17.01.2014 Views

Role of amylase, mucin, IgA and albumin on salivary protein ...

Role of amylase, mucin, IgA and albumin on salivary protein ...

Role of amylase, mucin, IgA and albumin on salivary protein ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Role</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>mucin</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g> <strong>on</strong> <strong>salivary</strong> <strong>protein</strong><br />

buffering capacity: A pilot study<br />

ZEINAB CHEAIB* <str<strong>on</strong>g>and</str<strong>on</strong>g> ADRIAN LUSSI<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Preventive, Restorative <str<strong>on</strong>g>and</str<strong>on</strong>g> Pediatric Dentistry, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bern,<br />

Freiburgstrasse 7, 3010 Bern, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

*Corresp<strong>on</strong>ding author (Fax, +41-31-6329875; Email, zeinab.cheaib@zmk.unibe.ch)<br />

It has been suggested that <strong>protein</strong>s serve as major <strong>salivary</strong> buffers below pH5. It remains unclear, however, which<br />

<strong>salivary</strong> <strong>protein</strong>s are resp<strong>on</strong>sible for these buffering properties. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this pilot study was to evaluate the<br />

correlati<strong>on</strong> between <strong>salivary</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total <strong>protein</strong>, <str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>mucin</str<strong>on</strong>g>, immunoglobulin A (<str<strong>on</strong>g>IgA</str<strong>on</strong>g>), <str<strong>on</strong>g>albumin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

total <strong>salivary</strong> <strong>protein</strong> buffering capacity at a pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4–5. In additi<strong>on</strong>, the buffering capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carboxylic acid moieties <str<strong>on</strong>g>of</str<strong>on</strong>g> single <strong>protein</strong>s were assessed.<br />

Stimulated saliva samples were collected at 9:00, 13:00 <str<strong>on</strong>g>and</str<strong>on</strong>g> 17:00 from 4 healthy volunteers <strong>on</strong> 3 successive days.<br />

The buffering capacities were measured for total <strong>salivary</strong> <strong>protein</strong> or for specific <strong>protein</strong>s. Also, the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total <strong>protein</strong>, <str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>mucin</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g> were analysed.<br />

Within the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> the current study, it was found that <strong>salivary</strong> <strong>protein</strong> buffering capacity was highly positively<br />

correlated with total <strong>protein</strong>, <str<strong>on</strong>g>amylase</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s. A weak correlati<strong>on</strong> was observed for both <str<strong>on</strong>g>albumin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mucin</str<strong>on</strong>g> individually. Furthermore, the results suggest that <str<strong>on</strong>g>amylase</str<strong>on</strong>g> c<strong>on</strong>tributed to 35% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>salivary</strong> <strong>protein</strong> buffering<br />

capacity in the pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4–5.<br />

[Cheaib Z <str<strong>on</strong>g>and</str<strong>on</strong>g> Lussi A 2013 <str<strong>on</strong>g>Role</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>mucin</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g> <strong>on</strong> <strong>salivary</strong> <strong>protein</strong> buffering capacity: A pilot study. J. Biosci. 38 259–265]<br />

DOI 10.1007/s12038-013-9311-1<br />

1. Introducti<strong>on</strong><br />

Buffering systems c<strong>on</strong>trol the body’s acid–base balance at<br />

levels suitable for life. Most hydrogen i<strong>on</strong>s originate from<br />

cellular metabolism, but they can also enter the body through<br />

ingested foods. Three lines <str<strong>on</strong>g>of</str<strong>on</strong>g> defence against acidic attack<br />

operate to maintain the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> body fluids at a c<strong>on</strong>stant level:<br />

the chemical buffer systems, the respiratory center, <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

renal mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> pH c<strong>on</strong>trol (Sherwood 2006). The most<br />

important <str<strong>on</strong>g>and</str<strong>on</strong>g> widely operating buffers in body fluids are<br />

<strong>protein</strong>s, including intracellular <str<strong>on</strong>g>and</str<strong>on</strong>g> extracellular <strong>protein</strong>s.<br />

Proteins are referred to as chemical buffer systems in the<br />

human body (Sherwood 2006). They include haemoglobin<br />

(Hb) <str<strong>on</strong>g>and</str<strong>on</strong>g> human <str<strong>on</strong>g>albumin</str<strong>on</strong>g> in the blood, <strong>protein</strong>-bound histidine<br />

in skeletal muscle, <str<strong>on</strong>g>and</str<strong>on</strong>g> various <strong>protein</strong> fracti<strong>on</strong>s in tears<br />

(Carney et al. 1989; Sherwood2006; Bishopet al. 2009).<br />

Protein buffer systems include basic <str<strong>on</strong>g>and</str<strong>on</strong>g> acidic groups, which<br />

act as hydrogen i<strong>on</strong> acceptors or d<strong>on</strong>ors, respectively.<br />

Carboxylic <str<strong>on</strong>g>and</str<strong>on</strong>g> amine groups acting as side chains or terminal<br />

ends c<strong>on</strong>tribute to the buffering capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire molecule.<br />

The buffering properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>protein</strong>s, however, are mostly<br />

determined by their amino acid compositi<strong>on</strong>.<br />

Saliva c<strong>on</strong>tains three buffer systems: carb<strong>on</strong>ate, phosphate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>protein</strong> buffers. Carb<strong>on</strong>ic anhydrase VI helps to maintain a<br />

high bicarb<strong>on</strong>ate level in saliva. Thus, it catalyses the reversible<br />

reacti<strong>on</strong> CO 2 +H 2 O ⇌ HCO 3 − +H + (Kivelä et al. 1999).<br />

While the optimal buffering range for phosphate <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong>ate<br />

systems occurs at pH7.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.3, respectively (25°C), buffering<br />

below pH5 is based <strong>on</strong> the <strong>protein</strong> system (Bardow et al.<br />

2000). It has been shown that <strong>protein</strong>s in c<strong>on</strong>centrati<strong>on</strong>s such<br />

as those found in human saliva exhibit a measurable buffering<br />

capacity (Lam<str<strong>on</strong>g>and</str<strong>on</strong>g>a et al. 2007). However, the buffering comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>salivary</strong> proteome are still unknown.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most frequent <str<strong>on</strong>g>and</str<strong>on</strong>g> important pathological<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth <str<strong>on</strong>g>and</str<strong>on</strong>g> the oral cavity are str<strong>on</strong>gly dependent<br />

