18.11.2012 Views

on the albedo of snow in antarctica - International Glaciological ...

on the albedo of snow in antarctica - International Glaciological ...

on the albedo of snow in antarctica - International Glaciological ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Joumal 0/ Glaciology, Vol. 34, No. 116, 1988<br />

ON THE ALBEDO OF SNOW IN ANTARCTICA:<br />

A CONTRIBUTION TO I.A.G.O.*<br />

By GERD WENDLER and JOHN KELLEY t<br />

(Geophysical Institute, University <strong>of</strong> Alaska, Fairbanks, Alaska 99775-0800, U.S.A.)<br />

ABSTRACT. As part <strong>of</strong> a larger experiment, detailed<br />

<strong>albedo</strong> measurements were carried out dur<strong>in</strong>g <strong>the</strong> austral<br />

summer <strong>of</strong> 1985-86 <strong>in</strong> <strong>the</strong> dry-<strong>snow</strong> z<strong>on</strong>e (1560 m) <strong>of</strong> Terre<br />

Adelie, eastern Antarctica. The follow<strong>in</strong>g results were<br />

found:<br />

(I) Mean <strong>albedo</strong> values were high (around 82.6%). On clear<br />

days, <strong>the</strong> <strong>albedo</strong> showed some dependency <strong>on</strong> <strong>the</strong> solar<br />

elevati<strong>on</strong>. The dependency was slight for solar elevati<strong>on</strong>s<br />

above 12 0 but became larger with low Sun angles.<br />

(2) The <strong>albedo</strong> was found to be a functi<strong>on</strong> <strong>of</strong> cloud amount<br />

and type, <strong>in</strong>creas<strong>in</strong>g with <strong>the</strong> amount and thickness <strong>of</strong><br />

clouds. In white-out c<strong>on</strong>diti<strong>on</strong>s, very high <strong>albedo</strong>s were<br />

found (>90%).<br />

(3) The <strong>albedo</strong> showed a dependency <strong>on</strong> <strong>the</strong> type <strong>of</strong> <strong>snow</strong>.<br />

New <strong>snow</strong> displayed higher values than older <strong>snow</strong>,<br />

whose crystals had been destroyed by mechanical acti<strong>on</strong>.<br />

(4) A simple model was developed to assess <strong>the</strong> <strong>in</strong>fluence<br />

<strong>of</strong> sastrugi <strong>on</strong> <strong>the</strong> <strong>albedo</strong>. This model could expla<strong>in</strong> <strong>the</strong><br />

asymmetric diurnal variati<strong>on</strong> about solar no<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

measured <strong>albedo</strong> above a sastrugi field.<br />

The above four dependencies might expla<strong>in</strong> <strong>the</strong><br />

c<strong>on</strong>siderable discrepancies which can be found <strong>in</strong> <strong>the</strong> litera­<br />

ture c<strong>on</strong>cern<strong>in</strong>g <strong>the</strong> <strong>snow</strong> <strong>albedo</strong> <strong>of</strong> Antarctica.<br />

INTRODUCTION<br />

The radiati<strong>on</strong> balance <strong>of</strong> any surface, and with it <strong>the</strong><br />

surface climate, is <strong>in</strong>fluenced by its <strong>albedo</strong>. If <strong>the</strong><br />

reflectivity is high, as it is <strong>in</strong> Antarctica, which is 99%<br />

<strong>snow</strong>-covered, this dependency is str<strong>on</strong>g, as most <strong>of</strong> <strong>the</strong><br />

energy received from <strong>the</strong> Sun is reflected back <strong>in</strong>to space.<br />

Hence, <strong>in</strong> Antarctica <strong>the</strong> radiati<strong>on</strong> balance is negative for<br />

most <strong>of</strong> <strong>the</strong> year. To compensate for this loss, <strong>the</strong> air<br />

warms <strong>the</strong> surface, <strong>the</strong>reby los<strong>in</strong>g energy itself. Hence, a<br />

cold layer <strong>of</strong> air normally lies over <strong>the</strong> Antarctic ice sheet.<br />

This <strong>in</strong>versi<strong>on</strong> layer, be<strong>in</strong>g heavier than <strong>the</strong> air al<strong>of</strong>t at <strong>the</strong><br />

same height fur<strong>the</strong>r down <strong>the</strong> slope, flows downward (kata­<br />

batic w<strong>in</strong>d) towards <strong>the</strong> coast <strong>of</strong> <strong>the</strong> Antarctic c<strong>on</strong>t<strong>in</strong>ent<br />

(Maws<strong>on</strong>, 1915). Therefore, <strong>the</strong> <strong>albedo</strong> plays an important<br />

role <strong>in</strong> <strong>the</strong> heat balance <strong>of</strong> <strong>the</strong> whole c<strong>on</strong>t<strong>in</strong>ent, especially<br />

as <strong>the</strong> <strong>snow</strong> <strong>of</strong> Antarctica is mostly dry, and reflects solar<br />

radiati<strong>on</strong> very well. There have been a number <strong>of</strong> excellent<br />

studies <strong>of</strong> this phenomen<strong>on</strong> (Liljequist, 1956; Ho<strong>in</strong>kes, 1960;<br />

