24.12.2013 Views

The force on a bubble, drop, or particle in arbitrary time-dependent ...

The force on a bubble, drop, or particle in arbitrary time-dependent ...

The force on a bubble, drop, or particle in arbitrary time-dependent ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> <strong>on</strong> a <strong>bubble</strong>, <strong>drop</strong>, <strong>or</strong> <strong>particle</strong> <strong>in</strong> <strong>arbitrary</strong> <strong>time</strong>-<strong>dependent</strong><br />

moti<strong>on</strong> at small Reynolds number<br />

Phillip M. Lovalenti and John F. Brady<br />

Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g 210-41, Calif<strong>or</strong>nia Institute of Technology, Pasadena, Calif<strong>or</strong>nia<br />

91125<br />

(Received 1 December 1992; accepted 21 May 1993)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> <strong>on</strong> a body that undergoes translati<strong>on</strong>al accelerati<strong>on</strong> <strong>in</strong> an unbounded<br />

fluid at low Reynolds number is c<strong>on</strong>sidered. <str<strong>on</strong>g>The</str<strong>on</strong>g> results extend the pri<strong>or</strong> analysis of Lovalenti<br />

and Brady [to appear <strong>in</strong> J. Fluid Mech. (1993)] f<strong>or</strong> rigid <strong>particle</strong>s to <strong>drop</strong>s and <strong>bubble</strong>s. Similar<br />

behavi<strong>or</strong> is shown <strong>in</strong> that, with the <strong>in</strong>clusi<strong>on</strong> of c<strong>on</strong>vective <strong>in</strong>ertia, the l<strong>on</strong>g-<strong>time</strong> temp<strong>or</strong>al decay<br />

of the <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> (<strong>or</strong> the approach to steady state) at f<strong>in</strong>ite Reynolds number is faster than the t- 1 2<br />

predicted by the unsteady Stokes equati<strong>on</strong>s.<br />

1. INTRODUCTION<br />

In a recent paper,' hencef<strong>or</strong>th referred to as LB, the<br />

auth<strong>or</strong>s analyzed the <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> <strong>on</strong> a rigid <strong>particle</strong> <strong>in</strong> <strong>arbitrary</strong><br />

<strong>time</strong>-<strong>dependent</strong> moti<strong>on</strong> <strong>in</strong> a <strong>time</strong>-<strong>dependent</strong> unif<strong>or</strong>m flow<br />

f<strong>or</strong> small, but f<strong>in</strong>ite, Reynolds number, Re. <str<strong>on</strong>g>The</str<strong>on</strong>g> primary<br />

c<strong>on</strong>clusi<strong>on</strong> of that study was that the l<strong>on</strong>g-<strong>time</strong> temp<strong>or</strong>al<br />

behavi<strong>or</strong> of the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> decays faster than the<br />

t- 1" 2 decay associated with the Basset hist<strong>or</strong>y <strong>in</strong>tegral from<br />

unsteady Stokes flow. (F<strong>or</strong> sh<strong>or</strong>t <strong>time</strong> scale moti<strong>on</strong>, however,<br />

the unsteady Stokes results are valid.) This change <strong>in</strong><br />

the temp<strong>or</strong>al decay f<strong>or</strong> l<strong>on</strong>g <strong>time</strong> is the result of a transiti<strong>on</strong><br />

<strong>in</strong> the mechanism of v<strong>or</strong>ticity transp<strong>or</strong>t: from a symmetric<br />

diffusi<strong>on</strong> of v<strong>or</strong>ticity generated at the <strong>particle</strong> surface to<br />

c<strong>on</strong>vecti<strong>on</strong> of v<strong>or</strong>ticity <strong>in</strong> the familiar Oseen wake beh<strong>in</strong>d<br />

the <strong>particle</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> motivati<strong>on</strong> f<strong>or</strong> extend<strong>in</strong>g the study to <strong>drop</strong>s is to<br />

<strong>in</strong>vestigate the similarities and differences of the results f<strong>or</strong><br />

solid <strong>particle</strong>s with those f<strong>or</strong> <strong>drop</strong>s and <strong>bubble</strong>s. Also, it is<br />

of value to have an expressi<strong>on</strong> f<strong>or</strong> the unsteady <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> <strong>on</strong> a<br />

<strong>drop</strong>, which is useful <strong>in</strong> studies requir<strong>in</strong>g the equati<strong>on</strong> of<br />

moti<strong>on</strong> of <strong>bubble</strong>s, <strong>drop</strong>s, <strong>or</strong> <strong>particle</strong>s at small but f<strong>in</strong>ite<br />

Reynolds number.<br />

In what follows, we c<strong>on</strong>sider the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g><br />

f<strong>or</strong> a <strong>drop</strong> <strong>in</strong> <strong>arbitrary</strong> <strong>time</strong>-<strong>dependent</strong> moti<strong>on</strong> <strong>in</strong> an unbounded<br />

Newt<strong>on</strong>ian fluid undergo<strong>in</strong>g a <strong>time</strong>- and spatial<strong>dependent</strong><br />

flow. This is accomplished through the use of<br />

the reciprocal the<strong>or</strong>em. We first derive the expressi<strong>on</strong> <strong>in</strong><br />

general terms, and then simplify it f<strong>or</strong> particular cases of<br />

<strong>drop</strong> compositi<strong>on</strong>, shape, and imposed flow. <str<strong>on</strong>g>The</str<strong>on</strong>g> results f<strong>or</strong><br />

spatially unif<strong>or</strong>m flow are shown to follow directly from<br />

those f<strong>or</strong> a rigid <strong>particle</strong>.<br />

I. RECIPROCAL THEOREM EXPRESSION FOR THE<br />

FORCE<br />

I C<strong>on</strong>sider a <strong>drop</strong> of density p* and viscosity ft* <strong>in</strong> a<br />

fluid of density p and viscosity ,u. Let A=,u*/[t and<br />

a= (v*/v) 1/ 2 where v* and v are the k<strong>in</strong>ematic viscosities<br />

of the <strong>drop</strong> and exteri<strong>or</strong> fluid, respectively. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>drop</strong> is<br />

translat<strong>in</strong>g with a <strong>time</strong>-<strong>dependent</strong>, center-of-mass velocity<br />

U(t) <strong>in</strong> an imposed flow u' (x,t). We beg<strong>in</strong> by writ<strong>in</strong>g the<br />

Navier-Stokes equati<strong>on</strong>s f<strong>or</strong> the fluids <strong>in</strong>side and outside<br />

the <strong>drop</strong>, where an asterisk (*) is used to denote variables<br />

and parameters associated with the <strong>in</strong>teri<strong>or</strong> fluid of the<br />

