17.01.2014 Views

Stability of a bubble expanding and translating through an inviscid ...

Stability of a bubble expanding and translating through an inviscid ...

Stability of a bubble expanding and translating through an inviscid ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proc. Indi<strong>an</strong> Acad. Sci. (Math. Sci.) Vol. 112, No. 2, May 2002, pp. 361–365.<br />

© Printed in India<br />

<strong>Stability</strong> <strong>of</strong> a <strong>bubble</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong> <strong>tr<strong>an</strong>slating</strong> <strong>through</strong><br />

<strong>an</strong> <strong>inviscid</strong> liquid<br />

DINESH KHATTAR <strong><strong>an</strong>d</strong> B B CHAKRABORTY ∗<br />

Department <strong>of</strong> Mathematics, Kirori Mal College, Delhi University, Delhi 110 007, India<br />

∗ Department <strong>of</strong> Mathematics, Delhi University, Delhi 110 007, India<br />

MS received 27 August 2001; revised 2 February 2002<br />

Abstract. A <strong>bubble</strong> exp<strong><strong>an</strong>d</strong>s adiabatically <strong><strong>an</strong>d</strong> tr<strong>an</strong>slates in <strong>an</strong> incompressible <strong><strong>an</strong>d</strong><br />

<strong>inviscid</strong> liquid. We investigate the number <strong>of</strong> equilibrium points <strong>of</strong> the <strong>bubble</strong> <strong><strong>an</strong>d</strong> the<br />

nature <strong>of</strong> stability <strong>of</strong> the <strong>bubble</strong> at these points. We find that there is only one equililbrium<br />

point <strong><strong>an</strong>d</strong> the <strong>bubble</strong> is stable there.<br />

Keywords.<br />

function.<br />

Bubble; Rayleigh’s equation; stability; Hamiltoni<strong>an</strong>; Liapounov’s<br />

1. Introduction<br />

The basic equation, describing the mathematical model for <strong>an</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong>bubble</strong> in <strong>an</strong><br />

incompressible liquid has been given by Rayleigh [8], Plesset [6] <strong><strong>an</strong>d</strong> others (Noltingk<br />

<strong><strong>an</strong>d</strong> Neppiras [5] <strong><strong>an</strong>d</strong> Poritsky [7]). This mathematical model, <strong><strong>an</strong>d</strong> the equation describing<br />

it, have been generalized (Chakraborty [1], Chakraborty <strong><strong>an</strong>d</strong> Tuteja [3]) when the <strong>bubble</strong><br />

exp<strong><strong>an</strong>d</strong>s as well as tr<strong>an</strong>slates in a liquid.<br />

The equation, governing the variation <strong>of</strong> R with time t, is a highly non-linear equation.<br />

The progress in the study <strong>of</strong> this equation is, therefore, generally expected numerically.<br />

However, when liquid outside the <strong>bubble</strong> is <strong>inviscid</strong>, after tr<strong>an</strong>sforming the equation suitably,<br />

we prove <strong>an</strong>alytically, that the <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong> <strong>tr<strong>an</strong>slating</strong> <strong>bubble</strong> has only one equilibrium<br />

point <strong><strong>an</strong>d</strong> the <strong>bubble</strong> is stable at this equilibrium point. In our discussion, we use<br />

Liapounov’s first stability theorem [4]. This stability problem in the absence <strong>of</strong> tr<strong>an</strong>slation<br />

was eariler studied by Chakraborty <strong><strong>an</strong>d</strong> Khattar [2].<br />

2. Mathematical formulation <strong><strong>an</strong>d</strong> <strong>an</strong>alysis<br />

As the <strong>bubble</strong> exp<strong><strong>an</strong>d</strong>s adiabatically <strong><strong>an</strong>d</strong> tr<strong>an</strong>slates with velocity U, its radius R satisfies<br />

the equations (Chakraborty [1], Chakraborty <strong><strong>an</strong>d</strong> Tuteja [3])<br />

