21.12.2013 Views

sheets with a two-level ntass-balance paranteterization

sheets with a two-level ntass-balance paranteterization

sheets with a two-level ntass-balance paranteterization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Annals DJ Glaciology 2 1 1995<br />

© In ternational G laciological Society<br />

Therll1.oll1.echanical ll1.odelling of Northern Hell1.isphere ice<br />

<strong>sheets</strong> <strong>with</strong> a <strong>two</strong>-<strong>level</strong> <strong>ntass</strong>-<strong>balance</strong> <strong>paranteterization</strong><br />

PHILlPPE H G YBR ECHTS<br />

Aljred-I Vegener-lnslitlll fiir Po/ar- und Nleel"esjorschllllg . Postfac/i 120161, D-27515 Brelllerhaven . Gerl1Za /~)' .<br />

and<br />

GeograJisch inslilulIl, VriJe Universiteil Brussef, Pleinlaan 2. B-1050 Brt/ssel, BelgiulI1<br />

STEPHE:\ T'SIOBBEL<br />

Geogrc!fisc/Z instiluut , Vrije Uni versiteil BTllssel, Pleill!aall 2. B-1050 Brussel, Belglllll1<br />

ABSTRACT. A three-dimensiona l time-dependent th ermomechanical ice-sheet<br />

model was used together <strong>with</strong> a <strong>two</strong>-l evel (snow-accumulation/runoff) mass- bala nce<br />

model to investigate the Quaternary ice <strong>sheets</strong> of th e Northern H emisphere. The<br />

model fre ely generates the ice-sheet geometry in rcs ponse to spec ifi ed cha nges in<br />

surface temperature a nd mass bala ncc, a nd incl udes bedrock adjustment, basa l sliding<br />

and a full te mpera ture calcul a ti on <strong>with</strong>in the ice. The mass-<strong>balance</strong> para meteri 7.at ion<br />

m akes a d istincti on between snowfall a nd melting. Yearl y sno,\"fa ll ra tes d epend o n the<br />

present precipitation distribution, and a re vari ed proportionall y to cha nges in surface<br />

temperature a nd the moisture content of the air. The a bla ti on model is based on the<br />

positi" e-degree-day method, a nd distinguishes betll'een ice a nd snoll' meltin g. T hi s<br />

paper disc usses stead y-state cha racteristi cs, conditio ns fo r g rowth and retreat, a nd<br />

response time-scales of ice <strong>sheets</strong> as a function of a prescribed lowering of summer<br />

tempera ture. Most notably, the modell ed ex tents of the Eurasia n ice sheet for a<br />

summer temperature lowering of6- 7 K a nd of the La urentide ice sheet for a cooling of<br />

9- 10 K are in reasona ble agreement \Vi th mos t reconstructions based on geological<br />

e"idence, except [or the prese nce of a la rge ice sheet stretching from Alas ka across the<br />

Bering Strait to most of eas tern Siberia. In add ition. wct basal conditions turned out to<br />

be always confined to the margin , whereas centra l areas in these reconstructi o ns<br />

remained a lways cold-based. This is of rele, "a nce fo r processes il1\'o h-in g reduced basal<br />

traction.<br />

1. INTRODUCTION cannot be direc tly inferred from the geological record. but<br />

has to be es ti ma ted from models.<br />

During th e Quaternary, the waxing a nd waning of ice<br />

<strong>sheets</strong> on the continents o[ the Northern H em isphere<br />

constitute a major driving force for global change a nd a re<br />

the main so urce of global sea-<strong>level</strong> flu ctua ti o ns. It is<br />

genera ll y accepted that the m aximum sea -l evel depressio<br />

n during th e last glacial cycle was a ro und 125 m ,<br />

la rgely originating from ice-sheet build-up in North<br />

Ameri ca a nd Eurasia. This corres ponds to a n additiona l<br />

So fa r , m os t ice-shee t mod elling studies, threedimensio<br />

na l a nd <strong>two</strong>-dim ensio na l (horizontal plane)<br />

ha, "e considered only a part of the Northern H emisphere<br />

ice-sheet sys tem (e.g. Budd a nd Smith. 1987; Letreguill y<br />

and R itz, 1993 ) or ha\"C concentrated on th e ice <strong>sheets</strong> as<br />

a lower-bound a ry condition [or cl im ate models (D e­<br />

blonde a nd Pcltier, 199 1; :'larsia t. 1992; Verbitsky and<br />

O glesby, 1992 ). None of these mod els included thermod<br />

global ice volume of a ro und 50 x 101 5m 3 (Fairbanks,<br />

1989; Tushing ham and Peltier, 199 1). Whereas the<br />

m aximum ice-sheet ex tent along the southern margins<br />

of th e L a urentide and Fennoscandia n ice <strong>sheets</strong> seems to<br />

be reasonably well documemed (e.g. D em on a nd Hug hes,<br />

198 1), the distribu tion of ice <strong>sheets</strong> along the Russ ian sid e<br />

