18.01.2014 Views

Solution of Equilibrium Equations in Static Analysis: LDLT Solution ...

Solution of Equilibrium Equations in Static Analysis: LDLT Solution ...

Solution of Equilibrium Equations in Static Analysis: LDLT Solution ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Solution</strong> <strong>of</strong> <strong>Equilibrium</strong> <strong>Equations</strong><br />

<strong>in</strong> <strong>Static</strong> <strong>Analysis</strong>: LDL T <strong>Solution</strong><br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

1


Contents<br />

• Gauss elim<strong>in</strong>ation<br />

i i<br />

• Physical <strong>in</strong>terpretation <strong>of</strong> Gauss elim<strong>in</strong>ation <strong>in</strong> the<br />

context <strong>of</strong> f<strong>in</strong>ite element problems<br />

• The LDL T ‐solution:<br />

• Introduction to the procedure<br />

• Algorithm used <strong>in</strong> computational implementations<br />

• Efficiency<br />

• Error considerations<br />

• Related methods<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

2


Review ‐ Matrices<br />

• Positive‐def<strong>in</strong>iteness: v T Av > 0 for all vectors v (semi‐<br />

positive def<strong>in</strong>ite: v T Av ≥ 0 )<br />

⎡1<br />

2 0 0 0 0 0<br />

⎢<br />

• Bandwidth <strong>of</strong> a matrix A:<br />

⎢<br />

⎢<br />

3 4 5 0 0 0 0<br />

6 7 8 9 0 0 0<br />

• p ⎥ ⎥⎥⎥⎤<br />

1 + p 2 + 1, where a ij = 0 for j > i + p 2 or i > j + p ⎢<br />

1 0 1 2 3 4 0 0<br />

• Skyl<strong>in</strong>e <strong>of</strong> a matrix A:<br />

• for j, j = 1,...,n: m j = i’ with a ij = 0for i < i’<br />

m T = [1 1 2 3 4 5 6]<br />

• Column heights <strong>of</strong> a matrix: h i = i ‐ m i for i = 1,...,n<br />

h T = [0 1 1 1 1 1 1]<br />

(maximum column height ht = half‐bandwidth m K )<br />

⎢<br />

⎢0<br />

0 5 6 7 8 0<br />

⎢<br />

⎢0<br />

0 0 9 1 2 3<br />

⎢<br />

⎥ ⎥⎥⎥⎥⎥ ⎣0<br />

0 0 0 4 5 6⎦<br />

p 1 =2, p 2 =1<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

3


Gauss elim<strong>in</strong>ation<br />

Carl F. Gauss, ca. 1850, solution <strong>of</strong> l<strong>in</strong>ear<br />

systems <strong>of</strong> equations<br />

In general:<br />

Solve Ax=b for x<br />

where A is a matrix <strong>of</strong> coefficients,<br />

x is the vector <strong>of</strong> unknowns,<br />

b is the right‐hand side vector<br />

simply supported<br />

beam with 4 transl. d<strong>of</strong>s<br />

R 2<br />

U 1 U 2 U 3 U 4<br />

15-Jun-07<br />

In the context <strong>of</strong> f<strong>in</strong>ite element problems:<br />

Solve KU=R for U<br />

where K is the stiffness matrix,<br />

U is the displacement vector,<br />

R is the load vector K U R<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

4


Gauss elim<strong>in</strong>ation<br />

In a Gauss elim<strong>in</strong>ation, we reduce the matrix <strong>of</strong> coefficients to an upper<br />

triangular form, by a successive addition <strong>of</strong> multiples <strong>of</strong> the i th row<br />

