18.12.2013 Views

anglicky - Institute of Hydrobiology

anglicky - Institute of Hydrobiology

anglicky - Institute of Hydrobiology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC<br />

BIOLOGY CENTRE, v.v.i., INSTITUTE OF HYDROBIOLOGY<br />

ČESKÉ BUDĚJOVICE<br />

51 th ANNUAL REPORT<br />

For the Year 2010<br />

ISSN 1210 – 9649


© Biology Centre AS CR, v.v.i, <strong>Institute</strong> <strong>of</strong> <strong>Hydrobiology</strong><br />

České Budějovice, 2011


CONTENTS<br />

THE INSTITUTE, SCIENTIFIC COUNCIL 5<br />

INSTITUTE STAFF AND FIELD OF WORK<br />

1 INTRODUCTION<br />

6<br />

9<br />

1.1 Director’s preface 9<br />

1.2 Projects 10<br />

1.3 Consultancies 11<br />

1.4 Report on finances 12<br />

1.5 Students’ theses finished in 2010 14<br />

2 JAROSLAV HRBÁČEK (1921–2010)<br />

3 RESERVOIRS<br />

3.1 Regular monitoring <strong>of</strong> the reservoirs Slapy and Římov: dissolved<br />

and dispersed substances in 2010<br />

3.2 Regular monitoring <strong>of</strong> the reservoirs Slapy and Římov: microbial<br />

characteristics, chlorophyll and zooplankton biomass in 2010<br />

15<br />

17<br />

17<br />

18<br />

3.3 Regular monitoring: fish stock composition in the Římov Reservoir in 2010 19<br />

3.4 The effect <strong>of</strong> river water circulation on the distribution and functioning <strong>of</strong><br />

reservoir microbial communities as determined by a relative distance<br />

approach<br />

20<br />

3.5 Horizontal acoustic surveys and fish behaviour in the open water 23<br />

3.6 Pelagic occurrence <strong>of</strong> non-native tubenose goby Proterorhinus semilunaris<br />

(Heckel) in a central European reservoir<br />

3.7 Deep spawning <strong>of</strong> perch Perca fluviatilis in the newly created opencast mine<br />

lake<br />

3.8 The stabilizing effect <strong>of</strong> resting egg banks <strong>of</strong> the Daphnia longispina species<br />

complex for longitudinal taxon heterogeneity in long and narrow reservoirs<br />

3.9 Spatial heterogeneity and seasonal succession <strong>of</strong> phytoplankton along the<br />

longitudinal gradient in the Římov Reservoir<br />

3.10 Bacterial single-cell activities along the nutrient availability gradient in a<br />

canyon-shaped reservoir: a seasonal study<br />

24<br />

25<br />

25<br />

26<br />

27<br />

3


4 LAKES 29<br />

4.1 Microbial loop components in the oxic/anoxic boundary in stratified lakes 29<br />

5 SPECIAL INVESTIGATIONS 31<br />

5.1 Effect <strong>of</strong> low temperature on <strong>of</strong>fspring size and filtering screens morphology<br />

in Daphnia<br />

5.2 Sinusoidal swimming: a searching checkmate <strong>of</strong> fishes to the transparent<br />

zooplankton<br />

5.3 Anthropogenic nitrogen emissions during the Holocene and their possible<br />

effects on remote ecosystems<br />

31<br />

33<br />

34<br />

5.4 Canopy leaching <strong>of</strong> nutrients and metals in a mountain spruce forest 35<br />

5.5 Importance <strong>of</strong> dissolved organic carbon for phytoplankton nutrition in a<br />

eutrophic reservoir<br />

36<br />

6 PUBLICATIONS 38<br />

APPENDIX: Jaroslav Hrbáček (1921–2010): Complete bibliography 45<br />

4


Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic<br />

BIOLOGY CENTRE, v.v.i.,<br />

INSTITUTE OF HYDROBIOLOGY<br />

Na Sádkách 7 telephone: (++420) 385310262<br />

CZ-370 05 České Budějovice fax: (++420) 385310248<br />

Czech Republic<br />

e-mail: hbu@hbu.cas.cz<br />

http://www.hbu.cas.cz<br />

DIRECTOR: Doc. RNDr. Josef Matěna, CSc.<br />

SCIENTIFIC COUNCIL:<br />

Chairperson:<br />

Members:<br />

External Members:<br />

RNDr. Martin Čech, Ph.D.<br />

RNDr. Karel Horňák, Ph.D.<br />

RNDr. Jiří Kaňa, Ph.D.<br />

Pr<strong>of</strong>. Ing. Jiří Kopáček, Ph.D.<br />

Doc. RNDr. Jan Kubečka, CSc.<br />

RNDr. Jiří Nedoma, CSc.<br />

Pr<strong>of</strong>. RNDr. Šimek Karel, CSc.<br />

Doc. RNDr. Jaroslav Vrba, CSc.<br />

RNDr. Petr Znachor, Ph.D.<br />

RNDr. Martin Černý, Ph.D.<br />

Faculty <strong>of</strong> Science, Charles University, Prague<br />

Doc. RNDr. Jan Helešic, CSc.<br />

Faculty <strong>of</strong> Science, Masaryk University, Brno<br />

Pr<strong>of</strong>. Ing. Otomar Linhart, DrSc.<br />

Research <strong>Institute</strong> <strong>of</strong> Fish Culture and <strong>Hydrobiology</strong>,<br />

University <strong>of</strong> South Bohemia, Vodňany<br />

Pr<strong>of</strong>. Ing. Pavel Pitter, DrSc.<br />

<strong>Institute</strong> <strong>of</strong> Chemical Technology, Prague<br />

Doc. RNDr. Martin Rulík, Ph.D,<br />

Faculty <strong>of</strong> Science, Palacký University, Olomouc<br />

5


INSTITUTE STAFF AND FIELD OF WORK<br />

(visit www.hbu.cas.cz/staff.php for more information, e-mail addresses and contacts)<br />

SCIENTIFIC STAFF:<br />

Department <strong>of</strong> Plankton and Fish Ecology:<br />

Doc. RNDr. Jan Kubečka, CSc.<br />

(Head)<br />

RNDr. Martin Čech, Ph.D.<br />

RNDr. Vladislav Draštík, Ph.D.<br />

Ing. Jaroslava Frouzová, Ph.D.<br />

RNDr. Jiří Macháček, CSc.<br />

Doc. RNDr. Josef Matěna, CSc.<br />

RNDr. Tomáš Mrkvička, Ph.D.<br />

RNDr. Jiří Peterka, Ph.D.<br />

RNDr. Marie Prchalová, PhD<br />

RNDr. Jaromír Seďa, CSc.<br />

Mgr. Mojmír Vašek, PhD.<br />

Fish population dynamics and scientific sonar techniques<br />

Fish behaviour in the open water, SCUBA diving research<br />

in lakes and reservoirs, feeding ecology <strong>of</strong> fish-eating birds<br />

and mammals<br />

Fish behaviour and community structure<br />

Hydroacoustics and fish behaviour<br />

Fish-zooplankton interactions, ecology <strong>of</strong> Daphnia<br />

Feeding biology <strong>of</strong> fish, ecology <strong>of</strong> chironomids<br />

Statistical analyses<br />

Fish feeding ecology; uw photo and video techniques<br />

Fish spatial distribution and gillnet selectivity<br />

Zooplankton, especially seasonal dynamics <strong>of</strong> Cladocera<br />

and fish-zooplankton interactions<br />

Fish feeding and spatial distribution, recruitment dynamics<br />

Department <strong>of</strong> Aquatic Microbial Ecology:<br />

Pr<strong>of</strong>. RNDr. Karel Šimek, CSc.<br />

(Head)<br />

Mgr. Martina Čvrtlíková<br />

RNDr. Karel Horňák, Ph.D.<br />

RNDr. Jan Jezbera, Ph.D.<br />

RNDr. Jitka Jezberová, Ph.D.<br />

(from September maternity leave)<br />

RNDr. Jaroslava Komárková,<br />

CSc.<br />

Pr<strong>of</strong>. Ing. Miroslav Macek, CSc.<br />

(11 months UNAM México)<br />

RNDr. Jiří Nedoma, CSc.<br />

RNDr. Klára Řeháková, Ph.D.<br />

Aquatic microbiology, bacteria-protozoa interactions,<br />

bacterial community composition<br />

Ecobiology <strong>of</strong> Isoëtes<br />

Bacterioplankton community composition and activity<br />

Protozoan-bacterial interactions<br />

Identification <strong>of</strong> cyanobacterial picoplankton<br />

Plankton primary production, phytoplankton analyses,<br />

taxonomy <strong>of</strong> algae<br />

Protozoa-bacteria interactions, freshwater ciliates,<br />

biological waste water treatment<br />

Microbial biochemistry, image analysis<br />

Phytoplankton analyses, polyphasic aproach <strong>of</strong> taxonomy<br />

<strong>of</strong> Nostocales<br />

6


RNDr. Dagmar Sirová<br />

(maternity leave)<br />

RNDr. Viera Straškrábová, DrSc.<br />

Doc. RNDr. Jaroslav Vrba, CSc.<br />

RNDr. Eliška Zapomělová, PhD<br />

RNDr. Petr Znachor, Ph.D.<br />

Benthic cyanobacterial mats, ecology <strong>of</strong> rootless<br />

carnivorous plants<br />

Aquatic microbiology, BOD, interactions with phyto- and<br />

zooplankton, long-term ecological research<br />

Aquatic microbiology, extracellular enzyme activity<br />

Morphology <strong>of</strong> cyanobacteria<br />

Phytoplankton and reservoir ecology, fluorescence<br />

techniques, microphotography<br />

Department <strong>of</strong> Hydrochemistry and Ecosystem Modelling:<br />

Doc. Ing. Josef Hejzlar, CSc.<br />

(Head)<br />

RNDr. Jakub Borovec, Ph.D.<br />

RNDr. Jiří Kaňa, Ph.D.<br />

Pr<strong>of</strong>. Ing. Jiří Kopáček, Ph.D.<br />

Ing. Josef Polívka<br />

Ing. Petr Porcal, Ph.D.<br />

Reservoir limnology and eutrophication<br />

Reservoir limnology, chemistry <strong>of</strong> sediments<br />

Water and soil chemistry<br />

Analytical chemistry, soil-water interactions<br />

Ecological modelling<br />

Aquatic dissolved organic matter<br />

TECHNICAL STAFF:<br />

Jindra Bučková<br />

Alena Hartmanová<br />

Ing. Vladimíra Hejzlarová<br />

Vladimír Jirák<br />

Martina Kaňová-Vožechová<br />

Ing. Jitka Kroupová<br />

Alena Kubátová<br />

Marie Kupková<br />

Václava Lavičková<br />

RNDr. Blanka Macháčková<br />

Ing. Radka Malá<br />

Ing. Petr Mautschka<br />

Mgr. Petra Mošnerová<br />

Mgr. Karel Murtinger<br />

Cleaner<br />

Bacteriological analyses, cultivation<br />

Chemical analyses<br />

Building maintenance, electrician<br />

Secretary, laboratory analyses<br />

Chemical analyses<br />

Cleaner<br />

Phytoplankton analyses<br />

Documentalist<br />

Zooplankton analyses<br />

Bacteriological analyses, cultivation <strong>of</strong> microbes<br />

Technical and financial management, computer<br />

maintenance, network administration<br />

Hydrochemistry<br />

Analytical chemistry<br />

7


Zdeněk Prachař<br />

Mgr. Kateřina Soukalová<br />

Soňa Smrčková, DiS.<br />

(maternity leave)<br />

Jana Šindelářová<br />

Dagmar Šrámková<br />

Marie Štojdlová<br />

RNDr. Hana Švejdarová<br />

MGr. Alena Volková<br />

MUDr. Jana Zemanová<br />

RNDr. Jiří Žaloudík, CSc.<br />

Field assistance, zooplankton analyses<br />

Fish biology<br />

Bacteriological analyses, data processing<br />

Hydrochemistry<br />

Secretary, accountant<br />

Biochemical analyses, image analysis<br />

Socioeconomical analyses<br />

Hydrochemistry<br />

Zooplankton analyses and culture maintenance<br />

GIS in hydrology and landscape ecology<br />

Ph.D. STUDENTS:<br />

Mgr. Kateřina Bernardová<br />

Mgr. Jiří Jan<br />

Mgr. Martin Jankovský<br />

Mgr. Tomáš Jůza<br />

Mgr. Vojtěch Kasalický<br />

Mgr. Michal Kratochvíl<br />

Mgr. Monika Krolová<br />

Mgr. Milan Muška<br />

Mgr. Pavel Rychtecký<br />

Mgr. Milan Říha<br />

Mgr. Jana Svobodová<br />

Mgr. Jan Turek<br />

Mgr. Michal Tušer<br />

Mgr. Ivana Vaníčková<br />

Molecular biology <strong>of</strong> cyanobacteria<br />

Sediment chemistry<br />

Fish biology<br />

Fish sampling and community structure<br />

Bacterial-algal interactions<br />

Ecology <strong>of</strong> larval and juvenile fish, electr<strong>of</strong>ishing<br />

Macrophyta in reservoirs<br />

Fish distribution and scientific echosounder techniques<br />

Phytoplankton ecology<br />

Fish sampling and development <strong>of</strong> fish populations<br />

Benthos<br />

Hydrology and water chemistry<br />

DIDSON-based Fish Assessment<br />

Zooplankton ecology and molecular taxonomy<br />

8


1 INTRODUCTION<br />

1.1 Directors’ preface<br />

The saddest event in the year 2010 was the death <strong>of</strong> associated pr<strong>of</strong>essor Jaroslav Hrbáček -<br />

the founder <strong>of</strong> the Hydrobiological research group at the Academy <strong>of</strong> Sciences <strong>of</strong> the Czech<br />

Republic - now the <strong>Institute</strong> <strong>of</strong> <strong>Hydrobiology</strong> <strong>of</strong> the Biology Centre <strong>of</strong> the Academy <strong>of</strong><br />

Science <strong>of</strong> the Czech Republic. See Chapter 2 on page 15 <strong>of</strong> this Annual Report for his<br />

obituary.<br />

The research orientation <strong>of</strong> the <strong>Institute</strong> remained unchanged focusing on reservoirs and<br />

selected types <strong>of</strong> lakes. Regular long-term monitoring with some special investigations<br />

continued in the Slapy and Římov reservoirs, and so did the research on lakes in the<br />

Bohemian Forest and in the Slovakian and Polish High Tatra Mts. The <strong>Institute</strong> continued the<br />

investigation <strong>of</strong> flooded coal mining pits in North-West Bohemia with respect to succession<br />

<strong>of</strong> biota in newly created lake-like freshwater ecosystems. Field research was supplemented<br />

by focused laboratory experiments.<br />

In 2010, an important event was the preparation <strong>of</strong> materials for the periodic evaluation <strong>of</strong><br />

the <strong>Institute</strong> by the Academy <strong>of</strong> Sciences. The evaluated period included the years 2005–2009<br />

with respect to developmental trends between 2002–2007. At this evaluation foreign referees<br />

were included.<br />

Since 2010 IHB is the seat <strong>of</strong> the Czech National Committees <strong>of</strong> the inernational Man and<br />

Biosphere (MAB) and LTER (Long-term ecological research) programmes. Both the<br />

secretary E. Jelínková (for both committees) and the head <strong>of</strong> the Czech National LTER<br />

Committee, J. Vrba, are members <strong>of</strong> IHB. IHB is responsible for two sites in the global LTER<br />

and GTOS (global terrestrial observing networks) programmes - Slapy Reservoir and Římov<br />

Reservoir, as well as for lake sites located inside the LTSER (Long-term social ecological<br />

research) platform Silva Gabreta (in the Šumava National Park and the Bavarian National<br />

Park). More details can be found on the website http://www.lter.cz.<br />

Close cooperation <strong>of</strong> the IHB with the Faculty <strong>of</strong> Biological Sciences, University <strong>of</strong> South<br />

Bohemia, has continued under similar conditions as in preceding years. <strong>Institute</strong> members<br />

have also been actively engaged supervising students’ theses, lecturing and training students<br />

at other Faculties (Agricultural and Pedagogical) <strong>of</strong> the University <strong>of</strong> South Bohemia and at<br />

other universities (Charles University, Prague; <strong>Institute</strong> <strong>of</strong> Chemical Technology, Prague;<br />

Masaryk University, Brno).<br />

Josef Matěna<br />

9


1.2 Projects<br />

Institutional project<br />

2005–2010 Reg. code AV0Z60170517, Structure, functioning and development <strong>of</strong> aquatic<br />

ecosystems (J. Matěna)<br />

European Communities R&D program (7 th framework)<br />

2010–2014 Reg. code 244121, Adaptive strategies to mitigate the impacts <strong>of</strong> climate change<br />

on European freshwater ecosystems (J. Hejzlar)<br />

Project supported by the "Norwegian financial mechanism"<br />

2007–2011 Reg. code EEA NFM CZ0051, The assesment <strong>of</strong> impact <strong>of</strong> the Gothenburg<br />

Protocol on acidified and eutrophied soils and waters (J. Kopáček, J. Matěna, coordinated<br />

by Czech Geological Survey, Praha)<br />

2008–2011 Reg. code EEA NFM CZ0091, Monitoring <strong>of</strong> the fish stock <strong>of</strong> Czech Reservoirs<br />

(J. Kubečka, J. Peterka)<br />

Project sponsored by the Ministry <strong>of</strong> Education, Youth and Sports <strong>of</strong> CR<br />

2008–2010 Reg. code OC08040, Nutrient sources in catchments with complex land use and<br />

impacts on the aquatic ecosystems <strong>of</strong> reservoirs (J. Hejzlar)<br />

Projects sponsored by the Ministry <strong>of</strong> Agriculture <strong>of</strong> CR<br />

2008–2012 Reg. code QH81046, Optimalisation <strong>of</strong> the biomanipulative effect <strong>of</strong> predatory<br />

fish in the ecosystems <strong>of</strong> water reservoirs. (J. Kubečka)<br />

2008–2011 Reg. code QH82078 (NAZV), Water retention in floodplains and measures <strong>of</strong> its<br />

increase (J. Žaloudík)<br />

2008–2011 Reg. code QH81012, The use <strong>of</strong> aeration technologies in the reduction <strong>of</strong><br />

cyanobacterial resting stages and nutirent bioavalilability in reservoir sediments<br />

(J. Borovec)<br />

2010–2013 Reg. code QI102A265, Determination <strong>of</strong> the importance <strong>of</strong> erosion-originated<br />

phosphorus in water bodies endangered by eutrophication (J. Hejzlar)<br />

Projects sponsored by the Grant Agency <strong>of</strong> the Academy <strong>of</strong> Sciences <strong>of</strong> CR<br />