ynamics. ~ e , "e rthel ess , ice temperature exerts a strong<br />

of the Arctic O cean is till largely unresolved . H ere,<br />

geological reconstructions ra nge from limited ice ex pa n­<br />

sion over Scandinavia and Svalbard in the west (Boulto n,<br />

1979) to a n unbroken Eurasian ice sheet ex tending all the<br />

way from Britain to Scandinavia across the Ba rents a nd<br />

K a ra Seas to most of eastern Siberia (Grosswald , 1980).<br />

The thickness of these ice <strong>sheets</strong>, on th e other ha nd,<br />

control on the ice ,·iscosit,· a nd subsequently on the<br />

heigh t/ lV id th ra ti o. i\.lo reover, tem pera te ice a nd mel ti ng<br />

a t the base a re necessary preconditions [or basal sed iment<br />

d efo rmation a nd enhanced basal slidi ng. whi ch are often<br />

menti onecl as mechanisms tha t potentiall y ca n cl es tabili ze<br />

large com inental ice <strong>sheets</strong> by making them much fl a tter<br />

towards the end o[ a glacial cycle (Boul to n and J ones,<br />

1979; O erl ema ns. 1982 ) .<br />

Here, \Ve present res ults obta ined \\"ith a threedimensiona<br />

l th ermo mecha ni cal ice-sheet mod el which<br />

cOl'ers all of the Northern H emisphere \\'here wid espread<br />

continenta l glacia tio n is known to have taken place. T his<br />

11 J


f-fuybm;!zls and T'siobbel : M odelling of Northern HemisjJ/zere ice <strong>sheets</strong><br />

mod el is time-dependent, includes geod yna mi cs and<br />

freely genera tes th e ice-shee t geometry in res ponse to<br />

cha nges in environmenta l conditions. The mod el has been<br />

ex tensively tes ted and valid a ted on th e present-d ay ice<br />

<strong>sheets</strong> of Greenla nd a nd Antarcti ca (Huybrechts, 1990;<br />

H uybrec h t and others, 199 1). The methods adopted to<br />

es tima te th e mass-bala nce components a re simil ar to<br />

those tha t proved their a pplicability on these ice <strong>sheets</strong>.<br />

Though the prescription of clima ti c bounda ry conditions<br />

is likely to be more complex a t mid-la titudes th a n in th e<br />

pola r regions, this is seen as part of an inve rse modelling<br />

exercise, in whi ch an a ttempt is made to inves ti gate th e<br />

clima ti c conditions tha t produced these ice <strong>sheets</strong> in th e<br />

first place. This pa per aims to doc ument so me basic<br />

characteristi cs of th e Northern H emisphere ice <strong>sheets</strong> (ice<br />

volume, ice-shee t geometry, res ponse time-scales and basal<br />

tempera ture co nditions) as a fun c ti on of an imposed<br />

tempera ture 100\·ering. Of special interes t a re th e various<br />

thres holds required to grow and decay the individual ice<br />

shee ts that com posed the Qua terna ry glacial sys tem .<br />

Time-d ependent simula ti ons in voking glacial cyc les will ,<br />

however, be presented elsewh ere (pa per in prepara ti on by<br />

P. Huybrechts and S. T'siobbel).<br />

2. MODEL SET-UP<br />

The ice-shee t model closely resembles th e \'e rSlO n<br />

desc ribed by Huybrechts ( 1993 ). It basica ll y solves<br />

conse rva tion equations for mass a nd heat and has a full<br />

coupling between th e fl ow a nd tempera ture fi elds. Only<br />

grounded ice fl ow is taken into account, <strong>with</strong> a Glen-type<br />

fl ow la w a nd a tempera ture-depend ent ra te factor give n<br />

by a n Arrhenius rela ti onship. Longitudina l d evi a toric<br />

stresses a re disregard ed and basal sliding (of VV ecrtma n<br />

type) is res tricted to a reas a t tb e press ure-melting point.<br />

In th e present formula ti on, the poss ibility of ice shelves<br />

a nd grounding-line d yna mi cs was excluded a nd the<br />

maximum poss ible extent of grounded ice was constrained<br />

by specifyin g a coastline fo ll owing th e - 500 m<br />

isoba th. This a pprox im a tely coincid es <strong>with</strong> th e ma rgin of<br />