R d2 R<br />

dt 2 + 3 ( ) {<br />

dR<br />

2<br />

− U 2<br />

2 dt 4 + 1 ( ) }<br />

3γ R0<br />

p e − p g0 + 2σ = 0 (1)<br />

ρ<br />

R R<br />

<strong><strong>an</strong>d</strong><br />

UR 3 = U 0 R0 3 = k, (2)<br />

361


362 Dinesh Khattar <strong><strong>an</strong>d</strong> B B Chakraborty<br />

where k is a const<strong>an</strong>t, σ <strong><strong>an</strong>d</strong> ρ are the surface tension coefficient <strong><strong>an</strong>d</strong> density <strong>of</strong> the liquid<br />

outside the <strong>bubble</strong> respectively, p g0 , R 0 <strong><strong>an</strong>d</strong> U 0 are the gas pressure, radius <strong>of</strong> the <strong>bubble</strong><br />

<strong><strong>an</strong>d</strong> its speed initially, respectively, p e is the pressure in the liquid at a large dist<strong>an</strong>ce from<br />

the <strong>bubble</strong> <strong><strong>an</strong>d</strong> γ is the ratio <strong>of</strong> the two specific heats <strong>of</strong> the gas.<br />

We find that eq. (1) c<strong>an</strong> be written, in view <strong>of</strong> (2), as<br />

{<br />

d 2 (<br />

dt 2 R 5/2) − 5 8 k2 R −11/2 + 5<br />

( ) }<br />

3γ R0<br />

2ρ R1/2 p e − p g0 + 2σ = 0. (3)<br />

R R<br />

Defining r as<br />

r = R 5/2<br />

<strong><strong>an</strong>d</strong> taking γ = 4/3 for simplicity, we finally get from (3) the equation<br />

d 2 r<br />

dt 2 − 5 8 k2 r −11/5 + 5 { ( r0<br />

) 8/5<br />

2ρ r1/5 p e − p g0 + 2σr<br />

−2/5}<br />

= 0 (4)<br />

r<br />

where<br />

r 0 = R 5/2 .<br />

We use p g0 <strong><strong>an</strong>d</strong> U 0 as characteristic pressure <strong><strong>an</strong>d</strong> speed respectively <strong><strong>an</strong>d</strong> r 0 as the characteristic<br />

value <strong>of</strong> r <strong><strong>an</strong>d</strong> T 0 as that <strong>of</strong> time, where T 0 = R 0 /U 0 . We define the dimensionless<br />

qu<strong>an</strong>tities r ′ ,t ′ <strong><strong>an</strong>d</strong> p ′ e as<br />

r ′ = r/r 0 , t ′ = t/T 0 , p ′ e = p e/p g0 .<br />

Using the relation k = U 0 R0 3 [cf. (2)], we c<strong>an</strong> write eq. (4) as<br />

{<br />

d 2 r ′<br />

dt ′2 = 5 8 r′−11/5 1 + 4p (<br />

g 0<br />

ρU0<br />

2 p e ′ r′12/5 − r ′4/5 +<br />

2σ ) }<br />

r ′2 . (5)<br />

p g0 R 0<br />

Omitting the dashes from r ′ ,t ′ <strong><strong>an</strong>d</strong> P e ′ <strong><strong>an</strong>d</strong> using from now on these undashed symbols for<br />

the corresponding qu<strong>an</strong>tities, we find that eq. (5) c<strong>an</strong> be written in dimensionless form as<br />

{<br />

d 2 r<br />

dt 2 = 5 8 r−11/5 1 − 4p (<br />

g 0<br />

ρU0<br />

2 p e r 12/5 − r 4/5 +<br />

2σ ) }<br />

r 2 . (6)<br />

p g0 R 0<br />

Finally, defining x <strong><strong>an</strong>d</strong> y by the equations<br />

x = r, y = dr<br />

dt<br />

we c<strong>an</strong> write eq. (6) as<br />

⎡<br />

⎢<br />

⎣<br />

dx<br />

dt<br />

dy<br />

dt<br />

⎤ ⎡<br />

⎥<br />

⎦ = ⎢<br />

⎣<br />

y<br />

{<br />

5<br />

8 x−11/5 1 − 4p (<br />

g 0<br />

ρU0<br />

2 p e x 12/5 − x 4/5 +<br />

(7)<br />

⎤<br />

2σ ) } ⎥<br />

x 2 ⎦ . (8)<br />

p g0 R 0


<strong>Stability</strong> <strong>of</strong> a <strong>bubble</strong> 363<br />

