14.01.2014 Views

X - Fachgebiet Hochspannungstechnik

X - Fachgebiet Hochspannungstechnik

X - Fachgebiet Hochspannungstechnik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Generating High Alternating Voltages<br />

Tests at alternating voltage are performed as<br />

• Design Test (which is not defined acc. to IEC)<br />

• Type test<br />

• Routine Test<br />

• Acceptance Test<br />

• Commissioning Test, On-Site-Test<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 1 -


Generating High Alternating Voltages<br />

Required test voltage levels up to 2 MV (extreme value: 3 MV)<br />

Example 1:<br />

Standard short-duration power-frequency withstand voltage up to 3·U m<br />

• for type, routine and acceptance tests: factor of 1.1 required<br />

• for design tests at least factor of 1.4 recommended<br />

(U m = 245 kV ⇒<br />

Standard short-duration power-frequency withstand voltage<br />

max. 460 kV factor of 1.4 644 kV)<br />

Example 2:<br />

Line-to-earth voltage at U m = 800 kV: U LE = 462 kV<br />

factor of 1.1: 508 kV<br />

Line-to-earth voltage at U m = 1200 kV: U LE = 693 kV<br />

factor of 1.1: 762 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 2 -


Generating High Alternating Voltages<br />

Root mean square value of a voltage:<br />

T<br />

1 2<br />

Urms<br />

u()<br />

t dt<br />

= ∫<br />

T<br />

0<br />

(root mean square value)<br />

• Usually the voltage shape is not ideally sinusoidal.<br />

• In high-voltage technology in most cases only the peak value is of interest.<br />

⇒ Specification of a test voltage:<br />

û<br />

U<br />

rms<br />

= (IEC 60060-1, 1989-11)<br />

2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 3 -


Generating High Alternating Voltages<br />

Requirements (IEC 60060-1):<br />

Deviation from sinusoidal shape:<br />

û<br />

2 5%<br />

U = ±<br />

(which is more or less the same as a requirement for a<br />

harmonics content < 5%)<br />

rms<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 4 -


Generating High Alternating Voltages<br />

Requirements (IEC 60060-1):<br />

Differences in peak values of two<br />

subsequent periods


Generating High Alternating Voltages<br />

Requirements (IEC 60060-1):<br />

Voltage dips (even if transient)<br />


Generating High Alternating Voltages<br />

Requirements (IEC 60060-1):<br />

Usually, the requirements are fulfilled automatically if the transformer<br />

short-circuit current is:<br />

For material investigations<br />

0.1 A for tests under dry conditions<br />

on just small test samples of solid or liquid insulation or<br />

a combination of both<br />

For tests on high-voltage equipment<br />

• at least 0.1 A for tests on self-restoring, external insulation<br />

under dry conditions<br />

• 0.5 A to 1 A under rain<br />

For tests under artificial pollution<br />

15 A or more (!!)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 7 -


Generating High Alternating Voltages<br />

Requirements (IEC 60060-1):<br />

Further possible means to fulfill the requirements:<br />

Connection of a supporting capacitor<br />

C >= 1 nF to the high-voltage terminals<br />

Damping resistance R = 1 kΩ ... 100 kΩ<br />

(or value such that τ = 10 µs)<br />

(avoidance of resonant oscillations,<br />

limiting of du/dt)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 8 -


Generating High Alternating Voltages<br />

Absolutely forbidden!<br />

Sudden connection of the transformer to the test sample<br />

at more than 50% of rated output voltage<br />

(else: resonant oscillations)<br />

⇒ Increase voltage slowly from zero!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 9 -


Differences Power Transformator – Test Transformator<br />

Power transformers:<br />

• mostly of three phase design (but also single phase)<br />

• tank and core always earthed<br />

• voltage regulation stepwise by tap changer<br />

• optimized for high power, high continuous and high short-circuit currents<br />

⇒ mechanical stress! (dynamic short-circuit current forces)<br />

⇒ thermal stress! (cooling ducts between winding layers;<br />

cooling by forced circulation; Buchholz relay)<br />

• insulated for high overvoltages<br />

Bilder Leistungstransformatoren<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 10 -