2008–2010 Reg. code KJB600960810, Effect <strong>of</strong> food quantity and quality on the reverse in<br />

competitive success between 0+ perch and roach (J. Peterka)<br />

2009–2011 Reg. code KJB600960907, What are the main mechanisms affecting N flow<br />

through soil N pools in N saturated mountain soils? (J. Kaňa)<br />

2009–2012 Reg. code IAA600960901, Hybrid zones in pelagic environments: which factors<br />

are critical for local dominance <strong>of</strong> Daphnia hybrids within reservoirs? (J. Seďa)<br />

Projects sponsored by the Grant Agency <strong>of</strong> CR<br />

2007–2010 Reg. code 206/07/1392, Horizontal acoustic surveys and fish behaviour in the<br />

open water (J. Kubečka)<br />

2007–2011 Reg. code 206/07/1200, Constraints and limits <strong>of</strong> biological recovery from acid<br />

stress: What is the future <strong>of</strong> headwater ecosystems in the Bohemian Forest? (J. Vrba)<br />

10


2008–2012 Reg. code 206/08/0015, Ecophysiological traits and grazing- and virus-induced<br />

mortality <strong>of</strong> bacterial strains representing major bacterioplankton groups in a reservoir<br />

(K. Šimek)<br />

2009–2012 Reg. code 206/09/1325, Cyclical parthenogenesis in vertically diversified<br />

environment: genetic differentiation and reproductive segregation in population <strong>of</strong> Daphnia<br />

galeata (J. Macháček)<br />

2009–2012 Reg. code 206/09/1764, Controlling factors <strong>of</strong> phosphorus sorption in lake and<br />

reservoir sediments (J. Hejzlar)<br />

2009–2011 Reg. code 206/09/P266, Predator avoidance strategies in early life stages <strong>of</strong><br />

percid fishes (M. Čech)<br />

2009–2013 Reg. code 206/09/0309, Competition mechanisms in Cyanobacteria affecting<br />

phytoplankton species composition (K. Řeháková)<br />

2009–2013 Reg. code GA526/09/0567 The integrated impact <strong>of</strong> climate change, air quality,<br />

and forest management on water ecosystem in headwater catchments. (J. Kopáček,<br />

coordinated by Faculty od Science UK, Praha)<br />

2010–2012 Reg. code P504/10/0566, Distribution, phylogeography and intraspecific<br />

ecological diferentiation within the cluster Limnohabitans and Polynucleobacter<br />

necessarius subsp. asymbioticus (J. Jezbera)<br />

2010–2013 Reg. code EEF/10/E011, Functional role and ecotype divergence in<br />

Actinobacteria <strong>of</strong> the AcI lineage (J. Jezbera)<br />

2010–2012 Reg. code P504/10/1501, Taxonomic revision <strong>of</strong> the genera Anabaena and<br />

Aphanizomenon (Cyanobacteria) based on complex morphological and molecular approach<br />

(E. Zapomělová)<br />

2010–2012 Reg. code P504/10/1534, Influence <strong>of</strong> phytoplankton on bacterial community<br />

composition and activity under varying trophic status, principal investigator (K. Horňák)<br />

International projects<br />

2008–2010 Interreg IV, Cross-Border Water Conservation in the Drachensee Catchment<br />

(J. Žaloudík)<br />

2009–2010 Reg. Code 09-14, Estimation <strong>of</strong> fish yield potential in lakes – Institut für<br />

Binnenfescherei e.V. Postdam, Germany (J. Kubečka)<br />

2009–2010 Calibration <strong>of</strong> sampling methods for spanish fish populations in reservoirs,<br />

Spanish Ministry <strong>of</strong> Environment, Spain (J. Kubečka)<br />

2009–2010 Reg. Code A/CZ0046/2/0029, Monitoring the environment <strong>of</strong> man-made lakes:<br />

what can fisheries data and models tell us? Norwegian Education Fund, Norway<br />

(J. Kubečka)<br />

2010–2011 Threadfin Shad Prey Production in Tropical Reservoirs. Mississippi State<br />

University (M. Prchalová)<br />

1.3 Consultancies<br />

2009–2010 Complex assessment <strong>of</strong> the fish stock <strong>of</strong> Nyrsko, Zelivka and Rimov Reservoir.<br />

(J. Kubecka et al.) Vltava Rivers Authority.<br />

2010–2012 Reg. code "Monitoring–Fischerei"/NP5 Fish stock assessment <strong>of</strong> the<br />

Neuiedlersee by acoustic and direct sampling. (J. Kubečka) Burgenland administration,<br />

Austria<br />

2010 Evaluation <strong>of</strong> the length-weight relationships in the Fishing Regulations Book <strong>of</strong> the<br />

Czech Fishing Union. Czech Fishing Union (M. Prchalová)<br />

11


1.4 Report on finances<br />

(in thousands CZK)<br />

SALARIES & CONSUMABLES<br />

Income<br />

Support by Academy <strong>of</strong> Sciences<br />

including the "Priority research programme". 17,006<br />

Conference 750<br />

Grants from Grant Agency AS CR 1,296<br />

Grants from Grant Agency CR 9,303<br />

Grants – balance from 2008 102<br />

Other domestic grants 1,818<br />

Foreign grants 6,717<br />

Consultancies excluding VAT 7,506<br />

Depreciation 7,758<br />

Total 52,256<br />

Expenses<br />

Salaries 20,851<br />

Health and social insurance, social funds 7,203<br />

Energy 899<br />

Gasoline 370<br />

Maintenance and equipment 647<br />

Postage, telephone, internet 250<br />

Books, journals 618<br />

Conference fees 210<br />

Travelling costs 2,400<br />

S<strong>of</strong>tware 381<br />

Other consumables and small equipment 3,852<br />

Depreciation 5,962<br />

Miscellaneous 7,758<br />

Saving for the next year 855<br />

Total 52,256<br />

12


EQUIPPMET<br />

Income<br />

Reserve for investment 517<br />

Grants from "Norwegian funds" 44<br />

Grants from Grant Agency CR 96<br />

Foreign grants 1,040<br />

Support by Academy <strong>of</strong> Sciences 1,571<br />

Support by Academy <strong>of</strong> Sciences for expensive equippment 1,760<br />

Transfer from Salaries & consumables 1,060<br />

Total 5,290<br />

Expenses<br />

S<strong>of</strong>tware SIMCAT 308<br />

System for ultrapure water production 160<br />

Fluorescence microskope 2,130<br />

Multiparametric probe YSI 600<br />

Realtime cycler 1,300<br />

Others 237<br />

Saving for the next year, balance 38<br />

Total 4,773<br />

13


1.5 Students’ theses finished in 2010<br />

Mgr.<br />

(M.Sc.)<br />

Jana Svobodová: Structural changes <strong>of</strong> macrozoobenthic communities in<br />

longitudinal pr<strong>of</strong>iles <strong>of</strong> acidified streams in the Bohemian Forest (Czech<br />

Republic). (Faculty <strong>of</strong> Science, University <strong>of</strong> South Bohemia, supervised by<br />

J. Matěna)<br />

Bc.<br />

(B.A.)<br />

Petr Blabolil: The factors affecting early survival <strong>of</strong> pikeperch larvae and<br />

juveniles in the deep canyon shaped reservoirs. (Faculty <strong>of</strong> Science, University<br />

<strong>of</strong> South Bohemia, supervised by J. Peterka)<br />

Eduard Bouše: Dynamics <strong>of</strong> abundance <strong>of</strong> selected fish species. (Faculty <strong>of</strong><br />

Science, University <strong>of</strong> South Bohemia, supervised by J. Kubečka)<br />

Jaroslav Krafl: Extracelular phosphatases <strong>of</strong> bacteria in the water environment.<br />

(Faculty <strong>of</strong> Science, University <strong>of</strong> South Bohemia, supervised by J. Nedoma)<br />

Zuzana Sajdlová: Fish avoidance during sampling by the pelagic trawl. (Faculty<br />

<strong>of</strong> Science, University <strong>of</strong> South Bohemia, supervised by J. Kubečka)<br />

Marek Šmejkal: The importance <strong>of</strong> various habitats for fish in reservoirs.<br />

(Faculty <strong>of</strong> Science, Charles University, Prague, supervised by M. Prchalová)<br />

Iva Tomková: The effect <strong>of</strong> deforestation <strong>of</strong> mountain catchments on surface<br />

water quality (Faculty <strong>of</strong> Science, University <strong>of</strong> South Bohemia, supervised by<br />

J. Kopáček)<br />

Lukáš Vejřík: Determination <strong>of</strong> real daily food intake <strong>of</strong> great cormorant<br />

(Phalacrocorax carbo) wintering on Vltava River in Prague – Troja. (Faculty<br />

<strong>of</strong> Science, University <strong>of</strong> South Bohemia, supervised by M. Čech)<br />

Lukáš Veselý: The relationship between fish stock and reservoir characteristics.<br />

(Faculty <strong>of</strong> Science, University <strong>of</strong> South Bohemia, supervised by J. Kubečka)<br />

Veronika Visocká: Impact <strong>of</strong> ongoing global climate change on phytoplankton<br />

in Central Europe. (Faculty <strong>of</strong> Science, University <strong>of</strong> South Bohemia,<br />

supervised by P. Znachor)<br />

Jitka Vítková: Impact <strong>of</strong> floods and extreme precipitations on phytoplankton<br />

assemblage in freshwater reservoirs. (Faculty <strong>of</strong> Science, University <strong>of</strong> South<br />

Bohemia, supervised by P. Znachor)<br />

14


2 JAROSLAV HRBÁČEK (1921–2010)<br />

He passed away on the 16 th <strong>of</strong> July, 2010, aged 89, and remains without exaggeration the<br />

greatest Czech limnologist, respected around the world in limnological circles.<br />

His interest in zoology and aquatic ecosystems dated from an early age, and it was not<br />

„platonic“: by 1950 (he was 29 at the time) he was publishing papers in international<br />

zoological journals, mainly on water beetles [1]. Ten years later he had progressed to<br />

Cladocera [2], which remained his favourite group for the rest <strong>of</strong> his life. Few are aware <strong>of</strong> the<br />

fact that the Czech universities were shut down by the Germans in 1939, when Hrbáček was<br />

eighteen. He was thus able to resume his studies only after the war. He majored in 1949 in<br />

biology and chemistry, with a dissertation on water beetles. He then worked as a research<br />

assistant at the Charles University in Prague until 1958. During this period (using partly grant<br />

finance, but predominantly his own funding) he established a hydrobiological field station<br />

near the Elbe (Labe) River in Central Bohemia, equipped to enable both biological and<br />

chemical (nutrient analysis) research <strong>of</strong> backwaters, and put together a team <strong>of</strong> co-workers<br />

with diverse specialisations. His approach to the study <strong>of</strong> aquatic ecosystems was systemic<br />

Jaroslav Hrbáček (middle) together with Pr<strong>of</strong>. Nauwerck<br />

and Ms. Nauwerck at the <strong>Institute</strong> <strong>of</strong> <strong>Hydrobiology</strong> (24 Jun 2010)<br />

and complex. Already in 1958 he published a paper [3] where he explains the influence <strong>of</strong><br />

feedback mechanisms from fish all the way to nutrients. Another paper, published in 1962,<br />

elaborated on and clarified this key topic, and, although published „only“ in the journal <strong>of</strong> the<br />

Czechoslovak Academy <strong>of</strong> Sciences (Rozpravy ČSAV), it became his most-quoted article [4].<br />

It also served as a springboard for biomanipulation approaches in aquatic ecosystems. He<br />

received the Naumann-Thienemann Medal <strong>of</strong> the International Society <strong>of</strong> Limnology (SIL)<br />

for this work in 1983.<br />

15


In 1959, the Hydrobiological Section (later Hydrobiological Laboratory) <strong>of</strong> the<br />

Czechoslovak (later Czech) Academy <strong>of</strong> Sciences was established in Prague. Highly<br />

unusually and surprisingly at that time, the new department was given the go-ahead by the<br />

authorities despite the fact that neither J. Hrbáček, nor any other member <strong>of</strong> staff were<br />

Communist Party members. Its main task was to study the limnology <strong>of</strong> river impoundments,<br />

which were starting to be built in the country around this period. The long-term research <strong>of</strong><br />

the Slapy Reservoir (on the Vltava River) dates from this year, as well as the founding <strong>of</strong> the<br />

Nebřich hydrobiological field station. The Klíčava Reservoir was another impoundment<br />

studied under Hrbáček´s leadership during this period, with intensive research carried out<br />

especially in 1967, as part <strong>of</strong> the International Biological Programme (IBP). The results <strong>of</strong> the<br />

complex research <strong>of</strong> the Slapy Reservoir were published by the Academia publishing house<br />

[5,6].<br />

In the years 1981–1985 the Hydrobiological Laboratory was gradually moved to the South<br />

Bohemian city <strong>of</strong> České Budějovice, J. Hrbáček stopped being head and remained in Prague.<br />

In 1988–1995 he resumed his old interest <strong>of</strong> river backwaters research, in collaboration with<br />

the team <strong>of</strong> the Ecological Section <strong>of</strong> the Botanical <strong>Institute</strong> in Třeboň. He focussed on pools<br />

permanent and periodic, aerobic and anaerobic, with fish and without, in the innundation zone<br />

<strong>of</strong> the Lužnice River [7].<br />

Finally, during the last 15 years <strong>of</strong> his life, he returned to the study <strong>of</strong> the Slapy Reservoir,<br />

measured temperature, pH and transparency at weekly intervals, and compared them with<br />

older data. Despite his old age and various illnesses he remained tireless and mentally alert<br />

and active. In fact only two weeks before his death he arrived in České Budějovice for a chat<br />

with his old friends, pr<strong>of</strong>. Arnold Nauwerck (former head <strong>of</strong> the Limnological <strong>Institute</strong> <strong>of</strong> the<br />

Austrian Academy <strong>of</strong> Sciences) and his wife, and mentioned his plans <strong>of</strong> resuming his Slapy<br />

research within a week´s time!<br />

Viera Straškrábová<br />

[1] Hrbáček, J., 1950: On the morphology and function <strong>of</strong> the antennae <strong>of</strong> the Central European<br />

Hydrophilidae (Coleoptera). The Transactions <strong>of</strong> the Royal Entomol. Soc. <strong>of</strong> London 101,7: 239–<br />

256. London<br />

[2] Hrbáček, J., 1959: Circulation <strong>of</strong> water as a main factor influencing the development <strong>of</strong> helmets in<br />

Daphnia cucullata Sars. Hydrobiologia, 13: 170–185.<br />

[3] Hrbáček J. 1958: Density <strong>of</strong> the fish population as a factor influencing the distribution and<br />

speciation <strong>of</strong> the species in the genus Daphnia. Proceedings <strong>of</strong> the 15th International Congress <strong>of</strong><br />

Biology, London 10: 794–795.<br />

[4] Hrbáček, J., 1962: Species composition and the amount <strong>of</strong> the zooplankton in relation to the fish<br />

stock. Rozpravy ČSAV 72, 10: 116pp.<br />

[5] Hrbáček, J. (ed.), 1966: Hydrobiological Studies 1, Academia, Prague, 408pp.<br />

[6] Hrbáček, J., Straškraba, M. (eds), 1973: Hydrobiological Studies 2, Academia, Prague, 348pp<br />

[7] Hrbáček, J., Pechar, J., Dufková, V., 1994: Anaerobic conditions in winter shape the seasonal<br />

conditions <strong>of</strong> Copepoda and Cladocera in pools in forested inundations. Verhandlungen Internat.<br />

Verein. Limnol. 25: 1335–1336.<br />

NOTE: for the complete Jaroslav Hrbáček bibliography see Appendix (p. 45)<br />

16


3 RESERVOIRS<br />

3.1 Regular monitoring <strong>of</strong> the reservoirs Slapy and Římov: dissolved and dispersed<br />

substances in 2010<br />

Annual and summer (April–September) mean concentrations <strong>of</strong> chemical constituents<br />

dissolved and dispersed in the surface layers <strong>of</strong> the Slapy and Římov reservoirs (Table 1)<br />

were obtained by J. Hejzlar and J. Kopáček (jkopacek@hbu.cas.cz). Samples were taken<br />

from 0.1 to 0.4 m depth at the deepest points <strong>of</strong> the reservoirs in three-week intervals, prefiltered<br />

through a 200-µm polyamide sieve to remove large zooplankton, stored in the dark at<br />

4 o C, and analysed within 48 h after sampling. Dissolved constituents were analysed in<br />

samples filtered through a glass fibre filter with 0.4 µm nominal pore size. Abbreviations in<br />

Table 1 are: TON, total organic nitrogen; DON, dissolved organic nitrogen; TN total<br />

nitrogen; TP, total phosphorus; TDP, total dissolved phosphorus; COD, chemical oxygen<br />

demand; DOC and POC, dissolved and particulate organic carbon, respectively.<br />

Table 1: Annual (n=17) and summer (April–September; n=9) mean composition <strong>of</strong> the surface<br />

waters <strong>of</strong> the Slapy and Římov reservoirs in 2010.<br />

VARIABLES UNIT MEAN VALUES<br />

Slapy<br />

Římov<br />

Annual Summer Annual Summer<br />

NO 3 –N µg l –1 2218 2731 1295 1195<br />

NO 2 –N µg l –1 16 29 8 11<br />

NH 4 –N µg l –1 24 34 40 41<br />

TON µg l –1 766 824 575 680<br />

DON µg l –1 696 721 502 565<br />

TN µg l –1 3024 3618 1918 1927<br />

TP µg l –1 53.7 45.2 31.6 28.7<br />

TDP µg l –1 38.5 22.1 21.3 16.3<br />

COD mg l –1 21.7 20.5 17.2 17.2<br />

DOC mg l –1 7.43 7.41 5.86 6.67<br />

POC mg l –1 0.68 1.06 0.54 0.80<br />

Ca 2+ mg l –1 20.8 22.2 11.1 10.7<br />

Mg 2+ mg l –1 5.8 6.4 2.7 2.6<br />

Na + mg l –1 10.4 11.4 6.0 5.7<br />

K + mg l –1 4.0 4.0 2.1 2.1<br />

2–<br />

SO 4 mg l –1 24.1 26.7 13.7 13.6<br />

Cl – mg l –1 14.4 16.4 5.4 5.4<br />

Alkalinity (Gran titration) meq l –1 0.98 0.98 0.51 0.49<br />

Conductivity at 25 o C µS cm –1 219 240 120 114<br />

17


3.2 Regular monitoring <strong>of</strong> the reservoirs Slapy and Římov: microbial characteristics,<br />

chlorophyll and zooplankton biomass in 2010<br />

Annual and summer mean concentrations <strong>of</strong> bacteria, protozoans, microzooplankton, BOD 5<br />

(total and after separating algae by filtration) as well as chlorophyll concentrations and<br />

zooplankton biomass in the reservoirs (and inflows to Římov Reservoir), based on<br />

data by Z. Brandl, M. Macek, R. Malá, A. Hartmanová, Z. Prachař, J. Seďa, K. Šimek,<br />