Kuhn and o<strong>the</strong>rs, 1977, Carroll and Fitch, 1981; Ishikawa<br />

and o<strong>the</strong>rs, 1982; Yamanouchi, 1983). However, great dis­<br />

crepancies <strong>in</strong> <strong>the</strong> <strong>albedo</strong> have been reported, with values<br />

around 80% be<strong>in</strong>g normal. This paper, based <strong>on</strong> measure­<br />

ments <strong>in</strong> Terre Adelie, eastern Antarctica, tries to resolve<br />

some <strong>of</strong> <strong>the</strong>se discrepancies by c<strong>on</strong>sider<strong>in</strong>g different physical<br />

processes.<br />

*Interacti<strong>on</strong> Atmosphere-Glacier-ocean.<br />

t Institute <strong>of</strong> Mar<strong>in</strong>e Science, University <strong>of</strong> Alaska,<br />

Fairbanks, Alaska 99775-0800, U .S.A.<br />

LOCATION, INSTRUMENTATION, AND TIME OF<br />

OBSERVATIONS<br />

About 5 years ago, a jo<strong>in</strong>t U.S.-French experiment<br />

commenced to <strong>in</strong>vestigate <strong>the</strong> katabatic w<strong>in</strong>d regime <strong>in</strong><br />

eastern Antarctica (Wendler and Poggi, 1980; Poggi and<br />

o<strong>the</strong>rs, 1982). Associated with this katabatic w<strong>in</strong>d<br />

<strong>in</strong>vestigati<strong>on</strong> were complementary studies <strong>of</strong> <strong>the</strong> surface-heat<br />

budget and <strong>the</strong> <strong>albedo</strong>. Dur<strong>in</strong>g <strong>the</strong> austral summer <strong>of</strong><br />

1985-86, detailed radiative measurements were carried out at<br />

D-47 (Iat. 67 0 23' S., l<strong>on</strong>g. 138 0 43' E.) <strong>in</strong> Terre Adelie (Fig.<br />

I) at an altitude <strong>of</strong> 1560 m. D-47 is located about 110 km<br />

south <strong>of</strong> <strong>the</strong> year-round French Antarctic support stati<strong>on</strong><br />

Dum<strong>on</strong>t d'Urville. The gradient <strong>of</strong> <strong>the</strong> slope is <strong>of</strong> <strong>the</strong> order<br />

<strong>of</strong> 6 x 10-3. Fur<strong>the</strong>rmore, D-47 is <strong>the</strong> site <strong>of</strong> an automatic<br />

wea<strong>the</strong>r stati<strong>on</strong> (A WS), which reports over satellite<br />

throughout <strong>the</strong> year (Renard and Sal<strong>in</strong>as, 1977; Stearns and<br />

Savage, 1981). Hence, a large amount <strong>of</strong> climatological data<br />

is available for this site (Wendler and Kodama, 1985).<br />

Stati<strong>on</strong> D-47 is located above <strong>the</strong> dry-<strong>snow</strong> l<strong>in</strong>e. This<br />

str<strong>on</strong>gly <strong>in</strong>fluences <strong>the</strong> reflectivity <strong>of</strong> <strong>the</strong> <strong>snow</strong>. The mean<br />

annual temperature is relatively mild (-25.7 ° C). In w<strong>in</strong>ter, a<br />

mean temperature <strong>of</strong> -30. l o C was measured, while <strong>the</strong><br />

summer displayed a mean temperature <strong>of</strong> -17.2 0 C. Positive<br />

temperatures were never measured.<br />

Fig. I. Area map 0/ Terre Adelie. Antarctica.<br />

The mean annual w<strong>in</strong>d speed at D-47 is high<br />

(12.8 m S- I ). The maximum is observed <strong>in</strong> w<strong>in</strong>ter (13.5 m s-I,<br />

seas<strong>on</strong>al mean), while <strong>the</strong> m<strong>in</strong>imum occurs <strong>in</strong> summer<br />

(11.3 m S- I ). The directi<strong>on</strong>al c<strong>on</strong>stancy, which is def<strong>in</strong>ed as<br />

<strong>the</strong> ratio <strong>of</strong> <strong>the</strong> mean w<strong>in</strong>d vector to <strong>the</strong> scalar average<br />

w<strong>in</strong>d speed, has a very large mean annual value <strong>of</strong> 0.94. It<br />

means that w<strong>in</strong>ds that do not come from a south-easterly<br />

directi<strong>on</strong> blow<strong>in</strong>g down <strong>the</strong> slope are rare occurrences.<br />

W<strong>in</strong>ds have two effects <strong>on</strong> <strong>the</strong> <strong>albedo</strong> <strong>of</strong> <strong>snow</strong>:<br />

19


Journal o[ Glaciology<br />

(I) Drift<strong>in</strong>g and blow<strong>in</strong>g <strong>snow</strong> is a very frequent<br />

occurrence. New <strong>snow</strong> is normally redistributed with<strong>in</strong><br />

hours. The mechanical acti<strong>on</strong> <strong>of</strong> <strong>the</strong> blow<strong>in</strong>g <strong>snow</strong><br />

destroys its crystall<strong>in</strong>e structure and changes <strong>the</strong> <strong>albedo</strong>.<br />

Mean diameter <strong>of</strong> <strong>the</strong> crystals was measured at between<br />

100 and 300/Lm.<br />

(2) The str<strong>on</strong>g and persistent w<strong>in</strong>ds form sastrugi (<strong>snow</strong><br />

dunes), which form and disappear aga<strong>in</strong>. Most <strong>of</strong> Terre<br />

Adelie is covered with <strong>the</strong>m (Fig. 2), and <strong>the</strong>y are<br />

usually directed al<strong>on</strong>g <strong>the</strong> l<strong>in</strong>e <strong>of</strong> <strong>the</strong> resultant w<strong>in</strong>d<br />

vector. S<strong>in</strong>ce sastrugi are not randomly directed, <strong>the</strong>y<br />

also have an effect <strong>on</strong> <strong>the</strong> <strong>albedo</strong>.<br />