Differences Power Transformator – Test Transformator<br />

Test transformers:<br />

• only of single phase design<br />

• tank either earthed or on potential<br />

• tank often made from insulating material<br />

•coreeither earthed or on potential<br />

• very precise (nearly stepless) voltage regulation on the lv side<br />

by help of a regulation transformer; no regulation on the hv side<br />

• optimized for short-time duty<br />

• very high rated voltages, but not insulated against<br />

high overvoltages<br />

• mainly capacitive loading<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 11 -


Capacitive Loading<br />

Kind of equipment<br />

Station posts, line insulators<br />

Bushings<br />

Inductive instrument transformers<br />

Power transformers < 1 MVA<br />

Power transformers > 1 MVA<br />

Cables<br />

Gas-insulated lines (GIL)<br />

Gas-insulated switchgear (GIS)<br />

Capacitance (estimated)<br />

20 pF<br />

100 pF ... 500 pF<br />

200 pF ... 500 pF<br />

1 nF ... 3 nF<br />

1 nF ...25 nF<br />

200 pF/m ... 700 pF/m (300 pF/m)<br />

60 pF/m<br />

1 nF ... 10 nF<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 12 -


Capacitive Loading<br />

• Test voltage 1 MV<br />

• Capacitive load 3,2 nF<br />

Current<br />

I = U⋅ω⋅ C = ⋅ ⋅ ⋅ ⋅ ⋅ =<br />

6 −9<br />

110 V 2π<br />

50Hz 3,210 F 1A<br />

Power (leading reactive power)<br />

S U C<br />

( ) 2<br />

2 6 −9<br />

= ⋅ω⋅ = ⋅ ⋅ π ⋅ ⋅ ⋅ =<br />

110 V 2 50Hz 3,210 F 1MVA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 13 -


Capacitive Loading<br />

Additional capacitive loading by<br />

• shielding electrodes<br />

• high voltage connections<br />

• voltage measurement<br />

(e. g. capacitive divider)<br />

<br />

Up to 100 kV test voltage ⇒<br />

100 pF<br />

Up to 1000 kV test voltage ⇒ 1000 pF<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 14 -


Capacitive Loading by Shielding Electrodes<br />

Sphere electrode for 1 MV alternating voltage<br />

Goal: to chose the radius<br />

such that there are no<br />

partial discharges.<br />

Maximum electrical field stress<br />

on the electrode surface:<br />

E<br />

max<br />

U<br />

=<br />

r<br />

K<br />

K<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 15 -


Capacitive Loading by Shielding Electrodes<br />

Maximum allowed electrical field<br />

stress in air to achieve freedom<br />

from partial discharges:<br />

E max = 25 kV/cm<br />

Required sphere radius:<br />

r<br />

K<br />

U<br />

1,4 MV<br />

K<br />

= = =<br />

Emax<br />

25 kV/cm<br />

56 cm<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 16 -


Capacitive Loading by Shielding Electrodes<br />

Capacitance of a sphere to ground<br />

(ground in infinite distance):<br />

C K = 4 πε 0 ε r r k<br />

ε 0 = 8,86 pF/m<br />

C K / pF = 1,11 r K / cm = 62 pF<br />

⇒ capacitive current: 20 mA<br />

⇒ reactive power: 20 kVA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 17 -


Basic Design of Test Transformers<br />

Grading electrodes for field stress reduction<br />

High-voltage winding<br />

Energizing winding<br />

Core<br />

Optimal capacitive voltage distribution by close winding<br />

and approximately trapezoidal shape of high-voltage winding<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 18 -