M. Štojdlová, V. Straškrábová (verastr@hbu.cas.cz), M. Kaňová and P. Znachor are shown<br />

in Table 2.<br />

Table 2: Mean values <strong>of</strong> microbial characteristics, zooplankton, chlorophyll and BOD in the Slapy<br />

and Římov reservoirs and inflows. "Summer": April to September.<br />

Sites: S–Slapy and R–Římov reservoirs, C–Černá and M–Malše rivers – inflows to Římov<br />

Reservoir. Zooplankton in Římov was not sampled in January – February.<br />

SITE VARIABLE LAYER UNIT MEAN VALUE<br />

Annual Summer<br />

S BOD 5 0 m mg l –1 O 2 1.52 1.77<br />

BOD 5 filtered 0 m mg l –1 O 2 – 1.51<br />

bacteria DAPI 0 m 10 6 ml –1 4.39 6.16<br />

bact. beef-pept. agar 0 m CFU ml –1 284 237<br />

het. nan<strong>of</strong>lag. 0 m 10 3 ml –1 1.48 2.41<br />

ciliates 0–3 m per ml 5.22 8.35<br />

chlorophyll a<br />

total 0–3 m mg m –3 4.36 7.91<br />

40µm 0–4 m mg m –3 3.00 5.27<br />

zooplankton biomass, protein N<br />

Cladocera herbiv. 0–40 m mg m –2 61.5 76.3<br />

Copepoda 0–40 m mg m –2 26.7 35.2<br />

total zooplankton 0–40 m mg m –2 87.4 111.8<br />

C BOD 5 0 m mg l –1 O 2 1.87 1.56<br />

chlorophyll a 0 m mg m –3 4.06 4.60<br />

M BOD 5 0 m mg l –1 O 2 2.15 1.74<br />

chlorophyll a 0 m mg m –3 5.17 7.01<br />

18


3.3 Regular monitoring: fish stock composition in the Římov Reservoir in 2010<br />

Regular monitoring <strong>of</strong> the Římov Reservoir fish stock was carried out in the second week <strong>of</strong><br />

August 2010. Open water and deeper benthic habitats were studied using a split-beam<br />

echosounder, gillnets, purse seine net and pelagic fry and adult trawls. The inshore area was<br />

monitored as usual using electr<strong>of</strong>ishing and night seining (see Říha et al. 2008 [1] for the<br />

method description). Field work was carried out by J. Kubečka, P. Blabolil, J. Čech,<br />

V. Draštík, J. Frouzová, T. Jůza, L. Kočvara, M. Kratochvíl, J. Peterka, Z. Prachař,<br />

M. Prchalová, J. Richta, Z. Sajdlová, K. Soukalová, M. Šmejkal, M. Tušer, M. Vašek,<br />

L. Vejřík, and L. Veselý. The catch was analysed by M. Říha (riha.milan@centrum.cz) and<br />

J. Kubečka. During night seining, a total <strong>of</strong> 1.48 hectares was fished in 7 hauls using a nets 50<br />

and 200 m long. Table 3 shows the Římov Reservoir species composition as estimated by<br />

night seining.<br />

Table 3: Composition <strong>of</strong> the fish stock <strong>of</strong> the Římov Reservoir in 2010 as estimated by night seining.<br />

Common Latin name Abundance Biomass % %<br />

name ind ha –1 kg ha –1 Abundance Biomass<br />

Perch Perca fluviatilis 78.26 2.03 9.94 2.24<br />

Roach Rutilus rutilus 326.21 24.37 41.42 26.86<br />

Bream Abramis brama 163.95 56.80 20.82 62.61<br />

Rudd Scardinius erythrophthalmus 10.13 0.36 1.29 0.39<br />

Pike Esox lucius 4.59 3.61 0.58 3.98<br />

Asp Aspius aspius 3.31 0.71 0.42 0.78<br />

Dace Leuciscus leuciscus 1.34 0.01 0.17 0.02<br />

Bleak Alburnus alburnus 28.36 0.71 3.60 0.78<br />

Ruffe Gymnocephalus cernua 163.66 1.05 20.78 1.16<br />

Pikeperch Sander lucioperca 4.26 0.64 0.54 0.71<br />

Hybrid Abramis x Rutilus 2.61 0.25 0.33 0.28<br />

Carp Cyprinus carpio 0.42 0.04 0.05 0.04<br />

Wels Silurus glanis 0.42 0.14 0.05 0.15<br />

Total 787.52 90.72 100.00 100.00<br />

In 2010, the littoral fish community <strong>of</strong> the Římov Reservoir was dominated by common<br />

bream Abramis brama, roach Rutilus rutilus, ruffe Gymnocephalus cernua and perch Perca<br />

fluviatilis. This composition was similar to previous years with slight change in higher<br />

proportion <strong>of</strong> perch and lower proportion <strong>of</strong> bleak in catch. The total fish biomass reached<br />

90.7 kg ha –1 . It is similar as in the year 2008 and in previous seven years.<br />

In the year 2010, the dominant roach and bream had lower abundance but bream had<br />

higher biomass in comparison with the year 2009. In 2009, considerable proportion in high<br />

catch <strong>of</strong> bream was represent by individual with age 1+ from strong year class 2008 (Jůza<br />

pers. comm.). In the year 2010, year class 2008 (fish <strong>of</strong> the age 2+) still represented<br />

considerable part <strong>of</strong> bream catch because year class 2009 was weak (Jůza pers. comm.) and<br />

had low representation (fish <strong>of</strong> the age 1+) in the catch. This disproportions in year classes<br />

caused decrease <strong>of</strong> bream abundance while biomass increased due to relatively high<br />

19


proportion <strong>of</strong> larger individuals. These population oscillations were expected and are<br />

characteristic for the species in the reservoir. The results <strong>of</strong> sampling in the year 2010 well<br />

fitted into the long-term development <strong>of</strong> the fish stock <strong>of</strong> Římov Reservoir [2].<br />

[1] Říha, M., Kubečka, J., Mrkvička, T., Prchalová, M., Čech, M., Draštík, V., Frouzová, J., Hladík,<br />

M., Hohausová, E., Jarolím, O., Jůza, T., Kratochvíl, M., Peterka, J., Tušer M., and Vašek, M.<br />

(2008): Dependence <strong>of</strong> beach seine net efficiency on net length and diel period. Aquatic Living<br />

Resources, 21(4): 411–418.<br />

[2] Říha, M., Kubečka, J., Vašek, M., Seďa, J., Mrkvička, T., Prchalová, M., Matěna, J., Hladík, M.,<br />

Čech, M., Draštík, V., Frouzová, J., Hohausová, E., Jarolím, O., Jůza, T., Kratochvíl, M., Peterka,<br />

J., and Tušer, M. (2009): Long-term development <strong>of</strong> fish populations in the Římov Reservoir.<br />

Fisheries Management and Ecology 16: 121–129.<br />

3.4 The effect <strong>of</strong> river water circulation on the distribution and functioning <strong>of</strong> reservoir<br />

microbial communities as determined by a relative distance approach<br />

K. Šimek (ksimek@hbu.cas.cz), J. Nedoma, M. Comerma, J.-C. Garcia, J. Armengol, and<br />

R. Marce (Department <strong>of</strong> Ecology, University <strong>of</strong> Barcelona, Spain) collaborated on a research<br />

project dealing with the factors shaping longitudinal gradients modulated by different<br />

circulation patterns in the eutrophic reservoir Sau, Catalonia, Spain.<br />

The reservoir is characterized as showing: (I) high nutrient and organic matter inputs; (II)<br />

morphology typical for a deep and narrow river valley reservoir; and (III) a typical water<br />

residence time <strong>of</strong> ~90 days. Thus, we anticipated finding clear longitudinal patterns and<br />

relationships between limnological and biological parameters along the reservoir even over<br />

different seasons <strong>of</strong> a year. We hypothesized that development and the maxima <strong>of</strong> bacterial,<br />

heterotrophic nan<strong>of</strong>lagellates (HNF) and ciliate communities, and thus organic carbon<br />

processing, are directly related to the proportion <strong>of</strong> nutrients and organic matter rich river<br />

water that is mixed into the reservoir epilimnion.<br />

To test these hypotheses, we analyzed 8 sampling campaigns conducted between 1996 and<br />

1999 covering all seasonal aspects <strong>of</strong> the hydrology <strong>of</strong> the reservoir i.e., covering a wide<br />

range <strong>of</strong> variability in both seasonal and spatial circulation patterns. Then the spatial<br />

heterogeneity was examined using a relative distance model that allows standardization <strong>of</strong> the<br />

typical patterns in plankton succession under different hydrological situations (cf. Figs. 1<br />

and 2). Study aims were [1]: (a) to propose a general method that allows for the comparison<br />

and prediction <strong>of</strong> common trends in the spatial dynamics <strong>of</strong> plankton communities and their<br />

functioning under different hydrological scenarios in canyon shaped reservoirs; and (b) to<br />

specifically analyze the influence <strong>of</strong> overflow events on organic carbon processing and<br />

oxygen saturation levels <strong>of</strong> the epilimnetic layer <strong>of</strong> the Sau Reservoir.<br />

To objectively compare the biological longitudinal gradients under seasonally fluctuating<br />

water levels and different types <strong>of</strong> water circulation patterns, we applied a model based on the<br />

relative distance <strong>of</strong> a sampling station from the river inflow (Fig. 1). Even under different<br />

hydrological scenarios, the model was able to characterize epilimnetic food chain successions<br />

and locations <strong>of</strong> peaks <strong>of</strong> bacteria, heterotrophic nan<strong>of</strong>lagellates, ciliates, phytoplankton, and<br />

zooplankton along the longitudinal gradient (Fig. 2). The amplitude <strong>of</strong> microbial peaks was<br />

directly related to the proportion <strong>of</strong> nutrient and organic carbon rich river water that mixed<br />

into the reservoir epilimnion. Enhanced abundances and activities <strong>of</strong> microbes were detected<br />

20


Fig. 1: A – Schematic drawing <strong>of</strong> water circulation patterns, i.e. over-, inter- and underflow, in deep<br />

canyon shaped reservoirs. Depending on water temperature and water quality parameters river<br />

water masses plunge to different strata <strong>of</strong> the reservoir. Downstream from the plunge point a<br />

transient mixing zone starts with a very strong gradient in water quality parameters (for details<br />

see [1]). In addition to the type <strong>of</strong> water circulation pattern, chemical and biological<br />

downstream longitudinal gradients are directly related to the differences between the river and<br />

reservoir water quality parameters, mainly in organic carbon and nutrient availability.<br />

DOC – dissolved organic carbon, TP – total phosphorus, SRP – soluble reactive phosphorus,<br />

TN – total nitrogen, NH 4 – ammonium.<br />

B – schematic drawing <strong>of</strong> the effect <strong>of</strong> different water levels (level 1–3) on the total length <strong>of</strong><br />

the reservoir. To facilitate the comparison <strong>of</strong> common features <strong>of</strong> longitudinal gradients under<br />

fluctuating water levels, a relative distance model is exploited, where the actual length <strong>of</strong> the<br />

reservoir is always subdivided into the same number <strong>of</strong> standardized nine sampling positions<br />

("alignment positions") between zero and one rounded to one decimal place (for details see<br />

[1]). An example <strong>of</strong> standardized relative distance positions (RDP) is given for the level 2,<br />

which corresponds to medium decreased water level in the reservoir.<br />

21


Fig. 2: Standardized characteristic downstream succession <strong>of</strong> plankton communities based on the<br />

relative distance model and rounded relative distance positions (RDP) <strong>of</strong> percentage <strong>of</strong><br />

bacterial, HNF, ciliates and zooplankton abundances, bacterial biomass and production, total<br />

protozoan bacterivory and chlorophyll a concentrations evaluated in eight longitudinal<br />

transects. Note that percentage values plotted against 9 RDPs, i.e. 0.1, 0.2 ..... 0.9, give a sum<br />

<strong>of</strong> 100% over the longitudinal transect. The values are means and the grey filled areas<br />

show ±1SD.<br />

22


in spring and summer periods, mainly during events <strong>of</strong> river water overflow when a large<br />

proportion <strong>of</strong> the river was directly mixed into the epilimnion. Thus, the relative input <strong>of</strong> river<br />

water is suggested to be a useful predictor <strong>of</strong> the amplitude <strong>of</strong> the development <strong>of</strong> the<br />

epilimnetic microbial food webs in highly nutrient loaded canyon-shape reservoirs [1]. These<br />

results may have important implications in the context <strong>of</strong> global change in Mediterranean<br />

regions, where expected reductions in run<strong>of</strong>f may pr<strong>of</strong>oundly affect river water circulation<br />

patterns in reservoirs and hence organic carbon cycling in these ecosystems.<br />

Cited reference supported by the ongoing project 206/08/0015:<br />

[1] Šimek K, Comerma M, García JC, Nedoma J, Marcé R, Armengol J. 2011: The effect <strong>of</strong> river<br />

water circulation on the distribution and functioning <strong>of</strong> reservoir microbial communities as<br />

determined by a relative distance approach. Ecosystems 14: 1–14.<br />

3.5 Horizontal acoustic surveys and fish behaviour in the open water (completed<br />

project)<br />

Grant Agency <strong>of</strong> the Czech Republic, 2007–2010 project No. 206/07/1392.<br />

Principal investigator: J. Kubečka (kubecka@hbu.cas.cz). Cooperation: H. Balk<br />

(University <strong>of</strong> Oslo, Norway), G. Rakowitz (University <strong>of</strong> Vienna, Austria),<br />

M. Prchalová, J. Frouzová, M. Čech, V. Draštík, T. Jůza, M. Kratochvíl, J. Peterka,<br />

M. Říha, M. Tušer, and M. Vašek (<strong>Institute</strong> <strong>of</strong> <strong>Hydrobiology</strong> BC AS CR, České<br />

Budějovice).<br />

The project was broadly aimed at overcoming the basic problems <strong>of</strong> quantitative studies <strong>of</strong><br />

fish in the open water <strong>of</strong> the reservoirs. Open water represents the largest volume <strong>of</strong><br />

reservoirs. At the start <strong>of</strong> the project the scientific community lacked reliable information on<br />

quantity, species and age distribution <strong>of</strong> fish in the open water <strong>of</strong> European reservoirs. Most<br />

data available were from passive gillnet sampling with unknown selectivity or from semiquantitative<br />

echosounder results. Methods for studying pelagic fry communities were<br />

completed during the project and used in a number <strong>of</strong> reservoirs. A two-dimensional<br />

predictive model <strong>of</strong> cyprinid and percid fry occurrence in the Římov Reservoir was elaborated<br />

with respect to its longitudinal dimension and depth (Jůza et al., 2009). Even greater progress<br />

was achieved with larger (mostly adult) fish. The first holistic models <strong>of</strong> fish occurrence in<br />

Želivka and Římov Reservoirs were developed on the basis <strong>of</strong> gillnet sampling (Prchalová et<br />

al., 2008 and 2009). Hydroacoustic and trawling methods were further developed for the<br />

sampling <strong>of</strong> the open water adult fish community and possible shortcomings were critically<br />

analysed (Rakowitz et al., submitted).<br />

Quality assurance <strong>of</strong> information on reservoir fish was <strong>of</strong>ten missing in the past and this<br />

project has contributed substantially to achieving and assuring the quality. In adition to the<br />

methodological advances made, the project has facilitated several studies <strong>of</strong> open water fish<br />

behaviour (Jarolím et al. 2010). 11 publications were printed and seven more submitted in<br />

journals covered by Thomson’s Web <strong>of</strong> Knowledge (WOK), three <strong>of</strong> the latter had been<br />

accepted accepted by the report deadline. 5 more publications not covered by WOK were<br />

published. Three PhD and three MSc. theses have been completed and four PhD and two<br />

MSc. Theses were in progress by the report deadline. Two worldwide conferences<br />

summarizing the state-<strong>of</strong>-the-art in the sampling <strong>of</strong> lakes and reservoirs, each with over 100<br />

participants from over 30 countries, were organized by the project team (Kubečka et al. 2009).<br />

The second one <strong>of</strong> these, Fish sampling with active methods, was held in September 2010 in<br />

České Budějovice (http://fsam2010.wz.cz).<br />

23


[1] Jarolím, O., Kubečka, J., Čech, M., Vašek, M., Peterka, J., and Matěna, J., 2010. Sinusoidal<br />

swimming in fishes: the role <strong>of</strong> season, density <strong>of</strong> large zooplankton, fish length, time <strong>of</strong> the day,<br />

weather condition and solar radiation. Hydrobiologia 654: 253–265. DOI 10.1007/s10750-010-<br />

0398-1.<br />

[2] Jůza, T., Vašek, M., Kubečka, J., Seďa , J., Matěna, J., Prchalová M., Peterka, J., Říha, M.,<br />

Jarolím, O., Tušer, M., Kratochvíl, M., Čech, M., Draštík, V., Frouzová, J., and Hohausová, E.,<br />

2009. Pelagic underyearling communities in a canyon-shaped reservoir in late summer. Journal <strong>of</strong><br />

Limnology 68: 304–314. DOI: 10.3274/JL09-68-2-13.<br />

[3] Kubečka, J., Amarasinghe, U.S., Bonar, S.A., Hateley, J.A., Hickley, P., Hohausová, E.,<br />

Matěna, J., Peterka, J., Suuronen, P., Tereschenko, V., Welcomme, R., Winfield, I.J., 2009 The<br />

true picture <strong>of</strong> a lake or reservoir fish stock: a review <strong>of</strong> needs and progress. Fisheries Research 96:<br />

1–5. DOI: 10.1016/j.fishres.2008.09.021.<br />

[4] Prchalová, M., Kubečka, J. Vašek, M., Peterka, J. Seďa, J., Jůza, T., Říha, M., Jarolím, O.,<br />

Tušer, M., Kratochvíl, M., Čech, M., Draštík, V., Frouzová, J., Hohausová, E. 2008 Gradients <strong>of</strong><br />

fish distribution in a canyon-shaped reservoir. Journal <strong>of</strong> Fish Biology 73: 54–78.<br />

[5] Prchalová, M., Kubečka, J., Čech, M., Frouzová, J., Draštík, V., Hohausová, E., Jůza, T.,<br />

Kratochvíl, M., Matěna, J., Peterka, J., Říha, M., Vašek, M., 2009 The effect <strong>of</strong> depth, distance<br />

from dam and habitat choice on the spatial distribution <strong>of</strong> fish in canyon-shaped reservoir. Ecology<br />

<strong>of</strong> Freshwater Fish 18: 247–260.<br />

3.6 Pelagic occurrence <strong>of</strong> non-native tubenose goby Proterorhinus semilunaris (Heckel)<br />

in a central European reservoir<br />

M. Vašek (mojmir.vasek@seznam.cz) and T. Jůza analysed samples <strong>of</strong> the pelagic 0+ year<br />

fish community collected in the deep-valley Vranov Reservoir in July 2008. The Vranov<br />

