21.12.2013 Views

Left to Right Shunts and their Calculation Ghada ... - CardioEgypt.com

Left to Right Shunts and their Calculation Ghada ... - CardioEgypt.com

Left to Right Shunts and their Calculation Ghada ... - CardioEgypt.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3/18/2013<br />

<strong>Left</strong> <strong>to</strong> <strong>Right</strong> <strong>Shunts</strong> <strong>and</strong><br />

<strong>their</strong> <strong>Calculation</strong><br />

<strong>Ghada</strong> El Shahed, MD<br />

Professor of Cardiology<br />

Ain Shams University<br />

• Flow through<br />

systemic &<br />

pulmonary<br />

circulations is<br />

normally balanced<br />

<strong>and</strong> equal.<br />

• Two circulations in<br />

series<br />

1


3/18/2013<br />

• Flow through<br />

systemic &<br />

pulmonary<br />

circulations is<br />

normally balanced<br />

<strong>and</strong> equal.<br />

• Two circulations in<br />

series<br />

Oxygen Saturation<br />

Systemic vein<br />

Pulmonary vein<br />

RA<br />

65%<br />

LA<br />

100%<br />

RV<br />

65%<br />

LV<br />

100%<br />

Pulmonary artery<br />

Systemic artery<br />

2


3/18/2013<br />

<strong>Left</strong> <strong>to</strong> right shunts<br />

• “leak" of<br />

blood from<br />

the systemic<br />

<strong>to</strong> the<br />

pulmonary<br />

circulation<br />

<strong>Left</strong> <strong>to</strong> right shunts<br />

• pulmonary circulation<br />

receives :<br />

* blood that entered RA<br />

& RV from vena cavae<br />

plus<br />

* blood entering<br />

through ASD, VSD, or<br />

a PDA<br />

3


3/18/2013<br />

Causes<br />

Lesions resulting in left <strong>to</strong> right shunts<br />

include:<br />

• Ventricular septal defect (VSD)<br />

• Patent ductus arteriosus (PDA)<br />

• Atrial septal defect (ASD)<br />

• Atrioventricular defect (AVSD)<br />

Determinants of shunt size<br />

• In VSD <strong>and</strong> PDA:<br />

* size of defect<br />

And<br />

* relative resistance<br />

in the pulmonary<br />

<strong>and</strong> systemic<br />

circuits<br />

4


3/18/2013<br />

Determinants of shunt size<br />

• In ASD <strong>and</strong> AVSD:<br />

magnitude of the shunt<br />

depends mainly on<br />

relative ventricular<br />

<strong>com</strong>pliance.<br />

<strong>Left</strong> <strong>to</strong> right shunts:<br />

DETECTION AND<br />

QUANTIFICATION<br />

5


3/18/2013<br />

Clinical data: VSD<br />

• The intensity of the murmur<br />

is inversely proportional <strong>to</strong> the<br />

magnitude of the shunt<br />

• An apical mid-dias<strong>to</strong>lic murmur<br />

(increased flow across MV) indicates<br />

a large shunt<br />

Clinical data: PDA<br />

• Continuous or "machinery" murmur<br />

• An apical mid-dias<strong>to</strong>lic murmur<br />

denotes large shunt<br />

• Wide pulse pressure indicates a<br />

large left <strong>to</strong> right shunt<br />

6


3/18/2013<br />

Clinical data: ASD<br />

• Flow murmur in pulmonary area :<br />

>> large shunt<br />

• Mid-dias<strong>to</strong>lic murmur due <strong>to</strong> increased<br />

flow across the tricuspid valve<br />

• Wide splitting of S2 due <strong>to</strong> increased<br />

flow across the pulmonary valve<br />

7


3/18/2013<br />

“with a few limitations, the Doppler index RSV/LSV<br />

is clinically useful in the estimation of the<br />

magnitude of the shunt flow in patients with ASD”<br />

8


3/18/2013<br />

Shunt Detection :<br />

Indocyanine Green Method<br />

• Indocyanine green (1 cc) injected as a bolus in<strong>to</strong><br />

right side of circulation (pulmonary artery)<br />

• Concentration<br />

measured from<br />

peripheral artery<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

9


3/18/2013<br />

<strong>Left</strong>-<strong>to</strong>-<strong>Right</strong> Shunt<br />

Appearance <strong>and</strong> washout of dye produces initial 1 st<br />

pass curve followed by recirculation in normal adults<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