<strong>on</strong> pH changes (Ericss<strong>on</strong> 1959). The dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tooth<br />

mineral starts if the pH drops below a critical level; it depends<br />

<strong>on</strong> the activities <str<strong>on</strong>g>of</str<strong>on</strong>g> the mineral c<strong>on</strong>stituents in the fluid<br />

Keywords.<br />

Amylase; buffering capacity; <str<strong>on</strong>g>mucin</str<strong>on</strong>g>; <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong><br />

http://www.ias.ac.in/jbiosci J. Biosci. 38(2), June 2013, 259–265, * Indian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences 259<br />

Published <strong>on</strong>line: 15 March 2013


260 Zeinab Cheaib <str<strong>on</strong>g>and</str<strong>on</strong>g> Adrian Lussi<br />

or soluti<strong>on</strong> adjacent to the tooth mineral, e.g. calcium,<br />

phosphate <str<strong>on</strong>g>and</str<strong>on</strong>g> fluoride i<strong>on</strong>s (Lussi <str<strong>on</strong>g>and</str<strong>on</strong>g> Jaeggi 2006). At<br />

any given pH, the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these i<strong>on</strong>s determines<br />

the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tooth mineral in the<br />

soluti<strong>on</strong>. The calcium <str<strong>on</strong>g>and</str<strong>on</strong>g> phosphate c<strong>on</strong>centrati<strong>on</strong>s in<br />

the plaque fluid are rather c<strong>on</strong>stant for a certain pers<strong>on</strong>,<br />

but have inter-individual variability. This explains different<br />

‘critical’ pH values for caries, which are around pH<br />

5.5 in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> enamel (Dawes 2003). Dental erosi<strong>on</strong><br />

is the dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tooth mineral in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plaque (Attin et al. 2003). In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong>, the<br />

acidic soluti<strong>on</strong> adjacent to the tooth mineral may have<br />

higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium <str<strong>on</strong>g>and</str<strong>on</strong>g> phosphate compared<br />

to the plaque fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> may, therefore, not be<br />

able to dissolve tooth mineral even at lower pH values,<br />

including the ‘critical’ pH for caries. Typically, erosive<br />

beverages have a pH below 5 (Lussi <str<strong>on</strong>g>and</str<strong>on</strong>g> Jaeggi 2006).<br />

Therefore, the present authors hypothesize that buffering<br />

in a low pH range based <strong>on</strong> the <strong>protein</strong> buffer system is<br />

important for the erosi<strong>on</strong> process. The other buffers also<br />

play a prominent role, especially bicarb<strong>on</strong>ate, which remains<br />

the buffer comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> primary interest. Previous<br />

studies have shown that low <strong>salivary</strong> buffering capacity<br />

is typically associated with dental erosi<strong>on</strong> (Lussi <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Schaffner 2000; Holbrook et al. 2009).<br />

Amylase <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g> are major comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>salivary</strong><br />

proteome (Zakowski et al. 1984; Meyer-Lueckel et al.<br />

2006). In additi<strong>on</strong>, immunoglobulin A (<str<strong>on</strong>g>IgA</str<strong>on</strong>g>) represents<br />

60% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total immunoglobulin in the saliva (Mestecky<br />

1993). It has been suggested that the <str<strong>on</strong>g>albumin</str<strong>on</strong>g> present in<br />

saliva is due to c<strong>on</strong>taminati<strong>on</strong> by either traces <str<strong>on</strong>g>of</str<strong>on</strong>g> blood or<br />

gingival fluid (Selby et al. 1988). Moreover, <str<strong>on</strong>g>albumin</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

varies c<strong>on</strong>siderably from pers<strong>on</strong> to pers<strong>on</strong><br />

(Nisw<str<strong>on</strong>g>and</str<strong>on</strong>g>er et al. 1963). C<strong>on</strong>sidering the importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

buffer systems, particularly with regard to the potential associati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> buffering capacity with dental erosi<strong>on</strong>,<br />

the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this research was to gain a better knowledge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> saliva <strong>protein</strong> buffering capacity. Therefore,<br />

the aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the present pilot study was to investigate whether<br />

the <strong>protein</strong> buffering capacity is correlated with the c<strong>on</strong>centrati<strong>on</strong><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> total <strong>protein</strong>, <str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>mucin</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>albumin</str<strong>on</strong>g> in saliva. Furthermore, a comparis<strong>on</strong> between the<br />

buffering capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> single <strong>salivary</strong> <strong>protein</strong> models (<str<strong>on</strong>g>amylase</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>mucin</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g>) was performed to characterize<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> gain a better underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>salivary</strong> <strong>protein</strong><br />

buffer system.<br />

2. Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

2.1 Sample collecti<strong>on</strong><br />

The present study was approved by the Ethics Committee <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Bern University (No. 012/07). Human paraffin-stimulated<br />

saliva samples were collected at 9:00, 13:00 <str<strong>on</strong>g>and</str<strong>on</strong>g> 17:00 from<br />

4 healthy individuals with no clinical symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g> caries or<br />

period<strong>on</strong>titis <strong>on</strong> 3 successive days. All participants gave<br />

written informed c<strong>on</strong>sent. The subjects were given instructi<strong>on</strong>s<br />

regarding saliva collecti<strong>on</strong>, including exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

food, drink or smoking for 2 h before sampling at 9:00 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

17:00. The saliva collecti<strong>on</strong> at 13:00 took place 10 min after<br />

lunch. In additi<strong>on</strong>, the subjects were asked to act in the same<br />

manner throughout the day. Saliva samples were collected<br />

<strong>on</strong> ice in a restful <str<strong>on</strong>g>and</str<strong>on</strong>g> quiet area in the laboratory. The saliva<br />

collecti<strong>on</strong> period was 10 min. Saliva secreted during the first<br />