the continenta l pla tform in th e Arcti c basin, over whi ch<br />

ice shee ts can freely expa nd provid ed the surface mass<br />

bala nce is sufTi cien tI y p os i ti ve. Beyond th is pre-se t<br />

boundary, a ll ice is los t as calf ice.<br />

The th erm od yna mi c calcula ti ons employ standard<br />

procedures. Heat transfer is consid ered to res ult from<br />

verti ca l diffusion, th ree-di mensiona l ad vecti o n and<br />

deform a ti ona l hea ti ng a t la yeI' interfaces. In the timedep<br />

endent mode, heat can also fl ow in to an underl ying<br />

roc k sla b 0 1' 2 km thickn ess. The lower-bo unda r y<br />

condition on tempera ture corres ponds to a geothermal<br />

heat flu x of 42mW m 2 . Bedrock adjustments are<br />

mod ell ed as a d a mped return <strong>with</strong> a stead y-sta te<br />

del1ec ti on given by local isos ta ti c equi li brium. The e­<br />

foldin g time scale is se t a t 3000 years, <strong>with</strong> a mantle<br />

densi ty which is 3.6 times th a t of ice. All calcul a ti ons ta ke<br />

place on the same grid. It comprises 193 x 193 grid cells<br />

tha t a re laid out over a pola r stereogra phic ma p<br />

projection <strong>with</strong> sta ndard pa rallel a t 60° N . With this<br />

standard pa ra ll el, distortions in distance range from a<br />

factor of 0.92 a t 45° N to a factor of 1.07 a t the pole, th e<br />

effec t of which has been ta ken into account to calcula te<br />

the ice [luxes and the ice volume. The horizon tal mesh size<br />

is 50 km , and there a re 11 layers in the vertical , conce<br />

n tra ted towards the base. This resolu ti on is the<br />

minimum required to in corpora te realisti c geogra phy<br />

a nd to capture th e esse n ti al characteristi cs of th e vertical<br />

velocity a nd tempera ture profiles.<br />

The mass-bala nce model distinguishes between snow<br />

accumula tion and abla ti on and is driven by a prescribed<br />

" background" tempera ture change th a t is uniform in<br />

space but 50% hi gher in J a nua ry than inJuly. The la tter<br />

feature is a cha racteristi c common to mos t genera l­<br />

circul a ti on model (GCM) simula tions (e.g. M ana be and<br />

Broccoli , 1985) a nd is also supported by palaeoclima ti c<br />

reconstructions based o n geologica l a nd bi ological<br />

evidence (Frenzel and others, 1992). This feature is<br />

usua ll y a ttributed to the a lbedo-tempera ture effect a nd a<br />

sta ble ve rti cal stratificati on in th e lower stra tosp here,<br />

whi ch prevents la rge-scale mi xing of the air, especia ll y<br />

during winter. The basic inputs are data se ts for the mean<br />

monthly sea-l evel temperature and th e mean monthly<br />

precipita ti on ra te over the entire grid. These reference<br />

c1im a tologies were ta ken from precipita ti on maps Uaeger,<br />

1976) and from tempera ture d ata used to initia li ze th e<br />

H a mburg GCM model (ECHAM-I in the T 2 1 mode) a t<br />

the 1000 hPa <strong>level</strong>. Surface tempera tures were calcula ted<br />

using a la pse ra te of 8 K km- I, a va lue so mewh a t higher<br />

tha n the sta ndard la pse ra te for th e free a tmosphere. This<br />

is in I i ne wi th measu remen ts on th e ice <strong>sheets</strong> of<br />

Antarcti ca and Greenland, a nd can be ex plained by<br />

radia tive cooli ng at th e surface, particularly during the<br />

winter season. The corres ponding surface elevati on was<br />

ta ken as th e maximum of either the mean elevation of a<br />

grid ce ll during the calcula ti ons or th e hi ghes t peak<br />

<strong>with</strong>in this grid cell for th e pre ent topogra phy. This is<br />

because the glaciation thres hold is to a la rge ex tent<br />

determined by the mos t el e\'ated terrain , a piece of<br />

info rmation tha t is otherwise lost when valu es a re<br />

averaged on th e 50km grid.<br />

The model consid ers only changes of' precipita ti on<br />

intensity but keeps th e precipita ti on pa ttern uncha nged.<br />

The tota l precipita ti on is se t proportiona l to the moistureholding<br />

capacity of an air column, and has a sensitivity of<br />

4% K- 1 • This seems to be a reasonable ass umption a t<br />

pola r la titudes, supported by ana lyses of Anta rcti c a nd<br />

Greenland ice cores (Vi ou and others, 1985; Cla usen and<br />

others, 1988), but its validity during maximum glacia tion<br />

a t mid-Ia ti tudes can be ques tioned . H ere, preci pi tation is<br />

likely to be increasingly a fun ction 0[' such factors as<br />

a tmospheric circul a tion, continen tali ty a nd orography. A<br />

more sophisti cated a pproach, however, is deemed fa r<br />

beyond the purpose of the present stud y. The fracti on of<br />

prec ipita tion fa lling as snow is determined by the surface<br />

temperature, a nd varies from one to zero for mean<br />

mon thly tempera tures in the range of 263- 280 K. Such a<br />

rela ti on is suggested from meteorological observa tions in<br />

Ca nad a a nd Russia . Ice a nd snow abla tion, on the other<br />

ha nd, a re d ealt <strong>with</strong> locall y. Following a procedure<br />

previously adopted for the Greenl and ice sheet (R eeh ,<br />

1989; Huybrechts and others, 1991 ), the melting ra te is<br />

set proportional to the yearly sum of positive degree d ays<br />

(PDD). Degree-d ay fa ctors were 3 mm a 1 jPDD for snow,<br />

and 8 mm a 1 jPDD for ice. The mass-ba lance pa rameterization<br />

furth ermore incorpora tes th e process of super-<br />

112


Huybrechts and T'siobbel : ,\/odeUing oJ .,"ortliem Hemisphere ice <strong>sheets</strong><br />

