as <strong>the</strong> <strong>in</strong>hibitory transmitter. Bra<strong>in</strong> Res. 33, 91-100<br />

(1971).<br />

WVSSBROD, H. R., SCOTT, W. N., BRODSKY, W. A., SCHWARTZ, I. L.: Carrier-mediated transport<br />

processes. In: Handbook of neurochemistry, vol. 5, Part B, Metabolic turnover <strong>in</strong> <strong>the</strong> <strong>nervous</strong><br />

<strong>system</strong>, ed. A. Lajtha, p. 683-819. New York-London : Plenum Press 1971.<br />

YORK, D. H. : A microiontophoretic study of neurones <strong>in</strong> <strong>the</strong> globus pallidus-putamen complex. Aust.<br />

J. Exp. Biol. med. Sci. 46, P3-4 (1968).<br />

YORK, D. H. : Dopam<strong>in</strong>e receptor blockade--a <strong>central</strong> action ofchlorpromaz<strong>in</strong>e on striatal neurones.<br />

Bra<strong>in</strong> Res. 37, 9149 (1972).<br />

YOSHIDA, M., PRECHT, W. : Monosynaptic <strong>in</strong>hibition of neurons of <strong>the</strong> substantia nigra by caudatonigral<br />

fibers. Bra<strong>in</strong> Res. 32, 225-228 (1971).<br />

YOSHIDA, M., RABIN, A., ANDERSON, M.: Monosynaptic <strong>in</strong>hibition of pallidal neurons by axon<br />

collaterals of caudato-nigral fibers. Exp. Bra<strong>in</strong> Res. 15, 333 347 (1972).<br />

YOSmNO, Y., DEFEUDIS, F. V., ELLIOTT, K. A. C. : Omega-am<strong>in</strong>o <strong>acid</strong>s <strong>in</strong> rat bra<strong>in</strong>. Canad. J. Biochem.<br />

48, 147-148 (1970).<br />

YUDILEVICH, D. L., DE ROSE, N., SEP~LVEDA, F. V.: Facilitated transport of am<strong>in</strong>o <strong>acid</strong>s through<br />

<strong>the</strong> blood-bra<strong>in</strong> barrier of <strong>the</strong> dog studied <strong>in</strong> a s<strong>in</strong>gle capillary circulation. Bra<strong>in</strong> Res. 44, 569-578<br />

(1972).<br />

ZIEGLG~.NSBERGER, W., PUIL, E.A.: Tetrodotox<strong>in</strong> <strong>in</strong>terference of CNS excitation by glutamic <strong>acid</strong>.<br />

Nature (Lond.) New Biol. 239, 204-205 (1972).<br />

ZIEGLG.~NSBERGER, W., PUIL, E.A. : Actions of glutamic <strong>acid</strong> on sp<strong>in</strong>al neurones. Exp. Bra<strong>in</strong> Res.<br />

17, 3549 (1973).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!