Basic Design of Test Transformers<br />

How to get even capacitances between the individual layers?<br />

Length l<br />

Radius r<br />

Distance d<br />

Capacitance between two layers:<br />

A 2π<br />

r⋅l<br />

C ≈εε<br />

0 r⋅ = εε<br />

0 r⋅ (for d


Transformer Equivalent Electric Circuits<br />

Φ h<br />

I 1 I 2<br />

U 1<br />

U 2<br />

Φ 1σ<br />

Φ 2σ<br />

Electrical circuit<br />

U<br />

I<br />

R<br />

G = 1/R<br />

Magnetical circuit<br />

N·I<br />

Φ<br />

l m<br />

/µA<br />

Λ = µA/l m<br />

Φ nσ ... Stray flux of winding n<br />

Φ h ... Common working flux<br />

N·I ... magnetic potential, ampere-turns<br />

Φ ... magnetic flux<br />

µ= µ 0·µ r<br />

µ 0 ... Permeability of the vacuum<br />

4π·10 -7 = 1,256·10 -6 Vs/Am<br />

µ r ... relative Permeability<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 20 -


Transformer Equivalent Electric Circuits<br />

I Φ h<br />

1<br />

I 2<br />

X 2σ<br />

R 1 X 1σ<br />

R 2<br />

U 1<br />

U 2<br />

X σ = ωL σ (with: L σ = N 2 Λ σ )<br />

X σ ..."Stray reactance"<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 21 -


Transformer Equivalent Electric Circuits<br />

I' 1<br />

I 2<br />

X 2σ<br />

R' 1 X' 1σ<br />

R 2<br />

U' 1<br />

U 2<br />

I µ<br />

X h<br />

R Fe<br />

I Fe<br />

X h ..."Magnetizing reactance"<br />

X σ ..."Stray reactance"<br />

Conversion of dashed values:<br />

U<br />

N<br />

N<br />

' 2<br />

1 = ⋅U1<br />

1<br />

I<br />

N<br />

N<br />

' 1<br />

1 = ⋅ I 1<br />

2<br />

R<br />

2<br />

⎛N<br />

⎞<br />

= ⋅ R<br />

⎝ ⎠<br />

' 2<br />

1 ⎜<br />

1<br />

N<br />

⎟<br />

1<br />

X<br />

' 2<br />

1σ<br />

⎜<br />

1σ<br />

N<br />

⎟<br />

1<br />

2<br />

⎛N<br />

⎞<br />

= ⋅ X<br />

⎝ ⎠<br />

Magnitudes:<br />

• R<br />

≈<br />

R<br />

'<br />

1 2<br />

X<br />

≈<br />

X<br />

'<br />

1σ<br />

2σ<br />

• for big transformers:<br />

3 4<br />

• X<br />

h, RFe<br />

≈10 ...10 ⋅X σ<br />

X<br />

≈ 1,2<br />

20...30 ⋅<br />

σ<br />

R1,2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 22 -


Transformer Equivalent Electric Circuits<br />

Simplified transformer equivalent electric circuit<br />

I<br />

R k<br />

X k<br />

U' 1 U 2<br />

reduced to short - circuit impedance Z = R + X = R + jωL<br />

k k k k k<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 23 -


Performance at Capacitive Loading<br />

I<br />

I<br />

R k X k R k X k<br />

U' 1 C T U 2<br />

C a U' 1 U 2<br />

C<br />

R k·I<br />

jωL k·I<br />

C = C T + C a<br />

U 2<br />

U' 1<br />

X k = ωL k<br />

I<br />

U' 1 = R k·I + jωL k·I + U 2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 24 -


Performance at Capacitive Loading<br />

The mainly capacitive loading of test transformers<br />

(as virtually always the case)<br />

results in a<br />

Magnification of the secondary voltage!<br />

⇒ The secondary voltage can only roughly be estimated from the<br />

transformer ratio.<br />

⇒ The measurement of the high-voltage has to be performed<br />

directly on the hv side of the transformer.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 25 -


