31.12.2013 Views

Mathcad - Problem 2.50.xmcd

Mathcad - Problem 2.50.xmcd

Mathcad - Problem 2.50.xmcd

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Problem</strong> 2.50 [Difficulty: 3]<br />

Given:<br />

Block on oil layer pulled by hanging weight<br />

Find:<br />

Solution:<br />

Expression for viscous force at speed V; differential equation for motion; block speed as function of time; oil viscosity<br />

Mg<br />

x<br />

Governing equations: τ yx = μ⋅<br />

du<br />

ΣF<br />

dy<br />

x = Ma ⋅ x<br />

F v<br />

F t<br />

y<br />

F t<br />

Assumptions: Laminar flow; linear velocity profile in oil layer<br />

N<br />

mg<br />

The given data is M = 5⋅kg<br />

W = m⋅g<br />

= 9.81⋅N<br />

A = 25⋅cm 2 h = 0.05⋅mm<br />

Equation of motion (block) ΣF x = Ma ⋅ x<br />

so F t − F v<br />

Equation of motion (block) ΣF y = ma ⋅ y<br />

so mg ⋅<br />

= M⋅<br />

dV<br />

( 1)<br />

dt<br />

− F t = m⋅<br />

dV<br />

( 2)<br />

dt<br />

Adding Eqs. (1) and (2)<br />

mg ⋅<br />

− F v = ( M + m) ⋅<br />

dV<br />

dt<br />

The friction force is F v = τ yx ⋅A<br />

= μ⋅<br />

du ⋅A<br />

= μ⋅<br />

V ⋅A<br />

dy h<br />

Hence<br />

mg ⋅<br />

μ⋅A<br />

− ⋅V = ( M + m) ⋅<br />

dV<br />

h<br />

dt<br />

To solve separate variables<br />

dt =<br />

M + m<br />

⋅dV<br />

μ⋅A<br />

mg ⋅ − ⋅V<br />

h<br />

⎛<br />

⎝<br />

⎛<br />

⎝<br />

( M + m) ⋅h<br />

t = − ⋅⎜ln⎜m⋅g<br />

−<br />

μ⋅A<br />

μ⋅A<br />

h<br />

⋅V<br />

⎞<br />

⎠<br />

−<br />

ln( m⋅g)<br />

⎞<br />

⎠<br />

⎛<br />

⎝<br />

( M + m) ⋅h<br />

= − ⋅ln⎜1<br />

−<br />

μ⋅A<br />

μ⋅A<br />

mg ⋅ ⋅h<br />

⋅V<br />

⎞<br />

⎠<br />

Hence taking antilogarithms 1 −<br />

μ⋅A<br />

mg ⋅ ⋅h<br />

⋅V = e<br />

−<br />

μ⋅A<br />

⋅t<br />

( M+<br />

m) ⋅h


⎡<br />

μ⋅A<br />

Finally V mg ⋅ ⋅h<br />

−<br />

( M<br />

1 e<br />

+ m) ⋅<br />

⋅t<br />

⎢<br />

h<br />

= ⋅⎣<br />

−<br />

The maximum velocity is V =<br />

mg ⋅ ⋅h<br />

μ⋅A<br />

μ⋅A<br />

In Excel:<br />

⎤<br />

⎥⎦<br />

The data is M = 5.00 kg To find the viscosity for which the speed is 1 m/s after 1 s<br />

m = 1.00 kg use Goal Seek with the velocity targeted to be 1 m/s by varying<br />

g = 9.81 m/s 2 the viscosity in the set of cell below:<br />

0 = 1.30 N.s/m 2<br />

A = 25 cm 2 t (s) V (m/s)<br />

h = 0.5 mm 1.00 1.000<br />

Speed V of Block vs Time t<br />

t (s) V (m/s)<br />

0.00 0.000<br />

0.10 0.155<br />

0.20 0.294<br />

0.30 0.419<br />

0.40 0.531<br />

0.50 0.632<br />

0.60 0.722<br />

0.70 0.803<br />

0.80 0.876<br />

0.90 0.941<br />

1.00 1.00<br />

1.10 1.05<br />

1.20 1.10<br />

1.30 1.14<br />

1.40 1.18<br />

1.50 1.21<br />

1.60 1.25<br />

1.70 1.27<br />

1.80 1.30<br />

1.90 1.32<br />

2.00 1.34<br />

2.10 1.36<br />

2.20 1.37<br />

2.30 1.39<br />

2.40 1.40<br />

2.50 1.41<br />

2.60 1.42<br />

2.70 1.43<br />

2.80 1.44<br />

2.90 1.45<br />

3.00 1.46<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

V (m/s) 0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

t (s)


<strong>Problem</strong> 2.63 [Difficulty: 4]


<strong>Problem</strong> 2.73 [Difficulty: 4]<br />

Given:<br />

Find:<br />

Conical bearing geometry<br />

Expression for shear stress; Viscous torque on shaft<br />

Solution:<br />

ds<br />

dz<br />

Basic equation τ = μ⋅<br />

du dT = r⋅τ⋅dA<br />

Infinitesimal shear torque<br />

dy<br />

Assumptions: Newtonian fluid, linear velocity profile (in narrow clearance gap), no slip condition<br />

tan( θ)<br />

r<br />

= so r = z⋅tan( θ)<br />

z<br />

Then τ = μ⋅<br />

du = μ⋅<br />

∆u = μ⋅<br />

( ω⋅r<br />

− 0)<br />

=<br />

dy ∆y ( a − 0)<br />

μω ⋅ ⋅z⋅tan( θ)<br />

a<br />

a<br />

z<br />

r<br />

Section AA<br />

AA<br />

U= ωr<br />

As we move up the device, shear stress increases linearly (because rate of shear strain does)<br />

But from the sketch dz = ds⋅cos( θ)<br />

dA = 2⋅π⋅r⋅ds<br />

= 2⋅π⋅r⋅<br />

dz<br />

cos( θ)<br />

The viscous torque on the element of area is dT = r⋅τ⋅dA<br />

r μω ⋅ ⋅z⋅tan(<br />

θ)<br />

dz<br />

= ⋅ ⋅2⋅π⋅r⋅<br />

dT =<br />

a<br />

cos( θ)<br />

Integrating and using limits z = H and z = 0<br />

πμ ⋅ ⋅ω⋅tan( θ) 3 ⋅H 4<br />

T =<br />

2a ⋅ ⋅cos( θ)<br />

2⋅π⋅μ⋅ω⋅z 3 ⋅tan( θ) 3<br />

⋅dz<br />

a⋅cos( θ)<br />

Solving for µ<br />

μ =<br />

2a ⋅ ⋅cos( θ)<br />

⋅T<br />

πω ⋅ ⋅tan( θ) 3 ⋅H 4<br />

Using given data H = 25⋅mm<br />

θ = 30⋅deg<br />

a = 0.2⋅mm<br />

ω = 75⋅<br />

rev T = 0.325⋅N⋅m<br />

s<br />

μ<br />

=<br />

2a ⋅ ⋅cos( θ)<br />

T<br />

μ = 1.012⋅<br />

Ns πω ⋅ ⋅tan( θ) ⋅H 4<br />

m 2<br />

From Fig. A.2, at 20 o C, CASTOR OIL has this viscosity!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!