Reservoir, situated on the Dyje River (Czech Republic), is characterised by elongate<br />

morphology; it has a total surface area <strong>of</strong> 760 ha and a maximum depth <strong>of</strong> 45 m. The pelagic<br />

0+ year fish community was sampled in the surface stratum using a fixed-frame trawl with a<br />

3×3 m mouth opening. Trawling was conducted at night in the uplake (close to the tributary)<br />

and downlake (close to the dam) reservoir areas. A total <strong>of</strong> 810 individuals <strong>of</strong> 0+ year fishes<br />

representing six species were collected in surface pelagic waters. Thirty-one individuals <strong>of</strong> 0+<br />

year tubenose goby Proterorhinus semilunaris (Heckel) were caught in the uplake area and<br />

the next 3 individuals were captured in the downlake area. The density <strong>of</strong> 0+ year P.<br />

semilunaris in the surface pelagic stratum varied between 0.02 and 0.81 individuals per 100<br />

m 3 <strong>of</strong> filtered water. Diet analyses demonstrated that 0+ year P. semilunaris were actively<br />

feeding in the pelagic waters. The typical limnetic zooplankter Leptodora kindtii was the most<br />

important prey consumed. However, 55% <strong>of</strong> P. semilunaris individuals also contained<br />

benthic-living prey (ostracods, isopods, chydorids, chironomid and ephemeropteran larvae).<br />

The inspection <strong>of</strong> gut contents showed that benthic prey usually occurred in the distal part <strong>of</strong><br />

gut, while zooplankton was present in the foregut.<br />

These results indicate that 0+ year P. semilunaris migrated to the surface pelagic stratum<br />

either from bottom or littoral habitats. Such nocturnal migration to pelagic waters might be<br />

viewed as a behaviour optimizing foraging success and as a dispersal strategy. The ability <strong>of</strong><br />

0+ year P. semilunaris to enter pelagic waters may have important implications for the<br />

dispersal success and, consequently, invasiveness <strong>of</strong> the species, which is currently spreading<br />

in Europe. Although P. semilunaris is commonly perceived as a typical benthic and sedentary<br />

fish, our results indicate that the species is able to actively utilise the open water habitat<br />

during its early juvenile stage [1].<br />

[1] Vašek M., Jůza T., Čech M., Kratochvíl M., Prchalová M., Frouzová J., Říha M., Tušer M.,<br />

Seďa J., Kubečka J., 2011: The occurrence <strong>of</strong> non-native tubenose goby Proterorhinus semilunaris<br />

in the pelagic 0+ year fish assemblage <strong>of</strong> a central European reservoir. Journal <strong>of</strong> Fish Biology 78:<br />

953–961.<br />

24


3.7 Deep spawning <strong>of</strong> perch Perca fluviatilis in the newly created opencast mine lake<br />

M. Čech (carcharhinusleucas@yahoo.com), J. Peterka, M. Říha, T. Jůza, V. Draštík,<br />

M. Kratochvíl and J. Kubečka evaluated the distribution <strong>of</strong> egg strands <strong>of</strong> perch Perca<br />

fluviatilis in an unique ecosystem <strong>of</strong> the newly created opencast mine Chabařovice Lake,<br />

Czech Republic. Three SCUBA divers spent over 120 hours underwater during which they<br />

found 896 (year 2007), 581 (2008) and 231 (2009) individual egg strands [1,2]. Depth<br />

distribution <strong>of</strong> egg strands differed significantly between sampling dates, being much deeper<br />

in May compared to April, which was most likely due to the warming <strong>of</strong> upper layers <strong>of</strong> the<br />

water column [1]. Surprisingly, only negligible portion egg strands was found shallower than<br />

2 m [1,2]. Egg strands were found up to the depth <strong>of</strong> 16.6 m in 2007 and up to the depth <strong>of</strong><br />

20.2 m in 2008, which are the deepest records ever [2]. Perch regularly used at least 7<br />

different spawning substrates in 2007. While live submerged vegetation (curly pondweed<br />

Potamogeton crispus, Eurasian water milfoil Myriophyllum spicatum and common stonewort<br />

Chara vulgaris), although more abundant, was generally avoided, dead submerged vegetation<br />

(common reed Phragmites communis, worm weed Artemisia sp., trees and branches including<br />

black elder Sambucus nigra) was highly preferred [1]. In 2008 and 2009, live submerged<br />

vegetation almost disappeared from the lake and vast majority <strong>of</strong> egg strands was placed on<br />

dead submerged vegetation [2]. It appears that those large three-dimensional structures are an<br />

ideal spawning substrate for perch since placement <strong>of</strong> egg strands practically into the open<br />

water column ensures that eggs remain well oxygenated for whole 24 hours a day [1].<br />

[1] Čech, M., Peterka, J., Říha, M., Jůza, T. and Kubečka, J. (2009). Distribution <strong>of</strong> egg strands <strong>of</strong><br />

perch (Perca fluviatilis L.) with respect to depth and spawning substrate. Hydrobiologia 630: 105–<br />

114.<br />

[2] Čech, M., Peterka, J., Říha, M., Draštík, V., Kratochvíl, M. and Kubečka, J. (2010). Deep<br />

spawning <strong>of</strong> perch (Perca fluviatilis, L.) in the newly created Chabařovice Lake, Czech Republic.<br />

Hydrobiologia 649: 375–378.<br />

3.8 The stabilizing effect <strong>of</strong> resting egg banks <strong>of</strong> the Daphnia longispina species complex<br />

for longitudinal taxon heterogeneity in long and narrow reservoirs<br />

I. Vaníčková (ivana.vanickova@gmail.com), J. Seďa and A. Petrusek (Charles University,<br />

Prague) compared the spatial distribution <strong>of</strong> taxa from the Daphnia longispina complex<br />

(D. longispina, D. galeata, D. cucullata, and their hybrids) in the active water column<br />

community and in resting egg banks in five long narrow reservoirs in the Czech Republic<br />

(Central Europe). In each reservoir, both ends <strong>of</strong> the longitudinal gradient were sampled: in<br />

the inflow region and at the dam. Ephippia abundance in the sediments significantly increased<br />

in the downstream direction, reflecting differences in the sedimentation regime and Daphnia<br />

population size. Similarly to the active zooplankton community, in which D. cucullata and D.<br />

longispina tended to occur at opposite ends <strong>of</strong> the reservoirs, Daphnia species and<br />

interspecific hybrids in resting eggs revealed a spatially diversified pattern; however, some<br />

differences in taxon distributions between sediments and water columns were observed. High<br />

relative abundances <strong>of</strong> hybrid genotypes (up to 16% <strong>of</strong> resting eggs, and 74% <strong>of</strong> Daphnia in<br />

the water column) confirm that interspecific hybridization is frequent in these reservoirs, and<br />

some hybrids are successful in competition with the parental taxa. It is assumed that the<br />

spatial heterogeneity <strong>of</strong> Daphnia taxonomic composition in reservoirs, being affected by the<br />

25


seasonal selection <strong>of</strong> taxa within the mixed reservoir species pool, is substantially<br />

strengthened by the presence <strong>of</strong> spatially heterogeneous egg banks.<br />

3.9 Spatial heterogeneity and seasonal succession <strong>of</strong> phytoplankton along the<br />

longitudinal gradient in the Římov Reservoir<br />

In order to evaluate the effects <strong>of</strong> contrasting hydrological scenarios on the spatial and<br />

temporal heterogeneity <strong>of</strong> phytoplankton in a reservoir, P. Rychtecký<br />

(rychtecky.pavel@post.cz) and P. Znachor studied seasonal changes in various parameters<br />

along the longitudinal axis <strong>of</strong> the canyon-shaped, eutrophic Římov Reservoir (Czech<br />

Republic) at 1–2 week intervals from April to October 2007. Vertical chlorophyll and<br />

temperature pr<strong>of</strong>iles were measured and functional classification <strong>of</strong> phytoplankton was<br />

applied.<br />

Fig. 3: Temporal variation in vertical pr<strong>of</strong>iles <strong>of</strong> chlorophyll a (mg l –1 , obtained with a submersible<br />

fluorescence probe) at SITE 4 (upper panel) and DAM (lower panel) representing typical<br />

transition and lacustrine parts <strong>of</strong> the Římov Reservoir, respectively. Arrows indicate temporal<br />

dominance <strong>of</strong> a particular functional group in the phytoplankton.<br />

At the river inflow, phytoplankton markedly differed from the rest <strong>of</strong> the reservoir, being<br />

dominated by functional groups D and J (pennate diatoms and chlorococcal algae) without a<br />

clear seasonal pattern. From April to mid-June, groups Y and P (large cryptophytes and<br />

colonial diatoms) prevailed in the whole reservoir (Fig. 3). Phytoplankton spatial<br />

heterogeneity was most apparent during the summer, reflecting a pronounced gradient <strong>of</strong><br />

environmental parameters from the river inflow to the dam (e.g., decreasing nutrients,<br />

increasing light availability, etc.). A dense cyanobacterial bloom (groups H1 and M)<br />

developed in the nutrient-rich transition zone, while functional Group N (desmids) dominated<br />

the phytoplankton at the same time at the dam area (Fig. 3).<br />

26


In late summer, a sudden flood event considerably disrupted thermal stratification, altered<br />

nutrient and light availability (Table 4), and later even resulted in cyanobacterial dominance<br />

in the whole reservoir (Fig. 3).<br />

Table 4: Differences in basic chemical and physical parameters before and after the flood event<br />

measured at DAM and SITE 4. Environmental conditions prior to the flood are characterized<br />

by two month averages, while one month mean values are shown for the post flood period.<br />

DAM SITE 4<br />

Before After<br />

Before After<br />

Dissolved silica (mg l –1 ) 0.88 3.72 p


all stations (Table 5). Since ACT efficiently incorporated organic substrates, the LNA<br />

fraction represented a highly active component <strong>of</strong> bacterial assemblages. At Stns Dam and<br />

Middle, the dynamics <strong>of</strong> CF also correlated with the population <strong>of</strong> CTC+ cells and an<br />

enhanced extracellular phytoplankton production (Table 5).<br />

Table 5: Pearson’s correlation coefficients between relative abundances (as percent <strong>of</strong> DAPI-stained<br />

cells) <strong>of</strong> Betaproteobacteria (%BET), Cytophaga-Flavobacteria (%CF), and Actinobacteria<br />

(%ACT) and percentages <strong>of</strong> cells with an intact membrane (%live), high nucleic acid<br />

content (%HNA), high respiratory activity (%CTC+), bacterial production (BP), and<br />

extracellular phytoplankton production (EPP). *p


4 LAKES<br />

4.1 Microbial loop components in the oxic/anoxic boundary in stratified lakes<br />

M. Macek (mirek@campus.iztacala.unam.mx) compared the autotrophic picoplankton, APP<br />

(epifluorescence microscopy and flow-cytometry) and ciliate, CIL (DAPI staining and<br />

quantitative protargol staining) distribution monitored in lake Alchichica, Mexican Plateau,<br />

Mexico (with Fernando Bautista, UNAM, Mexico) with the data obtained in meromictic lakes<br />

Waldsee, Lausitia, Germany (with Brigitte Nixdorf, Brandenburg Technical University,<br />

Cottbus, Germany) and Laguna de la Cruz, Cuenca, Spain (with Antonio Picazo y Antonio<br />

Camacho, University <strong>of</strong> Valencia, Burjassot, Valencia, Spain). Despite very big differences in<br />

lake limnology (alkaline, deep and warm-monomictic Alchichica vs. karstic meromictic La<br />

Cruz and shallow, iron meromictic Waldsee) the anoxic boundary showed a very similar<br />

pattern. APP were found in elevated concentrations in the oxycline <strong>of</strong> the three lakes<br />

(between 10 5 to 10 7 cells ml –1 ).<br />

We studied fine-scale stratification (0.25 m) <strong>of</strong> microaerophilic to anaerobic ciliate<br />

assemblages along with an estimation <strong>of</strong> the impact <strong>of</strong> grazing upon picocyanobacteria in<br />

Laguna de la Cruz (PCY), using fluorescently labelled bacteria (FLB) method. Scuticociliates<br />

dominated the environment: the genus Ctedoctema (up 130 cells ml –1 ; feeding upon PCY)<br />

was present within a wide range <strong>of</strong> dissolved oxygen concentrations (DO) while Uronema,<br />

Sathrophilus (Sphenostomella) and Cristigera strictly followed the DO gradient. Mesodinium<br />

sp. (up 20 cells ml –1 ), Monodinium sp. and Askenasia sp. were observed in the mixolimnion.<br />

The mixotrophic genera Coleps (20 cells ml –1 ) and Pelagothrix (Prorodon; up 28 cells ml –1 )<br />

along with Spirostomum teres (feeding upon PCY; up 12 cells ml –1 ) biomass-dominated the<br />

mixolimnion and oxycline, respectively. In the anaerobic monimolimnion, the genera<br />

Holophrya, Caenomorpha and odontostomatids were present. Ciliates containing vacuoles<br />

with PCY also fed upon DTAF pre-stained Aeromonas which mimicked the natural PCY size<br />

distribution; however, larger cultured PCY <strong>of</strong> lake origin were not ingested. Zoochlorellabearing<br />

ciliates did not ingest FLB at all. Microaerophilic scuticociliates fed upon FLB even<br />

in the assays with untreated water samples but Spirostomum teres actively fed only in<br />

anaërostat assays (bubbling with helium was used to minimize DO). S. teres feeding rates<br />

were not linearly proportional to the incubation time. This non-linearity was in concordance<br />

with the observed pattern <strong>of</strong> vacuole formation: FLB had been quickly collected into very<br />

small vacuoles (with only 1–3 bacteria during the first 5–10 min exposition) and these small<br />

vacuoles then moved through the cell and finally joined large vacuoles in the posterior end <strong>of</strong><br />

the cell (Fig. 4). Even though FLB ingestion dropped during the feeding experiment, FLB<br />

persisted in vacuoles for more than one hour. Feeding vacuoles were coloured orange (the<br />

colour <strong>of</strong> the PCY isolate used in experiments) with bright red fluorescence upon green<br />

excitation light. Combined use <strong>of</strong> PCY-photosynthesis products and digestion in the anaerobic<br />

conditions with an optimum light for PCY activity is hypothesized, a process similar to<br />

supposed oxygen- and primary production <strong>of</strong> Pelagothrix plancticola.<br />

In Waldsee we also found mixotrophic ciliates Pelagothrix sp. (up 6 cells ml –1 ), Euplotes<br />

daidaleos (5 cells ml –1 ) and Coleps sp. (37 cells ml –1 ). The hymenostomatid Dexiotricha sp.<br />

(25 cells ml –1 ) dominated among the APP feeding ciliates. Loxodes sp. lived in the deepanoxy<br />

boundary. We observed sharp changes in ciliate biomass and composition changes<br />

along the boundary at a vertical distance interval <strong>of</strong> 0.3 m.<br />

29


Fig 4: Spirostomum teres<br />

A– stained with DAPI,<br />

B– aut<strong>of</strong>luorescence <strong>of</strong> APP in vacuoles,<br />

C– formation <strong>of</strong> a new vacuole (DTAF stained<br />

FLB).<br />

In Alchichica, we found possibly symbiotic Euplotes sp. with concentrations <strong>of</strong> up to 30<br />

cells ml –1 ; however, other mixotrophs were scarce. Of APP feeders, only the peritrichs<br />

Pelagovorticella natans and scuticociliates Cyclidium sp. were important during the<br />

stratification period. Significant changes occurred at a scale <strong>of</strong> metres because <strong>of</strong> important<br />

thermocline oscillation. Compared to the other lakes, true anaerobic ciliates were abundant<br />

(Caenomorpha sp. and particularly bacteria-symbiotic Cyclidim sp. and Cristigera sp.).<br />

Generally speaking, APP and mixotrophic ciliates were concentrated above the oxic/anoxic<br />

boundary. Zoochlorella-possessing ciliates (Coleps sp. and Pelagothrix sp.) were found in the<br />

upper layer, whereas APP-feeding, possible mixotrophic, ciliates (Euplotes sp. and<br />

Spirostomum teres) preferred the lower layer <strong>of</strong> the oxycline. Heterotrophic APP-feeders<br />

penetrated the limit <strong>of</strong> the anoxic layer but true anaerobic ciliates did not ingest APP.<br />

Apparently, photosynthetic active radiation (PAR) controlled the distribution along with<br />

dissolved oxygen.<br />

30


5 SPECIAL INVESTIGATIONS<br />

5.1 Effect <strong>of</strong> low temperature on <strong>of</strong>fspring size and filtering screens morphology<br />

in Daphnia<br />

J. Macháček (machacek@hbu.cas.cz) and J. Seďa studied the seasonal variation <strong>of</strong> filtering<br />

setae number (FSN) in the filtering screens <strong>of</strong> D. galeata population in the Římov Reservoir.<br />

This morphological parameter has previously been reported to vary with feeding conditions,<br />

although it was found to be constant within the lifespan <strong>of</strong> an individual [1]. Therefore<br />

temporal variation within the population can occur either as a trans-generational phenotypic<br />

response or via clonal succession, as significant inter-clonal variation has been found [2]. To<br />

detect the temporal dynamics <strong>of</strong> FSN in the population it was necessary to analyze this<br />

parameter in different age groups <strong>of</strong> the population sample. Therefore FSN in zooplankton<br />

samples from the Římov Reservoir was investigated in three age groups <strong>of</strong> D. galeata: (1) in<br />

juveniles, i.e. individuals obviously <strong>of</strong> the first or preferably <strong>of</strong> the second juvenile instar, (2)<br />

individuals <strong>of</strong> the pre-adult and presumably in the first adult instars, (3) big adult females,<br />

where exact age cannot be determined. The results <strong>of</strong> this investigation (Fig. 5) indicated a<br />

clear tendency to produce <strong>of</strong>fspring with low FSN in animals from an environment with low<br />

temperature and low food level (over-wintering population, deep-hypolimnion-inhabiting part<br />

<strong>of</strong> the population).<br />

70<br />

60<br />

adults<br />

FSN<br />

50<br />

40<br />

70<br />

ice cover<br />

27.1. 4.3. 11.4. 29.4. 6.5. 21.5. 13.6. 29.7. 25.8. 23.9. 14.12.<br />

preadults +<br />

primiparae<br />

juveniles +<br />

neonates<br />

60<br />

FSN<br />

50<br />

deep<br />

hypolimnion<br />

40<br />

27.1. 4.3. 11.4. 29.4. 6.5. 21.5. 13.6. 29.7. 25.8. 23.9. 14.12.<br />

Fig. 5: Seasonal dynamics <strong>of</strong> filtering setae number (FSN) in filtering screens <strong>of</strong> three age groups <strong>of</strong><br />

D. galeata population in the Římov Reservoir (upper panel: majority <strong>of</strong> the population;<br />

lower panel: deep-hypolimnion-inhabiting part <strong>of</strong> the population).<br />