imposed ice form a ti on, but neglects a p o. sible contribution<br />

from rainfall , which is assumed to run off entirely. In<br />

the model, summer tempera ture was taken as th e relel'ant<br />

fo rcing p a ra m eter. This m ea ns th a t the "effec tive"<br />

abla ti o n tempera ture ro ug hl y equals the applied tempera<br />

ture drop, but that th e effective (i. e. mean a nnua l)<br />

tempera ture for the calcula ti on of the prec ipita ti o n<br />

intensity is 2S% hig her. For the latter calcula tions, a n<br />

additio na l tempera ture cha nge res ulting from elel'a ti on<br />

cha nges was not ta ken into account.<br />

3. RESULTS<br />

3. 1. Ice-sheet geornetries<br />

First of all, th e mod el was run under present clima ti c<br />

conditions <strong>with</strong> a zero temperature perturbation sta rting<br />

from no ice cover a t a ll. The res ult, a ft er a tota l<br />

integra tion time of 10 5 years, is shown as th e upper left<br />

pa nel in Figure I a. As d emonstra ted in this fi g ure. the<br />

simula tion is quite reali sti c. The Greenl a nd ice sheet is<br />

well reproduced , a nd the sma ll er ice masses turn up in<br />

almost the sam e places as they a re observed today. Thi . is<br />

the case for the Arcti c isla nds (northern Novaya Zemlya,<br />

Svalba rd, Fra nz J osefLa nd a nd Sel'ernaya Zeml ya); but<br />

a lso the location of ice in Scandinavia Uos ted a lsbreen a nd<br />

Svartise n), th e Alps, southeas tern I cela nd (V a tn ajokull ),<br />

Al aska a nd Kamcha tk a is in good agreement <strong>with</strong> the<br />

present situa tion. Apparently, the mass-ba la nce model is<br />

a bl e to id entify th e correct a reas <strong>with</strong> a pos itil'e mass<br />

ba la nce. The onl y real d evia ti on from th e present-day<br />

situa tion is fo und over th e Ca nadi a n Arc ti c. Here, th c<br />

model produces a unified ice cap over Ell es mere Isla nd,<br />

Axel H eiberg Isla nd a nd D evon Isla nd of O\U 2000 m<br />

altitude, proba bly because of a n in ad equa te representati<br />

on of the coastline a nd sma ll er-scale fj ords, a ll owing<br />

sm a ll glaciers a nd ice caps to merge into a la rger ice cap.<br />

The present sta te was then taken as a n initia l<br />

cond i ti on for th e e1i ma te sensi ti I·i ty ex peri men ts, a nd<br />

mod el calcul a ti ons ran until a full stead y sta te was<br />

reached. R es ulting geometries for summer tempera ture<br />

lowerings in the range 0 (' - 2 to - 10 K are shown in Fig ure<br />

I a . I t a ppears tha t maj or ice <strong>sheets</strong> spread from g lacia ti on<br />

centres tha t a re a ll present in proto-form tod ay. In I\o rth<br />

Ameri ca, <strong>two</strong> sepa ra te ice shee ts build up O\'er th e coasta l<br />

R ocki es and the Canadia n Arcti c Isla nds. A cooling o f<br />

more tha n S Kis required for the latter ice sheet to cross<br />

Hudson Bay a nd cove r th e Ungava Peninsul a a nd<br />

La brad or plateaus, which themselves d o no t a ct as<br />

independent in ception a reas. During this evolution, the<br />

summit of the La urentide ice sheet mig ra tes wes t tOI'\'ards<br />

the Atlantic a nd reaches a maximum elcl'a tion of around<br />

4000 m. A very substa ntial summer cooling of 10 K (in the<br />

mod el this corres ponds to - 12.S K in the a nnua l mean<br />

a nd - IS K in winter) is required for th e Laurentide ice<br />

sheet to merge <strong>with</strong> the Cordillera n ice sheet, but the<br />

respecti ve ice domes are well conse rved. The mod el has<br />

difficulty growing the La urentide ice sheet far enough to<br />

the south in the ~lidw es t e rn U.S.A. This may \\'e11<br />

indicate tha t the mod el underes tima tes precipita tion ra tes<br />

there and that a reorgani zation of the a tmos pheri c<br />

circul a ti on produced much wetter conditio ns during<br />

m aximum g lacia ti on in continenta l North Ameri ca.<br />

In Eurasia, th e mod el produces the Ba rents a nd K a ra<br />

ice shee ts for a mod era le cooling of a bout 4 K . a t the sa me<br />

time as the Fennoscand ia n ice sheet is still la rgely<br />

confined to the Norwegia n mo unta ins. This supports the<br />

\·ie\\· th a t the Siberi a n ice <strong>sheets</strong> ori gin a ted in the Arcti c<br />