<strong>drop</strong>:<br />

Du*<br />

V -* = p* -5t- V u*=0 <strong>in</strong>side the <strong>drop</strong>;<br />

Du<br />

V *o-p-iDt-, V*u=O outside the <strong>drop</strong>.<br />

Here, o= -p+d(Vu+Vu T ) is the stress tens<strong>or</strong> f<strong>or</strong> a Newt<strong>on</strong>ian<br />

fluid, and the pressure p <strong>in</strong>cludes the effect of a<br />

unif<strong>or</strong>m body <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> (e.g., gravity). Although the velocities<br />

are those relative to the fixed lab<strong>or</strong>at<strong>or</strong>y frame, the <strong>or</strong>ig<strong>in</strong><br />

of the co<strong>or</strong>d<strong>in</strong>ate system is at the <strong>in</strong>stantaneous center of<br />

mass of the <strong>drop</strong>, so that<br />

(1)<br />

(2)<br />

Du d9u<br />

D-T +u-Vu-U(t) -Vu. (3)<br />

A positi<strong>on</strong> vect<strong>or</strong> <strong>in</strong> this co<strong>or</strong>d<strong>in</strong>ate system will be denoted<br />

by x.<br />

If we assume immiscible fluids with c<strong>on</strong>stant surface<br />

tensi<strong>on</strong> y, the appropriate boundary c<strong>on</strong>diti<strong>on</strong>s at the <strong>in</strong>terface<br />

of the <strong>drop</strong> and the exteri<strong>or</strong> fluid are c<strong>on</strong>t<strong>in</strong>uity of<br />

velocity and shear stress:<br />

u=u*, n.(o.--r*)-(I-nn)=0 <strong>on</strong> Sd, (4)<br />

where n is the n<strong>or</strong>mal to the <strong>in</strong>terface po<strong>in</strong>t<strong>in</strong>g <strong>in</strong>to the<br />

exteri<strong>or</strong> fluid and Sd represents the surface of the <strong>drop</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

sec<strong>on</strong>d equati<strong>on</strong> of (4) is also known as the tangential<br />

stress balance. In additi<strong>on</strong>, the velocity n<strong>or</strong>mal to the <strong>in</strong>terface<br />

may be given by<br />

n~u=n~u*=n.U(x.,,t) <strong>on</strong> Sd, (5)<br />

where the velocity of the <strong>in</strong>terface, U(x,,t) may be a func-<br />

2104 Phys. Fluids A 5 (9), September 1993 0899-8213/93/5(9)/2104/13/$6.00 © 1993 American Institute of Physics 2104<br />

Downloaded 13 Jan 2006 to 131.215.225.172. Redistributi<strong>on</strong> subject to AIP license <strong>or</strong> copyright, see http://pof.aip.<strong>or</strong>g/pof/copyright.jsp


ti<strong>on</strong> of the positi<strong>on</strong> <strong>on</strong> the surface, x5. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s to be<br />

satisfied far from the <strong>drop</strong> are<br />

u-*u', p-*p' as r- oo, (6)<br />

where r= I xJ, and the imposed flow (u', p') satisfies the<br />

Navier-Stokes equati<strong>on</strong>s. Additi<strong>on</strong>ally, the velocity and<br />

pressure <strong>in</strong>side the <strong>drop</strong> are required to rema<strong>in</strong> bounded.<br />

To determ<strong>in</strong>e the <strong>drop</strong> shape the n<strong>or</strong>mal stress balance<br />

is also required:<br />

[n-(o-0*)] n=y(V n)+(fb-f*) .x<br />

<strong>on</strong> Sd,<br />

where fb and fb* are the unif<strong>or</strong>m body <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>s act<strong>in</strong>g <strong>on</strong> the<br />

fluid exteri<strong>or</strong> to and <strong>in</strong>side the <strong>drop</strong>, respectively, which<br />

are necessary here because they have been <strong>in</strong>c<strong>or</strong>p<strong>or</strong>ated <strong>in</strong><br />

the pressure term of the stress tens<strong>or</strong>s. Although it does<br />

not directly <strong>in</strong>fluence the derivati<strong>on</strong> that follows, the n<strong>or</strong>mal<br />

stress balance is <strong>in</strong>cluded f<strong>or</strong> completeness. F<strong>or</strong> the<br />

low-Reynolds-number flows c<strong>on</strong>sidered here, viscous<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>s dom<strong>in</strong>ate and the critical parameter determ<strong>in</strong><strong>in</strong>g the<br />

<strong>drop</strong> shape is the capillary number, Ca=[tUry, where U,<br />

is the characteristic velocity of the <strong>drop</strong> relative to the<br />

imposed flow. F<strong>or</strong> unsteady Stokes flow c<strong>on</strong>diti<strong>on</strong>s (<strong>in</strong> unsteady<br />

Stokes flow the c<strong>on</strong>vective terms of the Navier-<br />

Stokes equati<strong>on</strong>s [the last two terms of (3)] are neglected<br />

ow<strong>in</strong>g to the smallness of the Reynolds number while the<br />

<strong>time</strong> derivative <strong>in</strong> (3) is reta<strong>in</strong>ed due to the unstead<strong>in</strong>ess of<br />

the flow), the spherical <strong>drop</strong> <strong>in</strong> a <strong>time</strong>-<strong>dependent</strong> unif<strong>or</strong>m<br />

flow can be shown to be a shape which satisfies the govern<strong>in</strong>g<br />

equati<strong>on</strong>s and boundary c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong><strong>dependent</strong> of<br />

Ca. 2 F<strong>or</strong> small Ca, the <strong>drop</strong> tends to rema<strong>in</strong> spherical <strong>in</strong><br />

the presence of a n<strong>on</strong>unif<strong>or</strong>m flow <strong>or</strong> f<strong>or</strong> f<strong>in</strong>ite Re c<strong>on</strong>diti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect of a small but f<strong>in</strong>ite Reynolds number<br />

(i.e., the effect of the c<strong>on</strong>vective terms of the Navier-<br />

Stokes equati<strong>on</strong>s) <strong>on</strong> the def<strong>or</strong>mati<strong>on</strong> and drag of a translat<strong>in</strong>g<br />

<strong>drop</strong> has been studied by Tayl<strong>or</strong> and Acrivos, 3 although<br />

they identified the Weber number as the critical<br />

parameter that must be small to ma<strong>in</strong>ta<strong>in</strong> a near spherical<br />

<strong>drop</strong> shape. <str<strong>on</strong>g>The</str<strong>on</strong>g> Weber number is equal to the product of<br />

Ca and Re. <str<strong>on</strong>g>The</str<strong>on</strong>g> effect of a l<strong>in</strong>ear flow <strong>on</strong> the def<strong>or</strong>mati<strong>on</strong><br />

of a <strong>drop</strong> f<strong>or</strong> small Ca has been treated by Leal, 4 which also<br />

has references to earlier w<strong>or</strong>ks <strong>on</strong> <strong>drop</strong> def<strong>or</strong>mati<strong>on</strong> and<br />

breakup.<br />

In <strong>or</strong>der to make use of the reciprocal the<strong>or</strong>em f<strong>or</strong> an<br />

unbounded doma<strong>in</strong>, we require the disturbance quantities<br />

which decay at <strong>in</strong>f<strong>in</strong>ity. Thus, we def<strong>in</strong>e the follow<strong>in</strong>g:<br />

(7)<br />

u'-.0, p'-*0 as r o (11)<br />

We shall also require the disturbance flow Stokes fields<br />

f<strong>or</strong> the translat<strong>in</strong>g <strong>drop</strong> f<strong>or</strong> use <strong>in</strong> the reciprocal the<strong>or</strong>em<br />

below. Denot<strong>in</strong>g these fields with a caret (' ), the govern<strong>in</strong>g<br />

equati<strong>on</strong>s and boundary c<strong>on</strong>diti<strong>on</strong>s are<br />