Performance at Capacitive Loading<br />

Calculation of capacitive voltage magnification<br />

at loading with rated voltage and current<br />

1 st step: further simplification of the equivalent electrical circuit by<br />

neglecting the ohmic losses ....<br />

I<br />

X k<br />

U' 1 U 2<br />

C<br />

10<br />

8<br />

6<br />

y = 1/(1-0,1x)<br />

y<br />

U<br />

U′<br />

2<br />

1<br />

=<br />

1<br />

2<br />

1−ω<br />

LC<br />

k<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10<br />

x<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 26 -


Performance at Capacitive Loading<br />

Calculation of capacitive voltage magnification<br />

at loading with rated voltage and current<br />

2 nd step: Calculation of relative short-circuit voltage<br />

for the particular case ....<br />

U k = I n ·Z k = I n · ωL k<br />

Short-circuit voltage = voltage that must be applied to the primary side<br />

in order to drive nominal current in case of a shorted secondary side<br />

u<br />

k<br />

U In<br />

⋅ωL<br />

U U<br />

k<br />

= =<br />

2, n 2, n<br />

k<br />

I = U ⋅ωC<br />

n<br />

2, n<br />

(Assumption that the current through C<br />

at rated voltage just equals rated current.)<br />

u<br />

k<br />

2<br />

= ω L C<br />

k<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 27 -


Performance at Capacitive Loading<br />

Calculation of capacitive voltage magnification<br />

at loading with rated voltage and current<br />

3 rd step: insert the relative short-circuit voltage ....<br />

U<br />

U<br />

U<br />

U<br />

2<br />

′<br />

1<br />

2<br />

′<br />

1<br />

= 1<br />

2<br />

1 − ω LC<br />

1<br />

=<br />

1 − u<br />

k<br />

k<br />

u<br />

k<br />

2<br />

= ω L C<br />

k<br />

Relative short-circuit voltage u k = 20%<br />

⇒ Voltage magnification at capacitive loading<br />

with rated current: 25%!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 28 -


Design Variants of Test Transformers<br />

2 different circuit variants:<br />

x<br />

HW<br />

U isol<br />

One pole insulated<br />

K<br />

EW<br />

x<br />

x<br />

Fully insulated<br />

K<br />

HW<br />

U isol<br />

x<br />

Center tap earthed<br />

⇒ balanced-to-earth voltage<br />

EW<br />

One of the external terminals earthed<br />

⇒ non balanced-to-earth voltage<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 29 -


Design Variants of Test Transformers<br />

Design variants<br />

Epoxy resin insulated<br />

Oil insulated<br />

SF 6 -insulated<br />

Tank type<br />

Insulated enclosure type<br />

Single stage<br />

or<br />

Multi-stage (cascading)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 30 -


Design Variants of Test Transformers<br />

Test transformer with epoxy resin insulation<br />

(very simplified depiction)<br />

1 High-voltage winding<br />

2 Energizing winding<br />

3 Iron core<br />

4 Base<br />

5 High-voltage terminal<br />

6 Epoxy resin insulation<br />

Up to rated voltages of about 100 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 31 -


Design Variants of Test Transformers<br />

Test transformer with epoxy resin insulation<br />

(very simplified depiction)<br />

MWB test transformer 2 x 50 kV<br />

"piglet"<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 32 -


Design Variants of Test Transformers<br />

Oil insulated tank type test transformer<br />

1 High-voltage winding<br />

2 Energizing winding<br />

3 Iron core<br />

4 Base<br />

5 High-voltage terminal<br />

6 Bushing<br />

7 Metal tank<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 33 -


Design Variants of Test Transformers<br />

Oil insulated tank type test transformer<br />

Rated voltages up to about 400 kV (800 kV)<br />

• good cooling (metal tank!)<br />

• high power<br />

• comparatively small oil volume<br />

• expensive bushing<br />

• expensive shielding electrode<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 34 -


Design Variants of Test Transformers<br />

Oil insulated tank type test transformer<br />

Aktive parts 550 kV (MWB)<br />

• aufwendige Durchführung<br />

• aufwendige Schirmelektrode<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 35 -


Design Variants of Test Transformers<br />

Oil insulated tank type test transformer<br />

TuR, 600 kV, 3.33 A<br />

• aufwendige Durchführung<br />

• aufwendige Schirmelektrode<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 36 -