30 s was discarded. Collected saliva samples were then<br />

centrifuged at 3000g for 20 min.<br />

2.2 Protein precipitati<strong>on</strong><br />

All <strong>salivary</strong> samples were subjected to <strong>protein</strong> precipitati<strong>on</strong>.<br />

Amm<strong>on</strong>ium sulphate was added to 10 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh collected<br />

stimulated saliva at 4°C until 75% saturati<strong>on</strong>, where maximum<br />

<strong>protein</strong> precipitati<strong>on</strong> occurred (data not shown). The<br />

soluti<strong>on</strong> was centrifuged at 29,000g <strong>on</strong> a Hicen 21 centrifuge<br />

(Jeps<strong>on</strong> Bolt<strong>on</strong>, Watford, UK) for 30 min at 4°C. The<br />

obtained precipitate was dissolved in 5 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> dei<strong>on</strong>ized<br />

water. The soluti<strong>on</strong> was dialyzed (MW cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 kDa,<br />

Sigma dialysis sacks D6191–25EA, Sigma-Aldrich, Buchs,<br />

Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>) overnight at 4°C in 50 mM aqueous NaCl. The<br />

dialysis soluti<strong>on</strong> was changed 5 times. After dialysis, the<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the dialyzed fracti<strong>on</strong> was adjusted to 10 mL with<br />

50 mM NaCl to produce a 100 mOsmol/L soluti<strong>on</strong> representative<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> human saliva.<br />

2.3 Single-<strong>protein</strong> soluti<strong>on</strong>s (0.1%)<br />

A sample <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01 g <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha <str<strong>on</strong>g>amylase</str<strong>on</strong>g> (α-<str<strong>on</strong>g>amylase</str<strong>on</strong>g>) from<br />

human saliva (Lee BioSoluti<strong>on</strong>s Inc., St. Louis, MO,<br />

USA), 0.01 g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g> from bovine submaxillary gl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(Sigma-Aldrich), 0.01 g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> from human colostrum<br />

(Sigma-Aldrich) or 0.01 g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g> from human serum<br />

(Sigma-Aldrich) was dissolved in 10 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 mM NaCl<br />

aqueous soluti<strong>on</strong>.<br />

2.4 Protein soluti<strong>on</strong>s at physiological c<strong>on</strong>centrati<strong>on</strong><br />

The mean <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong>s obtained in this study were<br />

used as representative values <str<strong>on</strong>g>of</str<strong>on</strong>g> the physiological situati<strong>on</strong><br />

(table 1). Therefore, 3.6 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> α-<str<strong>on</strong>g>amylase</str<strong>on</strong>g> from human saliva,<br />

2.6 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g> from bovine submaxillary gl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 0.32 mg<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> from human colostrum or 0.11 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g> from<br />

humanserumwasdissolvedin10mL<str<strong>on</strong>g>of</str<strong>on</strong>g>50mMNaCl<br />

aqueous soluti<strong>on</strong>.<br />

J. Biosci. 38(2), June 2013


Buffering comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> proteome 261<br />

Table 1.<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> stimulated whole saliva <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong>s, flow rate <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>salivary</strong> <strong>protein</strong> buffering capacity<br />

Mean Std Dev Median Minimum Maximum<br />

Flow rate (mL/min) 1.75 0.63 1.5 1 3.1<br />

Buffering capacity (mmol/(l×pH)) 0.85 0.31 0.87 0.4 1.5<br />

Total <strong>protein</strong> (mg/mL) 1.78 1.14 1.57 0.44 4.48<br />

α-Amylase (mg/mL) 0.36 0.34 0.2 0.05 1.21<br />

Mucin (mg/mL) 0.26 0.12 0.22 0.06 0.55<br />

<str<strong>on</strong>g>IgA</str<strong>on</strong>g> (μg/mL) 32.97 11.61 32.54 18.25 72.78<br />

Albumin (μg/mL) 11.62 5.97 9.55 6.68 32.99<br />

Nine saliva samples were collected from every subject (n04; 36 total observati<strong>on</strong>s).<br />

2.5 Acid/base titrati<strong>on</strong>s<br />

After adjusting the pH to 7, prepared purified saliva <strong>protein</strong>s<br />

or artificial <strong>protein</strong> soluti<strong>on</strong>s were placed in a vessel fixed in<br />

a water bath <str<strong>on</strong>g>and</str<strong>on</strong>g> stirred at 37°C. Then, 5 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01 M<br />

NaOH was added followed by 15 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01 M HCl in 50<br />

μL increments.<br />

The pH was measured with a combined micro-glass pH<br />

electrode (DG 101-SC, 3 mm diameter, Mettler Toledo,<br />

Schwerzenbach, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>). The buffer value in the range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

4–5 in mmol/(l×pH) was used to quantify the buffering capacity.<br />

Buffer values β were calculated as β ¼ ΔC= ΔpH (Van<br />

Slyke 1922), where ΔC is the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the titrator used (acid/<br />

base) <str<strong>on</strong>g>and</str<strong>on</strong>g> ΔpH is the change in pH caused by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

titrator.<br />

2.6 Saliva <strong>protein</strong> analysis<br />

All <strong>salivary</strong> samples (36 observati<strong>on</strong>s) were subjected to<br />

<strong>protein</strong> analysis as indicated in the following.<br />

2.6.1 Total <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong>: Total <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong><br />

was determined by amino acid analysis. Briefly, <strong>salivary</strong><br />

samples were hydrolysed in the gas phase with 6 M<br />

HCl c<strong>on</strong>taining 0.1% phenol for 24 h at 115°C under<br />

N 2 vacuum (Chang <str<strong>on</strong>g>and</str<strong>on</strong>g> Knecht 1991). The liberated<br />

amino acids reacted with phenylisothiocyanate; the<br />

resulting phenylthiocarbamyl amino acids were analysed<br />

by RP-HPLC <strong>on</strong> a NovaPak C18 column (3.9×150 mm,<br />

4 μm, Waters, Baden-Dättwil, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>) in a Di<strong>on</strong>ex<br />