V *=O, V -u*=0 <strong>in</strong>side the <strong>drop</strong>,<br />

V.&=O, Vufi=O outside the <strong>drop</strong>,<br />

u=uf*,<br />

(12)<br />

(13)<br />

n-(r-a*)-(I-nn)=O, nfu*=n-U <strong>on</strong> Sd,<br />

(14)<br />

where U is a c<strong>on</strong>stant, and<br />

fi-0O; P~ as r-* oo. (15)<br />

Us<strong>in</strong>g the velocity and stress fields def<strong>in</strong>ed above, the<br />

reciprocal the<strong>or</strong>ems <strong>in</strong>side and outside the <strong>drop</strong> take the<br />

follow<strong>in</strong>g f<strong>or</strong>m:<br />

rd (n-oe*) f* dS- f(V.-*) *f* dV<br />

and<br />

=f (nf *-udS<br />

.fSd (n.o' id+fVf (V *o,)-fidV<br />

= fSd (n - &) -u' dS,<br />

(16)<br />

(17)<br />

where we have assumed that by us<strong>in</strong>g disturbance quantities<br />

there is no c<strong>on</strong>tributi<strong>on</strong> from the surface at <strong>in</strong>f<strong>in</strong>ity.<br />

(As discussed <strong>in</strong> LB, the requirement is that the disturbance<br />

pressure p' decays faster than r 1, which is justified<br />

f<strong>or</strong> the low-Reynolds-number flows to be c<strong>on</strong>sidered here.)<br />

Here, Vd and Vf denote the volume of the <strong>drop</strong> and exteri<strong>or</strong><br />

fluid, respectively. Follow<strong>in</strong>g a procedure similar to<br />

that used by Leal5 f<strong>or</strong> bounded doma<strong>in</strong>s, we subtract (16)<br />

from (17), and, apply<strong>in</strong>g the boundary c<strong>on</strong>diti<strong>on</strong>s (10)<br />

and (14) <strong>on</strong> the surface of the <strong>drop</strong>, obta<strong>in</strong><br />

u'=u-u', p'=p-pO, -'=O'f-o=. (8) - Sd no-d" .f* dS+ f (V-o) -fidV<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> govern<strong>in</strong>g equati<strong>on</strong>s f<strong>or</strong> the disturbance fields are<br />

V-dr'=P D +PV- (u'uY+uOu'), V u'=O; (9) + (V-0, *U$ dV<br />

and the boundary c<strong>on</strong>diti<strong>on</strong>s become<br />

=F n-(fr~ t3)u*dS- f (n.o)-u~dS. (18)<br />

u' =u*-u-, n- (o'+u -o*) -(I-nn)=O <strong>on</strong> Sd = sd J Sd<br />

and<br />

(10) <str<strong>on</strong>g>The</str<strong>on</strong>g> first <strong>in</strong>tegral <strong>on</strong> the left-hand side (lhs) of (18) may be<br />

simplified by not<strong>in</strong>g that<br />

2105 Phys. Fluids A, Vol. 5, No. 9, September 1993 P. M. Lovalenti and J. F. Brady 2105<br />

Downloaded 13 Jan 2006 to 131.215.225.172. Redistributi<strong>on</strong> subject to AIP license <strong>or</strong> copyright, see http://pof.aip.<strong>or</strong>g/pof/copyright.jsp


=fSd<br />

L -(r' d ,) J d d Tn-(,-o* Pd-d n . (o,) .fV*dS<br />

. f~dn-(, ,)dS J - d ,~ J( d-d a~:Vfi* dV<br />

=F'f- vV--*dV.UJ- Fv (V-a)- V n O * u- dS,<br />

(19)<br />

where F'IV( = f Sdn a- dS) is the total hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g><br />

act<strong>in</strong>g <strong>on</strong> the <strong>drop</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> first equality is obta<strong>in</strong>ed simply by<br />

us<strong>in</strong>g the def<strong>in</strong>iti<strong>on</strong> of oa' (8). <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d equality is obta<strong>in</strong>ed<br />

by an applicati<strong>on</strong> of the tangential (<strong>or</strong> shear) stress<br />

balance (4), the use of the <strong>drop</strong> surface boundary c<strong>on</strong>diti<strong>on</strong><br />

(14), and another applicati<strong>on</strong> of the tangential stress<br />

balance, as follows:<br />

J-d n. (ju-u*) -fi* dS<br />

fd T tV-:Vt*ViT)V(an identity)<br />

=;~ .f~ VUcw:[_fi*l+lM*(Vfi*+Vfi* T )]IdV<br />

(from fi*I:Vu - = 0)<br />

=;T Vd Vu~:&* dV<br />

fSd n.(o<br />

u*) . [(I-nn)+nn]-uf*dS<br />

(us<strong>in</strong>g the def<strong>in</strong>iti<strong>on</strong> of a Newt<strong>on</strong>ian fluid)<br />

=- f V.(a*.u )dV (from V.O*=0)<br />

= Sd<br />

-r n*(o-o-a*)nn*U dS<br />

= fSd n (a- o*). [(I-nn) +nn-dS<br />

= n -(<strong>or</strong>- a*)dSU. (20)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> divergence the<strong>or</strong>em is also applied to obta<strong>in</strong> the two<br />

volume <strong>in</strong>tegrals <strong>in</strong> the sec<strong>on</strong>d equality and the first volume<br />

<strong>in</strong>tegral <strong>in</strong> the last equality of (19). We note that if<br />

<strong>on</strong>e makes use of the n<strong>or</strong>mal stress balance (7) <strong>in</strong> the third<br />

equality of (20), it will ultimately lead to an equati<strong>on</strong> of<br />

moti<strong>on</strong> f<strong>or</strong> the <strong>drop</strong> <strong>in</strong>stead of a derivati<strong>on</strong> f<strong>or</strong> the hydrodynamic<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>. This is the result of the fact that the first<br />

two terms <strong>in</strong> the last equality of (19), represent<strong>in</strong>g the<br />

total hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> less the <strong>in</strong>ertia of the <strong>drop</strong>,<br />

would be replaced by the negative of the external body<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>s act<strong>in</strong>g <strong>on</strong> the <strong>drop</strong>. We will return to the derivati<strong>on</strong><br />

of the equati<strong>on</strong> of moti<strong>on</strong> of the <strong>drop</strong> <strong>in</strong> Sec. V. <str<strong>on</strong>g>The</str<strong>on</strong>g> very<br />

last <strong>in</strong>tegral of (19) was arrived at by the follow<strong>in</strong>g series<br />

of steps:<br />

f<br />

&r:Vfi* d V= Vd f(VU<br />

+VuwT):Vfi* d<br />

(us<strong>in</strong>g the def<strong>in</strong>iti<strong>on</strong> of a Newt<strong>on</strong>ian fluid and that<br />

p ,I:Vfi* =O)<br />

2106 Phys. Fluids A, Vol. 5, No. 9, September 1993<br />

1<br />

A fsd n d * u- dS, (21)<br />

where the last step is obta<strong>in</strong>ed by apply<strong>in</strong>g the divergence<br />

the<strong>or</strong>em. In additi<strong>on</strong>, the first <strong>in</strong>tegral of the right-hand<br />

side (rhs) of ( 18) may be reexpressed us<strong>in</strong>g the same steps<br />

as <strong>in</strong> (20) to obta<strong>in</strong>:<br />

fS n (f&-&*) .u*dS<br />

=fX n (&o v) U(x,,t)dS<br />

n -( &*) *U(t)dS<br />

+ .f n.(&-e)-U'(x,,t)dS<br />

F'"J fsdn - &- &) -U' nextt) dS, (22)<br />

where F'H( = f sdn * C dS) is the steady Stokes drag f<strong>or</strong> the<br />