The follow<strong>in</strong>g <strong>in</strong>strumentati<strong>on</strong> was used:<br />

PD-4 Davos pyranometer for short-wave <strong>in</strong>com<strong>in</strong>g and<br />

reflected radiati<strong>on</strong>.<br />

Eppley Star pyranometer for short-wave <strong>in</strong>com<strong>in</strong>g radiai<strong>on</strong>.<br />

PD-I Davos pyranometer as a portable <strong>in</strong>strument to<br />

measure <strong>albedo</strong> over different surfaces.<br />

Fig. 2. A sastrugi field as observed at D-47, Terre Adelie,<br />

Antarctica. Sastrugi height: 20-30 cm, <strong>in</strong> extreme cases:<br />

I m.<br />

The <strong>in</strong>struments measure <strong>the</strong> whole visible and near<strong>in</strong>fra-red<br />

spectrum. The glass domes (WG7 and 295) <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>struments have a wavelength range from 281 to 2800 nm.<br />

As a calibrati<strong>on</strong> <strong>in</strong>strument, a L<strong>in</strong>ke-Feussner act<strong>in</strong>ometer<br />

(No. 700 207), which had been compared to <strong>the</strong> United<br />

States Standards <strong>in</strong> Boulder, Colorado, was used. All data,<br />

with <strong>the</strong> excepti<strong>on</strong> <strong>of</strong> <strong>the</strong> L<strong>in</strong>ke-Feussner act<strong>in</strong>ometer, were<br />

recorded <strong>on</strong> a Campbell CR 7 data logger. Measurements<br />

were taken every 10 s. These data were averaged over<br />

10 m<strong>in</strong> <strong>in</strong>tervals and recorded electr<strong>on</strong>ically as well as<br />

pr<strong>in</strong>ted out <strong>in</strong> real time to yield immediate data c<strong>on</strong>trol.<br />

The measurements were taken <strong>in</strong> November and December<br />

1985. Calibrati<strong>on</strong> was carried out at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g and end<br />

<strong>of</strong> <strong>the</strong> observati<strong>on</strong>al period. Complete data sets are available<br />

for 33 d. Of this period, 15 d were clear, 13 d were partly<br />

cloudy, and 5 d had overcast c<strong>on</strong>diti<strong>on</strong>s.<br />

ALBEDO AND SOLAR ELEVATION<br />

Typical values <strong>of</strong> <strong>the</strong> <strong>albedo</strong> <strong>of</strong> <strong>the</strong> <strong>snow</strong> were about<br />

80%. These high values might be expla<strong>in</strong>ed by <strong>the</strong> fact that<br />

our measur<strong>in</strong>g site was situated above <strong>the</strong> dry-<strong>snow</strong> l<strong>in</strong>e<br />

(Bens<strong>on</strong>, 1962), hence melt<strong>in</strong>g never occurred, nor was<br />

water ever present <strong>in</strong> <strong>the</strong> <strong>snow</strong>. When melt<strong>in</strong>g <strong>of</strong> <strong>snow</strong> does<br />

occur, values substantially lower are normally found<br />

(Dirmhirn and<br />

Weller, 1974).<br />

Trojer, 1955; Kelley, 1973; Wendler and<br />

In Figure 3, <strong>the</strong> <strong>albedo</strong> is plotted for a totally<br />

cloudless day aga<strong>in</strong>st <strong>the</strong> solar elevati<strong>on</strong>. The area over<br />

which <strong>the</strong>se measurements were made was flat. It can be<br />

seen that, for solar elevati<strong>on</strong>s above 12 0 , <strong>the</strong>re is <strong>on</strong>ly a<br />

20<br />

8<br />

i 8<br />

7<br />

T 0<br />

5l<br />

. . . . . .<br />

.11 DEC 19 8 5<br />

. .<br />

o�---------�10�-- ----�2�O------�3�O�-------4�<br />

SOLAR ELEVATION IN DEGREES<br />

. . . . . .<br />

Fig. 3. Albedo o[ <strong>snow</strong> as a [uncti<strong>on</strong> o[ solar elevati<strong>on</strong> [or<br />

a totally clear day o[ summer 1985-86, Terre Adelie,<br />

Antarctica.<br />

slight dependency <strong>of</strong> <strong>the</strong> <strong>albedo</strong> <strong>on</strong> <strong>the</strong> posItIOn <strong>of</strong> <strong>the</strong> Sun.<br />

The observed change <strong>in</strong> reflectivity between 12 0 and 49 0<br />

solar elevati<strong>on</strong> is about 2.5%. However, reflectivity <strong>in</strong>creased<br />

fur<strong>the</strong>r for very low Sun angles. For <strong>the</strong>se data, <strong>the</strong> energy<br />

received decreases, hence <strong>the</strong> relati ve error <strong>in</strong>creases.<br />

Fur<strong>the</strong>rmore, most pyranometers have a cos<strong>in</strong>e effect, which<br />

might become substantial for solar elevati<strong>on</strong>s <strong>of</strong> less than<br />

5 0 . Hence, that part <strong>of</strong> <strong>the</strong> figure should not be given <strong>the</strong><br />

same importance as <strong>the</strong> rest.<br />

The results <strong>of</strong> <strong>the</strong>se observati<strong>on</strong>s <strong>of</strong> variati<strong>on</strong>s <strong>in</strong> <strong>albedo</strong><br />

are similar to o<strong>the</strong>r studies, for example, Ambach (I 963) <strong>in</strong><br />

Greenland, and Wendler and Streten (1969) <strong>in</strong> south-eastern<br />

