19.01.2014 Views

Thermodynamics of High Temperature Materials Systems

Thermodynamics of High Temperature Materials Systems

Thermodynamics of High Temperature Materials Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Freiberg University of Mining and

Technology, Germany

Thermodynamics of High Temperature

Materials Systems

Hans Jürgen Seifert

Summer School

Advanced Thermostructural Materials

Santa Barbara, August 9, 2006


Thermodynamics of High Temperature Materials Systems

Outline

Hans Jürgen Seifert

1. Introduction and motivation for thermodynamic calculations

- Computational thermodynamics

- CALPHAD approach (CALculation of PHAse Diagrams)

- Thermodynamic databases and software

2. Thermodynamic optimization of the Ce-O system

- Thermodynamic modeling of solution phases

3. Precursor-derived Si-(B-)C-N ceramics

- High temperature reactions of silicon carbide and silicon

nitride ceramics

- Crystallization and high temperature stability of

Si-(B-)C-N ceramics


Thermodynamics of High Temperature Materials Systems

Outline

Hans Jürgen Seifert

4. Computational thermodynamics in heat shield

engineering

- The Y-Si-C-O system database

- Active / passive oxidation of SiC

- Phase reactions of Yttrium silicates and C/C-SiC

composites

- High temperature stability issues in the

engineering of heat shields

5. Conclusions


Combined Approach

Computational

Thermodynamics and

Modeling

+

Experiments, Analysis

Fundamental Research

Materials Engineering,

Processing


Computational Thermodynamics

Theory

Quantum Mechanics,

Statistical

Thermodynamics

Estimates

Experiments

DTA, Calorimetry,

EMF, Knudsen Effusion,

Metallography,

X-ray Diffractometry, ...

CALPHAD

Optimization

Ab-initio

Calculation

Models

with adjustable

Parameters

Adjustment of

Parameters

CALculation

of PHAse Diagrams

Thermodyn. Functions

G, H, S, C p

Storage in

Databases

Equilibrium

Calculations

Application

Equilibria

Phase Diagrams

Kinetics

Graphical

Representation


CALPHAD (CALculation of PHAse Diagrams)

• Development of Optimized Thermodynamic Datasets

stored in Computer Databases

• Calculation of :

- Thermodynamic Functions

- Liquidus Surface

- Isothermal Sections

- Isopleths

- Potential Phase Diagrams

- Phase Fraction Diagrams

- Phase Compositions

- Scheil Solidification


Requires Modeling of Stoichiometric and Solution Phases

Taking into Account the (Crystal-) Structures and Site

Occupancies


CALPHAD (CALculation of PHAse Diagrams)

Software

• LUKAS (BINGSS, BINFKT, TERGSS, TERFKT)

• THERMO-CALC

• FACTSAGE

• PANDAT

• MALT, MALT2

• MTDATA

• JMATPRO

• GEMINI

• ...


CALPHAD (CALculation of PHAse Diagrams)

Databases

• SGTE, Scientific Group Thermodata Europe

- SSOL2, SSOL4

- SSUB3

- Noble Metals

• Thermo-Calc: Steels, Ni-base, slags, ...

• ThermoTech: Ni-base, Al-, Mg-, ...

• PML: Al-, Ceramics

• ...


Calculated Ce–O System in Solid State from 60 to 67 mol. % O

in comparison with experimental data.


Phases in the Partial Ce – O System

Related Crystal Structures:

CeO 2-x (ss) CaF 2 - type (Strukturbericht C1)

Compound Energy Formalism:

(Ce +3 , Ce +4 ) 1 (O -2 ,Va) 2

C-Ce 2 O 3 (ss) Mn 2 O 3 - type (Strukturbericht D5 3 , Ordered State of C1)

Unit Cell: composed of 8 CaF 2 -type cells. ¼ of O-ions removed,

remaining atoms re-arrange towards these vacancies.

Compound Energy Formalism:

(Ce +3 , Ce +4 ) 2 (O -2 ) 3 (O -2 ,Va) 1

Contains more O atoms than the ideal formula of the Mn 2 O 3 .

