18.01.2014 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>and</strong> Dynamic Systems<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi<br />

Lecture 6 - 5 November, 2012<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 1


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

<strong>The</strong> nodal point coordinates determine <strong>the</strong> spatial configuration <strong>of</strong> <strong>the</strong><br />

element at time 0 <strong>and</strong> t using:<br />

n∑<br />

n∑<br />

0 x 1 (r) = N 0 k x k 1<br />

0 x 2 (r) = N 0 k x k 2<br />

<strong>and</strong> t x 1 (r) =<br />

k=1<br />

n∑<br />

N t k x k 1<br />

k=1<br />

t x 2 (r) =<br />

k=1<br />

n∑<br />

N t k x k 2<br />

k=1<br />

Isoparametric <strong>Element</strong>s ⇒ t u i (r) = ∑ n<br />

k=1 N t k uk i , i=1,2<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 2


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Shape Functions<br />

n = 4 nodes<br />

N1 a = 1 4 (1 + r)(1 + s), N 2 a = 1 4 (1 − r)(1 + s), N 3 a = 1 (1 − r)(1 − s),<br />

4<br />

N4 a = 1 (1 + r)(1 − s)<br />

4<br />

n = 8 nodes<br />

N b 5 = 1 2 (1 − r2 )(1 + s), N b 6 = 1 2 (1 − s2 )(1 − r), N b 7 = 1 2 (1 − r2 )(1 − s),<br />

N b 8 = 1 2 (1 − s2 )(1 + r)<br />

N b 1 = N a 1 − 1 2 N b 5 − 1 2 N b 8 , N b 2 = N a 2 − 1 2 N b 6 − 1 2 N b 7 , N b 3 = N a 3 − 1 2 N b 6 − 1 2 N b 7 ,<br />

N4 b = N 4 a − 1 2 N 7 b − 1 2 N 8<br />

b<br />

n = 9 nodes<br />

N9 c = (1 − r2 )(1 − s 2 ),<br />

Ni c = N i b − 1 4 N 9 c, i=1,2,3,4<br />

Nj c = N j b − 1 2 N 9 c, i=5,6,7,8<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 3


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 4


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 5


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 6


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Example<br />

Establish <strong>the</strong> Total Lagrangian Strain - Displacement matrices <strong>for</strong><br />

<strong>the</strong> following element (assuming large displacements/large strains):<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 7


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Example<br />

<strong>The</strong> nodal coordinates at time<br />

t are:<br />

t<br />

u 1 2=0.5<br />

t<br />

u 1 1= 1<br />

t u 1 1 = 1<br />

t u 2 1 = 0<br />

t u 3 1 = 0<br />

t u 4 1 = 1<br />

t u 1 2 = 0.5<br />

t u 2 2 = 0.5<br />

t u 3 2 = 0<br />

t u 4 2 = 0<br />

<strong>The</strong> Jacobian <strong>for</strong> a 2D system is defined as:<br />

009 Example 6.18<br />

7<br />

⎡<br />

⎤ ⎡ ⎤<br />

0 J =<br />

⎢<br />

⎣<br />

∂ t x 1<br />

∂r<br />

∂ t x 1<br />

∂s<br />

∂ t x 2<br />

∂r<br />

∂ t x 2<br />

∂s<br />

⎥<br />

⎦ =<br />

⎢<br />

⎣<br />

3<br />

2<br />

0<br />

0<br />

3<br />

2<br />

⎥<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 8


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Example - <strong>Linear</strong> Strain Displacement Matrix component t 0B L0<br />

Using <strong>the</strong> 4 node 2D element shape functions <strong>and</strong> <strong>the</strong> relevant<br />

matrix we obtain:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 9


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Example - <strong>Non</strong>linear Strain Displacement Matrix component t 0B L1<br />

We first need to calculate <strong>the</strong> following terms:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 10


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Example - <strong>Linear</strong> Strain Displacement Matrix component t 0B L1<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 11


2D Axisymmetric, Plane Strain <strong>and</strong> Plane Stress <strong>Element</strong>s<br />

Example - <strong>Non</strong>linear Strain Displacement Matrix component t 0B NL<br />