Design Variants of Test Transformers<br />

Oil insulated enclosure<br />

type test transformer<br />

1 High-voltage winding<br />

2 Energizing winding<br />

3 Iron core<br />

4 Base<br />

5 High-voltage terminal<br />

8 Insulated enclosure<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 37 -


Design Variants of Test Transformers<br />

Oil insulated enclosure<br />

type test transformer<br />

• no bushing required<br />

• simple shielding electrode<br />

• large oil volume<br />

• bad cooling<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 38 -


Design Variants of Test Transformers<br />

Oil insulated enclosure<br />

type test transformer<br />

HighVolt, 100 kV<br />

MWB, 100 kV<br />

HAEFELY, 100 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 39 -


Design Variants of Test Transformers<br />

Oil insulated enclosure<br />

type test transformer<br />

MWB, 550 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 40 -


Design Variants of Test Transformers<br />

9<br />

3 2<br />

1<br />

5<br />

SF 6 -insulated test transformer<br />

1 High-voltage winding<br />

2 Energizing winding<br />

3 Iron core<br />

5 High-voltage terminal<br />

9 Pressure resistant vessel (Steel, Aluminum)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 41 -


Design Variants of Test Transformers<br />

9<br />

3 2<br />

1<br />

5<br />

SF 6 -insulated test transformer<br />

• compact, lightweight<br />

• direct connection to GIS/GIL<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 42 -


Design Variants of Test Transformers<br />

SF 6 -insulated test transformer<br />

Direct coupling of an SF 6 -insulated<br />

test transformer to the GIS in order to<br />

avoid mounting of an open air test bushing<br />

alternatively…<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 43 -


Design Variants of Test Transformers<br />

SF 6 -insulated test transformer<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 44 -


Transformer Cascades<br />

Cascading of transformers usually above about 300 kV (latest above 800 kV)<br />

Energizing winding<br />

Coupling winding<br />

High-voltage winding<br />

⇒ Three-winding transformer<br />

max. 4 stages!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 45 -


Transformer Cascades<br />

With the exception of the bottom stage<br />

all stages must be installed insulated.<br />

U<br />

2/3 U<br />

1/3 U<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 46 -


Transformer Cascades<br />

First 1-MV test transformer<br />

cascade worldwide<br />

(year of manufacturing 1923)<br />

(2·500 kV in phase opposition)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 47 -


Transformer Cascades<br />

Two stage transformer cascade (2·600 kV, 2 A continuous duty)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 48 -


Transformer Cascades<br />

2-stage cascade<br />

1.8 MV<br />

HVTS<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 49 -


Transformer Cascades<br />

TU Darmstadt<br />

1.2 MV (2·2·300 kV)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 50 -


Transformer Cascades<br />

Top transformer<br />

Intermediate transformer<br />

U<br />

Siemens Berlin<br />

1.8 MV (3·600 kV)<br />

TuR<br />

Base transformer<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 51 -


Transformer Cascades<br />

Power requirements<br />

Energizing winding base stage: 300%<br />

Coupling winding base stage: 200%<br />

Energizing winding top stage: 100%<br />

Energizing winding intermed. stage: 200 %<br />

Coupling winding intermed. stage: 100%<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 52 -


Transformer Cascades<br />

Compensation of capacitive reactive power by reactors<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 53 -


Transformer Cascades<br />

... also as insulated enclosure type<br />

3·100 kV<br />

2·100 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 54 -


Transformer Cascades<br />

... also as insulated enclosure type<br />

Siemens Berlin<br />

2·400 kV<br />

TuR<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 55 -


Transformer Cascades<br />

... also as insulated enclosure type<br />

EDF, Les Renardières<br />

MWB, 1.65 MV<br />

Lab closed!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 56 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

Core at 50% potential<br />

Lower requirements on hv<br />

winding insulation against<br />

core<br />

Requires two bushings<br />

One energizing winding<br />

used as energizing winding<br />

The other energizing<br />

winding used as coupling<br />

winding for the next stage<br />

Leakage suppressing<br />

windings to balance the<br />

magnetic flux<br />

⇒ reduced stray reactance<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 57 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

... epoxy resin insolated<br />

MWB<br />

2 x 50 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 58 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

... tank type<br />

TuR<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 59 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

... tank type<br />

2-stage<br />

1.2 MV, 1.25 A<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 60 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

... tank type<br />

2-stage<br />

TuR<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 61 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