<strong>drop</strong> translat<strong>in</strong>g with velocity U, and U' nextt)<br />

[=U(xst) -U(t)] is the velocity of the <strong>in</strong>terface relative<br />

to that of the center of mass of the <strong>drop</strong>. To arrive at the<br />

last equality we have also used the fact that<br />

fsdn -&* dS = 0 from an applicati<strong>on</strong> of the divergence<br />

the<strong>or</strong>em. Comb<strong>in</strong><strong>in</strong>g (19) and (22) <strong>in</strong> (18) we have<br />

P. M. Lovalenti and J. F. Brady 2106<br />

Downloaded 13 Jan 2006 to 131.215.225.172. Redistributi<strong>on</strong> subject to AIP license <strong>or</strong> copyright, see http://pof.aip.<strong>or</strong>g/pof/copyright.jsp


Ed't va (V -)<br />

f<br />

- fVd (V-a-) -,*dV<br />

L]d +<br />

u RdV+ fVd (v - ) - * -IDU) dV<br />

(n udS± nl&*.u- v dS<br />

+ .fJd (n - a*) *U' dS. (23)<br />

Not<strong>in</strong>g that all the disturbance Stokes fields are l<strong>in</strong>ear <strong>in</strong> U,<br />

we def<strong>in</strong>e the follow<strong>in</strong>g:<br />

fl=M1-UJ,<br />

fi*=M*-,<br />

r=TM*, U r*=j**j, (24)<br />

where M and M* are sec<strong>on</strong>d rank tens<strong>or</strong>s and T and T*<br />

are third rank tens<strong>or</strong>s, all of which are functi<strong>on</strong>s of positi<strong>on</strong>.<br />

Also by l<strong>in</strong>earity, the steady Stokes drag may be expressed<br />

as<br />

C= -RFU* U, (25)<br />

where RFU is the symmetric, sec<strong>on</strong>d rank resistance tens<strong>or</strong><br />

which is a functi<strong>on</strong> of the <strong>drop</strong> shape as well as the viscosity<br />

ratio A. (Note that all the Stokes tens<strong>or</strong> quantities are<br />

evaluated at the current <strong>time</strong>, and thus may be a functi<strong>on</strong><br />

of <strong>time</strong> if the <strong>drop</strong> is def<strong>or</strong>m<strong>in</strong>g.) Thus, s<strong>in</strong>ce all terms of<br />

(23) are l<strong>in</strong>ear <strong>in</strong> an <strong>arbitrary</strong> vect<strong>or</strong>, U, it may be elim<strong>in</strong>ated<br />

from (23) to obta<strong>in</strong><br />

Equati<strong>on</strong> (26) is a general expressi<strong>on</strong> of the hydrodynamic<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> act<strong>in</strong>g <strong>on</strong> a <strong>drop</strong> of <strong>arbitrary</strong> shape <strong>in</strong> an arbitrarily<br />

imposed flow, with, of course, the restricti<strong>on</strong> that<br />

the particular <strong>drop</strong> shape satisfy the n<strong>or</strong>mal stress balance<br />

f<strong>or</strong> the given imposed flow. Also, as yet, no restricti<strong>on</strong> has<br />

been placed <strong>on</strong> the magnitude of the Reynolds number.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first volume <strong>in</strong>tegral <strong>on</strong> the Ihs of (26) represents the<br />

<strong>in</strong>ertial c<strong>on</strong>tributi<strong>on</strong>s to the <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> from the disturbance<br />

flow outside the <strong>drop</strong>. F<strong>or</strong> a solid sphere under unsteady<br />

Stokes flow c<strong>on</strong>diti<strong>on</strong>s it yields the familiar added mass<br />

and Basset <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>, which has been evaluated, f<strong>or</strong> example,<br />

by Maxey and Riley. 6 F<strong>or</strong> small but f<strong>in</strong>ite Reynolds number,<br />

this <strong>in</strong>tegral is also the <strong>or</strong>ig<strong>in</strong> of the Oseen c<strong>or</strong>recti<strong>on</strong> 7 ' 8<br />

f<strong>or</strong> steady unif<strong>or</strong>m flow and the Saffman lift <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> 9 f<strong>or</strong><br />

steady simple shear flow. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d volume <strong>in</strong>tegral <strong>on</strong><br />

the lhs of (26) is unique to a <strong>drop</strong> of f<strong>in</strong>ite viscosity, s<strong>in</strong>ce,<br />

as will be shown <strong>in</strong> Sec. III, it is identically zero <strong>in</strong> the limit<br />

of a solid <strong>particle</strong> <strong>or</strong> a <strong>bubble</strong> (an <strong>in</strong>viscid <strong>drop</strong>). This term<br />

is necessary, however, to obta<strong>in</strong> the c<strong>or</strong>rect <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> expressi<strong>on</strong><br />

f<strong>or</strong> a <strong>drop</strong> of <strong>arbitrary</strong> viscosity; as shown <strong>in</strong> Sec. IV,<br />

it comb<strong>in</strong>es with the first <strong>in</strong>tegral to produce the unsteady<br />

Stokes <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> act<strong>in</strong>g <strong>on</strong> a <strong>drop</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> last <strong>in</strong>tegral <strong>on</strong> the Ihs<br />

of (26) represents the c<strong>on</strong>tributi<strong>on</strong> to the hydrodynamic<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> from the <strong>in</strong>ertia of the imposed flow. <str<strong>on</strong>g>The</str<strong>on</strong>g> first two<br />

<strong>in</strong>tegrals <strong>on</strong> the rhs are those due to the viscous effects of<br />

the imposed flow which, as we shall see <strong>in</strong> Sec. III, lead to<br />

the Faxen-like c<strong>or</strong>recti<strong>on</strong>s to the steady Stokes drag<br />