Using <strong>the</strong> 4 node 2D element shape functions <strong>and</strong> <strong>the</strong> relevant matrix we<br />

obtain:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 12


<strong>The</strong> Beam <strong>Element</strong><br />

*<strong>The</strong> section on <strong>the</strong> Beam <strong>Element</strong> is taken from Pr<strong>of</strong>. H. Waisman’s<br />

notes <strong>of</strong> <strong>the</strong> FEM II course - CEEM Department, Columbia University<br />

F-16 Aeroelastic Structural Model<br />

Exterior<br />

model<br />

95% are<br />

shell<br />

elements<br />

FEM model:<br />

150000 Nodes<br />

Internal structure<br />

zoom. Some Brick<br />

<strong>and</strong> tetrahedral<br />

elements<br />

http://www.colorado.edu/engineering/CAS/Felippa.d/FelippaHome.d/Home.html<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 13


Beam <strong>Element</strong>s<br />

Two main beam <strong>the</strong>ories:<br />

Euler-Bernoulli <strong>the</strong>ory (Engineering beam <strong>the</strong>ory) -slender beams<br />

Timoshenko <strong>the</strong>ory thick beams<br />

Euler - Bernoulli Beam<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 14


Beam <strong>Element</strong>s<br />

Euler Bernoulli Beam Assumptions - Kirchh<strong>of</strong>f Assumptions<br />

Normals remain straight (<strong>the</strong>y do not bend)<br />

Normals remain unstretched (<strong>the</strong>y keep <strong>the</strong> same length)<br />

Normals remain normal (<strong>the</strong>y always make a right angle to <strong>the</strong> neutral<br />

plane)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 15


Beam <strong>Element</strong>s - Strong Form<br />

υ´ υ´<br />

υ<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 16


Beam <strong>Element</strong>s - Strong Form<br />

Equilibrium<br />

– distributed load per unit length<br />

– shear <strong>for</strong>ce<br />

Combining <strong>the</strong> equations<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 17


Beam <strong>Element</strong>s - Strong Form<br />

(1)<br />

Free end with applied load<br />

(2)<br />

(S)<br />

(3)<br />

Simple support<br />

(4)<br />

(5)<br />

Clamped support<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 18


Beam <strong>Element</strong>s - Strong Form to Weak Form<br />

Multiply Eqns. Multiply (1), Eq. (4) (1), (5) by (4) w(5) <strong>and</strong> by integrate w <strong>and</strong> integrate over <strong>the</strong>over domain <strong>the</strong> domain<br />

First integration by parts<br />

First integration by parts<br />

First integration First integration by parts by parts<br />

Second integration by parts gives<br />

Second integration by parts gives<br />

Second integration by parts gives<br />

Second integration by parts gives<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 19


Beam <strong>Element</strong>s - Strong Form to Weak Form<br />

Arrive at <strong>the</strong> weak <strong>for</strong>m<br />

(W)<br />

Note:<br />

1. <strong>The</strong> spaces are C 1 continuous, i.e. <strong>the</strong> derivative must also be<br />

continuous<br />

Note:<br />

1. <strong>The</strong> spaces are C 1 continuous, i.e. <strong>the</strong> derivative must also be<br />

continuous<br />

2. <strong>The</strong> left side is symmetric in w <strong>and</strong> υ (bi-linear <strong>for</strong>m:<br />

a(υ, w)=a(w, υ)) this will lead to a symmetric Stiffness Matrix<br />

2. <strong>The</strong> left side is symmetric in w <strong>and</strong> v (bi-linear <strong>for</strong>m: a(v,w)=a(w,v)<br />

this will lead to symmetric stiffness matrix<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 20


Beam <strong>Element</strong>s - FE Formulation<br />

Physical domain<br />

Natural domain<br />

<strong>Element</strong><br />

displacement<br />

vector<br />

<strong>Element</strong><br />

<strong>for</strong>ce<br />

vector<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 21


Beam <strong>Element</strong>s - Shape Functions<br />

Hermite<br />

Hermite<br />

Polynomials<br />

Polynomials<br />

Note: <strong>The</strong> choice <strong>of</strong> a cubic polynomial is related to <strong>the</strong> homogeneous<br />

strong <strong>for</strong>m <strong>of</strong> <strong>the</strong> problem EIυ ′′′′ = 0.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 22