basin and spread " from th e sea" into th e adjacent<br />

continent (Gross\\'a ld . 1980). tho ug h such a n in fe rence<br />

should be resen 'ed because th e model d oes no t expli citl y<br />

d eal <strong>with</strong> marine ice-sheet d yna mics . For a summer<br />

tempera ture lowering of 6 7 K , the simula ted Eurasia n<br />

ice shee t is in broad agreemen t wi th mos t geologic a l<br />

reconstructions fo r the Last Glacia l ~l ax imum, th oug h<br />

th ere a re so me regio na l d el·ia ti ons . .\fa ximum elel'a ti ons<br />

a re abo ut 3500 m here.<br />

Proba bk th e larges t d el'ia ti on (i'om \I'ha t is kno\l'n of<br />

th e Qua terna ry glacia l cycles is th e continuous ice sheet<br />

cO \'ering Al aska. th e Bering Stra il a nd northeastern<br />

Siberi a, \I'hi ch ultima tely (for a cooling below 8 K )<br />

merges <strong>with</strong> th e Eurasia n ice sheet a nd an ice cap north of<br />

the Sea ofOkh o tsk to fo rm a huge circuma rcti c ice mass.<br />

There is no el'id ence to support glacia li on in northern<br />

Al aska a nd th e Bering Stra it, thoug h se\'era l reconstructi<br />

ons imply a t least some ice in coasta l eastern Si beri a a nd<br />

the hi gher pl a teaus further so uth (D enton a nd Hug hes,<br />

198 1: Tushing ha m a nd Pelti er, 199 1). A pl a usib le<br />

expla na ti on for th e disc repa ncy would be cha nges in<br />

precipita ti on pa tterns, not accounted for in o ur massba<br />

la nce pa ra m eteri zati on. Fo r insta nce, the d Cl'e1opmen l<br />

o f a n ice sheet O\'e r so uthern Al aska a nd perma nent sea<br />

ice in the Arcti c O cean may well hm'e d epri\'Cd th e<br />

northern coasta l a reas o f suffi cient moisture.<br />

3.2. Bas al telIlperature conditions<br />

Fig ure I b shows th e stead y-sta te thermal conditio ns a t the<br />

base associa ted <strong>with</strong> th ese climate sensiti \'it y experiments.<br />

The distribution of a reas a t press ure-melting poinL is<br />

importa nt beca use th e production oC basal water is a<br />

necessary prereq ui site for basal sliding a nd th e possibility<br />

of enha nced ice now due to the d eforma ti on of underl ying<br />

sediments. lnteres ting ly, wet-based a reas in th ese reconstructi<br />

ons a re confin ed to th e ou ter regions, \I'hereas<br />

centra l a reas remain a lways cold-based. Despite lower<br />

accumulation ra tes in cold er clima tes , implying less<br />

adl'ecti on of cold ice to\l'ards the base, a nd centra l ice<br />

thicknesses a bove 34 km , contributing to a basal<br />

wa rming because of th e " insul a ting effect", the simulated<br />

No rthern Hemisphere ice sheels fa il to become temperate<br />

OI'er the large a reas need ed fo r the possibility of some kind<br />

of sliding insta bility. T ypicall y. m ea n a nnual surface<br />

tempera lUres over th e hi gher pa rts of th e ice <strong>sheets</strong><br />

simula ted for a cooling of 10 K a re of th e order of 220-<br />

230 K , <strong>with</strong> correspo nding basal tempera lures d OlI'l1 to<br />

15- 20K below the press ure-melting po int. Consequently,<br />

these simula ti o ns d o no t support ice-dyna mi c th eories<br />

th a t illl'o ke th ermal switches a t th e base.<br />

3.3. Ice volulIle<br />

The corresponding ice I'o lumes a rc summa rized III the<br />

solutio n diagra m sho wn in Fig ure 2 . Two se ts o f m od e l<br />

11 3


HlIybrechts and T'siobbe!: llIodel/il/g qf. \ 'orthem Hemis/Jhere ice <strong>sheets</strong><br />

a<br />

..<br />

b<br />

Fig. l.a. Lll odelled stearo'-state ice-sheet geol71etriesjor slimmer tem/Jerature /Jertllrbations below present <strong>level</strong>s as indicated.<br />

Contours areIor slIIJace eLevaliol1 al/d are spaced 500111 a/Jart. These eX/Jeriments started wiliz a simulalio71 01 the /Hesent<br />

ice-sheet distributiol/ (shown ill the upper left /Jallel) as illitial cOl/figuration. b. Basal tem/Jerature cOllditions con esjJonding<br />

to the simulations shown ill Figure 1. Dark shadillg indicates where the base is at the pressure-melting /Joint, and basal<br />

sliding call O[[lIr; intermediate shading is JOT frozen basal cOlldilions; light shaded areas are ice-jree.<br />

