19.12.2013 Views

Generating High Direct Voltages Required voltage levels

Generating High Direct Voltages Required voltage levels

Generating High Direct Voltages Required voltage levels

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong><br />

<strong>Required</strong> <strong>voltage</strong> <strong>levels</strong><br />

Industrial facilities and components (dust filters, epoxy resin powder coating<br />

systems): up to about 100 kV<br />

Medicine technology, diagnostics (x-ray units): several 100 kV<br />

HVDC: up to 800 kV (China; planned: 1000 kV)<br />

<strong>High</strong>-<strong>voltage</strong> test laboratories: up to ca. 3 MV<br />

Physical research (e.g. particle accelerators): up to ca. 25 MV<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 1 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong><br />

<strong>Required</strong> <strong>voltage</strong> <strong>levels</strong><br />

Specification for insulation coordination<br />

of HVDV converter stations<br />

recently published<br />

IEC Technical Specification<br />

IEC TS 60071-5: Insulation Co-ordination<br />

Part 5: Procedures for high-<strong>voltage</strong><br />

direct current (HVDC) Converter Stations"<br />

... but no standard insulation <strong>levels</strong> given!<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 2 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong><br />

Definitions and requirements<br />

according to IEC 60060-1<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 3 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong><br />

Definitions (according to IEC 60060-1)<br />

Amplitude of a direct <strong>voltage</strong> = arithmetic mean value:<br />

T<br />

1<br />

U= ∫ut ( )dt<br />

T<br />

"Ripple":<br />

0<br />

1<br />

δ U = ( û−<br />

umin<br />

)<br />

2<br />

"Ripple factor":<br />

δU<br />

U<br />

2δU<br />

u<br />

+ + +<br />

- - -<br />

û<br />

U<br />

u min<br />

t<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 4 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong><br />

Requirements (according to IEC 60060-1)<br />

Ripple factor ≤ 3%<br />

(Note: Therefore measurement of rms value will also give exact results)<br />

At test durations ≤ 60 s: change in amplitude max. ± 1%<br />

(Note: not to be mixed up with measuring uncertainty!)<br />

At test duration > 60 s: change in amplitude max. ± 3%<br />

Charging of the test circuit in "reasonably short time"<br />

(Note 1: charging times of several minutes possible!<br />

Note 2: for dc bushings steady-state conditions after several hours!)<br />

Polarity reversal (if required) in short time<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 5 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong><br />

Ways of generating direct <strong>voltage</strong>s<br />

By rectifying alternating <strong>voltage</strong><br />

By charge separation<br />

Single phase<br />

Two-phase<br />

Band generators<br />

(after Van de Graaff)<br />

• One-way rectifier (w – w/o smoothing)<br />

• Rectifier bridges (w – w/o smoothing)<br />

• Doubling circuits (w – w/o smoothing)<br />

• Multiplier circuits<br />

Three-phase<br />

6-pulse-bridges<br />

12-pulse-bridges<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 6 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

Vacuum valve<br />

„Ideal“ valve<br />

Reverse <strong>voltage</strong> up to 100 kV<br />

Complex (heating!)<br />

Only in old (still existing) equipment<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 7 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

Semi-conductor rectifier<br />

Selenium (Se)<br />

Germanium (Ge)<br />

Silicon (Si)<br />

Se-Rectifier<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 8 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

Semi-conductor rectifier<br />

Se Ge Si<br />

max. reverse <strong>voltage</strong> (V) 50 300 2000<br />

max. current density (A/cm 2 ) 0,5 150 150<br />

junction capacitance several nF few pF<br />

reverse resistance kΩ range MΩ range<br />

variance of reverse resistance 1:5 1:1000<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 9 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

Semi-conductor rectifier<br />

Today virtually always applied: Si rectifiers<br />

Problem with the small junction capacitance and the large<br />

variance of the reverse resistance ........<br />

RC network required:<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 10 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

Semi-conductor rectifier<br />

Implementation example: rectifier of 3.4 MV<br />

maximum reverse <strong>voltage</strong> (TU Munich)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 11 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

One-way rectifier circuit<br />

Peak value: û = û T<br />

Arithmetic<br />

mean value:<br />

U<br />

1<br />

= û<br />

π<br />

Maximum<br />

reverse <strong>voltage</strong>: û V = û T<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 12 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

One-way rectifier circuit with smoothing capacitor<br />

Peak value: û = û T<br />

Arithmetic<br />

mean value:<br />

U ≈û−δU<br />

Maximum<br />

reverse <strong>voltage</strong>: û V = 2û T<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 13 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

One-way rectifier circuit with smoothing capacitor<br />

Calculation of ripple:<br />

Due to:<br />

V t « T and δU « U<br />

assumption of a linear capacitor discharge (instead of exponential)<br />

Then: change of charge<br />

T<br />

2δU ⋅ C = ∫ igdt ≈T ⋅I<br />

δU<br />

≈<br />

I<br />

g<br />

0<br />

1<br />

2 fC<br />

g<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 14 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