(i= 1,…,n –1) to the rema<strong>in</strong><strong>in</strong>g n – irows j (j = i+ 1,…,n).<br />

r2 = r2 + 4/5 r1;<br />

r3 = r3 + (‐1/5) r1;<br />

r4 = r4;<br />

r3 = r3 + 16/14 r2;<br />

r4 = r4 + (‐5/14) r2;<br />

r4 = r4 + 20/15 r3;<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

5


Gauss elim<strong>in</strong>ation<br />

The result is an upper‐triangular matrix which we can solve for the<br />

unknowns U i <strong>in</strong> the order U n ,UU<br />

n‐1 ,…,UU<br />

1 .<br />

5 -4 1 0<br />

0 14/5 -16/5 1<br />

0 0 15/7 -20/7<br />

0 0 0 5/6<br />

U 1<br />

U 2<br />

U 3<br />

U 4<br />

0<br />

1<br />

8/7<br />

7/6<br />

• After step i (i.e. after the full addition procedure <strong>in</strong>volv<strong>in</strong>g multiples<br />

l<br />

<strong>of</strong> row i), the lower right (n‐i) x (n‐i) submatrix is symmetric →<br />

storage implications<br />

• <strong>Solution</strong> based on non‐vanish<strong>in</strong>g ihi i th diagonal element <strong>of</strong> coefficient<br />

i<br />

matrix <strong>in</strong> step i.<br />

• The operations on the coefficient matrix are <strong>in</strong>dependent <strong>of</strong> the right‐<br />

hand side vector.<br />

• Any desirable order <strong>of</strong> elim<strong>in</strong>ations may be chosen.<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

6


Physical Interpretation<br />

A physical <strong>in</strong>terpretation <strong>of</strong> the operations performed <strong>in</strong> a Gauss elim<strong>in</strong>ation:<br />

5 -4 1 0<br />

6 -4 1<br />

symmetric<br />

6 -4<br />

U 1<br />

U 2<br />

U 3<br />

U 4<br />

0<br />

0<br />

0<br />

5 0<br />

First equation: 5 U 1 –4 U 2 + U 3 = 0 ⇔ U 1 = 4/5 U 2 –1/5 U 3<br />

Elim<strong>in</strong>ation i <strong>of</strong> U 1 from equations 2, 3 and 4 yields ild the lower right 3 x 3 submatrix<br />

which we get after the first step <strong>of</strong> the Gauss elim<strong>in</strong>ation <strong>of</strong> the orig<strong>in</strong>al matrix:<br />

14/5 -16/5 1<br />

-16/5 29/5 -4<br />

1 -4 5<br />

U 2<br />

0<br />

Stiffness matrix correspond<strong>in</strong>g to<br />

U 3<br />

0 beam after release <strong>of</strong> d<strong>of</strong> 1.<br />

U 4 0 ( d<strong>of</strong> 1“statically condensed out”)<br />

….. 5/6 is stiffness matrix <strong>of</strong> beam after release <strong>of</strong> d<strong>of</strong>s 1, 2 and 3 (cf.<br />

Gauss elim<strong>in</strong>ation: f<strong>in</strong>al upper triangular matrix).<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

7


Physical Interpretation<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

8


Physical Interpretation<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

9


Physical Interpretation<br />

•We get a total <strong>of</strong> n stiffness matrices <strong>of</strong> decreas<strong>in</strong>g order (n, n‐1,…, 2, 1),<br />

each describ<strong>in</strong>g a set <strong>of</strong> n‐i degrees <strong>of</strong> freedom (i = 0, 1,...,n‐1) <strong>of</strong> the same<br />

physical system.<br />

• If R≠0, then we also establish the load vectors perta<strong>in</strong><strong>in</strong>g i to these<br />

stiffness matrices.<br />

•The physical picture suggests that the diagonal elements rema<strong>in</strong> positive<br />

dur<strong>in</strong>g the Gauss elim<strong>in</strong>ation: Stiffness should be positive; a non‐positive<br />

diagonal element implies an unstable structure.<br />

Here, after release <strong>of</strong> d<strong>of</strong>s U 1 , U 2<br />

and U 3 the last diagonal element (i.e.<br />

the stiffness at d<strong>of</strong> U 4 ) is zero.<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