Alaska. No dependency <strong>of</strong> <strong>albedo</strong> <strong>on</strong> solar elevati<strong>on</strong> could<br />

be established for cloudy days.<br />

ALBEDO AND CLOUD INESS<br />

As l<strong>on</strong>g as no new <strong>snow</strong>fall occurs, <strong>the</strong> <strong>albedo</strong> is fairly<br />

c<strong>on</strong>stant for reas<strong>on</strong>ably high solar elevati<strong>on</strong>s. However, large<br />

variati<strong>on</strong>s were observed when cloud<strong>in</strong>ess appeared, which<br />

could not be expla<strong>in</strong>ed by changes <strong>in</strong> <strong>snow</strong> c<strong>on</strong>diti<strong>on</strong>s.<br />

When clouds are present, <strong>the</strong> radiati<strong>on</strong> received at <strong>the</strong><br />

surface is diffuse, while under a clear sky about 85% <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>com<strong>in</strong>g radiati<strong>on</strong> is directed. As <strong>the</strong> diffuse and direct<br />

radiati<strong>on</strong> have a somewhat different spectrum (Couls<strong>on</strong>,<br />

1975), and <strong>the</strong> reflectivity <strong>of</strong> <strong>the</strong> <strong>snow</strong> is wave-dependent<br />

(Dirmhirn and Eat<strong>on</strong>, 1974), variati<strong>on</strong>s <strong>in</strong> <strong>the</strong> <strong>albedo</strong> are to<br />

be expected. More recently, Warren (1982) summarized <strong>the</strong><br />

state <strong>of</strong> knowledge, and detailed work has been carried out<br />

by Carroll and Fitch (1981), Grenfell and o<strong>the</strong>rs (I 981), and<br />

Grenfell and Perovich (1984). Grenfell and o<strong>the</strong>rs (1981)<br />

gave spectral <strong>albedo</strong>s between 380 and 2500 nm for a <strong>snow</strong><br />

cover <strong>in</strong> <strong>the</strong> Cascade Mounta<strong>in</strong>s, Grenfell and Perovich<br />

(I 984) for partly <strong>snow</strong>-covered sea ice, and Carroll and<br />

Fitch (1981) worked at <strong>the</strong> South Pole. They showed clearly<br />

that <strong>the</strong> reflectivity <strong>of</strong> <strong>the</strong> <strong>snow</strong> <strong>in</strong> <strong>the</strong> short-wave (visible)<br />

part <strong>of</strong> <strong>the</strong> solar spectrum is very high (>90%), while<br />

reflectivity <strong>in</strong> <strong>the</strong> near-<strong>in</strong>fra-red regi<strong>on</strong> is substantially<br />

lower (about 20% mean value for 1500-2500 nm). Warren<br />

and Wiscombe (I980) carried out <strong>the</strong>oretical calculati<strong>on</strong>s <strong>of</strong><br />

<strong>the</strong> spectral <strong>albedo</strong> which are <strong>in</strong> good agreement with <strong>the</strong><br />

measurements <strong>of</strong> <strong>the</strong> above-menti<strong>on</strong>ed authors. As <strong>the</strong><br />

energy <strong>of</strong> <strong>the</strong> solar spectrum <strong>in</strong> <strong>the</strong>se larger wavelengths is<br />

low, a comb<strong>in</strong>ed <strong>albedo</strong> <strong>of</strong> 83% for clean Antarctic <strong>snow</strong> is<br />

reas<strong>on</strong>able. Clouds also absorb more <strong>in</strong> <strong>the</strong> near-<strong>in</strong>fra-red<br />

than <strong>the</strong> visible; a decrease <strong>of</strong> <strong>the</strong> <strong>in</strong>fra-red comp<strong>on</strong>ent<br />

relative to <strong>the</strong> visible part <strong>of</strong> <strong>the</strong> irradiance with <strong>in</strong>creas<strong>in</strong>g<br />

cloud cover was determ<strong>in</strong>ed by Grenfell and Perovich<br />

(1984). ; is fur<strong>the</strong>r magnified if multiple reflecti<strong>on</strong><br />

between ghly reflective surfaces occurs (Wendler and<br />

o<strong>the</strong>rs, I �lS I), and can result <strong>in</strong> a substantial <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

<strong>albedo</strong>. Grenfell and Perovich (1984) found values up to<br />

15% for Barrow, Alaska - similar to values presented<br />

here.<br />

In Figure 4 <strong>the</strong> <strong>albedo</strong> <strong>of</strong> <strong>the</strong> <strong>snow</strong> surface is given<br />

for different types <strong>of</strong> cloud. For each case, six<br />

measurements are given, each c<strong>on</strong>sist<strong>in</strong>g <strong>of</strong> <strong>the</strong> mean <strong>of</strong> 60<br />

<strong>in</strong>dividual measurements. In general, it can be seen that <strong>the</strong><br />

thicker <strong>the</strong> cloud, <strong>the</strong> higher <strong>the</strong> <strong>albedo</strong>. While clear-sky<br />

c<strong>on</strong>diti<strong>on</strong>s yield <strong>albedo</strong> values <strong>of</strong> around 82%, this value<br />

<strong>in</strong>creased to 83.5% for cirro-stratus clouds, to 86.5% for<br />

alto-stratus clouds, and to even higher values for stratus<br />

cloud cover. The figure also shows that <strong>the</strong> scatter <strong>in</strong> <strong>the</strong><br />

data po<strong>in</strong>ts is more pr<strong>on</strong>ounced for cloudy c<strong>on</strong>diti<strong>on</strong>s than<br />

for clear sky. This is understandable, as even <strong>the</strong> same k<strong>in</strong>d