HPLC (Di<strong>on</strong>ex, Olten, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>) with an automated<br />

injecti<strong>on</strong> system (Bidlingmeyer et al. 1984).<br />

2.6.2 Mucin c<strong>on</strong>centrati<strong>on</strong>: A periodic acid/Schiff (PAS)<br />

colorimetric method reported by Mantle <str<strong>on</strong>g>and</str<strong>on</strong>g> Allen (Mantle<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Allen 1978) was used to measure the <str<strong>on</strong>g>mucin</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>.<br />

An α1-acid glyco<strong>protein</strong> was used for calibrati<strong>on</strong> due to its<br />

carbohydrate c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> glycan compositi<strong>on</strong> being similar to<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> <str<strong>on</strong>g>mucin</str<strong>on</strong>g>s MG1 <str<strong>on</strong>g>and</str<strong>on</strong>g> MG2. Saliva was diluted<br />

1:10, <str<strong>on</strong>g>and</str<strong>on</strong>g> the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard calibrati<strong>on</strong> curves were prepared from<br />

1mL<str<strong>on</strong>g>of</str<strong>on</strong>g>α1-acid glyco<strong>protein</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard soluti<strong>on</strong>s (0.012, 0.025,<br />

0.05, 0.075 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1 mg/mL). After adding 0.1 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic<br />

acid reagent (0.1 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> a 0.6 mg/mL soluti<strong>on</strong> in 7% acetic<br />

acid), the samples were incubated at 37°C for 2 h. Then,<br />

0.1 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> Schiff reagent was added at room temperature.<br />

Schiff reagent was prepared as follows. First, 20 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 M<br />

HCl was added to 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 1% pararosaniline hydrochloride.<br />

Sec<strong>on</strong>d, sodium metabisulphite was added to a final c<strong>on</strong>centrati<strong>on</strong><br />

1.6% before use <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated at 37°C until it became<br />

pale yellow. After 15 min <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong>, the absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soluti<strong>on</strong> was recorded at 555 nm in the UV spectrophotometer.<br />

2.6.3 α-Amylase, <str<strong>on</strong>g>albumin</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s: The<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> α-<str<strong>on</strong>g>amylase</str<strong>on</strong>g> was determined by the quantitative<br />

kinetic determinati<strong>on</strong> kit (salimetric kit). Under the same<br />

experimental c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>amylase</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> was estimated<br />

by comparing the <str<strong>on</strong>g>amylase</str<strong>on</strong>g> activity with the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> human <strong>salivary</strong> <str<strong>on</strong>g>amylase</str<strong>on</strong>g> (Lee BioSoluti<strong>on</strong>s Inc.). Salivary<br />

<str<strong>on</strong>g>albumin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> were measured using ELISA kits<br />

(Immunology C<strong>on</strong>sultants Laboratories).<br />

The amino acid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the selected <strong>protein</strong>s was<br />

determined with the ProtParam analysis tool at http://<br />

www.expasy.org/ or from the literature data (Infante <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Putnam 1979; Eiffert et al. 1984; Gasteiger et al. 2005).<br />

Then, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic acid moieties was determined<br />

per <strong>protein</strong> sequence followed by the carboxylic acid<br />

c<strong>on</strong>centrati<strong>on</strong> expressed as mmol/L <str<strong>on</strong>g>of</str<strong>on</strong>g> a 0.1% single <strong>protein</strong><br />

soluti<strong>on</strong> (table 2).<br />

Table 2. Buffering values in the pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4–5 <str<strong>on</strong>g>and</str<strong>on</strong>g> carboxylic acid<br />

c<strong>on</strong>centrati<strong>on</strong>s for a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1% <str<strong>on</strong>g>albumin</str<strong>on</strong>g>, α-<str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g><br />

Buffering capacity<br />

(mmol/(l×pH))<br />

Carboxylic acid<br />

(mmol/L)<br />

Albumin α-Amylase <str<strong>on</strong>g>IgA</str<strong>on</strong>g> Mucin<br />

0.6 0.7 0.25 0.2<br />

1.4 0.96 0.8 0.2<br />

J. Biosci. 38(2), June 2013


262 Zeinab Cheaib <str<strong>on</strong>g>and</str<strong>on</strong>g> Adrian Lussi<br />

2.7 Statistical analysis<br />

The correlati<strong>on</strong>s between the <strong>salivary</strong> <strong>protein</strong> buffering capacity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> flow rate as well as <strong>protein</strong> type/c<strong>on</strong>tent were<br />

analysed using Spearman’s rank correlati<strong>on</strong>. It was assumed<br />

that measurements were independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the collecti<strong>on</strong> time<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> day. The level <str<strong>on</strong>g>of</str<strong>on</strong>g> significance was set at α00.001. As<br />

this is a preliminary study <str<strong>on</strong>g>and</str<strong>on</strong>g> due to the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

independence, p-values should be interpreted carefully.<br />

3. Results<br />

3.1 Human saliva samples<br />

The mean, st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>, median, minimum, <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> α-<str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>mucin</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g>, <str<strong>on</strong>g>albumin</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> total <strong>protein</strong><br />

c<strong>on</strong>centrati<strong>on</strong>s in <strong>salivary</strong> samples, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>salivary</strong> buffering<br />

capacity are shown in table 1. Correlati<strong>on</strong>s were calculated<br />

<strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> observed <strong>salivary</strong> data at different collecti<strong>on</strong><br />

times. Significant positive correlati<strong>on</strong>s were found between<br />

the <strong>salivary</strong> <strong>protein</strong> buffering capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> the total <strong>protein</strong><br />

c<strong>on</strong>centrati<strong>on</strong> (ρ00.9), the <str<strong>on</strong>g>amylase</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> (ρ00.81),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>IgA</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> (ρ00.67). A weak correlati<strong>on</strong> was<br />

observed for both <str<strong>on</strong>g>albumin</str<strong>on</strong>g> (ρ00.3) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g> (ρ00.07)<br />

individually.<br />

The intra-individual variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> <strong>protein</strong> buffering<br />

capacity is shown in figure 1. The median values were<br />

0.9 (mmol/(l×pH)) in the morning, 0.73 (mmol/(l×pH)) after<br />

lunch, <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.93 (mmol/(l×pH)) in the evening. There seemed<br />

to be a tendency for <strong>salivary</strong> buffering capacity values to be<br />

lower after lunch compared to the morning <str<strong>on</strong>g>and</str<strong>on</strong>g> evening<br />

values. However, there were some observati<strong>on</strong>s following a<br />

c<strong>on</strong>trary pattern.<br />

3.2 Single <strong>protein</strong> soluti<strong>on</strong>s<br />

The specific buffering capacities <str<strong>on</strong>g>and</str<strong>on</strong>g> the carboxylic acid<br />

c<strong>on</strong>centrati<strong>on</strong>s for commercially purchased <strong>protein</strong>s are<br />

listed in table 2. The highest buffering capacity value observed<br />

was for <str<strong>on</strong>g>amylase</str<strong>on</strong>g>, while the lowest value was observed<br />

for <str<strong>on</strong>g>mucin</str<strong>on</strong>g>. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the highest carboxylic acid<br />

number was for <str<strong>on</strong>g>albumin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the lowest value for <str<strong>on</strong>g>mucin</str<strong>on</strong>g>.<br />

4. Discussi<strong>on</strong><br />

The present pilot study aimed to investigate a possible relati<strong>on</strong>ship<br />

between specific or total <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong>s in<br />

saliva <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>salivary</strong> <strong>protein</strong> buffering capacity assessed in<br />

the pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4–5, as erosive substances <str<strong>on</strong>g>of</str<strong>on</strong>g>ten have a pH<br />

value in this range. Circadian rhythm, diet <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>salivary</strong> flow<br />

rate influence the intra-individual <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> collected <strong>salivary</strong> samples (Dawes 1984).<br />

Therefore, stimulated saliva was collected 3 times a day: in<br />

Figure 1. Intra-subject variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> <strong>protein</strong> buffering capacity measured at different collecti<strong>on</strong> times: in the morning, after lunch<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in the evening.<br />

J. Biosci. 38(2), June 2013


Buffering comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> proteome 263<br />

the morning, after lunch <str<strong>on</strong>g>and</str<strong>on</strong>g> in the evening. Stimulated<br />

saliva plays a prominent role in clearing <str<strong>on</strong>g>and</str<strong>on</strong>g> neutralizing<br />

acidic food (Lussi <str<strong>on</strong>g>and</str<strong>on</strong>g> Jaeggi 2008). The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

buffering capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> resting saliva might be<br />

limited during acid attack. However, resting saliva plays a<br />

more important role in the remineralizati<strong>on</strong> process.<br />

The <strong>salivary</strong> buffering capacity was positively correlated<br />

with the <str<strong>on</strong>g>amylase</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>. However, a correlati<strong>on</strong> with<br />

<str<strong>on</strong>g>mucin</str<strong>on</strong>g> c<strong>on</strong>tent was not detected. These observati<strong>on</strong>s are c<strong>on</strong>sistent<br />

with the fact that buffering capacity is not dependent <strong>on</strong><br />

the carbohydrate fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> glyco<strong>protein</strong>s, as this part<br />

has no measurable buffering value. Thus, the fact that the<br />

carbohydrate compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>salivary</strong> <str<strong>on</strong>g>mucin</str<strong>on</strong>g>s can be as<br />

high as 80%, whereas it is less than 5% in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>amylase</str<strong>on</strong>g><br />

(Becerra et al. 2003), may explain the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a correlati<strong>on</strong>.<br />

There are many published reports <strong>on</strong> the c<strong>on</strong>centrati<strong>on</strong> levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> <strong>protein</strong>s. The present results for total <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong>,<br />

<str<strong>on</strong>g>amylase</str<strong>on</strong>g>, <str<strong>on</strong>g>mucin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> are in agreement with<br />

previous findings in stimulated human saliva (Aufricht et al.<br />

1992; Bernfeld1951; Raymentet al. 2000). However, a low<br />

baseline c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g> was observed. The c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g> is low in subjects with a healthy<br />

period<strong>on</strong>tium (Henskens et al. 1996). Salivary <str<strong>on</strong>g>mucin</str<strong>on</strong>g> was<br />

measured by the PAS colour reacti<strong>on</strong>, which is based <strong>on</strong> the<br />

detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbohydrate fracti<strong>on</strong>. Saliva c<strong>on</strong>tains other<br />

glyco<strong>protein</strong>s that could interfere with <str<strong>on</strong>g>mucin</str<strong>on</strong>g> detecti<strong>on</strong>. The<br />

measurement error, however, was assumed to be small, as<br />

these glyco<strong>protein</strong>s c<strong>on</strong>tain small carbohydrate fracti<strong>on</strong>s or<br />

exist at a low c<strong>on</strong>centrati<strong>on</strong> in saliva (Becerra et al. 2003).<br />

The <strong>salivary</strong> <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human saliva depends <strong>on</strong><br />

the measurement technique <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>protein</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard. In this<br />

study, the total <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong> was measured by amino<br />

acid analysis, which showed c<strong>on</strong>sistent values compared to the<br />

biuret reacti<strong>on</strong> (Jenzano et al. 1986).<br />

The stimulated <strong>salivary</strong> flow rates measured in the present<br />

study were within the normal range (table 1) (Birkhed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Heintze 1989). Furthermore, a significant negative correlati<strong>on</strong><br />

was found between <strong>salivary</strong> flow rate <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong><br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> (ρ0−0.63), which is in agreement with previous<br />

results in human saliva (Valdimarsdottir <str<strong>on</strong>g>and</str<strong>on</strong>g> St<strong>on</strong>e 1997). The<br />

present results also showed a negative correlati<strong>on</strong> between the<br />

flow rate <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>protein</strong> buffering capacity (ρ0−0.61). However,<br />

previous study reported a positive relati<strong>on</strong>ship between secreti<strong>on</strong><br />

rate <str<strong>on</strong>g>and</str<strong>on</strong>g> total <strong>salivary</strong> buffer capacity (Birkhed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Heintze 1989). The latter is based mostly <strong>on</strong> bicarb<strong>on</strong>ate,<br />

which could be differently regulated compared to <strong>protein</strong>s<br />

involved in buffer. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>protein</strong>s as a <strong>salivary</strong> buffer is<br />

c<strong>on</strong>troversially discussed in the literature. The present preliminary<br />

results support the hypothesis <str<strong>on</strong>g>of</str<strong>on</strong>g> Sellman regarding the<br />

observati<strong>on</strong> that <strong>protein</strong>s buffer at low pH. Bardow et al.<br />