Equation (9) defines a Hamiltoni<strong>an</strong> system, with Hamiltoni<strong>an</strong> H(x,y) so that<br />

<strong><strong>an</strong>d</strong><br />

dx<br />

dt<br />

dy<br />

dt<br />

= ∂H<br />

∂Y<br />

=− ∂H<br />

∂x . (10)<br />

In view <strong>of</strong> (8), eqs (9) <strong><strong>an</strong>d</strong> (10) give<br />

H = y2<br />

2 + 25<br />

+ 5p g 0<br />

2pU 2 0<br />

48 x−6/5<br />

{ 5<br />

6 p ex 6/5 + 5 2 x−2/5 + 5σ<br />

2p g0 R 0<br />

x 4/5 }<br />

+ C (11)<br />

where C is <strong>an</strong> arbitrary const<strong>an</strong>t.<br />

The equilibrium point (x, y) for the basic dynamical system, defined by (8), is given by<br />

∂H<br />

∂x = ∂H<br />

∂y<br />

= 0. (12)<br />

Equation (12), in view <strong>of</strong> (11), shows that <strong>an</strong> equilibrium point (x, y) satisfies the equations.<br />

(9)<br />

y = 0,<br />

p e x 12/5 + 2σx2<br />

p g0 R 0<br />

−x 4/5 − ρU2 0<br />

4p g0<br />

= 0. (13)<br />

In view <strong>of</strong> (7) <strong><strong>an</strong>d</strong> the fact that r = R 5/2 , we find from (13) that at <strong>an</strong> equilibrium, R<br />

satisfies the equation<br />

p e R 6 +<br />

2σ<br />

p g0 R 0<br />

R 5 − R 2 − ρU2 0<br />

4p g0<br />

= 0.<br />

There is only one ch<strong>an</strong>ge in sign in the coefficients <strong>of</strong> powers <strong>of</strong> R in this algebraic equation.<br />

Therefore, by Decartes’ rule <strong>of</strong> sign [9], there is atmost one positive real root for R.<br />

When R → 0,<br />

f(R)=p e R 6 +<br />

which is negative <strong><strong>an</strong>d</strong> when R →∞,<br />

f(R)→+∞.<br />

2σ<br />

p g0 R 0<br />

R 5 −R 2 − ρU2 0<br />

4p g0<br />

→ −ρU2 0<br />

4p g0<br />

This confirms that f(R) = 0 has only one positive root R <strong><strong>an</strong>d</strong> the <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong><br />

<strong>tr<strong>an</strong>slating</strong> <strong>bubble</strong> has only one equilibrium point given by this root.<br />

Writing (8) as<br />

dx<br />

dt<br />

= F(x), (14)


364 Dinesh Khattar <strong><strong>an</strong>d</strong> B B Chakraborty<br />

where<br />

⎡<br />

x = ⎣ x ⎤<br />

⎦<br />

y<br />

<strong><strong>an</strong>d</strong><br />

F(x) =<br />

⎡<br />

⎢<br />

⎣<br />

y<br />

{<br />

5<br />

8 x−11/5 1 − 4p (<br />

g 0<br />

ρU0<br />

2 p e x 12/5 − x 4/5 +<br />

⎤<br />

2σ ) } ⎥<br />

x 2 ⎦ . (15)<br />

p g0 R 0<br />

We find that F(x) v<strong>an</strong>ishes at the equilibrium point. Also, H <strong><strong>an</strong>d</strong> its partial derivatives are<br />

continuous at all points except when x = 0. If α is a positive real root <strong>of</strong> (13), then eq. (15)<br />

shows that x = α <strong><strong>an</strong>d</strong> y = 0 is the equilibrium point <strong>of</strong> (14). Let us choose C in (11) in<br />

such a way that at this equilibrium point, the value <strong>of</strong> H v<strong>an</strong>ishes. Hence,<br />