Wendler and Kelley: Albedo <strong>of</strong> <strong>snow</strong> <strong>in</strong> Antarctica<br />

100 TIME<br />

.. 90<br />

0<br />

0<br />

UJ<br />


Journal 0/ Glaciology<br />

SASTRUGl TYPE<br />

TYPE A<br />

TYPE B<br />

TYPE C<br />

Fig. 6. Assumpti<strong>on</strong>s 0/ sastrugi geometry for model<br />

calculati<strong>on</strong>s.<br />

<strong>in</strong>put, three different assumpti<strong>on</strong>s for <strong>the</strong> form <strong>of</strong> <strong>the</strong><br />

sastrugi were made (Fig. 6):<br />

(a) Sastrugi are c<strong>on</strong>sidered as walls perturb<strong>in</strong>g <strong>the</strong> <strong>snow</strong><br />

surface.<br />

(b) Sastrugi are c<strong>on</strong>sidered as semi-circles perturb<strong>in</strong>g<br />

<strong>the</strong> <strong>snow</strong> surface.<br />

(c) Sastrugi are c<strong>on</strong>sidered as ellipses perturb<strong>in</strong>g <strong>the</strong><br />

<strong>snow</strong> surface.<br />

Cases (a) and (b) can be regarded as special situati<strong>on</strong>s<br />

<strong>of</strong> case (c). Referr<strong>in</strong>g to Figure 8, case (a) is <strong>the</strong> situati<strong>on</strong><br />

<strong>in</strong> which a = 0, and <strong>in</strong> case (b) a = b. The azimuth (AZ)<br />

and elevati<strong>on</strong> (EL) <strong>of</strong> <strong>the</strong> Sun were calculated for <strong>the</strong> time<br />

<strong>of</strong> <strong>the</strong> day and day <strong>of</strong> <strong>the</strong> year, us<strong>in</strong>g <strong>the</strong> method <strong>of</strong><br />

Walraven (1978). The angle (E) at which <strong>the</strong> Sun's rays<br />

strike <strong>the</strong> horiz<strong>on</strong>tal surface is calculated from azimuth,<br />

elevati<strong>on</strong>, and sastrugi directi<strong>on</strong> (D) us<strong>in</strong>g <strong>the</strong> equati<strong>on</strong>:<br />

[ tan(EL)<br />

arctan<br />

cos(AZ x D +<br />

A coord<strong>in</strong>ate system is <strong>the</strong>n <strong>in</strong>troduced with its <strong>on</strong>gm at<br />

<strong>the</strong> center <strong>of</strong> <strong>the</strong> ellipse, and axes al<strong>on</strong>g <strong>the</strong> axes <strong>of</strong> <strong>the</strong><br />

ellipse. The (x,y) coord<strong>in</strong>ate <strong>of</strong> <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> Sun's<br />

rays are tangential to <strong>the</strong> elliptical sastrugi is <strong>the</strong>n calculated<br />

us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g series <strong>of</strong> equati<strong>on</strong>s.<br />

c = (a 2 - b 2 ) !,<br />

n<br />

ex = 2 - E,<br />

13 = arcs<strong>in</strong> [: s<strong>in</strong> ex l<br />

[S<strong>in</strong>( ex - 13) ]<br />

r = 2c ,<br />

1<br />

s<strong>in</strong>(213)<br />

r 2 = 2a - rl'<br />

X =<br />

r 2 - r 2<br />

2 1<br />

4c<br />

y (r� - (x + c) 2 ) +<br />

where (-c,O) and (c,O) are <strong>the</strong> foci <strong>of</strong> <strong>the</strong> ellipse, and ex, 13,<br />

r I' r 2 , x, and y are as <strong>in</strong> Figure 7.<br />

There are two possibilities for <strong>the</strong> percentage <strong>of</strong> <strong>the</strong><br />

surface <strong>in</strong> shadow. In <strong>the</strong> first case (Fig. 8a), <strong>the</strong> shadow<br />

22<br />

(0, 0)<br />

Fig. 7. Sastrugi model with features labelled.<br />

E = angle at which <strong>the</strong> Sun's rays strike sastrugi.<br />

(x,y) = po<strong>in</strong>t at which <strong>the</strong> Sun's rays are tangential to<br />

sastrugi.<br />

ri' r 2 = radii 0/ ellipse at (x,y).<br />

I = perpendicular to <strong>the</strong> Sun's rays at <strong>the</strong> po<strong>in</strong>t (x,y).<br />

S<strong>in</strong>ce <strong>the</strong> sastrugi are modelled as ellipses, this l<strong>in</strong>e<br />

bisects <strong>the</strong> angle between r 1 and r 2 '<br />

13 angle between I and radii.<br />

ex = angle formed by I and <strong>the</strong> x-axis.<br />

�2b<br />

(0, 0)<br />

Fig. 8. Sastrugi model with features labelled.<br />

a = <strong>on</strong>e-hal/ <strong>the</strong> width 0/ <strong>the</strong> sastrugi.<br />

b = height 0/ sastrugi.<br />

S distance between sastrugi,<br />

z = distance between <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> Sun's rays<br />

hit <strong>the</strong> adjacent sastrug; and <strong>the</strong> major axis 0/ that<br />

sastruga.<br />

does not reach <strong>the</strong> adjacent sastrugi. The percentage <strong>of</strong><br />

surface <strong>in</strong> shadow is <strong>the</strong>n given by <strong>the</strong> formula:<br />