- RFU* U. <str<strong>on</strong>g>The</str<strong>on</strong>g> last <strong>in</strong>tegral is the c<strong>on</strong>tributi<strong>on</strong> to the hydrodynamic<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> result<strong>in</strong>g from the <strong>drop</strong> chang<strong>in</strong>g shape<br />

with <strong>time</strong>.<br />

III. FURTHER SIMPLIFICATIONS OF THE<br />

RECIPROCAL THEOREM<br />

F<strong>or</strong> a solid <strong>particle</strong> [<strong>in</strong> this case, U' could represent<br />

solid body rotati<strong>on</strong>, allow<strong>in</strong>g the last <strong>in</strong>tegral of (26) to<br />

yield the c<strong>on</strong>tributi<strong>on</strong> to the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> from, f<strong>or</strong><br />

example, a rotat<strong>in</strong>g, screw-shaped <strong>particle</strong>], M* = I, U'= 0,<br />

and 1/A.0 so that (26) becomes<br />

F+ vf (V o') *MdV+ fVd (V o*) . (M*-I)dV<br />

FH± f (V-o') -MdV- f (p<br />

Dt )dV<br />

Du ) - r*<br />

dV<br />

= -RFu. U---f uW .(n .T)dS.<br />

SP<br />

(28)<br />

=-RFu*U- L<br />

* (. T)dS+X T d<br />

* (n-T*)dS+ J U' [n -JT*) ]dS. (26)<br />

Here u' satisfies the Navier-Stokes equati<strong>on</strong>s and thus:<br />

~Du 00 u.<br />

V- D=P ( at + u T-Vu -f-Vu'). (27)<br />

F<strong>or</strong> a zero-viscosity <strong>bubble</strong>, A -.0 (i.e., Mu* 0 f<strong>or</strong> fixed<br />

[t) and T* -.0. [<str<strong>on</strong>g>The</str<strong>on</strong>g> quantity T* may actually tend to a<br />

c<strong>on</strong>stant associated with the pressure <strong>in</strong>side the <strong>bubble</strong>, but<br />

a c<strong>on</strong>stant tens<strong>or</strong> here does not affect the <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> expressi<strong>on</strong><br />

(26).] Thus, Eq. (26) may be expressed as<br />

bf, (V-o.').M&IdV- ( P p u<br />

f vf rib ( Dt)<br />

=-RFU.U-{<br />

us (n T)dS<br />

9M* dV<br />

+ fsb (n. AT*)dS+ Sb U- (n*T)dS,<br />

(29)<br />

where the sec<strong>on</strong>d <strong>in</strong>tegral of (26) was elim<strong>in</strong>ated by not<strong>in</strong>g<br />

the follow<strong>in</strong>g:<br />

2107 Phys. Fluids A, Vol. 5, No. 9, September 1993 P. M. Lovalent! and J. F. Brady 2107<br />

Downloaded 13 Jan 2006 to 131.215.225.172. Redistributi<strong>on</strong> subject to AIP license <strong>or</strong> copyright, see http://pof.aip.<strong>or</strong>g/pof/copyright.jsp


= fV", (-Vp*).- (M*..)dV<br />

= .fVh -V ' [ (1M*-I)p*I]dV<br />

(us<strong>in</strong>g V * (M1* I) =O)<br />

where we have used the fact that f<strong>or</strong> a sphere<br />

fsdu- * nn dS = f VpU dV. <str<strong>on</strong>g>The</str<strong>on</strong>g> last <strong>in</strong>tegral of (26) is<br />

zero because the <strong>drop</strong> shape is fixed (<strong>or</strong> because U' has<br />

zero center-of-mass velocity).<br />

To simplify (36) further, we can express u' and<br />

Du'/Dt as multipole expansi<strong>on</strong>s about the center of mass<br />

of the <strong>drop</strong>, assum<strong>in</strong>g the variati<strong>on</strong> of the imposed flow is<br />

small over the dimensi<strong>on</strong>s of the <strong>drop</strong>:<br />

xx<br />

= fb -n (M*1)p* dS<br />

(apply<strong>in</strong>g the divergence the<strong>or</strong>em)<br />

= 0, (30)<br />

where the last step used the c<strong>on</strong>diti<strong>on</strong> that n - M* =n * I <strong>on</strong><br />

the <strong>bubble</strong> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d and fourth <strong>in</strong>tegrals of (29)<br />

are evaluated <strong>in</strong> the limit as u -*0. Alternatively, <strong>on</strong>e can<br />

replace these two <strong>in</strong>tegrals with their <strong>or</strong>ig<strong>in</strong>al f<strong>or</strong>m,<br />

f sb(n * oX) * M dS, <strong>on</strong> the rhs of (29), although this is not<br />

explicit <strong>in</strong> up. Note also that the fourth <strong>in</strong>tegral of (29) is<br />

a bounded quantity s<strong>in</strong>ce T* scales l<strong>in</strong>early with jz* and<br />

thus (1/A)T* scales with j,, <strong>in</strong><strong>dependent</strong> of !L*.<br />

In the case of a spherical <strong>drop</strong>, the tens<strong>or</strong>s associated<br />

with the disturbance Stokes flow problem are known from<br />

the Hadamard-Rybczyfiski soluti<strong>on</strong> of (12)-(15) with<br />

(24) and (25). <str<strong>on</strong>g>The</str<strong>on</strong>g>y are given by<br />

I [(r2)I xx],<br />

M 2(A-+- 1) ±3 a' -a (31)<br />

3A -- 2 a Ixx A a 3 I xx)<br />

M4i +1) r I++4(7+1) 7 (32)<br />

n. 3-t* I -2 + 1_ nn, (33)<br />

__ T*|ra=-2(3t1±<br />

2a (/2+ ) I+± 2a(A 9 +l1)<br />

nn, (34)<br />

and<br />

fZFU= 6 lTIita ( A+ 2/3) 35<br />

( A + I<br />

where a is the radius of the <strong>drop</strong>. Thus, (26) may be<br />

expressed f<strong>or</strong> a spherical <strong>drop</strong> as<br />

F,+ fv (v a-'<br />

ti ( Duem) ' * dV<br />

fVd (. Dt).Md<br />

M 1dV+ !;d (V -de) -~* (M-<br />

=-61ua( 2+ I )f 32a (A+1) fSd<br />

)d V<br />

+2a2(,+l) u' dv, (36)<br />

(37)<br />

Dum Dug DuN xx ( \__<br />

Dt (x,t)= Dt (Ot)+x V Dt +2 :VV Dt)<br />

+---, (38)<br />

where U (t)=u=(O,t) and the higher-<strong>or</strong>der derivatives<br />

are evaluated at the <strong>in</strong>stantaneous center of mass of the<br />

<strong>drop</strong> at <strong>time</strong> t. Us<strong>in</strong>g (37) and (38) <strong>in</strong> (36) and reta<strong>in</strong><strong>in</strong>g<br />

terms up to those <strong>in</strong>clud<strong>in</strong>g quadratic variati<strong>on</strong>s <strong>in</strong> u', we<br />

have f<strong>or</strong> a spherical <strong>drop</strong><br />

Fd'+f(V - ') MdV+ (V-t,*) (M* -)dV<br />

4ir 3 [Du /(A-1/2\ a 2 2 DU.<br />

-- a - T- j0 -jt<br />

-3 a3PL Dt A+1 ) 10 Dt It lix=o<br />

A +2/3 _ 32 a 2<br />

(A++1 ')(U U -3,+_2 _6 2xo)<br />

(39)<br />

where we have used the follow<strong>in</strong>g equalities to show the<br />

two f<strong>or</strong>ms of the quadratic variati<strong>on</strong> <strong>in</strong> Du'/Dt are equivalent<br />

up to quadratic variati<strong>on</strong>s <strong>in</strong> up:<br />

Du' 0 1<br />

v 2 .-. =-V 2 (_Vp,+tjV 2 u',);<br />

.Du_ I<br />

VV. -=--VV p"<br />

Dt p<br />

(40)<br />

(41)<br />

where <strong>in</strong> (41) we have used the c<strong>on</strong>diti<strong>on</strong> that V u' =0.<br />

