18.01.2014 Views

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

The Finite Element Method for the Analysis of Non-Linear and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Non</strong>-<strong>Linear</strong> <strong>and</strong> Dynamic Systems<br />

Pr<strong>of</strong>. Dr. Eleni Chatzi<br />

Lecture 2 - 2 October, 2012<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 1


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

<strong>Linear</strong> <strong>Analysis</strong> Assumptions<br />

Infinitesimally small displacements<br />

<strong>Linear</strong>ly elastic material<br />

No gaps or overlaps occurring during de<strong>for</strong>mations - <strong>The</strong><br />

displacement field is smooth<br />

Nature <strong>of</strong> Boundary Conditions remains unchanged<br />

Steady State Assumption<br />

No dependence on time<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 2


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

What kind <strong>of</strong> problems are not steady state <strong>and</strong> linear?<br />

Material behaves <strong>Non</strong>linearly<br />

Geometric <strong>Non</strong>linearity (ex. p-∆ effects, follower <strong>for</strong>ce)<br />

Contact Problems (Hertzian stress)<br />

Loads vary fast compared to <strong>the</strong> eigenfrequencies <strong>of</strong> <strong>the</strong><br />

structure<br />

Varying Boundary conditions (ex. freezing <strong>of</strong> water, welding)<br />

General feature:<br />

Response becomes load path dependent<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 3


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

What is <strong>the</strong> added value <strong>of</strong> being able to assess <strong>the</strong> <strong>Non</strong>linear<br />

non-steady state response <strong>of</strong> structures?<br />

Assessing <strong>the</strong>:<br />

Structural response <strong>of</strong> structures to extreme events (rock-fall,<br />

earthquake, hurricanes)<br />

Per<strong>for</strong>mance (failures <strong>and</strong> de<strong>for</strong>mations) <strong>of</strong> soils<br />

Verifying simple models<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 4


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

Collapse <strong>Analysis</strong> <strong>of</strong> <strong>the</strong> World Trade Center<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 5


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

Ultimate collapse capacity <strong>of</strong> jacket structure<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 6


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

<strong>Analysis</strong> <strong>of</strong> soil per<strong>for</strong>mance<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 7


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

<strong>Analysis</strong> <strong>of</strong> bridge response<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 8


<strong>Non</strong> <strong>Linear</strong> FE - Background <strong>and</strong> Motivation<br />

Steady state problems (<strong>Linear</strong>/<strong>Non</strong>linear):<br />

<strong>The</strong> response <strong>of</strong> <strong>the</strong> system does not change over time<br />

KU = R<br />

Propagation problems (<strong>Linear</strong>/<strong>Non</strong>linear):<br />

<strong>The</strong> response <strong>of</strong> <strong>the</strong> system changes over time<br />

MÜ(t) + C ˙U(t) + KU(t) = R(t)<br />

Eigenvalue problems:<br />

No unique solution to <strong>the</strong> response <strong>of</strong> <strong>the</strong> system<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 9


Introduction Introduction to <strong>Non</strong>linear to non-linear analysis analysis<br />