Laboratory experiments were then carried out to uncouple the effects <strong>of</strong> temperature and<br />

food level on the FSN. In the first type <strong>of</strong> experiment D. galeata adult females with fully<br />

developed embryos in their brood chambers were isolated from the reservoir at the end <strong>of</strong><br />

January when the reservoir was covered with ice. The females (mothers) were kept in the<br />

laboratory in two levels <strong>of</strong> temperature and three feeding variants (Fig. 6). The FSN <strong>of</strong><br />

mothers and that <strong>of</strong> their <strong>of</strong>fspring in three consecutive clutches was investigated. The<br />

31


mothers clearly come from the autumnal population, the neonates born immediately after the<br />

isolation <strong>of</strong> the mothers (here referred to as 1 st <strong>of</strong>fspring) had passed their oogenesis and<br />

embryogenesis at low temperatures in the reservoir, the 2 nd <strong>of</strong>fspring passed their oogenesis in<br />

the reservoir and their embryogenesis in the experiment, the 3 rd <strong>of</strong>fspring passed both <strong>of</strong> these<br />

ontogenetic phases in the experiment. The results reveal that low temperature was the main<br />

factor causing low FSN in neonates.<br />

5 ºC<br />

20 ºC<br />

FSN<br />

70<br />

60<br />

50<br />

70<br />

60<br />

50<br />

lake water with natural<br />

seston<br />

GF/C filtered lake<br />

water - high food<br />

GF/C filtered lake<br />

water - low food<br />

40<br />

mothers<br />

1st<br />

<strong>of</strong>fspring<br />

2nd<br />

<strong>of</strong>fspring<br />

3rd<br />

<strong>of</strong>fspring<br />

40<br />

mothers<br />

1st<br />

<strong>of</strong>fspring<br />

2nd<br />

<strong>of</strong>fspring<br />

3rd<br />

<strong>of</strong>fspring<br />

Fig. 6: Filtering setae number (FSN) <strong>of</strong> D. galeata mothers and that <strong>of</strong> their <strong>of</strong>fspring in three<br />

consecutive clutches. The mothers were isolated from Římov Reservoir on January 29 and<br />

kept in the laboratory at two temperatures and three feeding treatments (amount <strong>of</strong> the<br />

natural seston – 0.2 mg l –1 POC, high food and low food treatments – 2 and 0.2 mg l –1 POC<br />

<strong>of</strong> Scenedesmus subspicatus culture, respectively).<br />

The succession <strong>of</strong> ontogenetic phases and different temperature treatments during the<br />

experiment suggested that the time in which low temperature may induce lower FSN is very<br />

probably the period <strong>of</strong> embryonic development (embryogenesis). This was tested in another<br />

experiment, in which eggs obtained from a laboratory clone <strong>of</strong> D. galeata were incubated in<br />

vitro at three different levels <strong>of</strong> temperature. The eggs were removed several hours after being<br />

deposited in the brood pouch <strong>of</strong> the female and divided into three groups. Each group <strong>of</strong> the<br />

Table 6: Results <strong>of</strong> in vitro embryogenesis in D. galeata eggs incubated at three different<br />

temperatures (figures with different superscripts are significantly different, unequal n HSD<br />

tests, p=0.05).<br />

Temperature during embryogenesis 19°C 10°C 6°C<br />

Carapace length in the1st instar <strong>of</strong>fspring<br />

(µm ± 95% C.I.) 502 (±7) a 454 (±11) b 446 (±14) b<br />

FSN in <strong>of</strong>fspring<br />

(± 95% C.I.) 72 (±1) a 69 (±1) a 65 (±1) b<br />

same clutch was then incubated at a different temperature (19, 10, and 6°C). FSN was found<br />

to be significantly lower in individuals incubated during embryogenesis at the lower<br />

temperatures (Table 6). The difference in FSN is partly attributable to a difference in the<br />

body size <strong>of</strong> the neonates because the neonates from the lower temperatures were significantly<br />

smaller and a direct relationship between neonate size and FSN in their filtering screens was<br />

32


found. The results from the field, however, indicate that this relationship itself does not<br />

explain satisfactorily the variation in FSN.<br />

[1] Pop, M., 1991: Mechanisms <strong>of</strong> the filtering area adaptation in Daphnia. Hydrobiologia 225:<br />

169–176.<br />

[2] Repka, S., Veen, A., Vijverberg, J., 1999: Morphological adaptations in filtering screens <strong>of</strong><br />

Daphnia galeata to food quantity and food quality. J. Plankton Res. 21: 971–989.<br />

5.2 Sinusoidal swimming: a searching checkmate <strong>of</strong> fishes to the transparent<br />

zooplankton<br />

M. Čech (carcharhinusleucas@yahoo.com), O. Jarolím, J. Kubečka, M. Vašek, J. Peterka<br />

and J. Matěna finished their extensive, 13 years research on sinusoidal swimming in fishes.<br />

The sinusoidal swimming (Fig. 7), previously interpreted as fish foraging behaviour [1], was<br />

Fig. 7: A scheme <strong>of</strong> sinusoidal swimming (one sinusoidal cycle) <strong>of</strong> reservoir open water fish, in this<br />

case adult common bream Abramis brama, showing tilting <strong>of</strong> fish body during the ascending<br />

and descending phase <strong>of</strong> sinusoidal cycle to reach an optimal attack angle when even<br />

transparent prey (zooplankton) is clearly visible to the predator (fish). (a) Zooplankton is<br />

visible against darker depths (brighter due to light scattered in their tissue). (b) Zooplankton is<br />

practically invisible to fish horizontally scanning eyes. (c) Zooplankton is visible against the<br />

bright light <strong>of</strong> the sky (darker due to absorbance at opaque parts <strong>of</strong> the body).<br />

33


studied with respect to season, density <strong>of</strong> large zooplankton, fish length, time <strong>of</strong> the day,<br />

weather condition and solar radiation in Římov Reservoir, Czech Republic, using a bottommounted,<br />

split-beam transducer (7 o , nominal angle; frequency 120 kHz), underwater camera,<br />

gillnets and purse seine.<br />

The proportion <strong>of</strong> sinusoidally swimming fish increased from April to August while this<br />

behaviour was absent in October. The occurrence <strong>of</strong> sinusoidal swimming showed an<br />

apparent pattern throughout the day; it increased sharply around sunrise, was highest within<br />

5–6 hours around solar noon and sharply decreased around sunset. Significantly less frequent<br />

occurrence <strong>of</strong> sinusoidal swimming was recorded during cloudy days compared to sunny<br />

days. The vast majority <strong>of</strong> records came from fish <strong>of</strong> standard length ranging from 100 to 400<br />

mm, which represents the typical size range <strong>of</strong> common bream Abramis brama and roach<br />

Rutilus rutilus <strong>of</strong> age >1+, the main zooplanktivores in the reservoir. The presence <strong>of</strong> these<br />

larger fish in the open water <strong>of</strong> the reservoir, as well as the presence <strong>of</strong> sinusoidal swimming,<br />

apparently correlates with the presence <strong>of</strong> large zooplankton (Daphnia, Leptodora, Cyclops<br />

vicinus) in the epilimnion. The increase <strong>of</strong> sinusoidal swimming between April, June and<br />

finally August resulted in an increase <strong>of</strong> zooplankton component in fish guts. It appears that<br />

high values <strong>of</strong> solar radiation, and stable calm weather during high pressure periods, result in<br />

optimal optical conditions for sinusoidal swimming, making this foraging behaviour more<br />

efficient and widely used in fishes exploiting the zooplankton production in the reservoir [2].<br />

[1] Čech, M. and Kubečka, J. (2002). Sinusoidal cycling swimming pattern <strong>of</strong> reservoir fishes. Journal<br />

<strong>of</strong> Fish Biology 61: 456–471.<br />

[2] Jarolím, O., Kubečka, J., Čech, M., Vašek, M., Peterka, J. and Matěna, J. (2010). Sinusoidal<br />

swimming in fishes: the role <strong>of</strong> season, density <strong>of</strong> large zooplankton, fish length, time <strong>of</strong> the day,<br />

weather condition and solar radiation. Hydrobiologia 654: 253–265.<br />

5.3 Anthropogenic nitrogen emissions during the Holocene and their possible effects on<br />

remote ecosystems<br />

J. Kopáček (jkopacek@hbu.cas.cz) and M. Posch (Coordination Centre for Effects, PBL,<br />

Bilthoven, The Netherlands) reconstructed the emissions <strong>of</strong> reactive nitrogen (Nr = NH 3 –N +<br />

NO x –N) from anthropogenic sources on a global scale since ~8000 BC, using a simple model<br />

based on the development <strong>of</strong> human population and per capita factors <strong>of</strong> Nr emissions<br />

originating from livestock production, biomass burning (bi<strong>of</strong>uel use, forest and savannah<br />

burning), and other anthropogenic sources (humans and pets, N-fertilizer use, fossil fuel<br />

combustion) (Fig. 8).<br />

The estimated global cumulative anthropogenic emissions <strong>of</strong> Nr to the atmosphere are<br />

~17.4 Pg N (8.6 Pg NH 3 –N and 8.8 Pg NO x –N, respectively) for 8000 BC through the year<br />

2000, with 28% <strong>of</strong> this amount emitted during 1850–2000, 42% during 1–1850, and 30%<br />

during the previous 8,000 years. Forest and savannah burning represent the major cumulative<br />

flux <strong>of</strong> both NH 3 –N and NO x –N (3.5 and 5.8 Pg, respectively). Livestock production and<br />

bi<strong>of</strong>uel burning are responsible for emissions <strong>of</strong> 3.3 and 1.2 Pg NH 3 –N, respectively, while<br />

the application <strong>of</strong> synthetic fertilizers contributes 0.26 Pg NH 3 –N. The different duration <strong>of</strong><br />

bi<strong>of</strong>uel and fossil fuel use (10,000 vs. ~150 years) causes the higher cumulative NO x –N<br />

emissions from bi<strong>of</strong>uel than fossil fuel use (1.9 vs. 1.1 Pg). The cumulative Nr emissions on a<br />

land-area basis are 1.3 and 2.9 Mg N ha –1 globally and in Europe, respectively. Since an<br />

estimated 60% <strong>of</strong> Nr emitted in Europe is also deposited there, the average cumulative<br />

anthropogenic Nr deposition would be ~1.8 Mg N ha –1 , representing ~30% <strong>of</strong> the current N<br />

34


pools in forest and alpine meadow soils <strong>of</strong> European glaciated areas (soils <strong>of</strong> similar age as<br />

the emissions).<br />

Despite large uncertainties in the model (13.7–30.5 Pg N over the last 10,000 years), the<br />

relative temporal distributions <strong>of</strong> total cumulative Nr emissions vary within relatively narrow<br />

ranges for different assumptions, with 70–84% <strong>of</strong> the emissions occurring prior to 1850. We<br />

conclude that the majority <strong>of</strong> the total cumulative anthropogenic Nr emission over the last<br />

10,000 years occurred in the pre-industrial period and could have increased soil N pools <strong>of</strong><br />

some remote ecosystems much earlier than is currently assumed.<br />

Anthropogenic Nr emission (Tg yr -1 ).<br />

3000 BC 1000 1700 1913 1980 2000<br />

30<br />

25<br />

LIV<br />

FER<br />

20<br />

H&P<br />

AWB<br />

15<br />

FSB<br />

10<br />

FFC<br />

5<br />

0<br />

10000 1000 100 10 1<br />

Year before present<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

3000 BC 1000 1700 1913 1980 2000<br />

Nr<br />

NH3-N<br />

NOx-N<br />

10000 1000 100 10 1<br />

Year before present<br />

Fig. 8: Global N-emissions from livestock production (LIV), application <strong>of</strong> synthetic N-fertilizers<br />

(FER), human excreta and domestic pets (H&P), burning <strong>of</strong> agricultural waste and bi<strong>of</strong>uel<br />

(AWB), forest and savannah burning (FSB), fossil fuel combustion (FFC), and total emissions<br />

<strong>of</strong> NH 3 –N, NO x –N, and total reactive N (Nr). Time is expressed in logarithmic scale<br />

(1 = year 2000; numbers on top are calendar years).<br />

5.4 Canopy leaching <strong>of</strong> nutrients and metals in a mountain spruce forest<br />

J. Kopáček (jkopacek@hbu.cas.cz), J. Turek, J. Hejzlar, and P. Porcal measured element<br />

concentrations and fluxes in bulk precipitation (two sites) and throughfall (four sites) in<br />

Norway spruce mountain stands in the Bohemian Forest (Czech Republic) from 1998–2009,<br />

with the aim to evaluate net atmospheric inputs <strong>of</strong> nutrients to the area, and (together with<br />

previous data from 1991–1997) long-term trends in acidic deposition. The average net<br />

atmospheric inputs <strong>of</strong> nutrients were 11, 4, 9, 62, 62, 45, 26, and 0.7–1.3 mmol m –2 yr –1 for<br />

Ca 2+ , Mg 2+ , K + , NO 3 – , NH 4 + , total organic N, S, and total P (TP), respectively. The TP<br />

deposition was affected by a notable contribution from local dust and pollen sources.<br />

Throughfall pH increased from 3.6–3.7 in 1991–1994 to 4.7–5.0 in 2006–2009, due to<br />

average declines in the SO 4 2– plus NO 3 – concentrations by 202 µeq l –1 and the H +<br />

concentration by 147 µeq l –1 . The decline in throughfall concentrations <strong>of</strong> SO 4 2– (by 184 µeq<br />

l –1 ) was the dominant driving force for the pH increase.<br />

35


5.5 Importance <strong>of</strong> dissolved organic carbon for phytoplankton nutrition in a eutrophic<br />

reservoir<br />

This study was supported by the Grant Agency <strong>of</strong> the Czech Republic<br />

(Project No. 206/07/P407)<br />

In 2008–2009, P. Znachor (znachy@hbu.cas.cz), Jiří Nedoma, and Pavel Rychtecký<br />

performed in situ experiments examining the effect <strong>of</strong> glucose addition on silica deposition<br />

kinetics and growth rates <strong>of</strong> Fragilaria crotonensis in the eutrophic Římov Reservoir (Czech<br />

Republic). Silica deposition kinetics was measured at four-hour intervals over a 24-hour<br />

incubation period with PDMPO (2-(4-pyridyl)-5{[4-dimethylaminoethyl-aminocarbamyl)-<br />

methoxy] phenyl}oxazole] fluorescence probe. A significant stimulatory effect <strong>of</strong> glucose<br />

supplemented at the concentration <strong>of</strong> 10 –4 mol l –1 on Fragilaria silification was observed at<br />

time 20 and 24 hours. Fragilaria growth rates almost doubled upon glucose enrichment<br />

compared to the untreated control at 24 h (Fig. 9). In addition, we conducted a dose-response<br />

experiment testing glucose additions from 10 –8 –10 –3 mol l –1 in 24-hour incubation. Glucose<br />

stimulated both Fragilaria silification and growth at concentrations >10 –7<br />

mol l –1 (Fig. 10), which might occasionally occur in a reservoir as a result <strong>of</strong> e.g. accidental<br />

contamination <strong>of</strong> water by organic pollution [1].<br />

Fig. 9: Kinetics <strong>of</strong> Fragilaria silification rates measured as PDMPO fluorescence at 4-hour intervals<br />

over 24 hours (a, c). Columns represent mean values (n ~ 50); bars are SEMs (standard errors<br />

<strong>of</strong> the mean). Fragilaria growth rates based on an increase in cell counts over 24 hours are<br />

given in the right panels (b, d). Asterisks denote significant differences between control and<br />

glucose amended samples (p


Fig. 10: Effect <strong>of</strong> various glucose additions on Fragilaria silification (a) and growth rates (b)<br />

measured after 24 hour incubation. Columns represent mean values; bars are standard errors<br />

<strong>of</strong> the mean. Asterisks denote significant differences between glucose-amended samples and<br />

untreated control (*p


6 PUBLICATIONS<br />

(visit www.hbu.cas.cz/papers.php for the <strong>Institute</strong> bibliography 1993–2010)<br />

(* authors from other institutions)<br />

A: Papers in International Periodicals<br />

1931 Adamec, L.*, Sirová, D., Vrba, J., 2010: Contrasting growth effects <strong>of</strong> prey capture<br />

in two aquatic carnivorous plant species. Fundamental and Applied Limnology, 176<br />

(2): 153–160.<br />

1932 Adamec, L.*, Sirová, D., Vrba, J., Rejmánková, E.*, 2010: Enzyme production in the<br />

traps <strong>of</strong> aquatic Utricularia species. Biologia, 65 (2): 273–278.<br />

1933 Blom, J.F.*, Horňák, K., Šimek, K., Pernthaler, J.*, 2010: Aggregate formation in a<br />

freshwater bacterial strain induced by growth state and conspecific chemical cues.<br />

Environmental Microbiology, 12 (9): 2486–2495.<br />

1934 Borovec, J., Sirová, D., Mošnerová, P., Rejmánková, E.*, Vrba, J., 2010: Spatial and<br />

temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat<br />

community. Biogeochemistry, 101 (1–3): 323–333.<br />

1935 Čech, M., Peterka, J., Říha, M., Draštík, V., Kratochvíl, M., Kubečka, J., 2010: Deep<br />

spawning <strong>of</strong> perch (Perca fluviatilis, L.) in the newly created Chabařovice Lake,<br />

Czech Republic. Hydrobiologia, 649 (1): 375–378.<br />

1936 Dlouhá, Š.*, Thielsch, A.*, Kraus, R.H.S.*, Seďa, J., Schwenk, K.*, Petrusek, A.*,<br />

2010: Identifying hybridizing taxa within the Daphnia longispina species complex: a<br />

comparison <strong>of</strong> genetic methods and phenotypic approaches. Hydrobiologia, 643 (1):<br />

107–122.<br />

1937 Hahn, M.W.*, Kasalický, V., Jezbera, J., Brandt, U.*, Jezberová, J., Šimek, K., 2010:<br />

Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from<br />

freshwater lake. International Journal <strong>of</strong> Systematic and Evolutionary Microbiology,<br />

60 (6): 1358–1365.<br />

1938 Hahn, M.W.*, Kasalický, V., Jezbera, J., Brandt, U.*, Šimek, K., 2010:<br />

Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended<br />

description <strong>of</strong> the genus Limnohabitans. International Journal <strong>of</strong> Systematic and<br />

Evolutionary Microbiology, 60 (12): 2946–2950.<br />

1939 Hohausová, E., Lavoy, R.J.*, Allen, M.S.*, 2010: Fish dispersal in a seasonal<br />

wetland: influence <strong>of</strong> anthropogenic structures. Marine and Freshwater Research, 61<br />

(6): 682–694.<br />

1940 Horňák, K., Jezbera, J., Šimek, K., 2010: Bacterial single-cell activities along the<br />

nutrient availability gradient in a canyon-shaped reservoir: a seasonal study. Aquatic<br />