10


LDL T <strong>Solution</strong><br />

The successive matrix operations dur<strong>in</strong>g a Gauss elim<strong>in</strong>ation can be<br />

cast <strong>in</strong>to a general form, which h leads, likewise, i to the reduction <strong>of</strong> K<br />

to an upper triangular form, S,<br />

− 1 − 1 − 1<br />

Ln− 1......<br />

L2 L1<br />

K =<br />

S<br />

where<br />

1<br />

L i<br />

-1<br />

=<br />

.<br />

.<br />

.<br />

1<br />

-l i+1,i .<br />

with<br />

l<br />

k<br />

() i<br />

i+<br />

j,<br />

i<br />

i+ j, i<br />

=<br />

() i<br />

k ii<br />

-l i+2,i .<br />

… .<br />

-l n,i 1<br />

Gauss factors for the matrix<br />

L<br />

...... L L K<br />

− 1 − 1 −<br />

1<br />

i−1 2 1<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

11


−1 −1 −1<br />

n− 1......<br />

2 1<br />

=<br />

LDL T <strong>Solution</strong><br />

L L L K S<br />

1<br />

.<br />

.<br />

.<br />

1<br />

Solve for K:<br />

where L i =<br />

K = L1L2...... Ln−<br />

1S l i+1,i i .<br />

l i+2,i .<br />

… .<br />

l n,i 1<br />

Hence,<br />

K = LS<br />

1<br />

l 21 .<br />

l 31 l 32 .<br />

l<br />

with L=<br />

L1L2...... L<br />

n−1= 41 l 42 .<br />

. . 1<br />

. . .<br />

. . .<br />

. . .<br />

l n1 . . . . . . l n,n-1 1<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

12


LDL T <strong>Solution</strong><br />

K = LS<br />

Now =<br />

% where d =δ s hence =<br />

% T<br />

S DS and s<strong>in</strong>ce k =k %<br />

ij ij ij , K LDS ij ji , S=<br />

L,<br />

, so<br />

K<br />

=<br />

LDL<br />

T<br />

In practice:<br />

V<br />

=<br />

−1<br />

L R<br />

⇐ LV =<br />

R<br />

T<br />

−1<br />

−<br />

1<br />

( )<br />

T<br />

U=<br />

L D V ⇐ DL U =<br />

V<br />

Example: Compute L<br />

‐1<br />

i , i = 1, 2, 3 , L, S, D and V from<br />

⎡ 5 −4 1 0 ⎤<br />

⎡0⎤<br />

⎢<br />

4 6 4 1<br />

⎥<br />

⎢<br />

⎢<br />

− −<br />

1<br />

⎥<br />

K = ⎥ and R = ⎢ ⎥<br />

⎢<br />

1 −<br />

4 6 −<br />

4<br />

⎥<br />

⎢ 0<br />

⎥<br />

⎢<br />

⎥<br />

⎢ ⎥<br />

⎣ 0 1 −4 5<br />

0<br />

⎦<br />

⎣ ⎦<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

13


L<br />

LDL T <strong>Solution</strong><br />

Recall the Gauss multiplication factors – they enter <strong>in</strong>to L i<br />

‐1<br />

, i = 1, 2, 3:<br />

−1<br />

1<br />

Step 1: Step 2:<br />

r3 = r3 + 8/7 r2;<br />

r4 = r4 + (‐5/14) r2;<br />

r2 = r2 + 4/5 r1;<br />

r3 = r3 + (‐1/5) r1;<br />

r4 = r4;<br />

Step 3:<br />

r4 = r4 + 4/3 r3;<br />

⎡ 1<br />

⎤<br />

⎡1<br />

⎤<br />

⎡1<br />

⎤<br />

⎢<br />

4/5 1<br />

⎥ ⎢<br />

⎢<br />

⎥ 1<br />

0 1<br />

⎥ ⎢<br />

−<br />

= ⎢<br />

⎥<br />

1<br />

0 1<br />

⎥<br />

−<br />

L<br />

⎢ −1/5<br />

0 1 ⎥<br />

2<br />

= L<br />

⎢ 0 8/7 1 ⎥<br />

3<br />

= ⎢<br />

⎥<br />

⎢ 0 0 1 ⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎣ 0 0 0 1<br />

⎦ ⎣<br />

0 − 5/<br />

14<br />

0 1<br />

⎦<br />

⎣<br />

0 0 4/<br />

3<br />

1<br />

⎦<br />

(i.e. the i th column <strong>of</strong> L i<br />

‐1<br />

conta<strong>in</strong>s the multipliers <strong>of</strong> the i th step)<br />