Shunt Detection:<br />

Indocyanine Green Method<br />

Bashore, TM. Congenital Heart Disease in Adults. The Measurement of Intracardiac <strong>Shunts</strong>. In: CATHSAP II.<br />

Bethesda: American College of Cardiology, 2001.<br />

10


3/18/2013<br />

Indica<strong>to</strong>r Dilution Method<br />

• More Sensitive for smaller<br />

shunts<br />

• Cannot localize the level of<br />

left <strong>to</strong> right shunt<br />

Oximetric Methods<br />

• Obtain O2 saturations<br />

in sequential<br />

chambers,<br />

identifying oxygen<br />

step-up<br />

• Insensitive for small<br />

shunts (< 1.3:1)<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

11


3/18/2013<br />

Shunt Detection & Measurement<br />

Oximetry Run<br />

• IVC, L4-5 level<br />

• IVC, above diaphragm<br />

• SVC, innominate<br />

• SVC, at RA<br />

• RA, high<br />

• RA, mid<br />

• RA, low<br />

• RV, mid<br />

• RV, apex<br />

• RV, outflow tract<br />

• PA, main<br />

• PA, right or left<br />

• <strong>Left</strong> ventricle<br />

• Aorta, distal <strong>to</strong> ductus<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

Oximetry<br />

ASD VSD PDA<br />

Systemic arterial O2 Sat No change No change No change<br />

RA O2 Sat No change No change<br />

RV O2 Sat<br />

No change<br />

PA O2 Sat<br />

Pulmonary blood flow<br />

12


3/18/2013<br />

ASD<br />

Detection of <strong>Left</strong>-<strong>to</strong>-<strong>Right</strong> Shunt<br />

Level of shunt O 2 % Sat Differential diagnosis<br />

Atrial<br />

(SVC/IVC RA)<br />

Ventricular<br />

(RA RV)<br />

Great vessel<br />

(RV PA)<br />

7<br />

5<br />

5<br />

ASD, PAPVR, VSD with TR,<br />

Ruptured sinus of Valsalva,<br />

Coronary fistula <strong>to</strong> RA<br />

VSD, PDA with PR,<br />

Coronary fistula <strong>to</strong> RV<br />

Aor<strong>to</strong>-pulmonary window,<br />

Aberrant coronary origin,<br />

PDA<br />

13


3/18/2013<br />

VSD<br />

SHUNT QUANTIFICATION<br />

14


3/18/2013<br />

• <strong>Calculation</strong> of systemic <strong>and</strong> pulmonary<br />

flows (<strong>and</strong> <strong>their</strong> ratio) are used for shunt<br />

quantification<br />

• The most <strong>com</strong>mon methods:<br />

-Fick’s method<br />

-Indica<strong>to</strong>r dilution<br />

(Both have <strong>their</strong> assumptions & limitations<br />

that are important <strong>to</strong> remember)<br />

The Fick Method<br />

• Described by Adolph Fick in 1870<br />

• Is probably the most <strong>com</strong>mon<br />

method used <strong>to</strong> calculate cardiac<br />

flows in the pediatric cath. lab<br />

15


3/18/2013<br />

Concept<br />

• The <strong>to</strong>tal uptake (or release) of a substance<br />

by an organ is the product of blood flow <strong>to</strong><br />

that organ <strong>and</strong> the concentration difference<br />

of the substance in the arteries <strong>and</strong> veins<br />

leading in<strong>to</strong> <strong>and</strong> out of that organ<br />

Fick Oxygen Method<br />

• As applied <strong>to</strong> lungs, the substance<br />

released <strong>to</strong> the blood is oxygen<br />

>> oxygen consumption is the product of<br />

arteriovenous difference of oxygen across<br />

the lungs <strong>and</strong> pulmonary blood flow<br />

Q p =<br />

Oxygen consumption<br />

Arteriovenous O 2 difference<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