Beam <strong>Element</strong>s - Shape Functions<br />

<strong>The</strong> displacement is approximated by<br />

However note :<br />

From coordinate trans<strong>for</strong>mation (mapping)<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 23


Beam <strong>Element</strong>s - Galerkin<br />

Finally, <strong>the</strong> weight functions <strong>and</strong> trial solutions are<br />

Finally, <strong>the</strong> weight functions <strong>and</strong> trial solutions<br />

Where <strong>the</strong> shape functions are<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 24


Beam <strong>Element</strong>s - FE Matrices<br />

From<br />

From<br />

<strong>the</strong> weak<br />

<strong>the</strong><br />

<strong>for</strong>m,<br />

weak<br />

we<br />

<strong>for</strong>m,<br />

had<br />

we had<br />

<strong>The</strong> second <strong>The</strong> second derivative derivative becomes becomes<br />

<strong>and</strong><br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 25


Beam <strong>Element</strong>s - FE Matrices<br />

Stiffness matrix<br />

Force vector<br />

Assuming constant distributed <strong>for</strong>ce<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 26


Beam <strong>Element</strong>s - Example<br />

Consider a clamped-free beam<br />

with EI = 10 4 Nm 2<br />

s = −20N<br />

m = 20Nm<br />

Consider a clamped-free beam<br />

Pre-processing<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 27


Beam <strong>Element</strong>s - Example<br />

For element (1) For element (2)<br />

[1] [2] [3] [4] [3] [4] [5] [6]<br />

Assembly into a Global Stiffness Matrix<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 28


Beam <strong>Element</strong>s - Example<br />

Boundary <strong>for</strong>ce matrix<br />

<strong>Element</strong> (1) has no boundary on Γ S or Γ M<br />

For element (2) we have<br />

[3]<br />

[4]<br />

[5]<br />

[6]<br />

Assembly to global boundary <strong>for</strong>ce vector<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 29


Beam <strong>Element</strong>s - Example<br />

Body <strong>for</strong>ce vector<br />

(distributed<br />

loads)<br />

(Point loads)<br />

For element (1) Given:<br />

For element (2) Given:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 30


Beam <strong>Element</strong>s - Example<br />

<strong>The</strong> global <strong>for</strong>ce vector<br />

-9<br />

-15.3<br />

-4<br />

15.3<br />

-20<br />

20<br />

=KNOWN<br />

Post-processing<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 31


Timoshenko Beam<br />

In a Timoshenko Beam, a plane normal to<br />

<strong>the</strong> beam axis be<strong>for</strong>e de<strong>for</strong>mation doesnt<br />

remain normal after de<strong>for</strong>mation (short <strong>and</strong><br />

thick beams, s<strong>and</strong>wich composite beams).<br />

i.e. θ ≠ dv<br />

dx :<br />

γ = −θ + dv Transverse Shear strain<br />

dx<br />

ε = −y dθ Normal strain<br />

dx<br />

<strong>The</strong> strain energy <strong>of</strong> an element may be written as<br />

G - shear modulus<br />

b - widthh<br />

µ - correction factor<br />

h - height<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 32


Timoshenko Beam<br />

Chapter 9: THE TL TIMOSHENKO PLANE BEAM ELEMENT 9–8<br />

2-node C 1 (cubic) element<br />

<strong>for</strong> Euler-Bernoulli beam model:<br />

plane sections remain plane <strong>and</strong><br />

normal to de<strong>for</strong>med longitudinal axis<br />

2-node C 0 linear-displacement-<strong>and</strong>-rotations<br />

element <strong>for</strong> Timoshenko beam model:<br />

plane sections remain plane but not<br />

normal to de<strong>for</strong>med longitudinal axis<br />

(a)<br />

(b)<br />

C 1 element<br />

with same DOFs<br />

Figure 9.6. Sketch <strong>of</strong> <strong>the</strong> kinematics <strong>of</strong> two-node beam finite element models based on<br />

(a) Euler-Bernoulli beam <strong>the</strong>ory, <strong>and</strong> (b) Timoshenko beam <strong>the</strong>ory. <strong>The</strong>se<br />

models are called C 1 <strong>and</strong> C 0 beams, respectively, in <strong>the</strong> FEM literature.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 33