15-Jun-07<br />

L<br />

⎡ 1<br />

⎤<br />

⎢<br />

4/5 1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

1/5 −<br />

8/7 1<br />

⎢<br />

⎥<br />

⎣ 0 5/14 −4/3 1⎦<br />

= L1L2L3<br />

= ⎢<br />

⎥<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

14


LDL T <strong>Solution</strong><br />

Recall the pivots <strong>in</strong> the Gauss elim<strong>in</strong>ation – they enter <strong>in</strong>to S (i.e. reduced K):<br />

S<br />

⎡5 −4 1 0 ⎤<br />

⎢<br />

14 / 5 −16 / 5 1<br />

⎥<br />

= ⎢<br />

⎥<br />

⎢<br />

15/7 −<br />

20/7<br />

⎥<br />

⎢<br />

⎥<br />

⎣<br />

5/6 ⎦<br />

First row <strong>of</strong> K<br />

Second row <strong>of</strong> K after step 1<br />

Third row <strong>of</strong> K after step 2<br />

Fourth row <strong>of</strong> K after step 3<br />

For the matrix D: d ij =δδ ij s ij<br />

⎡5<br />

⎤<br />

⎢<br />

14 / 5<br />

⎥<br />

D<br />

= ⎢<br />

⎥<br />

⎢ 15 / 7<br />

⎥<br />

⎢<br />

⎥<br />

⎣<br />

5/6⎦<br />

V is the right‐hand ha side after the reduction <strong>of</strong> K to upper tia triangular form<br />

V =<br />

[ 0 1 8/7 7/6]<br />

T<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

15


Practical issues (1)<br />

LDL T <strong>Solution</strong><br />

• Simultaneous computation <strong>of</strong> V and L ‐1<br />

i .<br />

• L and V not computed from scratch, but by modifications <strong>of</strong> K<br />

and R.<br />

• K is symmetric, banded and dpositive‐def<strong>in</strong>ite; ite the two <strong>of</strong>ormer<br />

properties permit the compact storage <strong>in</strong> a 1‐D Array,<br />

complemented by a 1‐D address array:<br />

K<br />

⎡ 5 −4 1 0 ⎤<br />

⎢<br />

−<br />

−<br />

⎥<br />

4 6 4 1<br />

= ⎢<br />

⎥<br />

⎢ 1 − 4 6 − 4 ⎥<br />

⎢<br />

⎥<br />

⎣ 0 1 −4 5 ⎦<br />

a = [ 5 6 − 4 6 − 4 1 5 − 4 1]<br />

non‐zero elements <strong>of</strong> upper half and diagonal<br />

b = [1 2 4 7]<br />

array <strong>in</strong>dices <strong>of</strong> the diagonal elements <strong>in</strong> a<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

16


LDL T <strong>Solution</strong><br />

Algorithm:<br />

• Columnwise calculation l <strong>of</strong> l ij and d jj for j = 2,...,n, start<strong>in</strong>g ti with d 11 = k 11 :<br />

g<br />

m , j<br />

= km<br />

, j<br />

g<br />

ij<br />

j<br />

j<br />

i<br />

∑<br />

∑ −1 = kij<br />

−<br />

lrigrj<br />

i = m +1,...,<br />

j −1<br />

r=<br />

m<br />

m<br />

j<br />

where m = skyl<strong>in</strong>e <strong>of</strong> K, m m = max{m i , m j }<br />

now: decomposition <strong>of</strong> K to the factors D and L (or: L T )<br />

g<br />

ij<br />

l<br />

ij<br />

= i = m<br />

j<br />

+1,...,<br />

j −1<br />

dii<br />

d<br />

jj<br />

=<br />

k<br />

jj<br />

−<br />

∑<br />

j−1<br />

r=<br />

m<br />

j<br />

l<br />

rj<br />

g<br />

rj<br />

Here: l ij denotes<br />

an element <strong>of</strong> L T<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