100ylS tan(E)<br />

where S is <strong>the</strong> distance between <strong>the</strong> sastrugi, and E and y<br />

are as above.<br />

In <strong>the</strong> sec<strong>on</strong>d case, at relatively low solar angles, <strong>the</strong><br />

adjacent sastrugi <strong>in</strong>terfere with <strong>the</strong> shadow (Fig. 8b). The<br />

percentage is given by:


where<br />

and<br />

z<br />

100(S - x - z)/S<br />

a (mta<br />

t<br />

+ b(a 2 m 2 - t 2 + b 2)<br />

a 2 m 2 + b 2<br />

m = tan(-E),<br />

t = ym(x + S),<br />

S, x, y, a, b, and E are as above, and z is as shown <strong>in</strong><br />

Figure 8b.<br />

For our model <strong>of</strong> <strong>the</strong> mean <strong>albedo</strong> we made two<br />

assumpti<strong>on</strong>s:<br />

(I) The reflectivity <strong>of</strong> <strong>snow</strong> for a horiz<strong>on</strong>tal surface<br />

exposed to <strong>the</strong> Sun is SO% <strong>of</strong> <strong>the</strong> global radiati<strong>on</strong>.<br />

(2) The reflectivity <strong>of</strong> shaded <strong>snow</strong>, <strong>in</strong>dependent <strong>of</strong> its<br />

exposure, is 15% <strong>of</strong> <strong>the</strong> global radiai<strong>on</strong>.<br />

Actually, <strong>the</strong> amount <strong>of</strong> sky radiati<strong>on</strong> <strong>on</strong> <strong>the</strong> global<br />

radiati<strong>on</strong> is somewhat smaller; however, multiple reflecti<strong>on</strong><br />

between slopes <strong>of</strong> different exposure raises <strong>the</strong> radiati<strong>on</strong><br />

received <strong>on</strong> shaded surfaces.<br />

Fur<strong>the</strong>rmore, for our calculati<strong>on</strong>s, a solar ephemeris <strong>of</strong><br />

20 ° was assumed, which was about <strong>the</strong> value observed at<br />

<strong>the</strong> time we made our measurements.<br />

.':<br />

100<br />

80<br />

C<br />

- 60<br />

0<br />

1)<br />

i!J<br />

S)<br />

<br />

0 40<br />

\..<br />

i!J<br />

><br />


Journal 0/ Glaciology<br />

-"<br />

c<br />

-<br />

0<br />

"tl<br />

(lJ<br />

.Jj<br />

<br />


The mean <strong>of</strong> this distributi<strong>on</strong> was taken to be 120 0 , <strong>the</strong><br />

same directi<strong>on</strong> as was used <strong>in</strong> Figure 13. A numerical<br />

<strong>in</strong>tegrati<strong>on</strong> was performed over <strong>the</strong> range <strong>of</strong> <strong>the</strong> distributi<strong>on</strong><br />

to determ<strong>in</strong>e a new average modelled <strong>albedo</strong>. This method<br />

does not take <strong>in</strong>to account <strong>the</strong> complex <strong>in</strong>terference patterns<br />

<strong>of</strong> <strong>the</strong> several sastrugi directi<strong>on</strong>s; however, it is adequate<br />

for our purpose.<br />

Some improvement was found <strong>in</strong> <strong>the</strong> average per cent<br />

difference between real and modelled values us<strong>in</strong>g this<br />

method. The m<strong>in</strong>imum per cent difference <strong>of</strong> 1.42% was<br />

found when <strong>the</strong> standard deviati<strong>on</strong> <strong>of</strong> <strong>the</strong> sastrugi directi<strong>on</strong><br />

was taken to be 25 0 . This compared with 2.03% average<br />

difference for <strong>the</strong> model with <strong>on</strong>ly <strong>on</strong>e sastrugi directi<strong>on</strong>.<br />

CONCLUSION<br />

Albedo was measured at an undisturbed site <strong>in</strong> Terre<br />

Adelie. The known dependency <strong>of</strong> reflectivity <strong>on</strong> <strong>snow</strong> type,<br />

solar elevati<strong>on</strong>, and amount and type <strong>of</strong> cloud<strong>in</strong>ess could be<br />

dem<strong>on</strong>strated. Warren (1982), <strong>in</strong> his review article, discussed<br />

and expla<strong>in</strong>ed <strong>the</strong>se phenomena. With <strong>the</strong> excepti<strong>on</strong> <strong>of</strong> new<br />

<strong>snow</strong>falls, <strong>the</strong> dependence <strong>on</strong> <strong>snow</strong> type was not very<br />

pr<strong>on</strong>ounced, probably due to <strong>the</strong> fact that <strong>the</strong> crystal size<br />

did not vary substantially from <strong>on</strong>e type to ano<strong>the</strong>r. A<br />

blow<strong>in</strong>g-<strong>snow</strong> device, which measured <strong>the</strong> mean size photoelectrically,<br />

normally gave values between lOO and 200 JLm.<br />

The effect <strong>of</strong> solar elevati<strong>on</strong> is not very large for<br />

heights above 10 0 , and our <strong>in</strong>strumentati<strong>on</strong> did not allow<br />

accurate measurements below this value. Cloud<strong>in</strong>ess can have<br />

a substantial effect <strong>on</strong> <strong>the</strong> <strong>albedo</strong>, as <strong>the</strong> high-reflect<strong>in</strong>g<br />

short-wave part <strong>of</strong> <strong>the</strong> solar spectrum is enhanced by<br />

multiple reflecti<strong>on</strong> between clouds and <strong>snow</strong> cover. Our<br />

values are <strong>in</strong> agreement with those found by Grenfell and<br />

Perovich (l984) north <strong>of</strong> Barrow.<br />

However, <strong>the</strong> asymmetric variati<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>albedo</strong> we<br />