Classification <strong>of</strong> <strong>Non</strong>linear analyses<br />

• Classification <strong>of</strong> non-linear analyses<br />

Type <strong>of</strong> analysis Description Typical<br />

<strong>for</strong>mulation used<br />

Materially-nonlinear<br />

only<br />

Large<br />

displacements, large<br />

rotations but small<br />

strains<br />

Large<br />

displacements, large<br />

rotations <strong>and</strong> large<br />

strains<br />

Displacements <strong>and</strong><br />

rotations <strong>of</strong> fibers<br />

are large; but fiber<br />

extensions <strong>and</strong><br />

angle changes<br />

between fibers are<br />

small; stress strain<br />

relationship may be<br />

linear or non-linear<br />

Displacements <strong>and</strong><br />

rotations <strong>of</strong> fibers<br />

are large; fiber<br />

extensions <strong>and</strong><br />

angle changes<br />

between fibers may<br />

also be large; stress<br />

strain relationship<br />

may be linear or<br />

non-linear<br />

Infinitesimal<br />

displacements <strong>and</strong><br />

strains; stress train<br />

relation is nonlinear<br />

Materiallynonlinear-only<br />

(MNO)<br />

Total Lagrange (TL)<br />

Updated Lagrange<br />

(UL)<br />

Total Lagrange (TL)<br />

Updated Lagrange<br />

(UL)<br />

Stress <strong>and</strong> strain<br />

measures used<br />

Engineering strain<br />

<strong>and</strong> stress<br />

Second Piola-<br />

Kirch<strong>of</strong>f stress,<br />

Green-Lagrange<br />

strain<br />

Cauchy stress,<br />

Almansi strain<br />

Second Piola-<br />

Kirch<strong>of</strong>f stress,<br />

Green-Lagrange<br />

strain<br />

Cauchy stress,<br />

Logarithmic strain<br />

<strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 10


Introduction to <strong>Non</strong>linear analysis<br />

Swiss Federal Institute <strong>of</strong> Technology Page 21<br />

<strong>Linear</strong> Elastic<br />

Introduction to non-linear analysis<br />

L<br />

• Classification <strong>of</strong> non-linear analyses<br />

Δ<br />

P<br />

2<br />

P<br />

2<br />

σ = P / A<br />

ε = σ / E<br />

Δ= ε L<br />

σ<br />

1<br />

E<br />

ε < 0.04<br />

ε<br />

L<br />

Infinitesimal Displacements<br />

<strong>Linear</strong> elastic (infinitesimal displacements)<br />

<strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 11


Introduction to <strong>Non</strong>linear analysis<br />

Swiss Federal Institute <strong>of</strong> Technology Page 22<br />

Material <strong>Non</strong>linearity only<br />

L<br />

Introduction to non-linear analysis<br />

• Classification <strong>of</strong> non-linear analyses<br />

Δ<br />

P<br />

2<br />

P<br />

2<br />

σ = P/<br />

A<br />

σ<br />

Y<br />

σ −σY<br />

ε = +<br />

E ET<br />

ε < 0.04<br />

σ<br />

σ Y<br />

1<br />

E<br />

P / A<br />

1<br />

E T<br />

ε<br />

L<br />

<strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II<br />

Materially nonlinear only (infinitesimal<br />

displacements, but nonlinear stress-strain relation)<br />

Infinitesimal Displacements, but <strong>Non</strong>linear Stress Strain relation<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 12


Introduction to <strong>Non</strong>linear analysis<br />

Swiss Federal Institute <strong>of</strong> Technology<br />

Large displacements, small strains<br />

Δ′<br />

y<br />

y′<br />

ε ′<br />

x′<br />

L<br />

L<br />

x<br />

ε ′ < 0.04<br />

Δ= ′ ε ′ L<br />

<strong>Linear</strong> or <strong>Non</strong>linear material behavior<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 13


Introduction to <strong>Non</strong>linear to non-linear analysis analysis<br />

• Classification <strong>of</strong> non-linear analyses<br />

Large displacements, large strains<br />

<strong>Linear</strong> or <strong>Non</strong>linear material behavior<br />

Large displacements, large rotations <strong>and</strong><br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 14


Introduction Swiss to Federal <strong>Non</strong>linear Institute <strong>of</strong> Technology analysis<br />

Introduction to non-linear analysis<br />

Change in BC <strong>for</strong> displacement<br />

• Classification <strong>of</strong> non-linear analyses<br />

P<br />

2<br />

P<br />

2<br />

Δ<br />

Chang in boundary conditions<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 15


Example: Simple Bar Structure<br />

Material <strong>Non</strong>linearity only<br />

Swiss Federal Institute <strong>of</strong> Technology<br />

Assumptions: Small displacements, strains, load is applied slowly.<br />

Area = 1cm<br />

2<br />

t u<br />

σ<br />

t R<br />

4<br />

3<br />

2<br />

1<br />

Section a Section b<br />

L = 10cm<br />

a<br />

L = 5cm<br />

b<br />

t R<br />

2 4 6 t<br />

σ Y<br />

1<br />

E<br />

1<br />

ε = 0.002<br />

Y<br />

E = 10 N / cm<br />

T<br />

7 2<br />

5 2<br />

E = 10 N / cm<br />

σ :yield stress<br />

Y<br />

ε : yield strain<br />

Y<br />

E T<br />

ε<br />

⇒ Calculate <strong>the</strong> displacement at <strong>the</strong> point <strong>of</strong> load application.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 16