17


Algorithm:<br />

LDL T <strong>Solution</strong><br />

T<br />

−1 −<br />

1<br />

• compute U via V: = ( )<br />

V<br />

i<br />

=<br />

R<br />

i<br />

−<br />

i<br />

∑ − 1<br />

r=<br />

m<br />

i<br />

l<br />

ri<br />

V<br />

r<br />

U L D V<br />

now backsubstitution: first, compute<br />

Start<strong>in</strong>g with V 1 = R 1 , compute V i for i = 2,…,n<br />

V =<br />

D<br />

−1<br />

V<br />

Get<br />

(n)<br />

U<br />

n<br />

= V n<br />

and<br />

then get (successively) for U i‐1 (i = n,...,2)<br />

V = V −l U r = m ,...,ii<br />

−<br />

1<br />

( i −1) ( i)<br />

Vr Vr lri U<br />

i<br />

i<br />

= ( i−1)<br />

U<br />

i− 1<br />

V i −1<br />

<strong>in</strong> the (n ‐ i + 1) th evaluation, i.e. <strong>in</strong> the evaluation <strong>of</strong> U i‐1<br />

18<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

18


LDL T <strong>Solution</strong><br />

Practical issues (2)<br />

• The sums over the products l rj g rj and l ri g rj do not <strong>in</strong>volve terms outside the<br />

skyl<strong>in</strong>e (“skyl<strong>in</strong>e reduction method”, “column reduction method”, “active<br />

column solution”)<br />

• Storage: K as compact 1‐D array<br />

• l ij replaces g ij<br />

• d jj replaces k jj<br />

a = [ 5 6 − 4 6 − 4 1 5 − 4 1]<br />

b = [1 2 4 7]<br />

a = [ d d l d l l d l ] 24<br />

11 22 12 33 23 13 44 34<br />

l<br />

• V i replaces R i<br />

c = [ R 1<br />

R 2<br />

R 3<br />

R<br />

4]<br />

( j)<br />

• V k<br />

replaces V k<br />

(<br />

c = [ V<br />

1<br />

j)<br />

V<br />

( j)<br />

2<br />

V<br />

( j)<br />

3<br />

V<br />

( j)<br />

4<br />

]<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

19


LDL T <strong>Solution</strong><br />

Practical issues (3)<br />

• Effective, because <strong>of</strong> skyl<strong>in</strong>e reduction, but the sums over the products<br />

l rj g rj and l ri g rj can still <strong>in</strong>volve zero terms. “Sparse solvers” skip the<br />

vanish<strong>in</strong>g terms.<br />

• Ati Active column solutions: re‐order the equations to reduce column hiht heights<br />

• Sparse solvers: re‐order the equations to elim<strong>in</strong>ate operations on<br />