Timoshenko Beam<br />

Substituting <strong>the</strong> relations into U<br />

Substituting <strong>the</strong> relations into U<br />

Substituting <strong>the</strong> relations into U<br />

I - moment <strong>of</strong> inertia<br />

I -moment - A -<strong>of</strong> <strong>of</strong> cross-sectional inertia, A-cross-sectional area area<br />

A<br />

- cross-sectional area<br />

Galerkins<br />

Galerkin’s<br />

Approximation<br />

Approximation<br />

(<strong>Linear</strong><br />

(<strong>Linear</strong><br />

shape<br />

shape<br />

functions)<br />

functions)<br />

Galerkin’s Approximation (<strong>Linear</strong> shape functions)<br />

<strong>Element</strong> stiffness<br />

<strong>Element</strong> stiffness<br />

<strong>Element</strong> stiffness<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 34


Timoshenko Beam<br />

Exact integration<br />

Shear Locking<br />

Example: Cantilever Beam,<br />

20 elements, different<br />

span L to depth h<br />

Reduced 1-point quadrature integration<br />

Ratio <strong>of</strong> tip displacement <strong>for</strong><br />

Timoshenko beam <strong>the</strong>ory <strong>and</strong><br />

Euler-Bernoulli <strong>the</strong>ory<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 35


Timoshenko Beam<br />

<strong>The</strong> Shear locking Phenomenon<br />

This occurs when significant bending is present. It is owed to <strong>the</strong> use<br />

<strong>of</strong> linear shape functions that cannot accurately model <strong>the</strong> curvature<br />

that is present in <strong>the</strong> actual material under bending condition.<br />

Instead, a shear stress is introduced which causes <strong>the</strong> element to<br />

reach equilibrium conditions <strong>for</strong> smaller displacements that <strong>the</strong> real<br />

ones.<br />

<strong>The</strong> element <strong>the</strong>re<strong>for</strong>e appears stiffer.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 36


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Assumptions:<br />

Plane sections initially normal to <strong>the</strong> neutral axis remain plane<br />

<strong>The</strong> longitudinal (ε ηη) <strong>and</strong> <strong>the</strong> two shear stresses(ε ηξ , ε ηζ ) are <strong>the</strong> only non<br />

zero ones.<br />

A general 3D beam element would <strong>the</strong>n be:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 37


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Along <strong>the</strong> lines <strong>of</strong> <strong>the</strong> truss element <strong>for</strong>mulation we need to express <strong>the</strong><br />

coordinates <strong>of</strong> a r<strong>and</strong>om point within <strong>the</strong> beam element. Using (r, s, t) as<br />

<strong>the</strong> Cartesian coordinates at a point within an element with N nodal<br />

points, this is written:<br />

t x i =<br />

N∑<br />

N t k x k i + t 2<br />

k=1<br />

N∑<br />

k=1<br />

a k N k t V k<br />

ti + s 2<br />

N∑<br />

k=1<br />

b k N k t V k<br />

si, i = 1, 2, 3<br />

Vectors V s <strong>and</strong> V t define <strong>the</strong> orientation <strong>of</strong> <strong>the</strong> cross-section <strong>for</strong> <strong>the</strong> beam:<br />

<strong>The</strong>y are normal to <strong>the</strong> axis <strong>of</strong> <strong>the</strong> beam <strong>and</strong> to each o<strong>the</strong>r. <strong>The</strong> values a<br />

<strong>and</strong> b define <strong>the</strong> size <strong>of</strong> <strong>the</strong> cross section <strong>of</strong> <strong>the</strong> beam.<br />

<strong>The</strong> relative displacement components would be:<br />

t u i = t x i − 0 x i<br />

u i = t + ∆ t x i − t x i<br />

are <strong>the</strong> incremental components<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 38