16


3/18/2013<br />

Concept<br />

• So, using arterial <strong>and</strong> venous oxygen<br />

content <strong>and</strong> oxygen consumption,<br />

one can easily calculate flow.<br />

• So the important equation is:<br />

(Multiply denomina<strong>to</strong>r by 10 <strong>to</strong> convert dL <strong>to</strong> L, as<br />

Hb is measured in g/dL)<br />

17


3/18/2013<br />

Calcluation of oxygen content<br />

of blood<br />

Oxygen Content (mL O2/dL plasma)<br />

= O2 bound <strong>to</strong> Hb + dissolved O2<br />

= [1.36 Hgb] X saturation] + [0.003 X PaO2]<br />

18


3/18/2013<br />

O2 content<br />

= 1.36 Hgb X saturation + 0.003 X PaO2<br />

• 1.36mL is the oxygen carrying capacity<br />

of1 gm of hemoglobin<br />

• If the saturation is 98%, then use 0.98<br />

in the formula, not 98<br />

• The relatively small amount of<br />

dissolved oxygen in plasma is 0.003mL<br />

O2/dL plasma/mmHg PaO2<br />

19


3/18/2013<br />

Oxygen consumption (VO2)<br />

• Oxygen consumption is often assumed,<br />

<strong>and</strong> is readily available in tables<br />

• There is variation based on sex, age, <strong>and</strong><br />

heart rate.<br />

• no data published for the very small infant.<br />

(Despite the limitations of assumed VO2, this<br />

method remains widely used)<br />

Measurement of VO2<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th<br />

Edition. Lippincot Williams <strong>and</strong> Wilkins, 2007.<br />

20


3/18/2013<br />

• Using this principle, systemic <strong>and</strong><br />

pulmonary flows can be calculated<br />

Pulmonary blood flow<br />

QP=<br />

21


3/18/2013<br />

Shunt Measurement:<br />

Oximetric Methods<br />

• Fick Principle: The <strong>to</strong>tal uptake or<br />

release of any substance by an organ is<br />

the product of blood flow <strong>to</strong> the organ<br />

<strong>and</strong> the arteriovenous concentration<br />

difference of the substance.<br />

– Pulmonary circulation (Qp) utilizes PA<br />

<strong>and</strong> PV saturations<br />

RA (MV)<br />

RV<br />

Lungs<br />

LA (PV)<br />

LV<br />

PBF =<br />

O2 consumption<br />

(PvO 2 – PaO 2 ) x 10<br />

(O 2 content = 1.36 x Hgb x O 2 saturation)<br />

PA<br />

Ao<br />

(Alan Keith Berger, MD<br />

University of Minnesota,<br />

2003)<br />

Shunt Detection & Measurement<br />

Oximetric Methods<br />

• Fick Principle: The <strong>to</strong>tal uptake or<br />

release of any substance by an organ is<br />

the product of blood flow <strong>to</strong> the organ<br />

<strong>and</strong> the arteriovenous concentration<br />

difference of the substance.<br />

– Systemic circulation (Qs) utilizes MV <strong>and</strong><br />

Ao saturations<br />

O2 consumption<br />

SBF = (AoO 2 – MVO 2 ) x 10<br />

(O 2 content = 1.36 x Hgb x O 2 saturation)<br />

RA (MV)<br />

RV<br />

PA<br />

Body<br />

LA (PV)<br />

Ao<br />

LV<br />

(Alan Keith Berger, MD<br />

University of Minnesota,<br />

2003)<br />

22


3/18/2013<br />

Shunt Detection & Measurement<br />

Oximetric Methods<br />

• Fick Principle: The <strong>to</strong>tal uptake or<br />

release of any substance by an organ is<br />

the product of blood flow <strong>to</strong> the organ<br />

<strong>and</strong> the arteriovenous concentration<br />

difference of the substance.<br />

– Pulmonary circulation (Qp) utilizes PA<br />

<strong>and</strong> PV saturations<br />

– Systemic circulation (Qs) utilizes MV <strong>and</strong><br />

Ao saturations<br />