elements equal to zero<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

20


LDL T <strong>Solution</strong><br />

Example:<br />

K<br />

First, get D and L T :<br />

d 11 = 2; now loop over all j, j = 2,…,5<br />

j= 2: g 12 = k 12 = ‐2 g<br />

m , j<br />

= km<br />

, j<br />

l 12 = g 12 /d 11 = ‐2/2 = ‐1<br />

d 22 = k 22 ‐ l 12 g 12 = 3 –(‐1)(‐2) = 1<br />

⎡ 2 −2 −1⎤<br />

⎢<br />

3 2 0<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

= ⎢<br />

5 −3 0 ⎥<br />

⎢<br />

⎥<br />

⎢symm. 10 4<br />

⎥<br />

⎢<br />

⎣<br />

10⎥<br />

⎦<br />

j<br />

j<br />

g<br />

ij<br />

l<br />

ij<br />

= i = m<br />

j<br />

+ 1,...,<br />

j − 1<br />

d<br />

ii<br />

d<br />

jj<br />

=<br />

k<br />

jj<br />

−<br />

j<br />

− 1<br />

∑<br />

lrj<br />

r=<br />

m<br />

j<br />

g<br />

rj<br />

⎡1⎤<br />

⎢ 1<br />

⎥<br />

⎢ ⎥<br />

→ m = ⎢2⎥<br />

⎢ ⎥<br />

⎢3<br />

⎥<br />

⎢<br />

⎣1⎥<br />

⎦<br />

⎡2<br />

−1 −1⎤<br />

⎢<br />

1 2 0<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

K<br />

= ⎢<br />

5 −<br />

3 0<br />

⎥<br />

⎢<br />

⎥<br />

⎢<br />

10 4 ⎥<br />

⎢<br />

⎣<br />

10⎥<br />

⎦<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

21


LDL T <strong>Solution</strong><br />

j= 3: g 23 = k 23 = ‐2<br />

l 23 = g 23 /d 22 = ‐2/1 = ‐2<br />

g<br />

m<br />

,<br />

j<br />

= km<br />

,<br />

j<br />

j j ,<br />

d 33 = k 33 – l 23 g 23 = 5 –(‐2)(‐2) = 1<br />

ii<br />

⎡2 −1 −1⎤<br />

⎢<br />

1 2 0<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

i = m<br />

j<br />

+ 1,...,<br />

j − K = ⎢ 1 −3 0 ⎥<br />

⎢<br />

⎥<br />

10 4<br />

j<br />

∑ − 1<br />

⎢<br />

⎥<br />

d<br />

jj<br />

= k<br />

jj<br />

− lrj<br />

grj<br />

⎢<br />

10⎥<br />

r=<br />

m j<br />

⎣<br />

⎦<br />

g<br />

ij<br />

l<br />

ij<br />

= 1<br />

d<br />

j= 4: g 34 = k 34 = ‐3<br />

l 34 = g 34 /d 33 = ‐3/1 = ‐3<br />

g<br />

m , j<br />

= km<br />

, j<br />

d 44 = k 44 – l 34 g 34 = 10 – (‐3)(‐3) = 1<br />

j<br />

j<br />

g<br />

ij<br />

l<br />

ij<br />

= i = m<br />

j<br />

+ 1,...,<br />

j − 1<br />

d<br />

ii<br />

d<br />

jj<br />

= k<br />

jj<br />

−<br />

j<br />

− 1<br />

∑l<br />

rj<br />

r=m<br />

j<br />

⎡2 −1 −1⎤<br />

⎢<br />

1 −2 0<br />

⎥<br />

⎢<br />

⎥<br />

K = ⎢ 1 −3<br />

0 ⎥<br />

⎢ ⎥<br />

⎢<br />

1 4 ⎥<br />

g rj<br />

⎢<br />

⎣<br />

10<br />

⎥<br />

⎦<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

22


LDL T <strong>Solution</strong><br />

j= 5: g 15 = k 15 = ‐1<br />

g 25 = k 25 – l 12 g 15 = 0 –(‐1)(‐1) = ‐1<br />

g 2 g 35 = k 35 – l 23 g 25 = 0 – (‐2)(‐1) = ‐2<br />

m j , j<br />

= k<br />

g 45 = k 45 – l 34 g 35 = 4 –(‐3)(‐2) = ‐2<br />

g<br />

m , j<br />

j<br />

l 15 = g 15 /d 11 = ‐1/2<br />

l 25 = g 25 /d 22 = ‐1/1 = ‐11<br />

l 35 = g 35 /d 33 = ‐2/1 = ‐2<br />

l 45 = g 45 /d 44 = ‐2/1 = ‐2<br />

g<br />

ij<br />

l<br />

ij<br />

= i = m<br />

j<br />

+ 1,...,<br />

j − 1<br />

d<br />

ii<br />

d<br />

jj<br />

= k<br />

jj<br />

−<br />

j<br />

∑ − 1<br />

lrj<br />

r=<br />

m<br />

j<br />

g<br />

rj<br />

d 55 = k 55 – l 15 g 15 – l 25 g 25 – l 35 g 35 – l 45 g 45 = 10 – (‐1/2)(‐1) 1) – (‐1)(‐1) – (‐2)(‐2) – (‐2)(‐2) = 1/2<br />

K<br />

⎡<br />

2 −<br />

1 −<br />

1/2<br />

⎤<br />

⎢<br />

1 2 −1<br />

⎥<br />

⎢<br />

−<br />

⎥<br />

= ⎢ 1 −3<br />

−2<br />

⎥<br />

⎢<br />

⎥<br />

⎢<br />

1 −<br />

2 ⎥<br />

⎢<br />

⎣<br />

1/2 ⎥<br />

⎦<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

23


LDL T <strong>Solution</strong><br />

Now, get the solution U <strong>of</strong> KU=R with R=[0 1 0 0 0] T<br />

V 1 = R 1 = 0<br />

i<br />

V 2 = R 2 – l 12 V 1 = 1 –0 = 1<br />

∑ − 1<br />

Vi<br />

= Ri<br />

− l<br />

r=<br />

mi<br />

V 3 = R 3 – l 23 V 2 = 0 –(‐2)(1) = 2<br />

V 4 = R 4 – l 34 V 3 = 0 –(‐3)(2) = 6<br />

V 5 = R 5 – l 15 V 1 – l 25 V 2 – l 35 V 3 – l 45 V 4 = 0 – 0 – (‐1)(1) – (‐2)(2) – (‐2) (6) = 17<br />