Example: Simple Bar Structure<br />

Area = 1cm<br />

Section a Section b<br />

L = 10cm<br />

a<br />

t<br />

t<br />

t u t u<br />

εa<br />

= , εb<br />

=−<br />

L L<br />

a<br />

R+ σ A=<br />

σ A<br />

t t t<br />

b<br />

2<br />

T<br />

a<br />

L = 5cm<br />

b<br />

b<br />

t u<br />

t R<br />

t<br />

t σ<br />

ε = (elastic region)<br />

E<br />

t<br />

t σ −σY<br />

ε = εY<br />

+ (plastic region)<br />

E<br />

σ<br />

σ Y<br />

t R<br />

4<br />

3<br />

2<br />

1<br />

1<br />

E<br />

1<br />

E T<br />

ε<br />

ε = 0.002<br />

7 2<br />

E = 10 N / cm<br />

5 2<br />

E = 10 N / cm<br />

T<br />

σ : yield stress<br />

Y<br />

ε : yield strain<br />

2 4 6 t<br />

Δσ<br />

Δ ε = (unloading)<br />

E<br />

Y<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 17


Example: Simple Bar Structure<br />

In <strong>the</strong> beginning both Sections are elastic<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 18


Example: Simple Bar Structure<br />

Section A is elastic while Section B is plastic<br />

Since <strong>the</strong> stress on Section B is higher, it will yield first at time t ∗ :<br />

Unloading occurs be<strong>for</strong>e Section A yields.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 19


Introduction to <strong>Non</strong>linear <strong>Analysis</strong><br />

Conclusion from <strong>the</strong> previous example:<br />

<strong>The</strong> basic problem in general <strong>Non</strong>linear analysis is to find a state <strong>of</strong><br />

equilibrium between externally applied loads <strong>and</strong> element nodal <strong>for</strong>ces<br />

t R − t F = 0<br />

t R = t R B + t R S + t R C<br />

t F = ∑ ∫<br />

t B (m)T t τ (m) t dV (m)<br />

m<br />

t V m<br />

where R B : body <strong>for</strong>ces, R S : surface <strong>for</strong>ces, R C : nodal <strong>for</strong>ces<br />

We must achieve equilibrium <strong>for</strong> all time steps when<br />

incrementing <strong>the</strong> loading<br />

Very general approach<br />

Includes implicitly also dynamic analysis!<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 20


Types <strong>of</strong> Response Diagrams<br />

Basic Types<br />

F<br />

U<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 21


Types <strong>of</strong> Response Diagrams<br />

Complex Types<br />

R<br />

U<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 22


Solution Algorithms <strong>for</strong> NL equations<br />

Root finding <strong>for</strong> single variable NL problems f (x) = 0<br />

Bisection <strong>Method</strong><br />

Fixed Point Iteration<br />

Assumption: f [a, b] ∈ R <strong>and</strong><br />

continuous<br />

If f (a) > 0, f (b) < 0 ⇒ a ≤ ¯x ≤<br />

b ⇒ f (¯x) = 0<br />

Write f (x) = 0 in <strong>the</strong> <strong>for</strong>m f (x) = x − q(x),<br />

<strong>the</strong> solution ¯x satisfies ¯x = q(¯x)<br />

Recurrence relation: x k+1 = g(x k )<br />

Convergence: If g ′ (x) is defined over [a, b] <strong>and</strong> a<br />

positive constant K exists with |ġ(x)| ≤ K,<br />

∀x ∈ [a, b] <strong>the</strong>n g(x) has a unique fixed point<br />

¯x ∈ [a, b].<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 23


Solution Algorithms <strong>for</strong> NL equations<br />

Root finding <strong>for</strong> single variable NL problems f (x) = 0<br />

Newton (Raphson) <strong>Method</strong><br />

Secant <strong>Method</strong><br />

Defined by <strong>the</strong> recurrence relation<br />

x k+1 = x k − f(x k)<br />

f ′ (x k )<br />

terminate when |x k+1 − x k | ≤ ɛ, ɛ


Incremental <strong>Analysis</strong><br />

<strong>The</strong> basic approach in incremental analysis is:<br />

Find a state <strong>of</strong> equilibrium between externally applied loads <strong>and</strong><br />