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

This leads to <strong>the</strong> following <strong>for</strong>mulations<br />

t<br />

u i =<br />

N∑<br />

N kt u k i + t 2<br />

k=1<br />

N∑<br />

k=1<br />

a k N k ( t V k<br />

ti − 0 V k ti) + s 2<br />

N∑<br />

k=1<br />

b k N k ( t V k si − 0 V k<br />

si)<br />

<strong>and</strong> u i =<br />

where<br />

N∑<br />

N k u k i + t 2<br />

k=1<br />

N∑<br />

k=1<br />

a k N k V k<br />

ti + s 2<br />

N∑<br />

k=1<br />

Vti k = t + ∆ t Vti k − t Vti<br />

k<br />

Vsi k = t + ∆ t Vsi k − t Vsi<br />

k<br />

b k N k V k<br />

si, i = 1, 2, 3<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 39


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

We need to express <strong>the</strong> components V k<br />

ti , ZV k<br />

si <strong>of</strong> <strong>the</strong> vectors Vk t , V k s in<br />

terms <strong>of</strong> <strong>the</strong> nodal rotational degrees <strong>of</strong> freedom per node k:<br />

θ T k = [ θ k x θ k y θ k z<br />

This in linear analysis would be written as:<br />

V k t = θ k × t V k t<br />

V k s = θ k × t V k s<br />

but in <strong>the</strong> case <strong>of</strong> large displacements a second order Taylor approximation<br />

needs to be used:<br />

V k t = θ k × t V k t + 1 2 θ k × (θ k × t V k t )<br />

V k s = θ k × t V k s + 1 2 θ k × (θ k × t V k s)<br />

]<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 40


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

<strong>The</strong> finite element equations in this case are:<br />

t K<br />

⎡<br />

⎢<br />

⎣<br />

.<br />

u k<br />

θ k<br />

.<br />

⎤<br />

⎥<br />

⎦ = t + ∆t R − t F (1)<br />

Having solved Eqn (1) <strong>for</strong> bfu k , θ k , we obtain <strong>the</strong> approximations <strong>for</strong> <strong>the</strong><br />

nodal point displacement <strong>and</strong> direction vectors:<br />

t + ∆t u k = t u k + u<br />

∫ k<br />

t + ∆t V k t = t Vt k + dθ k × τ Vt<br />

k<br />

V<br />

∫ k<br />

t + ∆t V k s = t Vs k + dθ k × τ Vs<br />

k<br />

V k<br />

<strong>The</strong> above <strong>for</strong>mulation corresponds to an iteration <strong>of</strong> <strong>the</strong> Newton-Raphson<br />

method<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 41


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Example:<br />

Assume <strong>the</strong> following 2-node beam element. Evaluate <strong>the</strong> coordinate <strong>and</strong><br />

displacement interpolations <strong>and</strong> derivatives required <strong>for</strong> <strong>the</strong> setup <strong>of</strong> <strong>the</strong><br />

strain displacement matrices in <strong>the</strong> TL <strong>and</strong> UL <strong>for</strong>mulation.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 42


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Example:<br />

First we need to calculate <strong>the</strong> nodal coordinates at times t <strong>and</strong> 0 ( t x 1 , t x 2 ),<br />

( 0 x 1 , 0 x 2 ). Using <strong>the</strong> corresponding geometries <strong>and</strong> <strong>the</strong> following <strong>for</strong>mula:<br />

t x i =<br />

N∑<br />

N t k x k i + t 2<br />

k=1<br />

N∑<br />

k=1<br />

a k N k t V k<br />

ti + s 2<br />

N∑<br />

k=1<br />

where N k are linear shape functions, we obtain:<br />

b k N k t V k<br />

si, i = 1, 2, 3<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 43


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Example:<br />

Hence, <strong>the</strong> displacement components are at time t given by <strong>the</strong> following<br />

<strong>for</strong>mula:<br />

N∑<br />

t u i = N t k u k i + t N∑<br />

a k N k ( t Vti k − 0 Vti) k + s 2<br />

2<br />

k=1<br />

k=1<br />

N∑<br />

k=1<br />

b k N k ( t V k si − 0 V k<br />

si), i = 1, 2<br />

hence:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 44


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Example:<br />

For <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> incremental displacements we will need to<br />

calculate <strong>the</strong> rotational components V s t (since V k t = 0). Using <strong>the</strong><br />

following <strong>for</strong>mula:<br />

V k s = θ k × t V k s + 1 2 θ k × (θ k × t V k s)<br />

we get:<br />

θ k × t V k s =<br />

∣<br />

e 1 e 2 e 3<br />

0 0 θ<br />

−sin( t θ k ) cos( t θ k ) 0<br />

⎡<br />

∣ = ⎣<br />

−θ k cos( t θ k )<br />

−θ k sin( t θ k )<br />

0<br />

⎤<br />

⎦<br />

<strong>and</strong> θ k × (θ k × t V k s) =<br />

∣<br />

e 1 e 2 e 3<br />

0 0 θ<br />

−θ k cos( t θ k ) −θ k sin( t θ k ) 0<br />

⎡<br />

∣ = ⎣<br />

θ 2 k sin(t θ k )<br />

−θ 2 k cos(t θ k )<br />

0<br />

⎤<br />

⎦<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 45


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Example:<br />

<strong>The</strong>n, <strong>the</strong> incremental displacements are given by<br />