ri<br />

V<br />

r<br />

forward<br />

reduction<br />

Hence: V=[0 1 2 6 17] T and<br />

V<br />

− 1<br />

= D V =<br />

[0 1 2 6 34] T<br />

V<br />

(5) =<br />

i = 5<br />

V<br />

→ U = =<br />

5<br />

V5 34<br />

V V l U<br />

V2 = V2 − l25U5 = 1 −( − 1)(34) = 35<br />

(4) (5)<br />

V3 = V3 − l35U5 = 2 −( − 2)(34) = 70<br />

(4) (5)<br />

V 4<br />

= V 4<br />

− l 45U<br />

5<br />

= 6 −( − 2)(34) = 74<br />

U<br />

(4) (5)<br />

1<br />

=<br />

1 −<br />

15 5 = 0 − ( − 1/ 2)(34) =<br />

17<br />

(4) (5)<br />

(4)<br />

4<br />

V4 74<br />

backsubstitution<br />

b i<br />

V = V − l U<br />

r<br />

( i−1) ( i)<br />

r r ri i<br />

= m ,..., i − 1<br />

= = R = [ 17 35 292 70 74 4]<br />

i<br />

3 T<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

24


LDL T <strong>Solution</strong><br />

V = V − l U r = m ,..., i − 1<br />

( i−1) ( i)<br />

r r ri i<br />

i<br />

i = 4<br />

V = V − l U = − − =<br />

U<br />

(3) (4)<br />

3 3 34 4<br />

70 ( 3)(74) 292<br />

(3)<br />

3<br />

= V3 = 292<br />

R = [17 35 292 74 34] T<br />

i = 3 V2 = V2 − l23U3 = −( − )( ) =<br />

(2) (3)<br />

2 2 23 3<br />

35 ( 2)(292) 619<br />

(2)<br />

2<br />

= V2 = 619<br />

U<br />

R =<br />

[17 619 292 74 34] T<br />

i = 2<br />

V = V − l U = − − =<br />

U = = R = U = [ 636 619 292 74 34]<br />

T<br />

(1) (2)<br />

1 1 12 2<br />

17 ( 1)(619) 636<br />

(1)<br />

1<br />

V1 636<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

25


Efficiency <strong>of</strong> the solution<br />

•form K = i – m i , for all i > m K (i.e. for constant column height): LDL T<br />

decomposition requires n[m K + (m K ‐1)+ … +1] = ½ nm K2 operations,<br />

reduction and backsubstitution <strong>of</strong> a load vector requires 2nm K operations<br />

•<strong>in</strong> general (without constant column height): for decomposition <strong>of</strong> K and<br />

reductionand backsubstitution<strong>of</strong> R we get total <strong>of</strong> ½ Σ(i –m i ) 2 + 2 Σ(i –m i )<br />

operations<br />

• number <strong>of</strong> operations is governed by the pattern <strong>of</strong> nonzero elements <strong>in</strong><br />

thematrix ti<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

26


Error Estimate<br />

•Now we use t=3 digits for Gauss algorithm:<br />

Note hats (matrices represented with t=3) and bars (approximate<br />

solution – t=3) over unknown displacements<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

27


Error Estimate<br />

• Truncation errors (we solve equations exactly):<br />

• Round‐<strong>of</strong>f errors:<br />

• Total errors:<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

28


Error Estimate<br />

Bathe, page 749: Summary on truncation and round<strong>of</strong>f<br />

errors <strong>in</strong> solv<strong>in</strong>g KU = R<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

29


Related Methods<br />

•Cholesky factorization<br />

• <strong>Static</strong> ti condensation<br />

• Substructure analysis<br />

• Frontal solution<br />

15-Jun-07<br />

Method <strong>of</strong> F<strong>in</strong>ite Elements I<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!