114


Hlqbrechts and T'siobbel : M odelling oJ }/orthem HemisjJ /iere ice <strong>sheets</strong><br />

runs a re displ ayed, one in whi ch the present ice-sheet<br />

distribution was used as a n initia l condition (" interglacia<br />

l condirio ns") a nd one in which rhe ice-sheer<br />

confi g ura ti on for 10 K se ryed to sta rt the calcul a ti ons<br />

up ("glacial conditions" ). There a re <strong>two</strong> so lutions,<br />

d epending on whether the ice <strong>sheets</strong> were a lread y<br />

present or no t, a behavio ul' well d escribed for ice <strong>sheets</strong><br />

where the m ass-ba lance field is a fun cti on of surface<br />

e1 e\'ati o ll (O erl em a ns a nd V a n d e r V een , 1984) .<br />

T y pi call y, th e "width" of th e hys teresis is found to be<br />

a bo ut 2 K. An a dditio na l ice \'olume o f a bo ut<br />

4 .5 x 10 16 m 3 , which is a reasona ble es timate [o r rh e<br />

L as t G lacia l ~1 ax imum contribution of th e N orthern<br />

H emisphere ice <strong>sheets</strong>, is seen to be p roduced [or a<br />

summer tempera ture lowering o f" 6- 7 K. This value<br />

12<br />

10<br />

et)<br />

E<br />

<br />

(l)<br />

E.<br />

2<br />

0<br />

-12 -10 -8 -6 -4 -2 0 2<br />

Temperature perturbation relative to present (K)<br />

12<br />

10<br />

M<br />

E<br />

CD 8<br />

a ,....<br />

Q)<br />

6<br />

E<br />

::><br />

~ 4<br />

(l)<br />

E.<br />

2<br />

0<br />

0 25<br />

_---,-10K<br />

~ __ --; -9K<br />

__ ------1 -8 K<br />

__ -----------, -7K<br />

__ -----1 -6 K<br />

__-----~-5K<br />

_------~ -4 K<br />

50 75 100 125 150<br />

Time (kvr)<br />

Fig. 3. T ime-scales Jor ice-sheet build-up after the model<br />

was submitted 10 a sudden clwwtic cooling of the<br />

magnitude shown at the right . T he jJresent interglacial<br />

state served as an initial condition.<br />

Another kind of (tenta ti ve) inference can be made<br />

when rela ting the ice-vo lume CLln'es of Figure 2 to the<br />

reconstructi ons shown in Figure 1 b. For insta nce, th e iceshee<br />

t reconstruction (o r a temperature lowering of 6 K<br />

contains roughl y rhe ri ght a mounr o[addiriona l LG~1 ice.<br />

but shows a La urentide ice hee t that spreads fa r less [0<br />

th e so uthwes t th an indicated by the geological record. As<br />

th e ex tent of the Eurasian ice sheet corres ponds better<br />

<strong>with</strong> mos t reconstructi ons, this mi ght indicate th a t ice<br />

shee ts during rh e Last Gl ac ial .\Iax imum were significantly<br />

thinner th a n rh e mod el simula ri ons suggest.<br />

Fig. 2. Solutioll diagram giving stead),-state ice volume as<br />

a jill1ctioll oJ the temjJe1"{/tme perll/rbatioll . T he J II II<br />

jqllares are Jar model rUlls ill wlzich the jJresent<br />

'" intelg/aria/" ' state was taken as an initial conditioll:<br />

tlte open squares started Jrom the "glacial" ice sheet<br />

simulated Jor a a temperature change of - 10 K. As aJirst<br />

estimate, 10 milliollkm J (i.e.lO/GII/) of ice conesjJonds to<br />

a worldwide sea-/e/'el lowering cif abouL 25 m.<br />

4. CONCLUSION<br />

This pa per d isc ussed Northern H emisphere ice-sheet<br />

simula ti ons obtained <strong>with</strong> a three-dimensi onal thermomecha<br />