(2000) found that the <strong>protein</strong> buffer system governed the<br />

buffering capacity in acidic pH, which corroborates the present<br />

findings <str<strong>on</strong>g>and</str<strong>on</strong>g> previous published data (Lam<str<strong>on</strong>g>and</str<strong>on</strong>g>a et al. 2007).<br />

However, Bardow et al. reported a low buffering capacity<br />

for <strong>salivary</strong> <strong>protein</strong>. There might have been two reas<strong>on</strong>s<br />

why Lilienthal could not obtain a buffering capacity from<br />

dialysed saliva. On <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g>, a titrati<strong>on</strong> method with<br />

relatively low sensitivity was applied. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

a small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> saliva (1 mL) was used for <strong>protein</strong><br />

preparati<strong>on</strong> (Lilienthal 1955).<br />

The buffering capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> human <str<strong>on</strong>g>amylase</str<strong>on</strong>g> at physiological<br />

c<strong>on</strong>centrati<strong>on</strong> was approximately 35% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total <strong>salivary</strong><br />

<strong>protein</strong> buffering capacity in the pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4–5. Buffering<br />

capacities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>albumin</str<strong>on</strong>g>, <str<strong>on</strong>g>IgA</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g> were not detected.<br />

The data presented here does not support the hypothesis<br />

that <strong>protein</strong> buffering capacity is mainly a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic acid residues (table 2). The accessibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the carboxylic acid groups, which is defined by the<br />

tertiary structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>protein</strong>, could affect the buffering<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the macromolecules.<br />

In additi<strong>on</strong>, it should be menti<strong>on</strong>ed that the interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

i<strong>on</strong>s with acid–base groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>protein</strong>s also affect their<br />

buffering capacities. Harmsen et al. (Harmsen et al. 1971)<br />

reported that the buffering capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine serum <str<strong>on</strong>g>albumin</str<strong>on</strong>g><br />

could be affected by calcium c<strong>on</strong>centrati<strong>on</strong>. The authors<br />

interpreted their results as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> a change in<br />

<strong>protein</strong> c<strong>on</strong>formati<strong>on</strong>. Since the pKa <str<strong>on</strong>g>of</str<strong>on</strong>g> titratable groups is<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> in the soluti<strong>on</strong>, 100 mOsmol/<br />

L was used as a representative value for <strong>salivary</strong> <strong>protein</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

single-<strong>protein</strong> soluti<strong>on</strong>s (Surdacka et al. 2007).<br />

The c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study regarding the<br />

<strong>salivary</strong> <strong>protein</strong> buffer system are limited by the small<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects used <str<strong>on</strong>g>and</str<strong>on</strong>g> the resulting dependencies<br />

am<strong>on</strong>g the observati<strong>on</strong>s. Nevertheless, it is clear that <str<strong>on</strong>g>amylase</str<strong>on</strong>g><br />

c<strong>on</strong>tributes to the buffering in the pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4–5,<br />

which was 35% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total <strong>protein</strong> buffering capacity in<br />

the present study.<br />

Further studies with a larger number <str<strong>on</strong>g>of</str<strong>on</strong>g> participants<br />

should be c<strong>on</strong>ducted to c<strong>on</strong>firm these preliminary results.<br />

For correlati<strong>on</strong>s with <strong>salivary</strong> buffering capacity, total <strong>protein</strong><br />

c<strong>on</strong>centrati<strong>on</strong>, <str<strong>on</strong>g>amylase</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g> are meaningful to be<br />

included. A correlati<strong>on</strong> between total <strong>protein</strong> c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>protein</strong> buffer capacity would require 6 subjects for a<br />

power <str<strong>on</strong>g>of</str<strong>on</strong>g> 80%. At least 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 15 subjects would be required<br />

to detect a correlati<strong>on</strong> (80% power) between buffering capacity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>amylase</str<strong>on</strong>g> as well as <str<strong>on</strong>g>IgA</str<strong>on</strong>g>, respectively.<br />

Furthermore, additi<strong>on</strong>al research should focus <strong>on</strong> the relati<strong>on</strong>ship<br />

between the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>amylase</str<strong>on</strong>g> in saliva<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> susceptibility to dental erosi<strong>on</strong>. A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>protein</strong> functi<strong>on</strong>al groups based <strong>on</strong> its 3-D<br />

structure would be a step towards a better underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the buffering properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the macromolecules. In particular,<br />

the relati<strong>on</strong>ship between buffering capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> ratios <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

buried <str<strong>on</strong>g>and</str<strong>on</strong>g> exposed glutamic acid/aspartic acid groups might<br />

be analysed. pKa values could be compared with in silico<br />

pKa predicti<strong>on</strong> methods such as PROPKA.<br />

J. Biosci. 38(2), June 2013


264 Zeinab Cheaib <str<strong>on</strong>g>and</str<strong>on</strong>g> Adrian Lussi<br />

Acknowledgements<br />

This study was supported by the University Of Bern,<br />

Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>. We would like to thank Dr Stefanie Hayoz,<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematical Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bern, for<br />

the statistical analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr Ekaterina Rakhmatullina,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Preventive, Restorative <str<strong>on</strong>g>and</str<strong>on</strong>g> Pediatric Dentistry,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bern, for help with revisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

manuscript.<br />

References<br />

Attin T, Meyer K, Hellwig E, Buchalla W <str<strong>on</strong>g>and</str<strong>on</strong>g> Lenn<strong>on</strong> AM 2003<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral supplements to citric acid <strong>on</strong> enamel erosi<strong>on</strong>.<br />

Arch. Oral. Biol. 48 753–759<br />

Aufricht C, Tenner W, Salzer HR, Khoss AE, Wurst E <str<strong>on</strong>g>and</str<strong>on</strong>g> Herkner<br />