RA (MV)<br />

RV<br />

PA<br />

LA (PV)<br />

Ao<br />

LV<br />

PBF =<br />

O 2 consumption<br />

(PvO 2 – PaO 2 ) x 10<br />

SBF =<br />

O 2 consumption<br />

(AoO 2 – MVO 2 ) x 10<br />

Mixed venous O2 saturation:<br />

RA receives blood from several sources<br />

– SVC: Saturation most closely approximates<br />

true systemic venous saturation<br />

– IVC: Highly saturated because kidneys receive<br />

25% of CO <strong>and</strong> extract minimal oxygen<br />

– Coronary sinus: Markedly desaturated because<br />

heart maximizes O2 extraction<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

23


3/18/2013<br />

Mixed venous O2 saturation:<br />

• Phlamm Equation: Mixed venous saturation<br />

used <strong>to</strong> normalize for differences in blood<br />

saturations that enter RA<br />

Mixed venous saturation =<br />

3 (SVC) + IVC<br />

4<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

• For pediatric catheterization, we<br />

most often express the indexed flow<br />

(<strong>to</strong> BSA), distinguishing between<br />

cardiac output (CO; L/min) <strong>and</strong><br />

cardiac index (Qs; L/min/m2).<br />

Because the VO2 tables are usually<br />

indexed.<br />

24


3/18/2013<br />

• For pediatric catheterization, we<br />

most often express the indexed flow<br />

(<strong>to</strong> BSA), distinguishing between<br />

cardiac output (CO; L/min) <strong>and</strong><br />

cardiac index (Qs; L/min/m2).<br />

Because the VO2 tables are usually<br />

indexed.<br />

25


3/18/2013<br />

Example<br />

• Mixed venous saturation - 75%, PA<br />

saturations = 84%<br />

• pulmonary vein <strong>and</strong> aortic<br />

saturations = 99%.<br />

>>>>The net Qp:Qs in this patient is<br />

(99 – 75)/(99 – 84)=1.6<br />

Estimation of shunt size<br />

Flow Ratio (QP/QS):<br />

• < 1.5 = Small shunt<br />

• ≥ 2.0 = Large <strong>Left</strong> <strong>to</strong> <strong>Right</strong> Shunt<br />

• < 1.0 = Net <strong>Right</strong> <strong>to</strong> left Shunt<br />

No need for Oxygen consumption<br />

(Since this number will cancel out of<br />

the equation)<br />

26


3/18/2013<br />

Shunt Measurement:<br />

Effective Pulmonary Blood Flow<br />

• Effective Pulmonary Blood<br />

Flow: flow that would be<br />

present if no shunt were<br />

present<br />

• Requires<br />

– MV = PA saturation<br />

– PV – PA = PV - MV<br />

PBF<br />

Effective Pulmonary<br />

Blood Flow<br />

=<br />

O 2 consumption<br />

(Pv – MV O 2 ) x 10<br />

=<br />

O 2 consumption<br />

(Pv – Pa O 2 ) x 10<br />

Bashore, TM. Congenital Heart Disease in Adults. The Measurement of Intracardiac <strong>Shunts</strong>. In: CATHSAP II.<br />

Bethesda: American College of Cardiology, 2001.<br />

Shunt Detection & Measurement<br />

<strong>Left</strong>-<strong>to</strong>-<strong>Right</strong> Shunt<br />

• <strong>Left</strong> <strong>to</strong> right shunt: >> in step-up<br />

in O 2 between MV <strong>and</strong> PA<br />

• Shunt is the difference between<br />

pulmonary flow measured <strong>and</strong><br />

what it would be in the absence of<br />

shunt (EPBF)<br />

• Systemic Blood Flow = EPBF<br />

<strong>Left</strong>-<strong>Right</strong> Shunt = Pulmonary Blood Flow – Effective Blood Flow<br />

O 2 consumption<br />

=<br />

(PvO 2 – Pa O 2 ) x 10<br />

–<br />

O 2 consumption<br />

(PvO 2 – MVO 2 ) x 10<br />

Bashore, TM. Congenital Heart Disease in Adults. The Measurement of Intracardiac <strong>Shunts</strong>. In: CATHSAP II.<br />