measured could not be expla<strong>in</strong>ed <strong>in</strong> this way. We developed<br />

a model, tak<strong>in</strong>g <strong>the</strong> form and directi<strong>on</strong> <strong>of</strong> <strong>the</strong> sastrugi <strong>in</strong>to<br />

account. Good agreement between model and field measurements<br />

was obta<strong>in</strong>ed. Fur<strong>the</strong>rmore, <strong>the</strong> <strong>albedo</strong> could be<br />

calculated for o<strong>the</strong>r times <strong>of</strong> <strong>the</strong> year, and it can be stated<br />

generally that <strong>the</strong> effect <strong>of</strong> <strong>the</strong> sastrugi <strong>on</strong> <strong>the</strong> <strong>albedo</strong><br />

becomes more pr<strong>on</strong>ounced with decreas<strong>in</strong>g solar elevati<strong>on</strong>s.<br />

It is believed that this last po<strong>in</strong>t <strong>of</strong> <strong>the</strong> paper is <strong>the</strong> most<br />

important f<strong>in</strong>d<strong>in</strong>g.<br />

ACKNOWLEDGEMENTS<br />

This work was funded by U.S. Nati<strong>on</strong>al Science<br />

Foundati<strong>on</strong> grant 8100 16. Fur<strong>the</strong>rmore, our thanks go to <strong>the</strong><br />

United States Antarctic Research Program and Expediti<strong>on</strong>s<br />

Polaires Fran�aises. Also, we thank our team members, R.<br />

Fl<strong>in</strong>t, Pr<strong>of</strong>essor N. Ishikawa, Or Y. Kodama, G. Mimken, P.<br />

Thiebaud, and I. Widget. Mr F. Brill carried out <strong>the</strong><br />

computer work, for which we are grateful. Fruitful<br />

discussi<strong>on</strong>s with G. Mimken, while walk<strong>in</strong>g over <strong>the</strong> sastrugi<br />

fields, are gratefully acknowledged.<br />

REFERENCES<br />

Ambach, W. 1963. Untersuchungen zum Energieumsatz <strong>in</strong><br />

der Ablati<strong>on</strong>z<strong>on</strong>e des gr<strong>on</strong>H<strong>in</strong>dischen Inlandeises. Expediti<strong>on</strong><br />

Glaciologique Internati<strong>on</strong>ale au Groenland, E.G.l.G.<br />

1957-1960, 4(4).<br />

Bens<strong>on</strong>, C.S. 1962. Strati graphic studies <strong>in</strong> <strong>the</strong> <strong>snow</strong> and<br />

firn <strong>of</strong> <strong>the</strong> Greenland ice sheet. U.S. Army Snow, Ice<br />

and Permafrost Research Establishment. Research Report<br />

70.<br />

Carroll, 1.1., and Fitch, B.W. 198 1. Effects <strong>of</strong> solar elevati<strong>on</strong><br />

and cloud<strong>in</strong>ess <strong>on</strong> <strong>snow</strong> <strong>albedo</strong> at <strong>the</strong> South Pole. Journal<br />

<strong>of</strong> Geophysical Research, 86(C6), 527 1-76.<br />

Couls<strong>on</strong>, K.L. 1975. Solar and terrestrial radiati<strong>on</strong>; methods<br />

and measurements. New York, Academic Press.<br />

Dimhirn, I., and Eat<strong>on</strong>, F. 1974. Some characteristics <strong>of</strong> <strong>the</strong><br />

<strong>albedo</strong> <strong>of</strong> <strong>snow</strong>. Journal <strong>of</strong> Applied Meteorology, 14(3),<br />

375-79.<br />

Welldler alld Kelley: Albedo <strong>of</strong> SIlOW ill Antarctica<br />

Dimhirn, I., alld Trojer, E. 1955. Albedountersuchungen auf<br />

dem H<strong>in</strong>tereisferner. Archiv fur Meteorologie, Geophysik<br />

Ulzd BioklimalOlogie, 6, 400.<br />

Grenfell, T.C., alld Perovich, D.K. 1984. Spectral <strong>albedo</strong>s <strong>of</strong><br />

sea ice and <strong>in</strong>cident solar irradiance <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn<br />

Beaufort Sea. Journal <strong>of</strong> Geophysical Research, 89(C3),<br />

3573-80.<br />

Grenfell, T.C., Perovich, D.K., and Ogren, I.A. 198 1.<br />

Spectral <strong>albedo</strong>s <strong>of</strong> an alp<strong>in</strong>e <strong>snow</strong>pack. Cold Regiolls<br />

Science and Technology, 4(2), 121-27.<br />

Ho<strong>in</strong>kes, H. 1960. Studies <strong>of</strong> solar radiati<strong>on</strong> and <strong>albedo</strong> <strong>in</strong><br />

<strong>the</strong> Antarctic (Little America V and South Pole, 1957/58.<br />

Archiv fur Meteorologie, Geophysik und Bioklimatologie,<br />

10, 175.<br />

Ishikawa, N., Kobayashi, S., Ohata, T., and Kawaguchi, S.<br />

1982. Some radiati<strong>on</strong> properties at Mizuho Stati<strong>on</strong>, East<br />

Antarctica <strong>in</strong> 1980. Memoirs <strong>of</strong> Nati<strong>on</strong>al Institute <strong>of</strong><br />

Polar Research, Special Issue 24, 19-31.<br />

Kelley, 1.1. 1973. Microclimatological <strong>in</strong>vestigati<strong>on</strong>s near <strong>the</strong><br />