ni cal ice-sheet model cou pl ed wi th a parameteri zed<br />

mass-ba la nce model. The mos t important find ings th a t<br />

camc out of th ese experiments can be summari zed as<br />

[0 11 0\-\,,5 :<br />

refe rs to a stead y state, however. As d monstra ted in<br />

Fig ure 3, th ere a re lon g time-scales required to build<br />

ice sheers up . T ypical e-folding time-scales a ppear to be<br />

of the order of 40000 60000 yeal's, m a king it quite<br />

unlikely tha t the N o rthern H emisphere ice shee ts<br />

during the LGM were in [ull equilibl'ium w ith the<br />

clima te a r th a t tim e. Consequentl y, the inferred cooling<br />

sho uld be considered as a lower bound. M elting of ice<br />

<strong>sheets</strong>, on the other ha nd , is a much faster process<br />

because oC the hi gher magnitude of a bla ti o n I'ates .<br />

According to the curves displayed in Fi g ure 4, it may<br />

ra ke as little as 5000 6000 years [0 entirely rem ove the<br />

L a ure ntide a nd Euras ia n ice sh eets fro m the ir<br />

continenta l base when the clima te switches from fu ll<br />

g lacia l to fu ll interglacia l conditions. In tha t case, only<br />

a sm a ll ice cap rema ins centred over no rthern No\"aya<br />

Zeml ya and th e adjoining K a ra Sea th a t would require<br />

a n add i ti ona l m echa nism oC perha ps manne o n g Ill [or<br />

its d ecay.<br />

M<br />

E<br />

ID<br />

...<br />

0<br />

(l)<br />

E<br />

::l<br />

0<br />

><br />

(l)<br />

..S:1<br />

12<br />

10<br />

8<br />

6<br />

,<br />

-<br />

- ~<br />

-<br />

~ -<br />

~<br />

4<br />

~<br />

2 -<br />

0 I<br />

o 25<br />

I<br />

I<br />

-9 K<br />

-8K<br />

-7 K<br />

.oK<br />

-5K<br />

-4K<br />

-3K<br />

-2 K<br />

-1 K<br />

OK<br />

\<br />

50 75 100<br />

Time (kyr)<br />

Fig. -I. Evolution curves Jar c 'orLhem Hemisphere ice<br />

volume Jar various temperaLlae rises above - 10 K. T hese<br />

calClllations started <strong>with</strong> Ihe glacial ice-sheet configuration<br />

as an initial condition.<br />

11 5


Huybrechts and T'siobbeL: A10deLling oJ Norlhem Hemisphere ice <strong>sheets</strong><br />

(i)<br />

T he degree-day method es timating runoff based on<br />

m easurements in Greenl a nd seems to have a<br />

continent-wide validity, at least for present-day<br />

climatic conditions. This follows from a basicall y<br />

correct identifi cation oC abla ti on areas for th e prese n t<br />

state.<br />

(ii ) The Eurasian ice sheet reaches approximately its<br />

full extent for a summer temperature lowering of6-<br />

7 K.<br />

(iii ) A North American ice sheet in rough agreement <strong>with</strong><br />

LGM reconstructions is only produced for coolings of<br />

below 9- 10 K.<br />

(iv) The Barents- K ara ice-sheet complex ori ginated on<br />

isla nds in the Arctic O cean and spread from there to<br />

the adjacen t con ti nen t.<br />

(v) Basal temperatures in th e central parts of th e<br />

simulated ice <strong>sheets</strong> remain always well below the<br />

melting point, and wet basal conditions a re confined<br />

to the margins.<br />

(vi) Several ten thousand s of years a re required to grow<br />

the large Northern H emisphere ice <strong>sheets</strong> to their full<br />

sIze.<br />

(vii ) D eca y of full-grown ice <strong>sheets</strong> by surface melting can<br />

be accomplished in a bout 5000 years under an<br />

interglacial climate.<br />

Nevertheless, this study has also highlighted so me of<br />

the shortcomings of the present model. The most<br />

importa nt ones are probably related to the influence of<br />

the ice <strong>sheets</strong> on the a tmospheri c circulation, in particular<br />

<strong>with</strong> res pect to changes in precipitation pa tterns, a nd to<br />

the way marine ice-sheet dynamics are treated in th e<br />

model. A furth er logical step is then also to couple th e icesheet<br />

model <strong>with</strong> an ice-shelf model a nd to incorporate an<br />

a tmospheric-flow model that d eals <strong>with</strong> changes in the<br />

wind fi eld as the ice <strong>sheets</strong> grow into the troposphere.<br />

These developments a re presently under way.<br />

ACKNOWLEDGEMENTS<br />

This paper is a contribution to the Belgian Impulse<br />

Programme on Global Change, initiated by the Science<br />

Poli cy Office (Services of the Prime Ministel-). During this<br />

research, P. Huybrechts was on leave as a postdoctoral<br />

researcher <strong>with</strong> the Belgian National Fund for Scientific<br />

R esearch (NFWO). We thank W. Budd, A. Letreguilly<br />

a nd C. Ritl: for their constructive reviews of the<br />

manusc ript.<br />

REFERENCES<br />

Bouilon, G. S. 1979. Glacial hi tory 01" the Spit sbergen archipelago a nd<br />

the problem ofa Baren ts Shc1fice sheet. Boreas. 8 ( 1). 3 1 ~ 57.<br />

Boulton, G. S. and A. S. J ones. 1979. Stability of tempera te ice caps and<br />

ice <strong>sheets</strong> res ting on beds of deformable sediment. ]. Cla{;ol., 24(90 ),<br />

29-43.<br />

Budd, W. F . a nd 1. N. Smilh . 1987. Conditions for growth a nd retreat of<br />

the La urentide ice sheet. Giographie Ph),siqlle et Qpatemaire, 41 (2), 279~<br />

290.<br />

Clausc n, H . B., l\'. S. Gundestrup. S. J. .1 ohnsen, R . Bindschadler and J.<br />