Bethesda: American College of Cardiology, 2001.<br />

27


3/18/2013<br />

Shunt Measurement<br />

Limitations of Oximetric Method<br />

• Requires steady state with rapid collection of O 2<br />

samples<br />

• Insensitive <strong>to</strong> small shunts<br />

• Flow dependent<br />

– Normal variability of blood oxygen saturation in the right<br />

heart chambers is influenced by magnitude of SBF<br />

– High flow state may simulate a left-<strong>to</strong>-right shunt<br />

• When O 2 content is utilized (as opposed <strong>to</strong> O 2 sat),<br />

the step-up is dependent on hemoglobin.<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

SOME TIPS FOR QP, QS<br />

CALCULATIONS<br />

28


3/18/2013<br />

• If you do not directly obtain a<br />

pulmonary vein or LA saturation,<br />

assume something appropriate <strong>to</strong> the<br />

clinical status of the patient<br />

( ~95–100% in the absence of lung<br />

disease)<br />

• Always double check <strong>and</strong> confirm<br />

your math.<br />

• Always document all assumptions in<br />

your catheterization report.<br />

29


3/18/2013<br />

• Make sure your<br />

numbers make sense.<br />

[e.g. The SVC saturation should never be<br />

higher than the PA saturation<br />

(unless there is anomalous PV return or an<br />

oxygen-consuming tumor in the RV!)<br />

Fick Oxygen Method<br />

• Fick oxygen method <strong>to</strong>tal error 10%<br />

– Error in O2 consumption 6%<br />

– Error in AV O2 difference 5%. Narrow<br />

AV O2 differences more subject <strong>to</strong> error,<br />

<strong>and</strong> therefore Fick method is most<br />

accurate in low cardiac output states<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

30


3/18/2013<br />

Cardiac Output Measurement<br />

Fick Oxygen Method<br />

• Sources of Error<br />

– Spec<strong>to</strong>pho<strong>to</strong>metric determination of blood<br />

oxygen saturation<br />

– Changes in mean pulmonary volume<br />

• Patient may progressively increase or decrease<br />

pulmonary volume during sample collection. If<br />

patient relaxes <strong>and</strong> breathes smaller volumes, CO is<br />

underestimated<br />

– Improper collection of mixed venous blood<br />

sample<br />

• Contamination with PCW blood<br />

• Sampling from more proximal site<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

Indica<strong>to</strong>r Dilution Methods<br />

• Requirements<br />

– Bolus of indica<strong>to</strong>r substance which mixes<br />

<strong>com</strong>pletely with blood <strong>and</strong> whose concentration<br />

can be measured<br />

– Indica<strong>to</strong>r must go through a portion of circulation<br />

where all the blood of the body be<strong>com</strong>es mixed<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

31


Concentration<br />

3/18/2013<br />

Cardiac Output Measurement<br />

Indica<strong>to</strong>r Dilution Methods<br />

Stewart-Hamil<strong>to</strong>n Equation<br />

CO = <br />

0<br />

Indica<strong>to</strong>r amount<br />

C (t) dt<br />

C = concentration<br />

of indica<strong>to</strong>r<br />

CO =<br />

Indica<strong>to</strong>r amount (mg) x 60 sec/min<br />

mean indica<strong>to</strong>r concentration (mg/mL) x curve duration<br />

• Indica<strong>to</strong>rs<br />

– Indocyanine Green<br />

– Thermodilution (Indica<strong>to</strong>r = Cold)<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