IV. THE FORCE ACTING ON A DROP TRANSLATING<br />

IN A UNIFORM FLOW AT SMALL REYNOLDS<br />

NUMBER<br />

To evaluate precisely the first two <strong>in</strong>tegrals of the generalized<br />

expressi<strong>on</strong> f<strong>or</strong> the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>, (26),<br />

would require the soluti<strong>on</strong> to the full Navier-Stokes equati<strong>on</strong>s<br />

f<strong>or</strong> the translat<strong>in</strong>g <strong>drop</strong>. Although we shall not attempt<br />

to solve them <strong>in</strong> general, we can make some progress<br />

f<strong>or</strong> the c<strong>on</strong>diti<strong>on</strong> of a unif<strong>or</strong>m, <strong>time</strong>-<strong>dependent</strong> imposed<br />

flow, when u'=U-(t).<br />

F<strong>or</strong> unif<strong>or</strong>m flow and <strong>arbitrary</strong>, but fixed <strong>drop</strong> shape<br />

(a c<strong>on</strong>diti<strong>on</strong> generally satisfied if Cal


T*)dS<br />

J'+ VfJV,')-lV fVd Vt* 9*I<br />

-PVduWJ (t = -RFU*- QU~), (42)<br />

where Us(t) [=U(t)-U'(t)] is the slip velocity of the<br />

<strong>drop</strong>. Here we have used the fact that the first two <strong>in</strong>tegrals<br />

<strong>on</strong> the rhs of (26) may be simplified by not<strong>in</strong>g<br />

fsd(nT)dS = -RFU and Sfd(n * = 0. <str<strong>on</strong>g>The</str<strong>on</strong>g> goal<br />

now is to estimate the c<strong>on</strong>tributi<strong>on</strong>s from the two <strong>in</strong>tegrals<br />

<strong>in</strong> (42) with the c<strong>on</strong>diti<strong>on</strong> that the Reynolds number<br />

(Re=aU/v) f<strong>or</strong> the fluid <strong>in</strong>side and outside the <strong>drop</strong>,<br />

based <strong>on</strong> the <strong>drop</strong>'s slip velocity, is small but f<strong>in</strong>ite. (F<strong>or</strong> a<br />

n<strong>on</strong>spherical body, a denotes the characteristic <strong>drop</strong> dimensi<strong>on</strong>;<br />

otherwise it is the <strong>drop</strong> radius.) In so do<strong>in</strong>g, we<br />

will obta<strong>in</strong> an expressi<strong>on</strong> f<strong>or</strong> the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> act<strong>in</strong>g<br />

<strong>on</strong> the <strong>drop</strong> to O(Re) f<strong>or</strong> <strong>arbitrary</strong> <strong>time</strong>-<strong>dependent</strong><br />

moti<strong>on</strong>.<br />

First note the follow<strong>in</strong>g equalities f<strong>or</strong> the fluid exteri<strong>or</strong><br />

to the <strong>drop</strong>:<br />

-A-U5-Vu'+u' -VU') =-Vp'-V<br />

And if we def<strong>in</strong>e<br />

Pa<br />

2 u'=V a'.<br />

(43)<br />

we can note the follow<strong>in</strong>g equalities f<strong>or</strong> the fluid <strong>in</strong>side the<br />

<strong>drop</strong>:<br />

* **(a1u*' Vu*±* .*)<br />

=-vp*t +,*v2u*' =V O,*-p*U-, H-<br />

(45)<br />

where we have applied the c<strong>on</strong>diti<strong>on</strong> that<br />

-(p*/p)VpO =p*Uw (t). Us<strong>in</strong>g f' and f*' to signify the<br />

<strong>in</strong>ertial terms from the first equalities of (43) and (45), the<br />

hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> can now be expressed as<br />

FRj-pVdU''(t)=-RFU (t)- ff *MdV<br />

Vf<br />

fVd f*' (M* -)dV. (46)<br />

Here we have used arguments similar to (30) to show<br />

Now s<strong>in</strong>ce the boundary c<strong>on</strong>diti<strong>on</strong>s f<strong>or</strong> the "primed"<br />

fields are<br />

and<br />

n. [[L(Vu'+Vu' Ț ) _*(Vu*t+Vu*, T )] * (I-nn) =0,<br />

u =u*', n-'nu*= J <strong>on</strong> Sd<br />

(48a)<br />

u'-0, p'-*O as r-,co (48b)<br />

it can be seen that the two volume <strong>in</strong>tegrals <strong>in</strong> (46) represent<br />

the <strong>in</strong>ertial c<strong>or</strong>recti<strong>on</strong>s to the steady Stokes drag f<strong>or</strong><br />

a <strong>drop</strong> translat<strong>in</strong>g with velocity Us <strong>in</strong> a quiescent fluid. In<br />

additi<strong>on</strong>, other than the presence of the <strong>in</strong>tegral over the<br />

volume of the <strong>drop</strong>, (46) is identical to the expressi<strong>on</strong> f<strong>or</strong><br />

a solid <strong>particle</strong>. Thus, with appropriate modificati<strong>on</strong>s, we<br />

can make use of the results f<strong>or</strong> solid <strong>particle</strong>s from LB. We<br />

will summarize the general ideas from that paper to show<br />

the similarities and differences with the current derivati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>terested reader is referred to the <strong>or</strong>ig<strong>in</strong>al w<strong>or</strong>k f<strong>or</strong><br />

further details.<br />

F<strong>or</strong> small Reynolds number and sh<strong>or</strong>t <strong>time</strong> scale moti<strong>on</strong><br />

(i-s < v/U,2 where r, is the <strong>time</strong> scale f<strong>or</strong> the change <strong>in</strong><br />

the <strong>drop</strong>s slip velocity), the flow is governed, to lead<strong>in</strong>g<br />

<strong>or</strong>der <strong>in</strong> Re, by the unsteady Stokes equati<strong>on</strong>s throughout<br />

the fluid doma<strong>in</strong>:<br />

au'<br />

This approximati<strong>on</strong> is appropriate f<strong>or</strong> the flow <strong>in</strong>side as<br />

well as outside the <strong>drop</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>vective terms of the<br />

Navier-Stokes equati<strong>on</strong>s, u* Vu and Us- Vu, are everywhere<br />

smaller than the viscous <strong>or</strong> the unsteady <strong>in</strong>ertial<br />

terms, because the v<strong>or</strong>ticity produced at the surface of the<br />

<strong>drop</strong> has not diffused out to the Oseen distance, vIUc,<br />

where c<strong>on</strong>vecti<strong>on</strong> becomes imp<strong>or</strong>tant as a transp<strong>or</strong>t mechanism.<br />

Under these c<strong>on</strong>diti<strong>on</strong>s, the c<strong>on</strong>tributi<strong>on</strong>s from the<br />

c<strong>on</strong>vective terms are obta<strong>in</strong>ed solely from a regular perturbati<strong>on</strong><br />

analysis.<br />

On the other hand, f<strong>or</strong> l<strong>on</strong>g <strong>time</strong> scale moti<strong>on</strong><br />