One-way rectifier circuit with smoothing capacitor<br />

δU<br />

≈<br />

I<br />

g<br />

1<br />

2 fC<br />

In order to reduce the ripple at given load current:<br />

• increase C<br />

• increase f<br />

--> usual: f up to several kHz<br />

+<br />

~<br />

Improvement also possible by two-way rectification:<br />

-<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 15 -


<strong>Generating</strong> <strong>High</strong> <strong>Direct</strong> <strong>Voltages</strong> by help of Rectifiers<br />

One-way rectifier circuit with/without smoothing capacitor<br />

Load curve<br />

U i0 ... imaginary open circuit <strong>voltage</strong><br />

n ... number of rectifiers<br />

U 1 ... conducting-state <strong>voltage</strong> of<br />

one individual rectifier<br />

( ) g<br />

U= U −nU ⋅ −k⋅I<br />

i0 1<br />

„k“ generator specific<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 16 -


Multiplier Circuits<br />

Villard-Circuit<br />

• Booster capacitor charged to û T<br />

• Potential of high-<strong>voltage</strong> terminal increased to:<br />

u(t) = u T + U c<br />

Peak value: û = 2û T<br />

Arithmetic<br />

mean value:<br />

U<br />

= û<br />

T<br />

Maximum<br />

reverse <strong>voltage</strong>: û V ≈ 2û T<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 17 -


Multiplier Circuits<br />

Villard-Circuit<br />

Smoothing of the <strong>voltage</strong> not possible with the Villard-circuit!<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 18 -


Multiplier Circuits<br />

Greinacher doubling circuit<br />

Villard-Circuit<br />

Connection of a smoothing<br />

capacitor via a second<br />

rectifier diode!<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 19 -


Multiplier Circuits<br />

Greinacher doubling circuit<br />

u V1 = u T + U C1 mit û V1 = 2û T<br />

⇒ Charging of C 2 to û V1 = 2û T<br />

Peak value: û = 2û T<br />

Arithmetic<br />

mean value:<br />

U<br />

=<br />

2û<br />

T<br />

Maximum<br />

reverse <strong>voltage</strong>:<br />

û V1 = û V2 ≈ 2û T<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 20 -


Multiplier Circuits<br />

Greinacher-Cascade<br />

(Cockroft/Walton Multiplier)<br />

(Greinacher 1920, Cockroft/Walton 1932)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 21 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 22 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 23 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 24 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 25 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 26 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 27 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 28 -


Multiplier Circuits<br />

Greinacher-Cascade: open circuit <strong>voltage</strong>s<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 29 -


Multiplier Circuits<br />

Greinacher-Cascade<br />

Booster column<br />

Smoothing column<br />

C 1 = C 2 = C 0 /2<br />

⇒ All capacitors carry the<br />

same charge!<br />

(Q = C·U)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 30 -


Multiplier Circuits<br />

Greinacher-Cascade: <strong>voltage</strong>s in load condition<br />

Imaginary direct <strong>voltage</strong> n·2û T<br />

decreased by <strong>voltage</strong> drop ΔU<br />

Charge of:<br />

Ripple <strong>voltage</strong> 2δU has a<br />

different shape than ripple<br />

<strong>voltage</strong> in the doubling circuit<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 31 -


Multiplier Circuits<br />

Greinacher-Cascade: <strong>voltage</strong>s in load condition<br />

Voltage drop:<br />

Ripple:<br />

3 2<br />

Ig 8n 3n n<br />

+ +<br />

∆ U = ⋅ f ⋅ C 12<br />

( )<br />

g n n 1<br />

I +<br />

δ U = ⋅ f ⋅ C 4<br />

⇒ Depends on number of stages, load current, frequency and capacitance,<br />

but not on amplitude of the direct <strong>voltage</strong>!<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 32 -


Multiplier Circuits<br />

Greinacher-Cascade: <strong>voltage</strong>s in load condition<br />

3 2<br />

Ig 8n 3n n<br />

+ +<br />

∆ U = ⋅ f ⋅ C 12<br />

( )<br />

g n n 1<br />

I +<br />

δ U = ⋅ f ⋅ C 4<br />

Greinacher-cascades should always be operated as close as<br />

possible to their upper <strong>voltage</strong> limits.<br />

If lower <strong>voltage</strong>s are requested part of the stages should preferably<br />

be shorted in order to operate the remaining stages at their upper<br />

<strong>voltage</strong> limits.<br />

Optimum stage <strong>voltage</strong> = 400 kV for cascades of 1 MV ... 2 MV<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 33 -


Multiplier Circuits<br />

Greinacher-Cascade: <strong>voltage</strong>s in load condition<br />

(C = 60 nF, f = 50 Hz, I g = 10 mA)<br />

600<br />

40<br />

Voltage drop / kV<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Parameter:<br />

I = 10 mA, C = 60 nF, f = 50 Hz<br />

Ripple / kV<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Parameter:<br />