<strong>and</strong> u i =<br />

N∑<br />

N k u k i + t 2<br />

k=1<br />

N∑<br />

k=1<br />

a k N k V k<br />

ti + s 2<br />

N∑<br />

k=1<br />

b k N k V k<br />

si, i = 1, 2<br />

hence:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 46


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Example:<br />

Finally, <strong>the</strong> required derivatives <strong>for</strong> <strong>the</strong> TL <strong>and</strong> UL <strong>for</strong>mulation will be:<br />

where we assumed t L = 0 L = L.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 47


<strong>The</strong> Beam <strong>Element</strong> in Large Displacements<br />

Example:<br />

Also, <strong>the</strong> Jacobian will be:<br />

And <strong>the</strong> associated displacement derivatives are:<br />

<strong>The</strong>se will be used to derive <strong>the</strong> strain-displacement matrices B <strong>and</strong> finally <strong>the</strong><br />

stiffness matrix K<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 48


Special Considerations-Geometric Stiffness<br />

An alternate approach to <strong>the</strong> Large Displacement Problem <strong>for</strong> practical<br />

considerations (namely truss, beam problems)<br />

A cable, when subjected to a large tension <strong>for</strong>ce, has an increased lateral stiffness.<br />

If a long rod is subjected to a large compressive <strong>for</strong>ce, <strong>and</strong> is on <strong>the</strong> verge <strong>of</strong><br />

buckling, we know that <strong>the</strong> lateral stiffness <strong>of</strong> <strong>the</strong> rod has been reduced<br />

significantly <strong>and</strong> a small lateral load may cause <strong>the</strong> rod to buckle. This general<br />

type <strong>of</strong> behavior is caused by a change in <strong>the</strong> “geometric stiffness <strong>of</strong> <strong>the</strong><br />

structure. This stiffness is a function <strong>of</strong> <strong>the</strong> load in <strong>the</strong> structural member <strong>and</strong><br />

can be ei<strong>the</strong>r positive or negative.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 49


Special Considerations-Geometric Stiffness<br />

Cable <strong>Element</strong><br />

<strong>The</strong> fundamental equations <strong>for</strong> <strong>the</strong> geometric stiffness <strong>for</strong> a rod or a cable are<br />

very simple to derive. Consider <strong>the</strong> horizontal cable, <strong>of</strong> length L with an initial<br />

tension T. If <strong>the</strong> cable is subjected to lateral displacements, v i <strong>and</strong> v j , at both<br />

DYNAMIC ANALYSIS OF STRUCTURES<br />

ends, as shown, <strong>the</strong>n additional <strong>for</strong>ces, F i <strong>and</strong> F j , must be developed <strong>for</strong> <strong>the</strong><br />

cable element to be in equilibrium in its displaced position.<br />

T<br />

Fi<br />

´<br />

De<strong>for</strong>med Position<br />

F j<br />

T<br />

v i<br />

´<br />

i<br />

L<br />

´<br />

´<br />

j<br />

v j<br />

T<br />

T<br />

Note that we haveFigure assumed 11.1. all <strong>for</strong>ces Forces <strong>and</strong>Acting displacements on a Cable are positive <strong>Element</strong> in <strong>the</strong> up<br />

direction. We have also made <strong>the</strong> assumption that <strong>the</strong> displacements are small<br />

Taking <strong>and</strong> do not moments changeabout <strong>the</strong> tension point j in in <strong>the</strong> <strong>the</strong> cable. de<strong>for</strong>med position, <strong>the</strong> following equilibrium<br />

equation can be written:<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 50