element nodal <strong>for</strong>ces<br />

t+∆t R − t+∆t F = 0<br />

Assuming that t+∆t R is independent <strong>of</strong> <strong>the</strong> de<strong>for</strong>mations we have<br />

t+∆t R = t F + F<br />

We know <strong>the</strong> solution t F at time t <strong>and</strong> F is <strong>the</strong> increment in <strong>the</strong><br />

nodal point <strong>for</strong>ces corresponding to an increment in <strong>the</strong><br />

displacements <strong>and</strong> stresses from time t to time t + ∆t. This we can<br />

approximate by<br />

F = t KU<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 25


Incremental <strong>Analysis</strong><br />

Newton-Raphson <strong>Method</strong><br />

Assume <strong>the</strong> tangent stiffness matrix:<br />

t K = ∂t F<br />

∂ t U<br />

We may now substitute <strong>the</strong> tangent stiffness matrix into <strong>the</strong><br />

equilibrium relation<br />

t KU = t+∆t R − t F<br />

which gives us a scheme <strong>for</strong> <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> displacements:<br />

t+∆t U = t U + U<br />

<strong>The</strong> exact displacements at time t + ∆t correspond to <strong>the</strong> applied<br />

loads at t + ∆t, however we only determined <strong>the</strong>se approximately as<br />

we used a tangent stiffness matrix thus we may have to iterate to<br />

find <strong>the</strong> solution.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 26


Incremental <strong>Analysis</strong><br />

We may use <strong>the</strong> Newton-Raphson iteration scheme to find <strong>the</strong><br />

equilibrium within each load increment<br />

t+∆t K (i−1) ∆U (i) = t+∆t R − t∆t F (i−1)<br />

(out <strong>of</strong> balance load vector)<br />

with Initial Conditions<br />

t+∆t U (i) = t+∆t U (i−1) + ∆U (i)<br />

t+∆t U (0) = t U; t+∆t K (0) = t K; t+∆t F (0) = t F<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 27


<strong>The</strong> first two analysis types, although significantly simplified, can lead to valuable conclusions<br />

concerning <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> structure <strong>and</strong> <strong>the</strong> possible collapse mechanism. <strong>The</strong> applied procedure<br />

can be described in brief as follows. In <strong>the</strong> case <strong>of</strong> 2-D analysis <strong>the</strong> structure is assumed to consist <strong>of</strong> a<br />

finite number <strong>of</strong> nodes interconnected by a finite number <strong>of</strong> elements. <strong>The</strong> types <strong>of</strong> elements have<br />

been It may described expensive in section 3. toIn calculate <strong>the</strong> case <strong>of</strong> <strong>the</strong> 3-D tangent analysis <strong>the</strong> stiffness structure matrix. is assumed Into <strong>the</strong> consist <strong>of</strong> <strong>the</strong><br />

a<strong>for</strong>ementioned Modified Newton-Raphson 2-D frames, assuming a rigid iteration diaphragm scheme assemblage it is <strong>of</strong> only <strong>the</strong>ir calculated horizontal d<strong>of</strong>’s in <strong>the</strong> per floor<br />

slab. Loads may be applied at <strong>the</strong> nodes or along <strong>the</strong> elements. In both cases though, <strong>the</strong>y are<br />

trans<strong>for</strong>med beginning to nodal <strong>of</strong> each loads. new load step<br />

Modified Newton (Raphson)<strong>Method</strong><br />

Figure 5. Modified Newton Raphson <strong>Method</strong><br />

In <strong>the</strong> quasi-Newton iteration schemes <strong>the</strong> secant stiffness matrix is used<br />

instead <strong>of</strong> <strong>the</strong> tangent matrix<br />

After <strong>the</strong> <strong>for</strong>mation <strong>of</strong> <strong>the</strong> stiffness matrix <strong>the</strong> equilibrium equations are solved by an efficient<br />

algorithm based on <strong>the</strong> Gaussian elimination method. <strong>The</strong> structure stiffness is stored in a b<strong>and</strong>ed <strong>for</strong>m<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 28