Ce 2 O 3 Stoichiometric phase description (Strukturbericht D5 2 )


“Compound Energy” Formalisms –

Reference Compounds

(A,B) k (D,E) l

Solution phase with

two sublattices and 4 species

Four compounds defined:

A : D

A : E

B : D

B : E

Gibbs free energy for every compound to be determined

Here:

(Ce +3 , Ce +4 ) 1 (O -2 ,Va) 2


“Compound Energy” Formalism –

Surface of Reference

(A,B) k (D,E) l

Solution phase with

two sublattices and 4 species


Modeling of solution phases; sublattice model described in

the Compound Energy Formalism

(A,B) k (D,E) l

Solution phase with

two sublattices and 4 species

Stochiometric coefficient (s: sublattice)

Site fraction of spezies A on

sublattice s


Compound Energy Formalism –

Excess term of Gibbs free energy

(A,B) k (D,E) l

Solution phase with

two sublattices and 4 species


Compound Energy Formalisms –

Gibbs free energy of solution phases

Mixing Gibbs Energy


Phases in the Partial Ce – O System

CeO 2-x (ss) CaF 2 - type (Strukturbericht C1)

Compound Energy Formalism:

(Ce +3 , Ce +4 ) 1 (O -2 ,Va) 2

Cubic close pack of Ce ions, where all the tetrahedral voids form the

sublattice on which the 2-x O-ions are statistically distributed.

Electroneutrality condition determines that site fractions on the two

sublattices are not independent: Single variable y is equal 2·x.

'

y Ce

+ 3 =

'

y Ce

+

y

4 = (1 − y)

''

y Va

=

''

y O

−2

y

4

1−

y

=

4


No.

Paper

Experimental

Technique

Measured

Quantity

Composition

Temperature

(K)

Remark

1.

Bevan &

Kordis

(1964)

Experiment

with CO 2

/CO

& H 2

O/H 2

Partial

pressures

O 2

CeO 1.5-

CeO 2

909 - 1442

+

2.

Ackerman &

Rauh

(1971)

Mass

Spectroscopy

& Mass

Effusion

Partial

pressures

CeO, CeO 2,

Ce(g), CeO

CeO 1.51 -

-

CeO 1.53

CeO 1.5

-

CeO 1.34

2000 - 3000

1600 - 2000

1825 - 2320

1550 – 2040

+

3.

Iwasaki &

Katsura

(1971)

Experiment

with CO 2

&

CO 2

/H 2

mixture

Partial

pressures

O 2

CeO 2.00

900, 1000,

1100, 1227,

1300

+

4.

Campserveux

& Gerdanian

(1978)

Micro-

Calorimetry

Partial

pressures

O 2

CeO 2

1353, 1296,

1244

+

5.

Kitayama

et al.

(1985)

Thermogravimetry

Partial

pressures

O 2

CeO 2

,

Ce 2

O 3

Ce 3

O 5

1000 – 1330

+


6.

Marushkin

et al. (2000)

Knudsen cell,

Mass

spectrometry

Partial

pressures,

CeO 2

, Ce 2

O 3

CeO 1.99,

Ce 2

O 2.96

1900-2150

1850-2050

-

7.

Kuznetzov&

Rezukhina

(1960)

Calorimetry

Heat capacity,

CeO 2

608-1172

-

8.

Westrum &

Beale Jr.

(1961)

Adiabatic

Calorimetry

Heat capacity,

CeO 2

5-300

+

9.

Justice &

Westrum

(1969)

Cryogenic

Calorimetry

Heat capacity

Ce 2

O 3.02

5-350

+

10.

Basily & El-

Sharkawy

(1979)

Plane

temperature

wave method

Heat capacity

Ce 2

O 3

400-1000

+

11.

Ricken et al.

(1984)

Calorimetry

Specific heat,

∆H trans.

CeO 1.72


CeO 2

320-1200

-

12.

Kuznetzov, et

al. (1960)

Bomb

calorimetry

∆H for Ce 2

O 3

Ce 2

O 3.00

298

+


13.

Baker &

Holley

(1968)

Oxygen

Bomb

Calorimetry

Heat of

combustion

Ce 2

O 3

Ce 2

O 3

298.15

-

14.

Baker, Huber,

Holley &

Krikorian

(1971)

Bomb

calorimetry

Heat of

formation

CeO 2

, CeC 1.5

,

CeC 2

CeO 2

298.15

-

15.

Campserveux

& Gerdanian

(1974)

Micro

Calorimetry

Partial molal

enthalpy

∆H soln.

(O 2

)

CeO 1.5


CeO 2

1353

+

16.

Panlener,

Blementhal &

Garnier(1975)

Thermogravimetry

∆W/W

CeO 2-x

1023-1773

+

17

Riess,

Koerner &

Noelting

Dilatometry

Thermal

expansion

coefficient

CeO 1.79


CeO 2

320-1200

+

(1988)


Calculated Ce–O System in Solid State from 60 to 67 mol. % O

in comparison with experimental data.