... tank type<br />

3-stage<br />

2.25 MV (3·2·375 kV), 1 A<br />

TuR<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 62 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

... tank type<br />

TU Munich<br />

1.2 MV (3·2·200 kV)<br />

Siemens<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 63 -


Transformer Cascades<br />

Largest test tranformer cascade worldwide (3 MV, 12.6 MVA, Moscow 1991)<br />

Modell<br />

TuR<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 64 -


Transformer Cascades<br />

Largest test tranformer cascade worldwide (3 MV, 12.6 MVA, Moscow 1991)<br />

Siemens<br />

(TuR)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 65 -


Transformer Cascades<br />

Cascade arrangement with 2 stages on one core<br />

... insulated enclosure type<br />

2·400 kV CESI (Milano)<br />

2·400 kV<br />

2·400 kV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 66 -


Short-Circuit Reactance of Transformer Cascades<br />

Electrical equivalent circuit diagram<br />

of a 3-stage cascade<br />

If losses are neglected and under the assumption<br />

of even winding ratios:<br />

N<br />

N<br />

Eν<br />

Hν<br />

=<br />

N<br />

N<br />

Kν<br />

Hν<br />

for ν = 1...3<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 67 -


Short-Circuit Reactance of Transformer Cascades<br />

Equivalence of power for both equivalent circuit diagrams:<br />

3<br />

2 '2 ' '2 ' 2<br />

H⋅ res<br />

= ∑ Eν ⋅<br />

Eν +<br />

Kν ⋅<br />

Kν +<br />

Hν ⋅<br />

Hν<br />

ν = 1<br />

( )<br />

I X I X I X I X<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 68 -


Short-Circuit Reactance of Transformer Cascades<br />

3<br />

∑( ν ν ν ν ν ν)<br />

I ⋅ X = I ⋅ X + I ⋅ X + I ⋅X<br />

2 '2 ' '2 ' 2<br />

H res E E K K H H<br />

ν = 1<br />

not present!<br />

I ⋅X I ⋅X I ⋅X I ⋅X I ⋅X I ⋅X<br />

X X X X<br />

'2 ' '2 ' '2 ' '2 ' '2 ' '2 '<br />

E1 E1 K1 K1 E2 E2 K2 K2 E3 E3 K3 K3<br />

res<br />

= + +<br />

2 2 H1 + + +<br />

2 2 H2<br />

+ + +<br />

2 2<br />

H3<br />

IH IH IH IH IH IH<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 69 -


Short-Circuit Reactance of Transformer Cascades<br />

I = I = I = I ⇒ I = I = I<br />

' ' '2 '2 2<br />

E3 K2 H E3 K2<br />

H<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 70 -


Short-Circuit Reactance of Transformer Cascades<br />

I = I = I<br />

'2 '2 2<br />

E3 K2 H<br />

3<br />

∑( ν ν ν ν ν ν)<br />

I ⋅ X = I ⋅ X + I ⋅ X + I ⋅X<br />

not present!<br />

2 '2 ' '2 ' 2<br />

H res E E K K H H<br />

ν = 1<br />

res<br />

'2 ' '2 ' '2 ' '2 ' '2 ' '2 '<br />

IE1 ⋅XE1 IK1 ⋅XK1 IE2 ⋅XE2 IK2 ⋅XK2 IE3 ⋅XE3 IK3 ⋅XK3<br />

= + +<br />

2 2 H1 + + +<br />

2 2 H2<br />

+ + +<br />

2 2<br />

IH IH IH IH IH IH<br />

H3<br />

X X X X<br />

I ⋅X I ⋅X I ⋅X<br />

X X X X X X<br />

'2 ' '2 ' '2 '<br />

E1 E1 K1 K1 E2 E2 '<br />

'<br />

res<br />

= + +<br />

H1+ +<br />

2 2 2<br />

K2<br />

+<br />

H2<br />

+<br />

E3+<br />

H3<br />