Microbial Ecology, 60 (3): 215–225.<br />

1941 Jarolím, O., Kubečka, J., Čech, M., Vašek, M., Peterka, J., Matěna, J., 2010:<br />

Sinusoidal swimming in fishes: the role <strong>of</strong> season, density <strong>of</strong> large zooplankton, fish<br />

length, time <strong>of</strong> the day, weather condition and solar radiation. Hydrobiologia, 654<br />

(1): 253–265.<br />

38


1942 Jezberová, J., Jezbera, J., Brandt, U.*, Lindström, E.S.*, Langenheder, S.*, Hahn,<br />

M.W.*, 2010: Ubiquity <strong>of</strong> Polynucleobacter necessarius ssp. asymbioticus in lentic<br />

freshwater habitats <strong>of</strong> a heterogenous 2000 km 2 area. Environmental Microbiology,<br />

12 (3): 658–669.<br />

1943 Jůza, T., Čech, M., Kubečka, J., Vašek, M., Peterka, J., Matěna, J., 2010: The<br />

influence <strong>of</strong> the trawl mouth opening size and net colour on catch efficiency during<br />

sampling <strong>of</strong> early fish stages. Fisheries Research, 105 (3): 125–133.<br />

1944 Kalous, L.*, Šlechtová, V.*, Petrtýl, M.*, Kohout, J.*, Čech, M., 2010: Do small fish<br />

mean no voucher? Using a flatbed desktop scanner to document larval and small<br />

specimens before destructive analyses. Journal <strong>of</strong> Applied Ichthyology, 26 (4): 614–<br />

617.<br />

1945 Kasalický, V., Jezbera, J., Šimek, K., Hahn, M.W.*, 2010: Limnohabitans<br />

planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic<br />

betaproteobacteria isolated from a freshwater reservoir, and emended description <strong>of</strong><br />

the genus Limnohabitans. International Journal <strong>of</strong> Systematic and Evolutionary<br />

Microbiology, 60 (12): 2710–2714.<br />

1946 Kaštovský, J.*, Hauer, T.*, Mareš, J.*, Krautová, M.*, Bešta, T.*, Komárek, J.*,<br />

Desortová, B.*, Heteša, J.*, Hindáková, A.*, Houk, V.*, Janeček, E.*, Kopp, R.*,<br />

Marvan, P.*, Pumann, P.*, Skácelová, O.*, Zapomělová, E., 2010: A review <strong>of</strong> the<br />

alien and expansive species <strong>of</strong> freshwater cyanobacteria and algae in the Czech<br />

Republic. Biological Invasions, 12 (10): 3599–3625.<br />

1947 Komárek, J.*, Zapomělová, E., Hindák, F.*, 2010: Cronbergia gen. nov., a new<br />

cyanobacterial genus (Cyanophyta) with a special strategy <strong>of</strong> heterocyte formation.<br />

Cryptogamie, Algologie, 31 (3): 321–341.<br />

1948 Komárková, J., Jezberová, J., Komárek, O.*, Zapomělová, E., 2010: Variability <strong>of</strong><br />

Chroococcus (Cyanobacteria) morphospecies with regard to phylogenetic<br />

relationships. Hydrobiologia, 639 (1): 69–83.<br />

1949 Kopáček, J., Cudlín, P.*, Svoboda, M.*, Chmelíková, E.*, Kaňa, J., Picek, T.*, 2010:<br />

Composition <strong>of</strong> Norway spruce litter and foliage in atmospherically acidified and<br />

nitrogen-saturated Bohemian Forest stands, Czech Republic. Boreal Environment<br />

Research, 15 (4): 413–426.<br />

1950 Kopylov, A.I.*, Kosolapov, D.B.*, Zabotkina, E.A.*, Straskrabova, V., 2010:<br />

Distribution <strong>of</strong> picocyanobacteria and virioplankton in mesotrophic and eutrophic<br />

reservoirs: The role <strong>of</strong> viruses in mortality <strong>of</strong> picocyanobacteria. Biology Bulletin, 37<br />

(6): 565–573.<br />

1951 Kratochvíl, M., Čech, M., Vašek, M., Kubečka, J., Hejzlar, J., Matěna, J., Peterka, J.,<br />

Macháček, J., Seďa, J., 2010: Diel vertical migrations <strong>of</strong> age 0 + percids in a shallow,<br />

well-mixed reservoir. Journal <strong>of</strong> Limnology, 69 (2): 305–310.<br />

1952 Novotná, J.*, Nedbalová, L.*, Kopáček, J., Vrba, J., 2010: Cell-specific extracellular<br />

phosphatase activity <strong>of</strong> din<strong>of</strong>lagellate populations in acidified mountain lakes 1 .<br />

Journal <strong>of</strong> Phycology, 46 (4): 635–644.<br />

1953 Orderud, G.I.*, Políčková-Dobiášová, B., 2010 Agriculture and the environment – A<br />

case study <strong>of</strong> the Želivka catchment, Czech Republic. Journal <strong>of</strong> Environmental<br />

Policy & Planning, 12 (2): 201–221.<br />

39


1954 Porcal, P., Amirbahman, A.*, Kopáček, J., Norton, S.A.*, 2010: Experimental<br />

photochemical release <strong>of</strong> organically bound aluminum and iron in three streams in<br />

Maine, USA. Environmental Monitoring and Assessment, 171 (1–4): 71–81.<br />

1955 Prchalová, M., Mrkvička, T., Kubečka, J., Peterka, J., Čech, M., Muška, M.,<br />

Kratochvíl, M., Vašek, M., 2010: Fish activity as determined by gillnet catch: A<br />

comparison <strong>of</strong> two reservoirs <strong>of</strong> different turbidity. Fisheries Research, 102 (3): 291–<br />

296.<br />

1956 Šimek, K., Kasalický, V., Jezbera, J., Jezberová, J., Hejzlar, J., Hahn, M.W.*, 2010:<br />

Broad habitat range <strong>of</strong> the phylogenetically narrow R-BT065 cluster, representing a<br />

core group <strong>of</strong> the Betaproteobacterial genus Limnohabitans. Applied and<br />

Environmental Microbiology, 76 (3): 631–639.<br />

Correction: Applied and Environmental Microbiology, 76 (11): 3763.<br />

1957 Šimek, K., Kasalický, V., Horňák, K., Hahn, M.W.*, Weinbauer, M.G.*, 2010:<br />

Assessing niche separation among coexisting Limnohabitans strains through<br />

interactions with a competitor, viruses, and a bacterivore. Applied and Environmental<br />

Microbiology, 76 (5): 1406–1416.<br />

Correction: Applied and Environmental Microbiology, 76 (11): 3762.<br />

1958 Sirová, D., Borovec, J., Šantrůčková, H.*, Šantrůček, J.*, Vrba, J., Adamec, L.*,<br />

2010: Utricularia carnivory revisited: plants supply photosynthetic carbon to traps.<br />

Journal <strong>of</strong> Experimental Botany, 61 (1): 99–103.<br />

1959 Skácelová, O.*, Zapomělová, E., 2010: Remarks on the occurrence and ecology <strong>of</strong><br />

several interesting cyanobacterial morphospecies found in South Moravian wetlands.<br />

Acta Musei Moraviae, Scientiae biologicae, 95 (1): 201–221.<br />

1960 Straškrábová, V., 2010: Safeguarding life in our waters. Science for Environment<br />

Policy, DG Environment News Alert Service, Special Issue: Water and Biodiversity,<br />

22: 1–2.<br />

1961 Tahovská, K.*, Kopáček, J., Šantrůčková, H.*, 2010: Nitrogen availability in<br />

Norway spruce forest floor – the effect <strong>of</strong> forest defoliation induced by bark beetle<br />

infestation. Boreal Environment Research, 15 (6): 553–564.<br />

1962 Vaníčková, I., Seďa, J., Petrusek, A.*, 2010: The stabilizing effect <strong>of</strong> resting egg<br />

banks <strong>of</strong> the Daphnia longispina species complex for longitudinal taxon<br />

heterogeneity in long and narrow reservoirs. Hydrobiologia, 643 (1): 85–95.<br />

1963 Zapomělová, E., Řeháková, K., Jezberová, J., Komárková, J., 2010: Polyphasic<br />

characterization <strong>of</strong> eight planktonic Anabaena strains (Cyanobacteria) with reference<br />

to the variability <strong>of</strong> 61 Anabaena populations observed in the field. Hydrobiologia,<br />

639 (1): 99–113.<br />

1964 Znachor, P., Nedoma, J., 2010: Importance <strong>of</strong> dissolved organic carbon for<br />

phytoplankton nutrition in a eutrophic reservoir. Journal <strong>of</strong> Plankton Research, 32<br />

(3): 367–376.<br />

40


B: International Proceedings or Monographs<br />

1965 Pithart, D.*, Křováková, K.*, Žaloudík, J., Dostál, T.*, Valentová, J.*, Valenta, P.*,<br />

Weyskrabová, J.*, Dušek, J.*: 2010: Ecosystem services <strong>of</strong> natural floodplain segment<br />

- Lužnice River, Czech Republic. In: Proverbs, D., de Wrachien, D., Brebbia, C.,<br />

Mambretti, S. (eds.), Flood Recovery, Innovation and Response II, WIT Press, ISBN<br />

978–1–84564–444–4: 129–139.<br />

1966 Wright, R.F.*, Aherne, J.*, Bishop, K.*, Dillon, P.J.*, Erlandsson, M.*, Evans, C.D.*,<br />

Forsius, M.*, Hardekopf, D.W.*, Helliwell, R.C.*, Hruška, J.*, Hutchins, M.*, Kaste,<br />

O*., Kopáček, J., Krám, P.*, Laudon, H.*, Moldan, F.*, Rogora, M.*, Sjoeng,<br />

A.M.S.*, de Wit, H.A.*, 2010: Interaction <strong>of</strong> Climate Change and Acid Deposition. In:<br />

Kernan, M., Battarbee, R.W., Moss, B. (eds.) Climate Change Impacts on Freshwater<br />

Ecosystems, Blackwell Publishing Ltd., ISBN 978–1–4051–7913–3: 152–179.<br />

C: Papers and Books in Czech<br />

1967 Borovec, J., Hejzlar, J., Jan, J., Mošnerová, P., 2010: Eutr<strong>of</strong>izační potenciál různých<br />

zdrojů fosforu v povodí VN Římov [Eutrophication potential <strong>of</strong> different sources <strong>of</strong><br />

phosphorus in the Římov Reservoir catchment]. In: Borovec, J., Očásková, I. (eds.)<br />

Sborník příspěvků Revitalizace Orlické nádrže 2010, 3. ročník odborné konference.<br />

Písek, October 12–13, 2010, Svazek obcí regionu Písecko a BC AV ČR, v.v.i.,<br />

Hydrobiologický ústav, Č. Budějovice, ISBN 978–80–254–9014–3: pp. 47–52.<br />

1968 Hejzlar, J., Borovec, J., Mošnerová, P., Polívka, J., Turek, J., Volková, A., Žaloudík,<br />

J., 2010: Bilanční studie zdrojů živin v povodí nádrže Orlík: 1. principy, metodika,<br />

výsledky [A mass balance study <strong>of</strong> nutrient sources in the catchment <strong>of</strong> Orlík<br />

Reservoir: 1. Principles, methods, results]. In: Borovec, J., Očásková, I. (eds.) Sborník<br />

příspěvků Revitalizace Orlické nádrže 2010, 3. ročník odborné konference. Písek,<br />

October 12–13, 2010, Svazek obcí regionu Písecko a BC AV ČR, v.v.i.,<br />

Hydrobiologický ústav, Č. Budějovice, ISBN 978–80–254–9014–3: pp. 53–65.<br />

1969 Hejzlar, J., Borovec, J., Polívka, J., Turek, J., Volková, A., 2010: Bilanční studie<br />

zdrojů živin v povodí nádrže Orlík: 2. scénářová analýza pro návrh strategie snižování<br />

odnosu fosforu [A mass balance study <strong>of</strong> nutrient sources in the catchment <strong>of</strong> Orlík<br />

Reservoir: 2. Scenario analysis for proposal <strong>of</strong> strategy to decrease phosphorus<br />

run<strong>of</strong>f]. In: Borovec, J., Očásková, I. (eds.) Sborník příspěvků Revitalizace Orlické<br />

nádrže 2010, 3. ročník odborné konference. Písek, October 12–13, 2010, Svazek obcí<br />

regionu Písecko a BC AV ČR, v.v.i., Hydrobiologický ústav, Č. Budějovice, ISBN<br />

978–80–254–9014–3: pp. 67–80.<br />

1970 Hejzlar, J., Borovec, J., Jan, J., Kopáček, J., Mošnerová, P., Potužák, J.*, Rohlík, V.*,<br />

Žaloudík, J., 2010: Příčiny eutr<strong>of</strong>izace a zhoršování jakosti vody ve vodárenské nádrži<br />

Karhov: vnitřní zatížení nebo procesy v povodí? [Sources <strong>of</strong> eutrophication and water<br />

quality decline in the drinking water reservoir Karhov: Internal loading or catchment<br />

processes?]. In: Říhová Ambrožová J. (ed.) Sborník konference Vodárenská biologie<br />

2010, Praha, February 3–4, 2010. Vodní zdroje EKOMONITOR, spol. s r.o., Chrudim,<br />

ISBN 978–80–86832–48–7: pp. 114–122.<br />

41


1971 Jan, J., Borovec, J., Hejzlar, J., 2010: Zpřesnění interpretace frakcionační analýzy P,<br />

Fe a Al v sedimentech [Sediment P, Fe, and Al fractionation analysis – interpretation<br />

improvement]. In: Kalousková, N., Dolejš, P. (eds.) Sborník konference Pitná voda,<br />

10. pokračování konferencí Pitná voda z údolních nádrží. Tábor, May 17–20, 2010, W<br />

& ET Team, Č. Budějovice, ISBN 978–80–254–6854–8: pp. 323–328.<br />

1972 Krása, J.*, Dostál, T.*, Rosendorf, P.*, Hejzlar, J., Borovec, J., Duras, J.*, Fiala, D.*,<br />

Beránková, T.*, Dvořáková, T.*, Martinec, J.*, Strouhal, L.*, Koudelka, P.*,<br />

Mikšíková, K.*, Vrána, K.*, Ansorge, L.*, 2010: Útvary stojatých vod v ČR a rizika<br />

eutr<strong>of</strong>izace způsobená erozním smyvem [Defining <strong>of</strong> eutrophication <strong>of</strong> standing water<br />

bodies caused by erosion phosphorus loads]. In: Sborník příspěvků z konference<br />

Krajinné inženýrství 2010, Praha, September 23–24, 2010. ČSKI, Praha, ISBN 978–<br />

80–903258–9–0: pp. 56–62.<br />

1973 Krolová, M., Čížková, H.*, Hejzlar, J., 2010: Faktory ovlivňující výskyt vodních<br />

makr<strong>of</strong>yt v nádrži Lipno [Factors effecting the occurrence <strong>of</strong> aquatic macrophytes in<br />

the Lipno reservoir]. Silva Gabreta, 16 (2): 61–92.<br />

1974 Kubečka, J., Boukal, D.*, Matěna, J., Soukalová, K., Říha, M., 2010: Mořský a<br />

sladkovodní svět se střetly na jihu Čech [Marine and freshwater worlds met in South<br />

Bohemia]. Akademický bulletin, 2010 (12): 22–23.<br />

1975 Kubečka, J., Frouzová, J., Jůza, T., Kratochvíl, M., Prchalová, M., Říha, M., 2010:<br />

Metodika monitorování rybích společenstev nádrží a jezer [Methodical guideline for<br />

the monitoring <strong>of</strong> fish communities <strong>of</strong> lakes and reservoirs]. Biologické centrum AV<br />

ČR, v.v.i., Hydrobiologický ústav, Č. Budějovice, ISBN 978–80–86668–08–6: 64 pp.<br />

1976 Kubečka, J., Matěna, J., Čech, M., Kratochvíl, M., Peterka, J., Prchalová, M., Říha,<br />

M., Vašek, M., 2010: Inventura ryb v našich vodách [Fish census in Czech waters].<br />

Rybářství, 2010 (2): 42–45.<br />

1977 Kubečka, J., Matěna, J., Čech, M., Draštík, J., Frouzová, J., Jůza, T., Kratochvíl, M.,<br />

Muška, M., Peterka, J., Prchalová, M., Říha, M., Tušer, M., Vašek, M., 2010: Thor<br />

Heyerdahl zamířil do sladkých vod [Thor Heyerdahl arrived into fresh waters].<br />

Rybářství, 2010 (7): 14–17.<br />

1978 Peterka, J., Kubečka, J., Čech, M., Draštík, V., Frouzová, J., Jůza, T., Prchalová, M.,<br />

Říha M., 2010: Ryby důlních jezer – nedílná součást funkčního ekosystému [Fish in<br />

the coal-mine pit lakes – integral component <strong>of</strong> a functional ecosystem]. In: Sborník<br />

Magdeburský seminář o ochraně vod 2010, Teplice, October 4–6, 2010, Povodí Ohře,<br />

s.p., Chomutov: pp. 106–109.<br />

1979 Potužák, J.*, Duras, J.*, Borovec, J., Rohlík, V.*, Langhansová, M.*, Kubelka, A.*,<br />

2010: První výsledky živinové bilance rybníku Rožmberk s posouzením vlivu na řeku<br />

Lužnici [First results <strong>of</strong> the fish pond Rozumberk nutrient mass-balance with<br />

considering <strong>of</strong> the influence on Luznice river]. In: Borovec, J., Očásková, I. (eds.)<br />

Sborník příspěvků Revitalizace Orlické nádrže 2010, 3. ročník odborné konference.<br />

Písek, October 12–13, 2010, Svazek obcí regionu Písecko a BC AV ČR, v.v.i.,<br />

Hydrobiologický ústav, Č. Budějovice, ISBN 978–80–254–9014–3: pp. 99–117.<br />

42


1980 Potužák, J.*, Duras, J.*, Borovec, J., Rucki, J.*, 2010: Rybníky Dehtář a Hejtman –<br />

látkové bilance [Fish ponds Dehtar and Hejtman – mass-balances]. In: Borovec, J.,<br />

Očásková, I. (eds.) Sborník příspěvků Revitalizace Orlické nádrže 2010, 3. ročník<br />

odborné konference. Písek, October 12–13, 2010, Svazek obcí regionu Písecko a BC<br />

AV ČR, v.v.i., Hydrobiologický ústav, Č. Budějovice, ISBN 978–80–254–9014–3: pp.<br />

119–136.<br />

1981 Šantrůčková, H.*, Vrba, J., Křenová, Z.*, Svoboda, M.*, Benčoková, A.*, Edwards,<br />

M.*, Fuchs, R.*, Hais, M.*, Hruška, J.*, Kopáček, J., Matějka, K.*, Rusek, J.*, 2010:<br />