Zwall y. 1988. Glaciological investi gati ons in the Crete area, cemral<br />

Greenland: A search for a new deep-drilling sil e .. 1111. Claciol .. 10. 1 0~ 15.<br />

D cblonde, G. a nd " .. R. Pelticr. 199 1. Simulations of cominenta l ice<br />

sheet growth over the last g l acia l~int e r g l acia l cycle: ex perimcnts <strong>with</strong><br />

a one- le\'eI seasonal energy ba la nce model including realistic<br />

geography. J. Geopl! ys. Res., 96 (D 5), 9 1 89~92 1 5.<br />

D enton, G. H . and T. J. H ughes, eds. 198 1. The last great ice <strong>sheets</strong>. New<br />

York, etc., W iley a nd Sons.<br />

Fairbanks. R . G. 1989. A 17.000-year glacio-eustatic sea In·cl record :<br />

influence o f g lac ial melting rates on th e Yo unger Dryas C\'cnt a nd<br />

deep-ocean circul a ti on . . Vatllre, 342 (6250), 637 ~642.<br />

F renzel, B., i'vl. Pecsi and A. A. Velichko, eds. 1992. Atlas of palaeoclilllates<br />

and /Jaia eOellvirollmellts oJ the . vorthem Helllis/lilere, Lale Pleistocelle~<br />

Holocelle. Stuttgart, Gustav Fisher Verl ag.<br />

Gross,,·ald. M. G. 1980. Late W eichse li a n ice sheet of northern Eurasia.<br />

Q!,al. Res., 13( I ), 1 ~ 32 .<br />

H uybrechts, P. 1990. A 3-D model for the Antarctic ice shee t: a<br />

sensiti vi ty slud y o n the glac ial- interglac ial contrast. Climate D.,vnamifJ,<br />

5 (2 ), 79 92.<br />

H uybrech ts, P. 1993. G laciologicalmodelling of the L a te Cenozoic East<br />

Antarctic ice sheet: sta bility or d yna mism? Ceogr. Ann. , 75A(4). 22 1 ~<br />

238.<br />

Huybrcc hts, P ., A. Letrcguilly and N. Rceh. 1991. The G reenland ice<br />

sheet and g reenhouse warming. Pttlaeogeogr .. Palarorlimatol., Pa/aeoecol.,<br />

89(4 ), 399-412.<br />

Jaeger, L. 1976. M onatska rten des Niederschlags flir d ie ~a nz e Erde.<br />

Bericllte des Delltschen 'I ·ellerdienstes, 18( 139).<br />

Lc treguilly, A. a nd C. Ritz. 1993. I\lodelling 0 1" the Fennoscandian ice<br />

shee t. III Peltier, "'.R. ed. Ice ill the climate .D'stem . Berlin, Springer­<br />

" erl ag, 2 1-46. (NATO AS I Seri es. Series I. G loba l En\'ironmental<br />

C ha nge. Vo!. 12. )<br />

\ia na be, S. a nd A. J. Broccoli . 1985. T he innuencc of contincnta l ice<br />

sheels on the cl imate of a n ice age. ]. Geo/lh)"J. Res .. 90 (D I), 2 1 67 ~<br />

2 190.<br />

\Iarsia t, I. 1992. \Iod clisa ti on d e I'holution d es calottes glaciaires en<br />

rcponsc a u for~age astronomique. i Ph.D. thesis, Universitc Cathol<br />

ique d e Lou"ain. )<br />

Oerlemans, J. 1982. Glacial cycles and ice-shee t modelling. Clillw/ie<br />

Chlll/ge, 4 ('. ), 353 374.<br />

Oerlemans, J . and C ..1. van d er Veen. 1984. Ice shu /J and clill1ale.<br />

Dordrech t, e tc .. D . R eidel Publishing Company.<br />

Rceh, 'i. 1991. Pa ra meleriz a ti on of melt ra te a nd surfilce temperature<br />

on the Greenland ice sheet. PolmJorschllng, 59 (3), 1989, 11 3 ~ 1 28.<br />

Tushingha m , A. 1\1. and \\'. R . Peltier. 1991. Ice-3G: a ne\\" global model<br />

of Late Pl eistocene deglacia ti on based upon geophys ical predictions<br />

of post-glacial relative sea <strong>level</strong> change. J. Geo/)/~)' J. Res., 96(B3),<br />

4497-4523.<br />

Verbitsky, M . Ya. a nd R .J . Oglesby. 1992. The effect 01" a tmospheri c<br />

carbon dioxide concentra tion on the continental glaciation of" the<br />

Northern Hemisphere. J. Geoph)'s. Res., 97 (0 5), 5895~5909.<br />

Yiou, F., G. ~1. Raisbeck, D . Bourles. C. Lorius a nd N . I. Ba rko\'. 1985.<br />

lOBe ill ice a t Vos tok Anta rcli ca during the last climatic cycle. Xalllre,<br />

316 (6029), 6 1 6~617.<br />

ll 6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!