IH IH IH<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 71 -


Short-Circuit Reactance of Transformer Cascades<br />

I = I = 2⋅ I = 2⋅I ⇒ I = I = 4⋅I<br />

' ' '2 '2 2<br />

E 2 K1 H E2 K1<br />

H<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 72 -


Short-Circuit Reactance of Transformer Cascades<br />

I ⋅X I ⋅X I ⋅X<br />

X X X X X X<br />

'2 ' '2 ' '2 '<br />

E1 E1 K1 K1 E2 E2 '<br />

'<br />

res<br />

= + +<br />

H1+ +<br />

2 2 2<br />

K2<br />

+<br />

H2<br />

+<br />

E3+<br />

H3<br />

IH IH IH<br />

I = I = 4⋅I<br />

'2 '2 2<br />

E2 K1 H<br />

3<br />

∑( ν ν ν ν ν ν)<br />

I ⋅ X = I ⋅ X + I ⋅ X + I ⋅X<br />

I ⋅ X<br />

X X X X X X X X<br />

'2 '<br />

E1 E1 ' ' ' '<br />

res<br />

= + 4⋅ K1+ 2<br />

H1+ 4⋅ E2<br />

+<br />

K2<br />

+<br />

H2<br />

+<br />

E3+<br />

H3<br />

IH<br />

not present!<br />

2 '2 ' '2 ' 2<br />

H res E E K K H H<br />

ν = 1<br />

res<br />

'2 ' '2 ' '2 ' '2 ' '2 ' '2 '<br />

IE1 ⋅XE1 IK1 ⋅XK1 IE2 ⋅XE2 IK2 ⋅XK2 IE3 ⋅XE3 IK3 ⋅XK3<br />

= + +<br />

2 2 H1 + + +<br />

2 2 H2<br />

+ + +<br />

2 2<br />

IH IH IH IH IH IH<br />

H3<br />

X X X X<br />

I = I = I<br />

'2 '2 2<br />

E3 K2 H<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 73 -


Short-Circuit Reactance of Transformer Cascades<br />

I = 3⋅ I = 3⋅I ⇒ I = 9⋅I<br />

' '2 2<br />

E1 H E1<br />

H<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 74 -


Short-Circuit Reactance of Transformer Cascades<br />

I<br />

= 9⋅I<br />

'2 2<br />

E1 H<br />

3<br />

∑( ν ν ν ν ν ν)<br />

I ⋅ X = I ⋅ X + I ⋅ X + I ⋅X<br />

X = 9⋅ X + 4⋅ X + X + 4⋅ X + X + X + X + X<br />

' ' ' ' '<br />

res E1 K1 H1 E2 K2 H2 E3 H3<br />

( )<br />

X = X + X + X + X + X + 4⋅ X + X + 9⋅X<br />

' ' ' ' '<br />

res H1 H2 H3 K2 E3 K1 E2 E1<br />

not present!<br />

2 '2 ' '2 ' 2<br />

H res E E K K H H<br />

ν = 1<br />

res<br />

'2 ' '2 ' '2 ' '2 ' '2 ' '2 '<br />

IE1 ⋅XE1 IK1 ⋅XK1 IE2 ⋅XE2 IK 2<br />

⋅XK 2<br />

IE3 ⋅XE3 IK3 ⋅XK3<br />

= + +<br />

2 2 H1 + + +<br />

2 2 H2<br />

+ + +<br />

2 2<br />

IH IH IH IH IH IH<br />

H3<br />

X X X X<br />

I = I = I<br />

'2 '2 2<br />

E3 K2 H<br />

I ⋅X I ⋅X I ⋅X<br />

X X X X X X<br />

'2 ' '2 ' '2 '<br />

E1 E1 K1 K1 E2 E2 '<br />

'<br />

res<br />

= + +<br />

H1+ +<br />

2 2 2<br />

K2<br />

+<br />

H2<br />

+<br />

E3+<br />

H3<br />

IH IH IH<br />

I = I = 4⋅I<br />

'2 '2 2<br />

E2 K1 H<br />

I ⋅ X<br />

X X X X X X X X<br />

'2 '<br />

E1 E1 ' ' ' '<br />

res<br />

= + 4⋅ K1+ 2<br />

H1+ 4⋅ E2<br />

+<br />

K2<br />

+<br />

H2<br />

+<br />

E3+<br />

H3<br />

IH<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 75 -


Short-Circuit Reactance of Transformer Cascades<br />

( )<br />

X = X + X + X + X + X + 4⋅ X + X + 9⋅X<br />

' ' ' ' '<br />

res H1 H2 H3 K2 E3 K1 E2 E1<br />

The resulting short-circuit reactance of a multi-stage cascade<br />

is higher than the linear sum of the individual stage reactances!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 76 -