Heat capacities of Ce 2

O 3

and CeO 2

.

Enthalpy increment (heat contents) of

CeO 2

.

H.J. Seifert, P. Nerikar, H.L. Lukas, Int. J. Mater. Res. 97 [6] (2006) 744-752.


Chemical potentials of oxygen for ceria as a function of composition

and temperature.


Chemical potentials of oxygen for ceria as a function of composition

and temperature.


Chemical potentials of oxygen for ceria as a function of composition

and temperature.


Chemical potentials of oxygen for ceria as a function of composition

and temperature.


Chemical potentials of oxygen for ceria as a function of composition

and temperature.


Chemical potentials of oxygen in the two-phase areas.


Partial Enthalpies of Oxygen in CeO 2

kJ/mol

HH CeO 2 CeO2

O O

Mole fraction O


Thermodynamics of High Temperature Materials Systems

Outline

Hans Jürgen Seifert

1. Introduction and motivation for thermodynamic calculations

- Computational thermodynamics

- CALPHAD approach (CALculation of PHAse Diagrams)

- Thermodynamic databases and software

2. Thermodynamic optimization of the Ce-O system

- Thermodynamic modeling of solution phases

3. Precursor-derived Si-(B-)C-N ceramics

- High temperature reactions of silicon carbide and silicon

nitride ceramics

- Crystallization and high temperature stability of

Si-(B-)C-N ceramics


Precursor-derived Si-B-C-N Ceramics

• Produced by thermolysis (1323 K, Ar) of

polymer precursors

• Amorphous, purely homogeneous inorganic materials

• NCP200: 40.1Si 23C 36.9N (at.%)

- Starts to crystallize at 1700 K (N 2 )

- Thermal stability up to 1800 K (N 2 )

• T2-1: 29.1Si 41.7C 19.4N 9.8B (at.%)

- X-ray amorphous, nanocrystalline

- Thermal stability up to 2300 K


Process for Precursor-derived Si-(B-)C-N Ceramics

Monomer

Polymer

Synthesis

Monomer Unit

Precursor Polymer

Preceramic Network

Crosslinking (200-400°C)

Thermolysis (1000-1400°C)

Amorphous Solid

Amorphous Ceramic

Polycrystalline Ceramic

Crystallization ( > 1400°C)

Crystalline Ceramic

Novel ceramics with high

temperature stability and with

good resistance to oxidation

can be obtained from

molecular units without

sintering aid.


J. Gröbner, PhD thesis, 1994

Si-C binary subsystem


Si-N binary subsystem

Gas

Si(l) + Gas

Si 3

N 4

2114 K

Gas + Si 3 N 4

Si 3 N 4 + Si(l)

1687 K

Si 3 N 4 + Si(s)

Si(l)

Si(s)


Isopleth from Carbon to Si 3 N 4 in the Si-C-N System


Isothermal Section of the Ternary System Si-C-N

T = 3000 K

(2727 °C)


Isothermal Sections of the Ternary System Si-C-N

Si 1 N 1.6 C 1.33 (VT50, Polyvinysilazane, Hoechst AG, Frankfurt, Germany)

Si 1 N 0.6 C 1.02 (NCP200, Polyhydridomethylsilazane, Nichimen Corp., Tokyo, Japan)

N

Si 3 N 4 + 3C = 3SiC +2N 2

(1)

N

Si 3 N 4 = 3Si + 2N 2

(2)

N

Si 3 N 4

Si 3 N 4

C

SiC

Si

C

SiC

Si

C

SiC

Si

T < 1484°C

(1757 K)

1484°C < T < 1841°C T > 1841°C

(2114 K)

P = 1 bar


Calculated Phase Fraction Diagrams of Precursor Derived Ceramics

Si 3 N 4 + 3C = 3SiC +2N 2

Si 1 N 1.6 C 1.33

(VT50)

1484°C


Thermogravimetrical (TG) analysis of precursor-derived Si-C-N ceramics

Mass Loss (%)

5

0

-5

-10

-15

-20

-25

-30

-35

NCP200

VT50

1000 1200 1400 1600 1800 2000

Temperature (°C)


Calculated Phase Fraction Diagram of Precursor Derived Ceramics

NCP200, Polyhydridomethylsilazane (Nichimen Corp., Tokyo, Japan)