K 1992 Salivary <str<strong>on</strong>g>IgA</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> is influenced by the saliva<br />

collecti<strong>on</strong> method. Eur. J. Clin. Chem. Clin. Biochem. 30 81–83<br />

Bardow A, Moe D, Nyvad B <str<strong>on</strong>g>and</str<strong>on</strong>g> Naunt<str<strong>on</strong>g>of</str<strong>on</strong>g>te B 2000 The buffer<br />

capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> buffer systems <str<strong>on</strong>g>of</str<strong>on</strong>g> human whole saliva measured<br />

without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2. Arch. Oral. Biol. 45 1–12<br />

Becerra L, Soares RV, Bruno LS, Siqueira CC, Oppenheim FG,<br />

Offner GD <str<strong>on</strong>g>and</str<strong>on</strong>g> Troxler RF 2003 Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>mucin</str<strong>on</strong>g> glyco<strong>protein</strong>s in human subm<str<strong>on</strong>g>and</str<strong>on</strong>g>ibular/sublingual<br />

secreti<strong>on</strong>. Arch. Oral. Biol. 48 147–154<br />

Bernfeld P 1951 Enzymes <str<strong>on</strong>g>of</str<strong>on</strong>g> starch degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> synthesis. Adv.<br />

Enzymol. Relat. Subj. Biochem. 12 379–428<br />

Bidlingmeyer BA, Cohen SA <str<strong>on</strong>g>and</str<strong>on</strong>g> Tarvin TL 1984 Rapid analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids using pre-column derivatizati<strong>on</strong>. J. Chromatogr.<br />

B 336 93–104<br />

Bishop D, Edge J, Mendez-Villanueva A, Thomas C <str<strong>on</strong>g>and</str<strong>on</strong>g> Schneiker<br />

K 2009 High-intensity exercise decreases muscle buffer capacity<br />

via a decrease in <strong>protein</strong> buffering in human skeletal muscle.<br />

Pflug. Archiv. Eur. J. Phy. 458 929–936<br />

Birkhed D <str<strong>on</strong>g>and</str<strong>on</strong>g> Heintze U 1989 Salivary secreti<strong>on</strong> rate, buffer<br />

capacity, <str<strong>on</strong>g>and</str<strong>on</strong>g> pH; in Human saliva: clinical chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microbiology (ed) JO Tenovuo (Fluoride: CRC Press) pp 25–73<br />

Carney LG, Mauger TF <str<strong>on</strong>g>and</str<strong>on</strong>g> Hill RM 1989 Buffering in human<br />

tears: pH resp<strong>on</strong>ses to acid <str<strong>on</strong>g>and</str<strong>on</strong>g> base challenge. Invest.<br />

Ophthalmol. Vis. Sci. 30 747–754<br />

Chang J-Y <str<strong>on</strong>g>and</str<strong>on</strong>g> Knecht R 1991 Direct analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the disulfide<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>protein</strong>s: Methods for m<strong>on</strong>itoring the stability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

refolding process <str<strong>on</strong>g>of</str<strong>on</strong>g> cystine-c<strong>on</strong>taining <strong>protein</strong>s. Anal. Biochem.<br />

197 52–58<br />

Dawes C 1984 Stimulus effects <strong>on</strong> <strong>protein</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> electrolyte c<strong>on</strong>centrati<strong>on</strong>s<br />

in parotid saliva. J. Physiol. 346 579–588<br />

Dawes C 2003 What is the critical pH <str<strong>on</strong>g>and</str<strong>on</strong>g> why does a tooth<br />

dissolve in acid? J. Can. Dent. Assoc. 69 722–724<br />

Eiffert H, Quentin E, Decker J, Hillemeir S, Hufschmidt M,<br />

Kungmüller D, Weber MH <str<strong>on</strong>g>and</str<strong>on</strong>g> Hilschmann N 1984 Die<br />

Primärstruktur der menschlichen freien Sekretkomp<strong>on</strong>ente und<br />

die Anordnung der Disulfidbrücken. Hoppe-Seyler's Physiol.<br />

Chem. Bd. 365 1489–1495<br />

Ericss<strong>on</strong> Y 1959 Clinical investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>salivary</strong> buffering<br />

acti<strong>on</strong>. Acta. Od<strong>on</strong>tol. Sc<str<strong>on</strong>g>and</str<strong>on</strong>g>. 17 131–165<br />

Gasteiger E, Hoogl<str<strong>on</strong>g>and</str<strong>on</strong>g> C, Gattiker A, Duvaud S, Wilkins MR,<br />

Appel RD <str<strong>on</strong>g>and</str<strong>on</strong>g> Bairoch A 2005 Identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Analysis<br />

Tools <strong>on</strong> the ExPASy Server; in The proteomics protocols<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g>book (ed) JMT Walker (New Jersey: Humana Press) pp<br />

571–607<br />

Harmsen BJM, De Bruin SH, Janssen LHM, Rodrigues de Mir<str<strong>on</strong>g>and</str<strong>on</strong>g>a<br />

JF <str<strong>on</strong>g>and</str<strong>on</strong>g> Van Os GAJ 1971 pK change <str<strong>on</strong>g>of</str<strong>on</strong>g> imidazole groups in<br />

bovine serum <str<strong>on</strong>g>albumin</str<strong>on</strong>g> due to the c<strong>on</strong>formati<strong>on</strong>al change at<br />

neutral pH. Biochemistry 10 3217–3221<br />

Henskens YMC, van den Keijbus PAM, Veerman ECI, Van der<br />

Weijden GA, Timmerman MF, Snoek CM, Van der Velden<br />

U <str<strong>on</strong>g>and</str<strong>on</strong>g> Nieuw Amer<strong>on</strong>gen AV 1996 Protein compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

whole <str<strong>on</strong>g>and</str<strong>on</strong>g> parotid saliva in healthy <str<strong>on</strong>g>and</str<strong>on</strong>g> period<strong>on</strong>titis subjects.<br />

Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cystatins, <str<strong>on</strong>g>albumin</str<strong>on</strong>g>, <str<strong>on</strong>g>amylase</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>IgA</str<strong>on</strong>g>.<br />

J. Period<strong>on</strong>tal. Res. 31 57–65<br />

Holbrook WP, Furuholm J, Gudmundss<strong>on</strong> K, Theodórs A <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Meurman JH 2009 Gastric reflux is a significant causative factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tooth erosi<strong>on</strong>. J. Dent. Res. 88 442–426<br />

Infante AJ <str<strong>on</strong>g>and</str<strong>on</strong>g> Putnam FW 1979 Primary structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a human<br />

<str<strong>on</strong>g>IgA</str<strong>on</strong>g>1immunoglobulin. J. Biol. Chem. 254 9006–9016<br />

Jenzano JW, Hogan SL, Noyes CM, Featherst<strong>on</strong>e GL <str<strong>on</strong>g>and</str<strong>on</strong>g> Lundblad<br />

RL 1986 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> five techniques for the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>protein</strong> c<strong>on</strong>tent in mixed human saliva. Anal. Biochem. 159<br />

370–376<br />

Mestecky J 1993 Saliva as a manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the comm<strong>on</strong> mucosal<br />

immune system. Ann. NY Acad. Sci. 694 184–194<br />

Kivelä J, Parkkila S, Parkkila A-K, Lein<strong>on</strong>en J <str<strong>on</strong>g>and</str<strong>on</strong>g> Rajaniemi H<br />

1999 Salivary carb<strong>on</strong>ic anhydrase isoenzyme VI. J. Physiol. 520<br />

315–320<br />

Lam<str<strong>on</strong>g>and</str<strong>on</strong>g>a A, Cheaib Z, Turgut MD <str<strong>on</strong>g>and</str<strong>on</strong>g> Lussi A 2007 Protein<br />

buffering in model systems <str<strong>on</strong>g>and</str<strong>on</strong>g> in whole human saliva. PLoS<br />

ONE 2 e263<br />

Lilienthal B 1955 An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the buffer systems in saliva. J Dent<br />

Res 34 516–530<br />

Lussi A <str<strong>on</strong>g>and</str<strong>on</strong>g> Schaffner M 2000 Progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> risk factors for<br />

dental erosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> wedge-shaped defects over a 6-year period.<br />

Caries Res. 34 182–187<br />

Lussi A <str<strong>on</strong>g>and</str<strong>on</strong>g> Jaeggi T 2006 Chemical factors; in Dental erosi<strong>on</strong><br />

from diagnosis to therapy (ed) A Lussi (Basel: Karger) pp 77–87<br />

Lussi A <str<strong>on</strong>g>and</str<strong>on</strong>g> Jaeggi T 2008 Erosi<strong>on</strong>—diagnosis <str<strong>on</strong>g>and</str<strong>on</strong>g> risk factors.<br />

Clin. Oral. Inv. 12 5–13<br />

Mantle M <str<strong>on</strong>g>and</str<strong>on</strong>g> Allen A 1978 A colorimetric assay for glyco<strong>protein</strong>s<br />

based <strong>on</strong> the periodic acid/Schiff stain. Biochem. Soc. Trans. 6<br />

607–609<br />

Meyer-Lueckel H, Hopfenmuller W, v<strong>on</strong> Klinggraff D <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Kielbassa AM 2006 Microradiographic study <strong>on</strong> the effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mucin</str<strong>on</strong>g>-based soluti<strong>on</strong>s used as saliva substitutes <strong>on</strong><br />

demineralised bovine enamel in vitro. Arch. Oral. Biol. 51<br />

541–547<br />

Nisw<str<strong>on</strong>g>and</str<strong>on</strong>g>er JD, Shreffler DC <str<strong>on</strong>g>and</str<strong>on</strong>g> Neel JV 1963 Genetic studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantitative variati<strong>on</strong> in a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> human saliva. Ann.<br />

Hum. Genet. 27 319–328<br />

Rayment SA, Liu B, Offner GD, Oppenheim FG <str<strong>on</strong>g>and</str<strong>on</strong>g> Troxler RF<br />

2000 Immunoquantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human <strong>salivary</strong> <str<strong>on</strong>g>mucin</str<strong>on</strong>g>s MG1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

MG2 in stimulated whole saliva: factors influencing <str<strong>on</strong>g>mucin</str<strong>on</strong>g><br />

levels. J. Dent. Res. 79 1765–1772<br />

Selby C, Lobb PA <str<strong>on</strong>g>and</str<strong>on</strong>g> Jeffcoate WJ 1988 Sex horm<strong>on</strong>e binding<br />

globulin in saliva. Clin. Endocrinol. 28 19–24<br />

J. Biosci. 38(2), June 2013


Buffering comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>salivary</strong> proteome 265<br />

Sherwood L 2006 Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> physiology (Belm<strong>on</strong>t: Thoms<strong>on</strong><br />

Brooks/cole)<br />

Surdacka A, Strzyka K <str<strong>on</strong>g>and</str<strong>on</strong>g> Rydzewska A 2007 Changeability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oral cavity envir<strong>on</strong>ment. Eur. J. Dent. 1 14–17<br />

Valdimarsdottir HB <str<strong>on</strong>g>and</str<strong>on</strong>g> St<strong>on</strong>e AA 1997 Psychosocial factors <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

secretory immunoglobulin A. Crit. Rev. Oral. Biol. Med. 8 461–<br />

474<br />

Van Slyke D 1922 On the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> buffer values <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> buffer value to the dissociati<strong>on</strong> c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

buffer <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the buffer soluti<strong>on</strong>.<br />

J. Biol. Chem. 52 525–570<br />

Zakowski JJ, Gregory MR <str<strong>on</strong>g>and</str<strong>on</strong>g> Bruns DE 1984 Amylase from<br />

human serous ovarian tumors: purificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> characterizati<strong>on</strong>.<br />

Clin. Chem. 30 62–68<br />

MS received 02 August 2012; accepted 12 February 2013<br />

Corresp<strong>on</strong>ding editor: MARÍA ELIANO LANIO<br />

J. Biosci. 38(2), June 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!