Co vyprávějí šumavské smrčiny. Průvodce lesními ekosystémy Šumavy [What the<br />

spruce forests <strong>of</strong> the Šumava Mts. tell us. A quide to Šumava’s forest ecosystems].<br />

Správa NP a CHKO Šumava, ISBN 978–80–87257–04–3: 153 pp.<br />

43


Biology Centre <strong>of</strong> the Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, v.v.i.<br />

INSTITUTE OF HYDROBIOLOGY<br />

51 th ANNUAL REPORT<br />

For the Year 2010<br />

ISSN 1210 – 9649<br />

44 pages + Appendix (8pp)<br />

Edited by Jiří Nedoma<br />

Assistant Editors: N. Johanisová (language revision), V. Lavičková<br />

Published by Biology Centre <strong>of</strong> the Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, v.v.i., <strong>Institute</strong> <strong>of</strong><br />

<strong>Hydrobiology</strong>, České Budějovice (founded 1955 as Hydrobiological Laboratory, Czechoslovak<br />

Academy <strong>of</strong> Sciences, Prague)<br />

Printed in Czech Republic by Typodesign, České Budějovice<br />

© Biology Centre AS CR, v.v.i, <strong>Institute</strong> <strong>of</strong> <strong>Hydrobiology</strong>, 2011<br />

44


APPENDIX<br />

Jaroslav Hrbáček (1921–2010): The complete bibliography<br />

A: International Periodicals<br />

Hrbáček, J., Brandl, Z., Straškraba, M.*, 2003: Do the long-term changes in zooplankton<br />

biomass indicate changes in fish stock? Hydrobiologia, 504 (Special Issue): 203–213.<br />

Straškrabová, V., Brandl, Z., Hrbáček, J., Komárková, J., Seďa, J., Straškraba, M., Šimek, K.,<br />

1998: Long-term changes <strong>of</strong> bacteria, phytoplankton and zooplankton: temporal coherence<br />

between deep stratified reservoirs. Internat. Rev. Hydrobiol., 83 (Special Issue): 21-30.<br />

Hrbáček, J., Albertová, O., Desortová, B., Gottwaldová, V., Komárková, J., Kopáček, J.,<br />

Popovský, J., Seďa, J., Vyhnálek, V., 1994: Overshooting phenomenon <strong>of</strong> chlorophyll-a<br />

concentrations and the year-to-year variation <strong>of</strong> the fish impact on zooplankton. Arch.<br />

Hydrobiologie, Beih. Ergebn. Limnol., 40: 175-184.<br />

Brandl, Z., Hrbáček, J., Komárková, J., Vyhnálek, V., Seďa, J., Straškraba, M., 1989:<br />

Seasonal changes <strong>of</strong> zooplankton and phytoplankton and their mutual relations in some<br />

Czechoslovak reservoirs. Arch. Hydrobiologie, Beih. Ergebn. Limnol., 33: 597-609.<br />

Hebert, P.D.N., Schwartz, S.S., Hrbáček, J., 1989: Patterns <strong>of</strong> genotypic diversity in<br />

Czechoslovakian Daphnia. Heredity, 62: 207-216.<br />

Hrbáček, J., 1987: Systematics and biogeography <strong>of</strong> Daphnia species. In: Peters, R.H., de<br />

Bernardi, R. (Eds.): „Daphnia“. Mem. Ist. Ital. Idrobiol., 45: 31-35.<br />

Hrbáček, J., 1987: Systematics and biogeography <strong>of</strong> Daphnia species in the northern<br />

temperate region. In: Peters, R.H., de Bernardi, R. (Eds.): „Daphnia“. Mem. Ist. Ital.<br />

Idrobiol., 45: 37-76.<br />

Hrbáček, J., Albertová, O., Desortová, B., Gottwaldová, V., Popovský, J., 1986: Relation <strong>of</strong><br />

the zooplankton biomass and share <strong>of</strong> large cladocerans to the concentrations <strong>of</strong> total<br />

phosphorus, chlorophyll-a and transparency in Hubenov and Vrchlice reservoirs.<br />

Limnologica, 17: 301-308.<br />

Hrbáčková, M., Hrbáček, J., 1979: Rate <strong>of</strong> the postembryonic development in several<br />

populations <strong>of</strong> the group <strong>of</strong> the species Daphnia hyalina Leyding at various concentrations<br />

<strong>of</strong> food. Věstník Čs. spol. zool., 43, 4: 253-259.<br />

Hrbáčková, M., Hrbáček, J., 1978: The growth rate <strong>of</strong> Daphnia pulex and Daphnia pulicaria<br />

(Crustacea: Cladocera) at different food levels. Věstník Čs. spol. zool., 42, 2: 81-84.<br />

Hrbáček, J., Desortová, B., Komárková, J., Popovský, J., 1977: Observations on the relation<br />

between phosphorus and chlorophyll in small reservoir Klíčava, Bohemia. Int. J. Ecol.<br />

Environ. Sci., 3: 9-15.<br />

Hrbáček, J., 1976: Relations between nutrient budget and productivity in ponds. Limnologica,<br />

10, 2: 353-355.<br />

Uhlmann, D., Hrbáček, J., 1976: Kriterien der Eutrophie stehender Gewässer. Limnologica,<br />

10, 2: 245-253.<br />

Hrbáček, J., 1974: On the possibilities <strong>of</strong> averaging the seasonal pattern in Kjeldahl nitrogen<br />

in a group <strong>of</strong> water bodies. Int. Rev. ges. Hydrobiol. 38, 3: 395-402.<br />

Hrbáček, J., 1969: Redescription <strong>of</strong> Daphnia zschokkei Stingelin. Věstník Čs. spol. zool. 33,<br />

2: 128-131.<br />

45


Hrbáček, J., 1965: Beziehungen zwischen Nährst<strong>of</strong>fgehalt, Organismenproduktion und<br />

Wasserqualität in Talsperren. Wissenschaftliche Zeitschrift der Karl-Marx-Universität<br />

Leipzig 14: 265-273.<br />

Hrbáček, J., Novotná-Dvořáková, M., 1965: Plankton <strong>of</strong> four Backwaters related to their size<br />

and fish stock. Rozpravy ČSAV, Řada matem. a přír. věd 75, 13: 1-65.<br />

Hrbáček, J., 1962: Species composition and the amount <strong>of</strong> the zooplankton in relation to the<br />

fish stock. Rozpravy ČSAV 72, 10: 116 pp.<br />

Hrbáček, J., Hrbáčková -Esslová, M., 1960: Fish stock as a protective agent in the occurrence<br />

<strong>of</strong> slow-developing dwarf species and strains <strong>of</strong> the genus Daphnia. Int. Rev. ges.<br />

Hydrobiol. 45, 3: 355-358.<br />

Hrbáček, J., 1959: Circulation <strong>of</strong> water as a main factor influencing the development <strong>of</strong><br />

helmets in Daphnia cucullata Sars. Hydrobiologia, 13: 170-185.<br />

Hrbáček, J., 1959: Über die angebliche Variabilität von Daphnia pulex L. Zool. Anzeiger,<br />

162: 116-126.<br />

Hrbáček, J., 1950: On the flight reaction <strong>of</strong> tadpoles <strong>of</strong> the common toad caused by chemical<br />

substances. Experientia VI, 3: 100-104. Basel.<br />

Hrbáček, J., 1950: On the morphology and function <strong>of</strong> the antennae <strong>of</strong> the Central European<br />

Hydrophilidae (Coleoptera). The Transactions <strong>of</strong> the Royal Entomol. Soc. <strong>of</strong> London<br />

101,7: 239-256. London<br />

Hrbáček, J., 1949: Morphology and physiology <strong>of</strong> the spiracles <strong>of</strong> the family Hydrophylidae.<br />

Věstník čsl. zool. spol. 13: 136-176.<br />

B: International Proceedings or Monographs<br />

Pechar, L., Hrbáček, J., Pithart, D., Dvořák, J., 1996: Ecology <strong>of</strong> pools in the floodplain. In:<br />

Prach, K., Jeník, J., Large, A.R.G. (eds.), Floodplain Ecology and Management, pp. 209-<br />

226. SPB Academic Publishing, Amsterdam.<br />

Absolon, K., Bejček, K., Černý, R., Hartwich, P., Hrbáček, J., Husák, Š., Janda, J.,<br />

Klabouchová, A., Klimeš, L., Komárek, O., Král, D., Pechar, L., Pithart, D., Poulíčková,<br />

A., Prach, K., Rektoris, L., Svobodová, J., Ševčík, J., Šťastný, K., Wolowski, K., 1996:<br />

Appendix. In: Prach, K., Jeník, J., Large, A.R.G. (eds.), Floodplain Ecology and<br />

Management, pp. 271-282. SPB Academic Publishing, Amsterdam.<br />

Straškrabová, V., Brandl, Z., Hejzlar, J., Hrbáček, J., Komárková, J., Procházková, L.,<br />

Straškraba, M., 1996: Einwirkung der Moldauer Kaskade auf die Wasserbeschaffenheit<br />

und Produktionsfähigkeiten des Flussökosystems. In: 7. Magdeburger Seminar für<br />

Gewässerschutz des Ökosystems der Elbe, pp. 130-136. České Budějovice, October 22-25,<br />

1996, GKSS Forschungszentrum, VÚV TGM.<br />

Hrbáček, J., 1994: Food web relations. In: Eiseltová, M. (ed.) Restoration <strong>of</strong> Lake Ecosystems<br />

a holistic approach. pp.44-58. International Waterfowl and Wetlands Research Bureau.<br />

Hrbáček, J., Pechar, J., Dufková, V., 1994: Anaerobic conditions in winter shape the seasonal<br />

conditions <strong>of</strong> Copepoda and Cladocera in pools in forested inundations. Verhandlungen<br />

Internat. Verein. Limnol. 25: 1335-1336.<br />

Hrbáček, J., 1984: Ecosystems <strong>of</strong> European man-made lakes. In: Taub, B.F. (ed): Lakes and<br />

Reservoirs, pp. 267-290. Elsevier Sci. Publ., Amsterdam.<br />

Hrbáček, J., 1981: Investigation <strong>of</strong> freshwater biota. In: Handbook <strong>of</strong> contemporary<br />

developments in world ecology: 136-138. Westport, Greenwood Press.<br />

46


Hrbáček, J., 1981: Possibilities <strong>of</strong> bioindications <strong>of</strong> trophic conditions in reservoirs. In:<br />

Společenský význam zoologických výskumov při tvorbe a ochrane životného prostredia:<br />

25-29. Zborník materiálov z celoštát. zool. konferencie Bratislava. Slov. zool. spol. při<br />

SAV.<br />

Hrbáček, J., Hrbáčková, M., 1980: Planktonic species <strong>of</strong> Cladocera (Crustacea) as biological<br />

indicators <strong>of</strong> eutrophication. In: Bioindicatores deteriorisationis regionis: 49-54. Proc. 3 rd<br />

Internat. Confer. Liblice 1977. Praha, Academia 1980.<br />

Fott, J., Desortová, B., Hrbáček, J., 1980: A comparison <strong>of</strong> the growth <strong>of</strong> flagellates under<br />

heavy grazing stress with a continuous culture. In: Contin. Cultiv. Microorganisms: 395-<br />

401. Proc. 7 th Symp. Prague 1978. Praha, Inst. Microbiol. Czechoslvak Acad. Sci. 1980.<br />

Hrbáček, J., Desortová, B., Popovský, J., 1978: Influence <strong>of</strong> the fishstock on the phosphoruschlorophyll<br />

ratio. Verh. Internat. Verein. Limnol. 20, 3: 1624-1628.<br />

Hrbáček, J., Kořínek, V., Frey, D.G., 1978: Cladocera. In: Illies, J. (ed.): Limn<strong>of</strong>auna<br />

Europaea: 189-195. G. Fischer Vrlg., Stuttgart.<br />

Hrbáček, J., 1977: Competition and predation in relation to species composition <strong>of</strong> freshwater<br />

zooplankton, mainly Cladocera. In: Cairs, J. jr. (ed.): Aquatic microbial communities.<br />

Garland Reference Library <strong>of</strong> Science and Technology, vol. 15: 305-353. New York.<br />

Hrbáček, J., Procházková, L., 1975: Release <strong>of</strong> nitrogenous substances from bottom<br />

sediments under laboratory conditions. Verh. Internat. Verein. Limnol., 19: 1899-1906.<br />

Hrbáček, J., 1973: Relations between nutrient budget and productivity in ponds. In:<br />

Eutrophierung u. Gew. Symposium Biol. Gesellschaft DDR u. Techn. Univ. Dresden,<br />

Reinhardsbrunn: 59-62.<br />

Hrbáček, J., 1971: Special sampling systems. Secondary productivity in fresh waters. A<br />

manual on methods. IBP Handbook 17: 15-16.<br />

Hrbáček, J., 1970: Problems and results <strong>of</strong> productivity studies in ponds and reservoirs.<br />

Preliminary papers for UNESCO-IBP Symposium on productivity problems <strong>of</strong><br />

freshwaters. I: 155-157. Kazimierz Dolny, Poland<br />

Hrbáček, J., 1969: Relations between some environmental parameters and the fish yield as a<br />

basis for a predictive model. Verh. Internat. Verein. Limnol., 17: 1069-1081.<br />

Hrbáček, J., 1969: Relation <strong>of</strong> productivity phenomena to the water quality criteria in ponds<br />

and reservoirs. In: Advances in water pollution research. Proceedings <strong>of</strong> the 4 th Internat.<br />

Confer. Prague 1969: Pergamon Press, Oxford.<br />

Hrbáček, J., 1969: On the possibility <strong>of</strong> estimating predation pressure and nutrition level <strong>of</strong><br />

populations <strong>of</strong> Daphnia /Crust., Cladocera/ from their remains in sediments. Mitt. Internat.<br />

Verein. Limnol., 17: 269-274.<br />

Hrbáček, J., 1969: Relations <strong>of</strong> biological productivity to fish production and the maintenance<br />

<strong>of</strong> water quality. In: Proc. <strong>of</strong> the Symposium: Man made lakes, Accra 1966. Ghana Univ.<br />

Press, Accra 1969: 176-185.<br />

Hrbáček, J., 1969: Water passage and distribution <strong>of</strong> plankton organisms in Slapy Reservoir.<br />

In: Proc. <strong>of</strong> the Symposium: Man made lakes, Accra 1966, Ghana Univ. Press, Accra<br />

1969: 144-154.<br />

Hrbáček, J., 1968: In Erinnerung an Dr. Emil Dejdar. Věstník Čsl. spol. zool. 32, 1: 95-96.<br />

Hrbáček, J., 1967: On some quantitative relationships between nitrogen and phosphorous<br />

compounds in water and seston. Proc. IBP Symposium: 106-114, Amsterdam.<br />

Hrbáček, J., Straškraba, M., Kořínek, V., 1967: Cladocera. In: Limn<strong>of</strong>auna Europea. G.<br />

Fischer Verlag, Stuttgart, 202-209.<br />

47


Hrbáček, J., Hrbáčková-Esslová, M., 1966: The taxonomy <strong>of</strong> the genus Daphnia and the<br />

problem <strong>of</strong> “biological indication“. Verh. Internat. Verein. Limnol., 16, 3: 1661-1667.<br />

Hrbáček, J., Straškraba, M., 1966: Horizontal and vertical distribution <strong>of</strong> temperature,<br />

oxygen, pH and water movements in Slapy Reservoir /1958-1960/. Hydrobiol. Studies, 1:<br />

7-40.<br />

Straškraba, M., Hrbáček, J., 1966: Net-plankton cycle in Slapy Reservoir during 1958-1960.<br />

Hydrobiol. Studies 1: 113-153.<br />

Hrbáček, J., Procházková, L., Straškrabová, V., Junge, C.O., 1966: The relationship between<br />

the chemical characteristics <strong>of</strong> the Vltava River and Slapy Reservoir with an appendix:<br />

Chemical budget for Slapy Reservoir. Hydrobiol. Studies 1: 41-84.<br />

Hrbáček, J., 1966: A morphometrical study <strong>of</strong> some backwaters and fish ponds in relation to<br />

the representative plankton samples. Hydrobiol. Studies 1: 221-265.<br />

Hrbáček, J., 1965: Relations <strong>of</strong> planktonic crustacea to different aspects <strong>of</strong> pollution. In: Biol.<br />

problems in water pollution, 3 rd Seminar held at Cincinnati 13-17 Aug. 1962, 53-57.<br />

Hrbáček, J., 1964: Contribution to the ecology <strong>of</strong> water-bloom-forming blue-green algae –<br />

Aphanizomenon flos-aquae and Microcystis aeruginosa. Verh. Internat. Verein. Limnol.,<br />

XV: 837-846<br />

Hrbáček, J., Popovský, J., 1963: Determination <strong>of</strong> phosphate and total phosphorus in water.<br />

Symposium 1963 on secondary production – Slapy.<br />

Hrbáček, J., 1962: Species composition and the amount <strong>of</strong> the zooplankton in relation to the<br />

fish stock. Rozpravy ČSAV 72, 10: 116pp. Praha, Academia.<br />

Hrbáček, J., Dvořáková, M., Kořínek, V., Procházková, L, 1961: Demonstration <strong>of</strong> the effect<br />

<strong>of</strong> the fish stock on the species composition <strong>of</strong> zooplankton and the intensity <strong>of</strong> metabolism<br />

<strong>of</strong> the whole plankton association. Verh. Internat. Verein. Limnol., XIV: 192-195.<br />

Hrbáček, J., 1958: Density <strong>of</strong> the fish population as a factor influencing the distribution and<br />

speciation <strong>of</strong> the species in the genus Daphnia. Proc. 15 th International Congress <strong>of</strong><br />

Biology, Sect. 10, London, pp. 794-795.<br />

Hrbáček, J., 1958: Typologie and Produktivität der teichartigen Gewässer. Verh. Internat.<br />

Verein. Limnol. XIII: 394-399.<br />

C: Papers and books in Czech<br />

Hrbáček, J., 2005: Dlouhodobější důsledky povodně 2002 pro biocenosu volné vody Slapské<br />

nádrže. [Long-term effects <strong>of</strong> the 2002 flood for the biocenosis <strong>of</strong> the open water <strong>of</strong> the<br />

Slapy reservoir]. In: Ambrožová, J., Tlustá , P (eds), Sborník conference Vodárenská<br />

biologie 2005, , Praha, February 2–3, 2005, Vodní zdroje Ekomonitor, Chrudim, pp. 203–<br />

208. ISBN 80–86832–07–4:pp.180-186.<br />

Hrbáček, J., 2003: Jak ovlivnil silný průtok plankton Slapské nádrže? [The effect <strong>of</strong> a high<br />

through-flow on the plankton <strong>of</strong> the Slapy reservoir]. In: Ambrožová, J. (ed.), 19. seminář<br />

Aktuální otázky vodárenské biologie, Praha, February 5–6, 2003, Vodní zdroje<br />