H (α, 0) = 25<br />

48 α−6/5<br />

+ 5p g 0<br />

2ρU 2 0<br />

H is minimum at the equilibrium point x = α, y = 0if<br />

∂ 2 H<br />

∂x 2 · ∂2 H<br />

∂y 2<br />

{ 5<br />

6 p eα 6/5 + 5 2 α−2/5 + 5σ<br />

2p g0 R 0<br />

α 4/5 }<br />

+ C = 0. (16)<br />

( ∂ 2 ) 2 − H<br />

> 0. (17)<br />

∂x∂y<br />

The condition (17), in view <strong>of</strong> (11), gives us the condition<br />

p e x 12/5 −<br />

2σ x 2 + 7x 4/5 + 11ρU2 0<br />

> 0 (18)<br />

p g0 R 0 4p g0<br />

for the existence <strong>of</strong> a minimum at the equilibrium point (α, 0). Adding the left h<strong><strong>an</strong>d</strong> side<br />

<strong>of</strong> (13) to the left h<strong><strong>an</strong>d</strong> side <strong>of</strong> (18), we find that this condition (18) becomes<br />

p e x 12/5 + 3x 4/5 + 5 ρU0<br />

2 > 0 (19)<br />

4 p g0<br />

which is always satisfied as x is real <strong><strong>an</strong>d</strong> positive. Therefore, H is minimum at the equilibrium<br />

point x = α, y = 0, but H v<strong>an</strong>ishes at (α, 0). Thus H is always positive near (α, 0)<br />

<strong><strong>an</strong>d</strong> is therefore positive definite in the neighborhood <strong>of</strong> the equilibrium point (α, 0). Also<br />

−F · grad H v<strong>an</strong>ishes in view <strong>of</strong> (9), (10) <strong><strong>an</strong>d</strong> (14). Thus, −F · grad H is positive semidefinite.<br />

We c<strong>an</strong> therefore choose H as a Liapounov function <strong><strong>an</strong>d</strong> by Liapounov’s theorem<br />

[4], we have the result that a <strong>bubble</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong><strong>an</strong>d</strong> <strong>tr<strong>an</strong>slating</strong> <strong>through</strong> <strong>an</strong> <strong>inviscid</strong> liquid<br />

is stable at its equilibrium point.<br />

References<br />

[1] Chakraborty B B, Effect <strong>of</strong> a viscous fluid flow past a spherical gas <strong>bubble</strong> on the growth<br />

<strong>of</strong> its radius, Proc. Ind. Acad. Sci. 100 (1990) 185–188


<strong>Stability</strong> <strong>of</strong> a <strong>bubble</strong> 365<br />

[2] Chakraborty B B <strong><strong>an</strong>d</strong> Khattar Dinesh, <strong>Stability</strong> <strong>of</strong> <strong>an</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> <strong>bubble</strong> in the Rayleigh<br />

model, Proc. Ind. Acad. Sci. (Math. Sci.) 109(4) (1999) 453–456<br />

[3] Chakraborty B B <strong><strong>an</strong>d</strong> Tuteja G S, Motion <strong>of</strong> <strong>an</strong> <strong>exp<strong><strong>an</strong>d</strong>ing</strong> gas <strong>bubble</strong> in a viscous liquid<br />

under gravity, Phys. Fluids A5(8) (1993) 1879–1882<br />

[4] Glendinning Paul, <strong>Stability</strong>, Instability <strong><strong>an</strong>d</strong> Chaos (Cambridge: Cambridge University<br />

Press) (1994)<br />

[5] Noltingk B E <strong><strong>an</strong>d</strong> Neppiras E A, Proc. Phys. Soc. London Sec. B63 (1950) 674–685; 64<br />

(1951) 1032–1038<br />

[6] Plesset M S, The dynamics <strong>of</strong> cavitation <strong>bubble</strong>s, J. Appl. Mech. 16 (1949) 277<br />

[7] Poritsky H, The collapse or growth <strong>of</strong> a spherical <strong>bubble</strong> or cavity in a viscous fluid,<br />

Proceedings <strong>of</strong> the first U.S. National Congress on Applied Mech<strong>an</strong>ics (ed) E. Sternberg<br />

(Am. Soc. Mech. Engg., New York, 1952) 813–821<br />

[8] Rayleigh Lord, On the pressure developed in a liquid during the collapse <strong>of</strong> a spherical<br />

void, Philos. Mag. 34 (1917) 94<br />

[9] Turnbulll H W, Theory <strong>of</strong> Equations (London: Oliver <strong><strong>an</strong>d</strong> Boyd) (1957)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!