Simple Bar Example - Revisited<br />

t t () i t+Δ t t+Δt ( i− 1) t+Δt ( i−1)<br />

( Ka + Kb) Δ u = R−( Fa − Fb<br />

)<br />

t+Δ t () i t+Δt ( i−1) () i<br />

with initial conditions<br />

u = u;<br />

F = F F = F<br />

t+Δ t (0) t t+Δ t (0) t t+Δt (0) t<br />

a a b b<br />

t<br />

u = u +Δu<br />

t<br />

t<br />

CA t CA<br />

Ka<br />

= ; Kb<br />

=<br />

L L<br />

a<br />

if section is elastic<br />

t ⎧=<br />

E<br />

C ⎨<br />

⎩= ET<br />

if section is plastic<br />

b<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 29


Simple Bar Example - Revisited<br />

Load step 1: t = 1:<br />

( K + K ) Δ u = R− F − F<br />

0 0 (1) 1 1 (0) 1 (0)<br />

a b a b<br />

⇓<br />

2×<br />

10<br />

Δ u = = 6.6667×<br />

10<br />

7 1 1<br />

10 ( + )<br />

10 5<br />

Iteration 1: ( i = 1)<br />

4<br />

(1) −3<br />

u = u +Δ u = 6.6667×<br />

10<br />

1 (1) 1 (0) (1) −3<br />

1 (1)<br />

1 (1) −4<br />

εa<br />

= = ×<br />

La<br />

1 (1)<br />

b<br />

u<br />

b<br />

6.6667 10 < ε (elastic section!)<br />

1 (1)<br />

u<br />

−3<br />

ε = = 1.3333×<br />

10 < εY<br />

(elastic section!)<br />

L<br />

F<br />

= 6.6667× 10 ; F = 1.3333×<br />

10<br />

1 (1) 3 1 (1) 4<br />

a<br />

b<br />

0 0 (2) 1 1 (1) 1 (1)<br />

( Ka Kb) u R Fa Fb<br />

0<br />

Y<br />

Convergence in one iteration!<br />

1 −3<br />

+ Δ = − − = u = 6.6667×<br />

`10<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 30


Simple Bar Example - Revisited<br />

Load step 2: t = 2 :<br />

( K + K ) Δ u = R− F − F<br />

1 1 (1) 2 2 (0) 2 (0)<br />

a b a b<br />

⇓<br />

(4× 10 ) − (6.6667× 10 ) − (1.333×<br />

10 )<br />

Δ u = = 6.6667×<br />

10<br />

7 1 1<br />

10 ( + )<br />

10 5<br />

Iteration 1: ( i = 1)<br />

4 3 4<br />

(1) −3<br />

u = u +Δ u = 1.3333×<br />

10<br />

2 (1) 2 (0) (1) −2<br />

ε = 1.3333×<br />

10 < ε (elastic section!)<br />

2 (1) −3<br />

a<br />

ε<br />

2 (1) −3<br />

b<br />

Y<br />

= 2.6667×<br />

10 > ε (plastic section!)<br />

Y<br />

F = 1.3333× 10 ; F = ( E ( ε − ε ) + σ ) A= 2.0067×<br />

10<br />

1 (1) 4 1 (1) T 2 (1) 4<br />

a b b Y Y<br />

( K + K ) Δ u = R− F − F ⇒Δ u = 2.2×<br />

10<br />

1 1 (2) 2 2 (1) 2 (1) (2) −3<br />

a b a b<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 31


Simple Bar Example - Revisited<br />

<strong>The</strong> procedure is repeated <strong>and</strong> <strong>the</strong> results <strong>of</strong> successive iterations are<br />

tabulated in <strong>the</strong> accompanying table.<br />

Institute <strong>of</strong> Structural Engineering <strong>Method</strong> <strong>of</strong> <strong>Finite</strong> <strong>Element</strong>s II 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!