Special Considerations-Geometric Stiffness<br />

Taking moments about point j in <strong>the</strong> de<strong>for</strong>med position, <strong>the</strong> following<br />

equilibrium equation can be written:<br />

F i = T (vi − vj)<br />

L<br />

And from vertical equilibrium <strong>the</strong> following equation is apparent:<br />

F i = −F j<br />

Combining <strong>the</strong> above <strong>the</strong> lateral <strong>for</strong>ces can be expressed in terms <strong>of</strong> <strong>the</strong> lateral<br />

displacements by <strong>the</strong> following matrix equation:<br />

[ ]<br />

Fi<br />

= T [ ] [ ]<br />

1 −1 vi<br />

or symbolically, F<br />

F j L −1 1 v G = K Gv<br />

j<br />

Note that <strong>the</strong> 2 × 2 geometric stiffness, K G , matrix is not a function <strong>of</strong> <strong>the</strong> mechanical<br />

properties <strong>of</strong> <strong>the</strong> cable <strong>and</strong> is only a function <strong>of</strong> <strong>the</strong> elements length <strong>and</strong> <strong>the</strong> <strong>for</strong>ce in <strong>the</strong><br />

element. Hence, <strong>the</strong> term “geometric or “stress stiffness matrix is introduced as opposed<br />

to <strong>the</strong> “mechanical stiffness matrix which is based on <strong>the</strong> physical properties. <strong>The</strong><br />

geometric stiffness exists in all structures; however, it only becomes important if it is<br />

large compared to <strong>the</strong> mechanical stiffness <strong>of</strong> <strong>the</strong> structural system.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 51


Special Considerations-Geometric Stiffness<br />

Beam <strong>Element</strong><br />

In <strong>the</strong> case <strong>of</strong> a beam element with bending properties in which <strong>the</strong> de<strong>for</strong>med<br />

shape is assumed to be a cubic function due to <strong>the</strong> rotations φ i <strong>and</strong> φ j at <strong>the</strong><br />

ends, additional moments M i <strong>and</strong> M j are developed. <strong>The</strong> <strong>for</strong>ce-displacement<br />

relationship is given by <strong>the</strong> following equation:<br />

⎡<br />

⎢<br />

⎣<br />

F i<br />

M i<br />

F j<br />

M j<br />

⎤<br />

⎥<br />

⎦ =<br />

T<br />

30L<br />

⎡<br />

⎢<br />

⎣<br />

⎤<br />

36 3L −36 3L<br />

3L 4L 2 −3L −L 2<br />

⎥<br />

−36 −3L 36 −3L ⎦<br />

3L −L 2 −3L 4L 2<br />

⎡<br />

⎢<br />

⎣<br />

v i<br />

φ i<br />

v j<br />

φ j<br />

⎤<br />

⎥<br />

⎦<br />

or FG = KGv<br />

<strong>The</strong> well-known elastic <strong>for</strong>ce de<strong>for</strong>mation relationship, <strong>for</strong> a prismatic beam<br />

without shearing de<strong>for</strong>mations, is<br />

⎡ ⎤ ⎡<br />

⎤ ⎡ ⎤<br />

F i<br />

12 6L −12 6L v i<br />

⎢ M i<br />

⎥<br />

⎣ F j<br />

⎦ = EI<br />

⎢ 6L 4L 2 −6L −2L 2<br />

⎥ ⎢ φ i<br />

⎥<br />

L 3 ⎣ −12 −6L 12 −6L ⎦ ⎣ v j<br />

⎦ or FE = KEv<br />

M j<br />

−6L −2L 2 −6L 4L 2 φ j<br />

<strong>The</strong>re<strong>for</strong>e, <strong>the</strong> total <strong>for</strong>ces acting on <strong>the</strong> beam element will be:<br />

F T = F E + F G = [K E + K G]v = K T v<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 52


Special Considerations - Geometric Stiffness<br />

Conclusion - Geometric Stiffness<br />

In <strong>the</strong> case <strong>of</strong> constant (dead) loads where T is usually constant <strong>the</strong><br />

calculation <strong>of</strong> <strong>the</strong> large displacement effect <strong>for</strong> cable <strong>and</strong> beam<br />

elements is per<strong>for</strong>med by <strong>the</strong> addition in <strong>the</strong> FEM code <strong>of</strong> an<br />

appropriate extra “geometric” stiffness term.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!