Series Resonant Circuits<br />

Resonant frequency<br />

f<br />

0<br />

=<br />

1<br />

2π<br />

LC<br />

jωL·I<br />

U 2<br />

U' 2<br />

Voltage magnification<br />

Q-factor<br />

Characteristic impedance<br />

U<br />

U<br />

Q<br />

Z<br />

2<br />

'<br />

2<br />

K<br />

=<br />

= Q<br />

ZK<br />

=<br />

R<br />

L<br />

C<br />

R T·I<br />

jωL T·I<br />

U' 1<br />

I<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 77 -


Series Resonant Circuits<br />

Drive<br />

core movement<br />

Lead screw (the core is actually in 100% position)<br />

Fixed part of the core<br />

Active part of a high-voltage reactor with variable core<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 78 -


Series Resonant Circuits<br />

Advantages:<br />

• Extremely low content of harmonics in high-voltage<br />

• Very low short-circuit power<br />

• Only low power requirements on transformer (just compensation of losses)<br />

• Weight of high-voltage reactor only one third of that of a comparable<br />

high-voltage transformer<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 79 -


Series Resonant Circuits<br />

1<br />

3<br />

4<br />

5<br />

Adjustable<br />

high-voltage reactor<br />

Q ≈ 50<br />

C max /C min ≈ 20 (because Lmax/Lmin ≈ 20)<br />

Specific weight 3...8 kg/kVA<br />

4<br />

2<br />

3<br />

Variable frequency<br />

5<br />

Q ≈ 100...200<br />

C max /C min = 225 (because f = 20...300 Hz)<br />

Specific weight 0,8...1,5 kg/kVA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 80 -


Series Resonant Circuits<br />

Mobile series resonant test setup of variable frequency; 150 kV/90 A<br />

HighVolt<br />

Energizing transformer<br />

Reactor (tank type)<br />

Coupling capacitor for partial<br />

discharge measurement<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 81 -


Series Resonant Circuits<br />

On-site testing with a two stage series resonant test setup 700 kV<br />

HVTS<br />

Transformer!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 82 -


Series Resonant Circuits<br />

Three stage series resonant test setup 1200 kV/4 A<br />

with adjustable reactors<br />

HighVolt<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 83 -


Series Resonant Circuits<br />

On-site testing with a three stage series resonant test setup<br />

GIS 765 kV, ESKOM, South Africa<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 84 -


Series Resonant Circuits<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 85 -


Series Resonant Circuits<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 86 -


Series Resonant Circuits<br />

Research project at <strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong> of TUD<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 87 -


Power Supply of Test Transformers<br />

Most common:<br />

Regulation transformer fed from the line (low or medium voltage)<br />

But also:<br />

Motor-Generator set<br />

• Synchronous converter<br />

• Ward-Leonard converter<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 88 -


Protection Circuit<br />

Damping resistance R = 1 kΩ ... 100 kΩ<br />

(or value such that τ = 10 µs)<br />

(avoidance of resonant oscillations,<br />

limiting of du/dt)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 89 -


Protection Circuit<br />

Current breaker and short-circuiter with power electronic devices<br />

Regulation -<br />

transformer<br />

Thyristor -<br />

short-circuiter<br />

Thyristor breaker<br />

Test -<br />

transformer<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 90 -


Basic Insulation Levels acc. to IEC 60071-1<br />

Range I:<br />

U m = 1 kV up to and including U m = 245 kV<br />

The standard voltage values are<br />

all the same for<br />

• Phase-to-earth-,<br />

• Phase-to-phase-,<br />

• Longitudinal<br />

insulation!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 2 - 91 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!