Arctic tundra surface. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 25th Anniversary<br />

<strong>of</strong> Naval Arctic Research Laboratory Symposium, 1972,<br />

109-26.<br />

Kuhn, M., Kundla, L.S., and Strosche<strong>in</strong>, L.A. 1977. The<br />

radiati<strong>on</strong> budget at Plateau Stati<strong>on</strong>, Antarctica,<br />

1966- 1967. In Bus<strong>in</strong>ger, I.A. , ed. Meteorological studies<br />

at Plateau Stati<strong>on</strong>, Antarctica. Wash<strong>in</strong>gt<strong>on</strong>, DC, American<br />

Geophysical Uni<strong>on</strong>, 41-73. (Antarctic Research Series,<br />

25.)<br />

Liljequist, G.H. 1956. Energy exchange <strong>of</strong> an Antarctic<br />

<strong>snow</strong>-field. Norwegian-British-Swedish Antarctic Expediti<strong>on</strong>,<br />

1949-52. Scientific Results, 2{l A).<br />

Maws<strong>on</strong>, D., Sir. 19 15. The home <strong>of</strong> <strong>the</strong> blizzard; be<strong>in</strong>g <strong>the</strong><br />

story 0/ <strong>the</strong> Antarctic Australasian Expediti<strong>on</strong>. 191 1- 1914.<br />

L<strong>on</strong>d<strong>on</strong>, He<strong>in</strong>emann.<br />

Poggi, A., and 6 o<strong>the</strong>rs. 1982. Interacti<strong>on</strong> atmosphereglace-ocean<br />

en Antarctique. Meteorologie, 1982, 163-71.<br />

Renard, R.I., and Sal<strong>in</strong>as, M.G. 1977. The history, operati<strong>on</strong><br />

and performance 0/ an experimental automatic wea<strong>the</strong>r<br />

stati<strong>on</strong> <strong>in</strong> Alllarctica. M<strong>on</strong>terey, CA, Naval Postgraduate<br />

School. (NPS-63Rd77 10.)<br />

Stearns, C.R., and Savage M.L. 198 1. A utomatic wea<strong>the</strong>r<br />

stati<strong>on</strong>s, 1980- 198 1. Antarctic Journal 0/ <strong>the</strong> United States.<br />

16(5), 190-92.<br />

Walraven, R. 1978. Calculat<strong>in</strong>g <strong>the</strong> positi<strong>on</strong> <strong>of</strong> <strong>the</strong> Sun.<br />

Solar Energy, 20, 393-97.<br />

Warren, S.G., 1982. Optical properties <strong>of</strong> <strong>snow</strong>. Reviews 0/<br />

Geophysics and Space Physics, 20( 1), 67-89.<br />

Warren, S.G., and Wiscombe, W.1. 1980. A model for <strong>the</strong><br />

spectral <strong>albedo</strong> <strong>of</strong> <strong>snow</strong>. n. Snow c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g atmospheric<br />

aerosols. Journal 0/ <strong>the</strong> Atmospheric Sciences, 37(12),<br />

2734-45.<br />

Wendler, G. In press. On <strong>the</strong> blow<strong>in</strong>g <strong>snow</strong> <strong>in</strong> Adelie Land,<br />

eastern Antarctica - a c<strong>on</strong>tributi<strong>on</strong> to LA.G.O.<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Symposium <strong>on</strong> Glacier Fluctuati<strong>on</strong>s and<br />

Climatic Change, Amsterdam, June 1987.<br />

Wendler, G., and Kodama, Y. 1985. Some results <strong>of</strong> climatic<br />

<strong>in</strong>vestigati<strong>on</strong>s <strong>of</strong> Adelie Land, eastern Antarctica.<br />

Zeitschri/t fur Gletscherkunde UIId Glazialgeologie, 21,<br />

319-27.<br />

Wendler, G., and Poggi, A. 1980. Measurements <strong>of</strong> <strong>the</strong><br />

catabatic w<strong>in</strong>d <strong>in</strong> Antarctica. Antarctic Journal <strong>of</strong> <strong>the</strong><br />

United States, 15(5), 193-95.<br />

Wendler, G., and Streten, N. 1969. Short term heat<br />

balance study <strong>on</strong> a Coast Range glacier. Pure and Applied<br />

Geophysics, 77, 68-77.<br />

Wendler, G., and Weller, G. 1974. A heat balance study <strong>on</strong><br />

McCall Glacier, Brooks Range, Alaska: a c<strong>on</strong>tributi<strong>on</strong> to<br />

<strong>the</strong> Internati<strong>on</strong>al Hydrological Decade. Journal 0/<br />

Glaciology, 13(67), 13-26.<br />

Wendler, G., Eat<strong>on</strong>, F.D., and Ohtake, T. 1981. Multiple<br />

reflecti<strong>on</strong> effects <strong>on</strong> irradiance <strong>in</strong> <strong>the</strong> presence <strong>of</strong> Arctic<br />

stratus clouds. Journal 0/ Geophysical Research, 86(C3),<br />

2049-57.<br />

Yamanouchi, T. 1983. Variati<strong>on</strong>s <strong>of</strong> <strong>in</strong>cident solar flux<br />

and <strong>snow</strong> <strong>albedo</strong> <strong>on</strong> <strong>the</strong> solar zenith angle and cloud<br />

cover at Mizuho Stati<strong>on</strong>, Antarctica. Journal <strong>of</strong> <strong>the</strong><br />

Meteorological Society 0/ Japan, 161(6), 879-92.<br />

MS. received 13 February 1987 and <strong>in</strong> revised form 12 October 1987<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!