(r->v/U2) the flow <strong>in</strong> the near-field regi<strong>on</strong> (f<strong>or</strong> length<br />

scales sh<strong>or</strong>ter than the Oseen distance v/vc) is governed by<br />

the steady Stokes equati<strong>on</strong>s, while that <strong>in</strong> the far field [def<strong>in</strong>ed<br />

by distances from the <strong>drop</strong> of O(v/Uc) <strong>or</strong> greater] is<br />

determ<strong>in</strong>ed by the unsteady Oseen equati<strong>on</strong>s to lead<strong>in</strong>g<br />

<strong>or</strong>der:<br />

-Vp' +tV~uI~(-j 7 -U. CVu') +F 't8(X),<br />

(49)<br />

.fVd(V-a-*)<br />

(Ml*-~I)dV- f~df*t. (M1*1)dV<br />

= P*toQ(t) .J~ (MA*-I)dV<br />

= P*to (t). TfV V [(M1*-I)r~dV<br />

~P*iOO (t). .fSd n-[(1M*-I)r~dS=0.<br />

2109 Phys. Fluids A, Vol. 5, No. 9, September 1993<br />

V -u'= O. (50)<br />

Here, the boundary c<strong>on</strong>diti<strong>on</strong>s at the <strong>drop</strong> surface are replaced<br />

by the presence of the <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> m<strong>on</strong>opole <strong>in</strong> the govern<strong>in</strong>g<br />

equati<strong>on</strong>; that is, to lead<strong>in</strong>g <strong>or</strong>der <strong>in</strong> the far-field<br />

regi<strong>on</strong>, the <strong>particle</strong> appears as a po<strong>in</strong>t-<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> disturbance of<br />

magnitude the pseudosteady Stokes drag FIS<br />

[= -R k, UJ(t)]. Also, <strong>in</strong> this case, diffusi<strong>on</strong> and c<strong>on</strong>vecti<strong>on</strong><br />

are of equal imp<strong>or</strong>tance <strong>in</strong> the transp<strong>or</strong>t of v<strong>or</strong>ticity.<br />

F<strong>or</strong> moti<strong>on</strong> of <strong>arbitrary</strong> <strong>time</strong> scale, the unsteady Stokes<br />

(47) equati<strong>on</strong>s describe the flow to lead<strong>in</strong>g <strong>or</strong>der everywhere,<br />

except <strong>in</strong> the far field where the unsteady Oseen equati<strong>on</strong>s<br />

P. M. Lovalenti and J. F. Brady 2109<br />

Downloaded 13 Jan 2006 to 131.215.225.172. Redistributi<strong>on</strong> subject to AIP license <strong>or</strong> copyright, see http://pof.aip.<strong>or</strong>g/pof/copyright.jsp


govern the flow when the <strong>time</strong> scale of the moti<strong>on</strong> is large.<br />

Thus, <strong>in</strong> evaluat<strong>in</strong>g the volume <strong>in</strong>tegrals of (46), <strong>on</strong>e is<br />

able to identify three sources of <strong>in</strong>ertial terms that can<br />

c<strong>on</strong>tribute to the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> to O(Re): those<br />

from unsteady Stokes flow, those from apply<strong>in</strong>g regular<br />

perturbati<strong>on</strong> techniques to the unsteady Stokes equati<strong>on</strong>s<br />

<strong>in</strong> account<strong>in</strong>g f<strong>or</strong> the c<strong>on</strong>vective terms, and those from<br />

unsteady Oseen flow. After tak<strong>in</strong>g the proper precauti<strong>on</strong>s<br />

to prevent a double-count<strong>in</strong>g of c<strong>on</strong>tributi<strong>on</strong>s from these<br />

sources, <strong>on</strong>e arrives at the follow<strong>in</strong>g expressi<strong>on</strong> f<strong>or</strong> the<br />

hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> act<strong>in</strong>g <strong>on</strong> the <strong>drop</strong> (basically by analogy<br />

with the results from LB):<br />

Fd -P VdiJ° (t)<br />

-O[exp( -exp(-A-A2) 2 )-A ) ]F0 (s)2 ( 2 |FPAW -erf(A)<br />

Here, A has the def<strong>in</strong>iti<strong>on</strong><br />

(55)<br />

=Ffust-r fp(' s-Vuo+uo Vuo) -91*MdV<br />

fVdp(at -u'<br />

t aJ F0s<br />

r -4<br />

Vu V<br />

'+u '.Vu*'). M* dV<br />

H ~~ds-,D+ Fo (51)<br />

This expressi<strong>on</strong> reta<strong>in</strong>s the lead<strong>in</strong>g-<strong>or</strong>der effects of the c<strong>on</strong>vective<br />

<strong>in</strong>ertia of the fluid f<strong>or</strong> small Re, accurate to<br />

o (tia U, Re). <str<strong>on</strong>g>The</str<strong>on</strong>g> quantity F USt, hencef<strong>or</strong>th referred to as<br />

the unsteady Stokes <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>, represents the hydrodynamic<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> act<strong>in</strong>g the <strong>drop</strong> translat<strong>in</strong>g with velocity Us(t) <strong>in</strong> a<br />

quiescent fluid as determ<strong>in</strong>ed by the unsteady Stokes equati<strong>on</strong>s<br />

(49).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two volume <strong>in</strong>tegrals of (51) are from the regular<br />

perturbati<strong>on</strong> to unsteady Stokes flow. <str<strong>on</strong>g>The</str<strong>on</strong>g> velocity fields<br />

u0 and uo' are the soluti<strong>on</strong>s to (49) with the boundary<br />

c<strong>on</strong>diti<strong>on</strong>s given by (48). <str<strong>on</strong>g>The</str<strong>on</strong>g> velocity fields uj and u*' are<br />

the regular perturbati<strong>on</strong> to unsteady Stokes flow f<strong>or</strong> c<strong>on</strong>vecti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y satisfy<br />

-Vpt+IsV 2 u,=p( at-Us, Vu,+u0.Vu; )<br />

V-u;=O. (52)<br />

f<strong>or</strong> uj and the same equati<strong>on</strong>s f<strong>or</strong> u*' by replac<strong>in</strong>g all quantities<br />

<strong>in</strong> (52) with those c<strong>or</strong>resp<strong>on</strong>d<strong>in</strong>g to the fluid <strong>in</strong> the<br />

<strong>drop</strong>, which are denoted by an asterisk. <str<strong>on</strong>g>The</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s<br />

are<br />

n* [[1(Vu; +Vu T ) _*(Vu*,' +Vu*T)]* (Inn) =0,<br />

u'=u ', n u'n u"*'=O <strong>on</strong> Sd.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> last two terms of (51) are attributed to the unsteady<br />

Oseen flow, the first of which is the negative of the l<strong>on</strong>g<strong>time</strong><br />

asymptotic f<strong>or</strong>m of the hist<strong>or</strong>y <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> from unsteady<br />

Stokes flow, where the sec<strong>on</strong>d rank tens<strong>or</strong> 4) is def<strong>in</strong>ed by<br />