I = 10 mA, C = 60 nF, f = 50 Hz<br />

0<br />

1 2 3 4 5 6<br />

0<br />

1 2 3 4 5 6<br />

Stage no. n<br />

Stage no. n<br />

n = 4:<br />

Voltage drop ΔU = 157 kV<br />

Ripple δU = 17 kV<br />

Requirement of IEC 60060-1: δU ≤ 3% only fulfilled for <strong>voltage</strong>s ≥ 567 kV!<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 34 -


Multiplier Circuits<br />

Greinacher-Cascade: two-phase circuit<br />

Booster columns<br />

Smoothing column<br />

Considerable improvement<br />

of <strong>voltage</strong> drop and ripple<br />

Consequential further step:<br />

three-phase circuit<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 35 -


Multiplier Circuits<br />

Greinacher-Cascade: two-phase circuit<br />

Protection of top stage<br />

and of transformer<br />

by spark gaps or<br />

surge arresters<br />

Protection of the whole<br />

cascade by a damping<br />

resistor<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 36 -


Multiplier Circuits<br />

Transformer supported cascades<br />

Currents > 100 mA at low <strong>voltage</strong><br />

drop and ripple possible<br />

Transformer must be dc resistant<br />

Cascading of the transformers by<br />

excitation and coupling windings<br />

or<br />

Simple transformers, fed by<br />

insulated generators<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 37 -


Multiplier Circuits<br />

Greinacher-Cascades: Physical arrangement<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 38 -


Multiplier Circuits<br />

Greinacher-Cascades: Physical arrangement<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 39 -


Multiplier Circuits - Implementation Examples<br />

<strong>Direct</strong> <strong>voltage</strong> add-on 600 kV/15 mA<br />

built by TuR for University of Damaskus<br />

- 2 stages<br />

- Air cushion base<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 40 -


Multiplier Circuits - Implementation Examples<br />

(Note: circuit diagram<br />

shows 2 stages only.)<br />

<strong>Direct</strong> <strong>voltage</strong> generator 900 kV/40 mA<br />

built by TuR for Cable Works Budapest<br />

- 3 stages<br />

- Automatic change of polarity<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 41 -


Multiplier Circuits - Implementation Examples<br />

Greinacher-Cascade<br />

2 MV (TU Berlin)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 42 -


Multiplier Circuits - Implementation Examples<br />

Greinacher-Cascade<br />

2 MV (TU Berlin)<br />

... here during a test on an 800-kV-<br />

DC <strong>voltage</strong> divider<br />

(Source: Omicron, Trench)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 43 -


Multiplier Circuits - Implementation Examples<br />

Greinacher-Cascade<br />

(CESI, Milan/Italy)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 44 -


Multiplier Circuits - Implementation Examples<br />

Greinacher-Cascade<br />

(<strong>High</strong>Volt, for ABB Ludvika)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 45 -


Multiplier Circuits - Implementation Examples<br />

Greinacher-Cascade<br />

(CESI, Milan/Italy)<br />

cable testing<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 46 -


Multiplier Circuits - Implementation Examples<br />

Two-phase (symmetrical)<br />

seven stage<br />

Greinacher-cascade 3.4 MV<br />

(Circuit diagram: two-phase (symmetrical) four stage Greinacher-cascade)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 47 -


Multiplier Circuits - Implementation Examples<br />

<strong>Direct</strong> <strong>voltage</strong> generator 1600 kV/200 mA<br />

(built by TuR)<br />

- 4 stages<br />

- 500 Hz supply<br />

- Si-rectifiers<br />

- Four 450-kV rectifiers each combined in a rhombic frame<br />

- Frames to be pivoted by motor drives for change of polarity<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 48 -


Multiplier Circuits - Implementation Examples<br />

<strong>Direct</strong> <strong>voltage</strong> generator 2000 kV/10 mA<br />

(built by TuR for Toshiba/Japan)<br />

- 7 stages<br />

- Fed by two transformers on 2/7- and 6/7-potential<br />

- Seismic resistant design<br />

- Air cushion base for high mobility<br />

- Change of polarity under load within 200 ms (up to 750 kV)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 49 -


Multiplier Circuits - Implementation Examples<br />

Booster columns<br />

Smoothing<br />

column<br />

Pulsating <strong>voltage</strong> test generator 1600 kV (circuit diagram)<br />

3 stage direct <strong>voltage</strong> generator,<br />

3-phase double way rectifier type<br />

3-phase double-way bridge<br />

Feeding transformer<br />

500-kV transformer; series connected to the direct <strong>voltage</strong> generator<br />

Insulating transformer<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 50 -


Multiplier Circuits - Implementation Examples<br />

Pulsating <strong>voltage</strong><br />

test generator 1600 kV;<br />

erection in the test lab<br />

for commissioning test<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 51 -


Multiplier Circuits - Implementation Examples<br />

Greinacher-Cascade 16 kV<br />

(built from electronic components)<br />

Fachgebiet<br />

Hochspannungstechnik<br />

<strong>High</strong>-Voltage Engineering / Chapter 3 - 52 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!