Cardiac Output Measurement<br />

Indocyanine Green Method<br />

• Indocyanine green (volume <strong>and</strong> concentration<br />

fixed) injected as a bolus in<strong>to</strong> right side of<br />

circulation (pulmonary artery)<br />

• Samples taken from peripheral artery,<br />

withdrawing continuously at a fixed rate<br />

• Indocyanine green concentration measured by<br />

densi<strong>to</strong>metry<br />

CO =<br />

I<br />

(C x t )<br />

(C x t)<br />

Recirculation<br />

Extrapolation<br />

of plot<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

time<br />

CO inversely<br />

proportional<br />

<strong>to</strong> area under<br />

curve<br />

32


3/18/2013<br />

Cardiac Output Measurement<br />

Indocyanine Green Method<br />

• Sources of Error<br />

– Indocyanine green unstable over time <strong>and</strong> with<br />

exposure <strong>to</strong> light<br />

– Sample must be introduced rapidly as single bolus<br />

– Bolus size must be exact<br />

– Indica<strong>to</strong>r must mix thoroughly with blood, <strong>and</strong> should<br />

be injected just proximal or in<strong>to</strong> cardiac chamber<br />

– Dilution curve must have exponential downslope of<br />

sufficient length <strong>to</strong> extrapolate curve. Invalid in Low<br />

cardiac output states <strong>and</strong> shunts that lead <strong>to</strong> early<br />

recirculation<br />

– Withdrawal rate of arterial sample must be constant<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

THERMODILUTION<br />

33


3/18/2013<br />

• First introduced in the 1950s, this<br />

technique involves determining the<br />

extent <strong>and</strong> rate of thermal changes in the<br />

blood stream after injection of a fixed<br />

volume of fluid at a set temperature<br />

upstream.<br />

• From this temperature– time curve, the<br />

volume rate of flow can be calculated in a<br />

manner analogous <strong>to</strong> that used for dye<br />

<strong>and</strong> other indica<strong>to</strong>r–dilution methods.<br />

Common Problems<br />

• High cardiac output >> only a small<br />

temperature drop, increasing the risk for<br />

error.<br />

• If the proximal port is not in free flowing<br />

blood, there will be loss of temperature<br />

before reaching the thermis<strong>to</strong>r.<br />

• Slow injection of cooled solution will<br />

produce a smaller magnitude temperature<br />

change, falsely elevating the calculated<br />

cardiac output.<br />

34


3/18/2013<br />

Cardiac Output Measurement<br />

Thermodilution Method<br />

CO =<br />

V I (T B -T I ) (S I x C I / S B x C B ) x 60<br />

<br />

<br />

0<br />

T B dt<br />

V I = volume of injectate<br />

S I , S B = specific gravity of injectate <strong>and</strong> blood<br />

C I , C B = specific heat of injectate <strong>and</strong> blood<br />

T I = temperature of injectate<br />

T B = change in temperature measured downstream<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

Cardiac Output Measurement<br />

Thermodilution Method<br />

• Advantages<br />

– Withdrawal of blood not necessary<br />

– Arterial puncture not required<br />

– Indica<strong>to</strong>r (saline or D5W)<br />

– Virtually no recirculation, simplifying <strong>com</strong>puter<br />

analysis of primary curve sample<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

35


3/18/2013<br />

Summary of<br />

Fick Oxygen Method: AV O 2 Difference<br />

Step 1: Theoretical oxygen carrying capacity<br />

O 2 carrying capacity (mL O 2 / L blood) =<br />

1.36 mL O 2 / gm Hgb x 10 mL/dL x Hgb (gm/dL)<br />

Step 2: Determine arterial oxygen content<br />

Arterial O 2 content = Arterial saturation x O 2 carrying capacity<br />

Step 3: Determine venous oxygen content<br />

Mixed venous O 2 content = venous saturation x O 2 carrying capacity<br />

Step 3: Determine A-V O 2 oxygen difference<br />

AV O 2 difference = Arterial O2 content - venous O 2 content<br />

Baim DS: Grossman’s Cardiac Catheterization, Angiography, <strong>and</strong> Intervention. 7 th Edition. Lippincot Williams<br />

<strong>and</strong> Wilkins, 2007.<br />

Importance of accurate<br />

calculation & avoiding pitfalls<br />

• Shunt size >>>> surgical decision<br />

• Flow is used <strong>to</strong> calculate resistance<br />

36


3/18/2013<br />

Accurate measurements &<br />

calculations = correct decision<br />

• ‘‘A catheterization is<br />

like a puzzle:<br />

everything must fit<br />

with everything else.’’<br />

(If things don’t fit, your<br />

case is probably not<br />

<strong>com</strong>plete)<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!