RFU (54)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> last term FgH, referred to as the unsteady Oseen <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>,<br />

is a new hist<strong>or</strong>y <strong>in</strong>tegral which can be expressed by<br />

1= Ft-_s Ys(t)-Y1(s) I'<br />

2 v t-S J<br />

(56)<br />

where the displacement vect<strong>or</strong>, Ys(t) - Ys(s), is the <strong>time</strong><br />

<strong>in</strong>tegrati<strong>on</strong> of Us from s to t. <str<strong>on</strong>g>The</str<strong>on</strong>g> quantities F 1 ll and<br />

F"' are the comp<strong>on</strong>ents of the pseudosteady Stokes <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g><br />

FSt parallel and perpendicular to this displacement vect<strong>or</strong>.<br />

F<strong>or</strong> sh<strong>or</strong>t <strong>time</strong> scale moti<strong>on</strong> (


the fourth term of the expressi<strong>on</strong>, which vanishes <strong>in</strong> the<br />

case of a solid. Although the result<strong>in</strong>g mem<strong>or</strong>y kernel c<strong>on</strong>t<strong>in</strong>ues<br />

to behave as t-1 12 <strong>in</strong> both the limit as t- 0 and as<br />

t-* o0, the coefficient of the t-'/ 2 term is different <strong>in</strong> the<br />

l<strong>on</strong>g-<strong>time</strong> asymptotic expressi<strong>on</strong> from that f<strong>or</strong> sh<strong>or</strong>t <strong>time</strong><br />

scales (t.


si<strong>on</strong> f<strong>or</strong> a <strong>bubble</strong>, (60), and with the aid of the frequency<br />

doma<strong>in</strong> expressi<strong>on</strong> (57) and the use of MATHEMATICA to<br />

carry out the appropriate <strong>in</strong>tegrati<strong>on</strong>s, we arrive at the<br />

follow<strong>in</strong>g expressi<strong>on</strong> f<strong>or</strong> the <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> accurate to O(b) and to<br />

O(Re):<br />

FbH(t) 2 2 .rt1 . 4 t a<br />

6F =+5 e- @+l a2be-wt+ 5e-it a _a<br />

sierra U 3 3 3 9 (1+a/3 )<br />

10 -<br />

10-I<br />

(a)<br />

1 4 . 2"/ 2 (l-i)(ry+i) 312 -2i<br />

+6 Re±--Re.bee' t 4y<br />

6 94<br />

(64)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Reynolds number is def<strong>in</strong>ed by Re=aU/v and<br />

ry


unsteady p<strong>or</strong>ti<strong>on</strong> is small. A very similar derivati<strong>on</strong> can be<br />

perf<strong>or</strong>med here. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>terested reader is referred to the<br />

<strong>or</strong>ig<strong>in</strong>al w<strong>or</strong>k f<strong>or</strong> the details. <str<strong>on</strong>g>The</str<strong>on</strong>g> result is<br />

FH (t=7<br />

a(Z,+2Uj(t)+!Re[1+2U,(t)])<br />

± 2lrpa 3 U 1 (t) ±S8Tfa e vts/<br />

FA(t)<br />

-8ei"<br />

t (1/3 2/3A + 5/9<br />

6irftaU (A+l± (A+ 1)2<br />

( 1 +a) 2 f(a13)<br />

2Ag(af3) +(3±a)f(af3))<br />

-Re 5e-M- Z+2/3 ) 2<br />

- R<br />

e ~ e ~ ' )+<br />

with<br />

Xeric -T-- U(s) ds<br />

8-irjia ft U S ds<br />

TTJ_ 0 , T9v(t-s) Ia 2<br />

GWt =etU 2 /4v<br />

tU/ r X 3 /' 2 -xtU 2 /4v dx,<br />

J (l+ijI~ e<br />

(69)<br />

(70)<br />

where the imposed flow U' (t) = U[1 + U 1 (t)] has the c<strong>on</strong>diti<strong>on</strong><br />

U 1 (t) Re. At low frequency<br />

(e


1/3 1 3 (A23<br />

2<br />

1 1<br />

(74a)<br />

4 Afla 3 ReA+2/3 ) 2 1 1<br />

(74b)<br />

_'A+2/3 2a<br />

1e


moti<strong>on</strong> at small but f<strong>in</strong>ite Reynolds number. <str<strong>on</strong>g>The</str<strong>on</strong>g> general<br />

expressi<strong>on</strong> is given by<br />

?fdU=F+Fet (75)<br />

where md is the mass of the body. Here, we have assumed<br />

that the <strong>on</strong>ly <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>s act<strong>in</strong>g <strong>on</strong> the body are hydrodynamic<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>s and external body <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>s, Fext, such as the buoyancy<br />

<str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> due to gravity.<br />

In the absence of velocity gradients <strong>in</strong> the imposed flow<br />

(the requirement here is that the Oseen <strong>time</strong> scale v/Ut is<br />

much less than the characteristic shear rate <strong>in</strong> the imposed<br />

flow), the general expressi<strong>on</strong> f<strong>or</strong> the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> is<br />

given by (51), where <strong>on</strong>e can take <strong>in</strong>to account the <strong>in</strong>fluence<br />

of the def<strong>or</strong>mati<strong>on</strong> of the body by <strong>in</strong>clud<strong>in</strong>g the last<br />

term of (26). <str<strong>on</strong>g>The</str<strong>on</strong>g> two volume <strong>in</strong>tegrals <strong>in</strong> (51) are absent<br />

f<strong>or</strong> spherical bodies. F<strong>or</strong> l<strong>on</strong>g <strong>time</strong> scale moti<strong>on</strong> ( > a 2 /v)<br />

of n<strong>on</strong>spheres they can be approximated us<strong>in</strong>g the soluti<strong>on</strong><br />

of the steady Stokes flow field f<strong>or</strong> the translat<strong>in</strong>g body.<br />

Under this c<strong>on</strong>diti<strong>on</strong>, it can be shown that they c<strong>on</strong>tribute<br />

<strong>on</strong>ly a side <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> perpendicular to the directi<strong>on</strong> of moti<strong>on</strong>. I<br />

F<strong>or</strong> a spherical body the hydrodynamic <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> to<br />

O(Re) simplifies to<br />

Fd- a~p t) + FH (St_ f - 4, _7_Sd WAe


where mf is the mass of the exteri<strong>or</strong> fluid displaced by the<br />

sphere and g is the accelerati<strong>on</strong> due to gravity. Here, we<br />

have assumed the <strong>on</strong>ly external <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g> is the buoyancy <str<strong>on</strong>g>f<strong>or</strong>ce</str<strong>on</strong>g>,<br />

Fext= (md-Mn)g.<br />

Apart from the two additi<strong>on</strong>al hist<strong>or</strong>y <strong>in</strong>tegrals <strong>in</strong><br />

(81), the govern<strong>in</strong>g equati<strong>on</strong>s f<strong>or</strong> the two bodies are essentially<br />

the same, <strong>in</strong> that they have the same terms with <strong>on</strong>ly<br />

a difference <strong>in</strong> numerical coefficients. F<strong>or</strong> very sh<strong>or</strong>t <strong>time</strong><br />

scale moti<strong>on</strong> (

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!