Ekomonitor, Chrudim, pp. 203–208. ISBN 80–903203–1–7.<br />

Hrbáček, J., Brandl, Z., 2003: Co ovlivňuje život planktonu v údolních nádržích? [Effects on<br />

planktonic life in valley reservoirs?]. Acta Facultatis Ecologiae: 10 (Suppl. 1): 123–126.<br />

Hrbáček, J., 2002: Co je příčinou vymizení vodního květu z hladiny Slapské nádrže? [The<br />

possible reasons for the disappearance <strong>of</strong> water-bloom from the surface <strong>of</strong> Slapy reservoir.]<br />

In: Ambrožová, J. (ed.), 18. seminář Aktuální otázky vodárenské biologie, Praha, February<br />

6-7, 2002, VŠCHT, Praha, pp. 146-150. ISBN 80-7080-467-X.<br />

48


Hrbáček, J., 2000: Vztah změn podílu perlooček >0.7 mm v jejich celkové biomase k změně<br />

koncentrace chlor<strong>of</strong>ylu, biomasy a druhovému složení fytoplanktonu. [Relation between<br />

changes <strong>of</strong> the proportion <strong>of</strong> Cladocera >0.7 mm in total cladoceran biomass to changes in<br />

chlorophyll concentration, phytoplankton biovolume and species composition.] In: Rulík,<br />

M. (ed.), Sborník referátů XII. Limnologická konference Limnologie napřelomu tisíciletí,<br />

Kouty nad Desnou, September 18-22, 2000, Univerzita Palackého, Olomouc, pp.111-114.<br />

Hrbáček, J., 2000: Zooplankton v pelagiálu a zarostlém litorálu tůně s rybím potěrem.<br />

[Zooplankton in the pelagial and weed overgrown littoral <strong>of</strong> the backwater with fish fry.]<br />

In: Pithart, D. (ed.), Sborník příspěvků z konference Ekologie aluviálních tůní a říčních<br />

ramen, Lužnice u Třeboně, March 2-3, 2000, Botanický ústav AV ČR, Průhonice, pp. 85-<br />

86.<br />

Hrbáček, J., 2000: Dvě strategie v ekosystému astojatých vod. [Two strategies in a lenitic<br />

ecosystem.] In: Pithart, D. (ed.), Sborník příspěvků z konference Ekologie aluviálních tůní<br />

a říčních ramen, Lužnice u Třeboně, March 2-3, 2000, Botanický ústav AV ČR, Průhonice,<br />

pp. 13-15.<br />

Hrbáček, J., 2000: Sezónní interakce perlooček a klanonožců v tůních řeky Lužnice.<br />

[Seasonal interactions <strong>of</strong> cladocerans and copepods in Lužnice backwaters.] In: Pithart, D.<br />

(ed.), Sborník příspěvků z konference Ekologie aluviálních tůní a říčních ramen, Lužnice u<br />

Třeboně, March 2-3, 2000, Botanický ústav AV ČR, Průhonice, pp. 87-88.<br />

Hrbáček, J., 1991: Ekologie planktonu v ekosystému stojatých vod. [Plankton ecology in the<br />

ecosystem <strong>of</strong> standing waters.] In: Sborník IX. celostátní konference ČSLS, pp. 61-64,<br />

September 24-27, Znojmo, ČSAV.<br />

Hrbáček, J., Hrbáčková, M., 1985: Mechanismy koexistence dvou druhů perlooček rodu<br />

Daphnia na stejém biotopu. [Mechanisms <strong>of</strong> coexistence <strong>of</strong> two Daphnia species in the<br />

same habitats.] In: 7. konferencia Československej limnologickej spoločnosti, pp.3348-<br />

340, June 17-21, 1985, Nitra, Dom techniky.<br />

Hrbáček, J., Desortová, B., Albertová, O., Gottwaldová, V., Popovský, 1984: Vztah biomasy<br />

zooplanktonu a podílu velkých perlooček ke koncentraci celkového fosforu, chlor<strong>of</strong>ylu a<br />

průhlednosti nádrží Hubenov a Vrchlice. [Relation <strong>of</strong> zooplankton biomass and proportion<br />

<strong>of</strong> large cladocerans to total phosphorus and chlorophyll concentrations and to water<br />

transparency in the Hubenov and Vrchlice reservoirs.] In: Straškraba, M., Porcalová, P.,<br />

Brandl, Z. (eds), Hydrobiologie a kvalita vody údolních nádrží, pp.233-240, February 6-9,<br />

1984, VTS JIVAK, PŘ and VTS JČBC.<br />

Kuklík, K., Hrbáček, J., 1984: České a moravské rybníky. Praha, ČTK Pressfoto, 83p.<br />

Hrbáček, J., 1984: Ryby zjišťují koncentrace znečisťujících látek. Vesmír 63, 10: 317.<br />

Hrbáček, J., 1982: Začátky výzkumu vlivu ryb na strukturu společenstva stojatých vod,<br />

předevěím na strukturu planktonu. In: Věda v Československu 1945-1960. Praha, Ústav<br />

československých a světových dějin, ČSAV.<br />

Hrbáček, J., Albertová, O., Popovský, J., 1982: Tr<strong>of</strong>ie, eutr<strong>of</strong>izace a jakost vody. In: „Vodní<br />

ekosystémy, funkce, vývoj a ochrana, 196-201. Sborník referátů 6. konference ČLS 27.9. –<br />

1.10. 1982, Blansko. Ostrava SmVAK a pobočka ČSVTS.<br />

Hrbáček, J., 1982: Dusičnany v povrchových a podzemních vodách. Vodohosp. – techn. ekon.<br />

informace 1982, 5: 166-171.<br />

Hrbáček, J., 1981: Produkční vztahy, výchozí struktura pro posuzování faktorů eutr<strong>of</strong>izace<br />

údolních nádrží. Studie ČSAV 24: 58p. Praha, Academia.<br />

Hrbáček, J., 1981: Nevyužití mořští korýši. Vesmír 60, 11: 348.<br />

49


Hrbáček, J., 1980: Znečisťování vody a jeho vliv na organismy. (Třídy čistoty vody a<br />

biologické indikátory). In: J. Poupě (ed), Čistota vody a regulace toků p.11-16. Praha,<br />

Český rybářský svaz.<br />

Hrbáček, J., 1980: Zelený hrášek a kovy v organických hnojivech. Vesmír 59, 2: 60.<br />

Hrbáček, J., 1979: Vliv zvyšování aplikace průmyslových hnojiv v zemědělství na zvyšování<br />

koncentrace sloučenin dusíku a fosforu v povrchových vodách. In: Kvalita vody a<br />

rybářství. Sborník referátů y celostatní konf. Vodňany 1979: 53-58. Vodňany ČSVTS,<br />

Ústřední rybářská sekce.<br />

Hrbáček, J., Popovský, J., 1979: Průběh koncentrace sloučenin fosforu v hladinové vrstvě<br />

Klíčavské údolní nádrže za 17 let. In: Problematika priehradných nádrží, najmä<br />

vodárenských: 7. Symposium Banská Bystrica 1979. Čsl. priehradný výbor pri ČSVTS,<br />

Bratislava, Výsk. úst. vodného hospodárstva.<br />

Hrbáček, J., 1979: Homeostase v pelagických společenstvech, případně ekosystémech<br />

sladkých vod. In: Poznávání, řízení a ochrana jakosti vody. Sborník referátů V.<br />

limnologické konf. Ústí n.l.: 81-88. Pardubice, Dům techniky ČSVTS.<br />

Hrbáček, J., 1978: Limnologické podklady pro posuzování vhodnosti účelové rybí osádky ve<br />

vodárenských údolních nádržích. Vertebratologické zprávy 1978: 1-18.<br />

Hrbáček, J., 1978: Získávání ebergie z vertikálních teplotních rozdílů v moři. Vesmír 57, 4:<br />

125.<br />

Hrbáček, J., Desortová, B., Popovský, J., Gottwaldová, V., 1977: Snížení rozvoje řas ve<br />

vodárenské nádrži Hubenov biocenotickými prostředky. In: Voda. Moderní technoilogické<br />

metody úpravy vody. IV. vodárenská konference Gottwaldov 1977: 98-106. Dům techniky,<br />

Pardubice.<br />

Albertová, O., Hrbáček, J., Popovská, P., Popovský, J., Punčochář, P., 1977: Neobvyklý<br />

výskyt vajíček vodulí ve vodárenské nádrži Hubenov. Živa 43, 4: 143-145.<br />

Hrbáček, J., 1977: Vitamin C snižuje toxicitu toxafenu pro ryby. Vesmír 56, 9: 283.<br />

Hrbáček, J., 1977: Využitie niektorých limnologických poznatkov na zníženie eutr<strong>of</strong>izácie<br />

v ůdolných nádržíach. In: Biologické problémy vodného hospodárstva, IV. závodná<br />

pobočka SVTS PBH Košice 1977: 220-232.<br />

Hrbáček, J., 1977: Repelent proti žralokům. Vesmír 56,4: 122.<br />

Albertová, O., Hrbáček, J., Vostradovský, J., 1976: Příspěvek poznání vývoje poměrů ve<br />

vodárenské nádrži Hubenov. In: Oborové dny nové techniky ve vodním hospodířství,<br />

Povodí Moravy Brno: 48-56.<br />

Samek, V., Hrbáček, J., 1976: Les a čistota vod. Lesnické práce 55, 8: 336.<br />

Hrbáček, J., 1976: Vztah ekológie k ostatným vešdným odvetviam a výuka ekológie. Biológia<br />

1: 137-139.<br />

Hrbáček, J., 1976: Dieldrin ve vodních organismech. Vesmír 55,8: 251.<br />

Hrbáček, J., Brtek, J., Vranovský, M., Štěrba, O., 1975: Zooplankton a význační zástupcovia<br />

niektorých skupín drobného vodného živočišstva tatranských plies. TANAP - Zborní prác<br />

o Tatranskom národnom parku 16: 105-109.<br />

Hrbáček, J., Procházková, L., Straškraba, M., 1975: Zintenzivnění zemědělské výroby a<br />

dusičnany. Vesmír 54m,8: 238-241.<br />

Ertl, M., Hrbáček, J., Lellák, J., 1974: Ekologie některých skupin vodních živočichů. Zprávy<br />

Čs. zool. spol. 4-6: 27-33.<br />

50


Hrbáček, J., 1974: Vliv hnojení zemědělské půdy na obsah sloučenin dusíku a fosforu v<br />

povrchových vodách. Acta Universitatis Palackianae Olomoucensis, Fac. Rerum<br />

Naturarum, Biologica XV, 47: 117-121.<br />

Hrbáček, J., 1973: Rtuť a biosféra. Vesmír 52,1: 26.<br />

Hrbáček, J., Straškraba, M., 1973: Vliv přečerpávacích vodních elektráren na kvalitu vody a<br />

jiné využívání údolních nádrží. Přehradní dny Ostrava, sborník referátů: 52-61. ČSVTS,<br />

Čs, přehradní výbor.<br />

Hrbáček, J., 1972: Těžba nafty ze dna moří a rybářství. Vesmír 51, 3: 93.<br />

Hrbáček, J., 1972: Zásobování energií v USA se dostává do kritické situace. Vesmír 51? 6:<br />

187.<br />

Hrbáček, J., 1971: Ekologické následky podzemní exploze. Vesmír 51, 8: 250.<br />

Hrbáček, J. a kol., 1972: Limnologické metody. SPN Praha, 208pp.<br />

Hrbáček, J., 1971: Modely sladkovodních biomas. In: Biologické problémy vodného<br />

hospodárstva. Min. les. a vodn. hospodárstva SSR, Bratislava: 70.<br />

Hrbáček, J., 1971: Jsou fosfáty hlavní příčinou eutr<strong>of</strong>izace jezer a přehradních nádrží? Vesmír<br />

50, 4: 125.<br />

Hrnáček, J., 1971: Rozšíření perlooček rodu Daphnia ve Vysokých Tatrách. Zprávy čsl. spol.<br />

zoologické 1971, č. 1-3: 83.<br />

Hrbáček, J., 1971: Polyethylenovými foliemi proti eutr<strong>of</strong>izaci jezer. Vesmír 50, 8: 254.<br />

Hrbáček, J., Straškraba, M., 1970: Vltavské údolní nádrže a rekreace. Vesmír 49, 8: 229-232.<br />

Hrbáček, J., 1970: Člověk a biosféra. Vesmír 49, 11: 323.<br />

Hrbáček, J., 1970: Co s naftou z havarií tankových lodí? Vesmír 49, 10: 315.<br />

Hrbáček, J., 1970: Plnění československého příspěvku k mezinárodnímu bioílogickému<br />

programu v letech 1968 a 1969. Věstník ČSAV 79, 5: 439_442.<br />

Kořínek, V., Hrbáček, J., 1969: Závislost mezi obsahem živin ve vodě, produkcí<br />

fytoplanktonu a výnosem ryb v kaprových rybnících. In: Některé poznatky intensifikace<br />

chovu ryb. Souhrn referátů na semináři Čs. akademie zemědělských věd UVTI, Praha<br />

pp.57-65.<br />

Hrbáček, J., 1968: Československý národní komitét pro Mezinárodní biologický program.<br />

Biologia 23, 2: 97-98.<br />

Hrbáček, J., 1967: Organisace IBP. Vědecký svět 11, 3: 29-30.<br />

Hrbáček, J., 1965: Hydrobiologie u nás a ve světě. Vesmír 44, 9: 267-270.<br />

Hrbáček, J., 1964: Lze poznat četnost rybí osádky v údolních nádržích podle planktonu? Čs.<br />

rybářství 1964,8: 121-122.<br />

Hrbáček, J., 1963: Činnost pr<strong>of</strong>. Ant. Friče v hydrobiologii. Časopis Národ. musea<br />

přírodověd. 132, 4: 195-196.<br />

Hrbáček, J., 1962: Biologické důsledky teplotní stratifikace v údolních nádržích. In:<br />

Konference Hygiena údolních nádrží a jejich okolí: 32-34. Ústav pro tvorbu a ochranu<br />

krajiny, Olomouc.<br />

Hrbáček, J., 1960: Hydrobiologické otázky v tvorbě krajiny. Tvorba a ochrana krajiny, Nakl.<br />

ČSAV, pp. 83-91.<br />

Hrbáček, J., 1959: O domnělé variabilitě Daphnia pulex L. Časopis Národ. musea 128: 9-16<br />

Hrbáček, J. a kol. , 1959: Hydrobiologické metody. Učební texty vysokých škol, Praha<br />

Hrbáček, J., 1955: Zákonitosti rozvoje planktonu malých vod. III. konference čsl.<br />

hydrobiologů ve Smolenicích,: 7<br />

51


Hrbáček, J., 1954: O kyslíkatých poměrech při výlovech rybníků. Sborník ČSAZV, XXVII, ř.<br />

B2-3: 293-300.<br />

Hrbáček, J. a spol., 1954: Jak a proč sbírati hmyz. Naklad. ČSAV, Praha.<br />

Hrbáček, J., 1954: Hydrobiologie. Učební texty vysokých škol-Biologický fakulta. Praha.<br />

Hrbáček, J., 1953: Zneklidnění pulců ropuchy obecné a troucích se plotic ve vodě<br />

s rozpuštěnými látkami z jejich pokožky a všeobecné jejich opouštění takto porušených<br />

vod. Sborník ČSAZV 16, ř. B: 149-152. Praha.<br />

Hrbáček, J., 1951: Přehled druhů rodu Hydraena Kug. na území Československé republiky.<br />

Časopis čsl. spol. entomol. XLVIII: 201-226. Praha<br />

Hrbáček, J., 1949: Některé zajímavosti ze života pulců ropuchy obecné (Bufo bufo). Vesmír<br />

1949-1950: 170-171.<br />

Hrbáček, J., 1949: Pijavka lékařská. Akvar. listy XXI 7: 87-88.<br />

Hrbáček, J., 1949: Naši kapřivci. Československý rybář, 11: 154-155, Praha.<br />

Hrbáček, J., 1949: Pohyb Hydrophilidů (Coleoptera) po povrchové blance vodní. Časopis čsl.<br />

spol. entomol. 46: 3-6.<br />

Hrbáček, J., 1949: Nález severoamerické ploštěnky Planaria (Euplanaria) tygrina Girard<br />

(= maculata Leidy) v našich vodách. Akvar. listy XXI, 5: 56-57.<br />

Hrbáček, J., 1948: Funkce a tvar tykadel brouků středoevropských rodů čeledi Hydrophilidae<br />

ve vztahu k fylogenezi této čeledi. Entomol. listy XI: 119-125, Brno.<br />

Hrbáček, J., 1946/47: Preparační jehly. Vesmír 50, Praha.<br />

Hrbáček, J., 1946/47: Mikroakvária. Vesmír 6, Praha.<br />

Hrbáček, J., 1946: Dýchání u brouka Hydrobius fuscipes L. Věstník čsl. zool. spol. 10: 119-<br />

126, Praha.<br />

Hrbáček, J., 1945/46: Druhý příspěvek k poznání výskytu našich vodních brouků (Coleoptera,<br />

Haliplidae, Dytiscidae, Gyrinidae, Hydrophilidae). Entomol. listy IX: 9-12. Brno.<br />

Hrbáček, J., 1945: Fauna brouků a vodních ploštic v našich kalužích. Věda přírodní XXIII:<br />

269-277. Praha.<br />

Hrbáček, J., 1945: Výzkum našich vodních brouků s hlediska hydrobiologie. Věda přírodní<br />

XXIII: 234-239.<br />

Hrbáček, J., 1945: K výzkumu našeho vodního hmyzu, zvláště vodních brouků. Věda přírodní<br />

XXIII: 137-140.<br />

Hrbáček, J., 1945: Poznámky o našich Stratiomyidách (Diptera). Časopis Čsl. spol. Entomol.<br />

XLI: 95-100. Praha.<br />

Hrbáček, J., 1944: Příspěvek k poznání výskytu našich vodních brouků. (Coleoptera,<br />

Haliphidae, Dytiscidae, Hydrophilidae). Časopis Čsl. spol. Entomol. XLI: 67-69. Praha.<br />

Hrbáček, J., 1943/44: Příspěvek k poznání vodní fauny jezírka v „Macůšce“. Věda přírodní<br />

XXII: 80, Praha.<br />

Hrbáček, J., 1943/44: Příspěvek k poznání fauny brouků a ploštic ve vodách třeboňské pánve.<br />

Věda přírodní XXII: 117-118, Praha.<br />

Hrbáček, J., 1943/44: O larvách rodu Hydraena (Coleopter, Hydrophilidae). Sborník<br />

Entomol. odděl. zemského musea v Praze XXI-XXII: 84-89.<br />

Hrbáček, J., 1943: Dvě nové larvy Hydrophilidů (Cyclostoma orbiculara F. a Chaetarthria<br />

seminulum Herbst). Časopis Čsl. spol. Entomol. XL: 98-105, Praha<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!