Ceramics:

Si 1 N 0.6 C 1.02

Phase Fraction Diagram

Reaction Path

N

1484°C

Si 3 N 4

1841°C

C

SiC

Si


Thermogravimetrical (TG) analysis of precursor-derived Si-C-N ceramics

Mass Loss (%)

5

0

-5

-10

-15

-20

-25

-30

-35

NCP200

VT50

1000 1200 1400 1600 1800 2000

Temperature (°C)


Thermogravimetrical (TG) analysis of precursor-derived Si-B-C-N ceramics

Mass Loss (%)

5

0

-5

-10

-15

-20

-25

-30

-35

T2-1

Si 3 N 4 + 3C = 3SiC + 2N 2 MW36 MW33

(Si-B-C-N)

NCP200

VT50

Si 3 N 4 = 3Si + 2N 2

(Si-C-N)

-40

1200 1400 1600 1800 2000 2200

Temperature (°C)


Calculated Phase Fraction Diagram of

T2-1- Derived Ceramic Si 3.0 B 1.0 C 4.3 N 2.0

Si 3.0 B 1.0 C 4.3 N 2.0

1484°C

( T2-1 precursor, PML,

Max-Planck-Institut,

Stuttgart, Germany )


B

SiB n SiB 6

B 4+ δ C

BN

SiB 3

B 2 CN 2

mol-% B

mol-% B

BC 3 N

BC 4 N

BC 2 N

mol-% C

SiC

N

“C 3 N 4 “ SiC 2 N 4 Si 2 CN 4

Si 3 N 4

mol-% B

mol-% N

C

mol-% Si

Si


Isothermal Section at 1500 K in the Ternary System Si-B-C

T = 1500 K

(1227 °C)


B

SiB n

B 4+δ C

SiB 6

SiB 3

BN

N

Si 3 N 4

C

SiC

Si


Calculated Potential Phase Diagram

10 bar

1 bar

Si 3

N 4


Calculated Potential Phase Diagram

1484°C

1700°C

1841°C

2034°C

10 bar

1 bar


Carbon activity - temperature diagram

(2034°C)

I0 bar pressure:

ac. = 1 1973 K (1700°C)

ac. = 0.17 2307 K (2034°)

(1700°C)

Estimating a pressure of 10

bar and a carbon activity of

0.17, it can be concluded

that the thermal stability of

precursor-derived Si-B-C-N

ceramics remains up to

2000°C.


B

N

C

Si


Isopleth from B to Si 1 C 1.6 N 1.33 (VT50) in the Si-B-C-N System

B

N

C

Si


Isopleth from B 0.1 C 0.65 Si 0.25 to B 0.1 N 0.65 Si 0.25 in the Si-B-C-N System

(at 10 mol-% B and 25 mol-% Si)

X (N)

B 0.1 C 0.65 Si 0.25 B 0.1 N 0.65 Si 0.25

X (Si)


B - C - N B - C - Si B - C - N - Si C - N - Si B - N -Si

2722 u1

G + L = BN + B4C

2657 u2

G + L = C + B4C

2597 u3

G + B4C = C + BN

2372 u5

L + B4C = B + BN

2568 u4

L + C = B4C + SiC

2278 u6

L + B = B4C + SiBn

L + C + BN + B4C

2597 G + B4C = L + C + BN U1

G + L +

C + BN

G, L,

SiC, BN

2586 G + L = BN + SiC + C U2

L, SiC, G, SiC,

C, BN

C, BN

2568 L + C = SiC + B4C, BN U3

SiC, C, BN, B4C

2311 L + B = B4C + SiBn, BN D1

BN, B4C, SiBn, B

L, BN,

B4C, SiBn

2590 M

G = L + SiC + BN

3095 d1

L + C = SiC, G

L, SiC, BN,

B4C

G, L, SiC, BN

2310 d2

L + B = SiBn, BN

2273 K

2123 u7

L + SiBn=B4C + SiB6

2123 L + SiBn=SiB6 + B4C, BN D2

2123 d3

L + SiBn = SiB6, BN

L, BN, B4C, SiB6

BN, B4C, SiB6, SiBn

2114 G + L = Si3N4 + SiC, BN D3

G, Si3N4,

SiC, BN

L, Si3N4,

SiC, BN

2114 u8

G + L = Si3N4 + SiC

2114 d4

G + L = Si3N4, BN

1873 K

1669 u10

L + SiC = B4C + Si

1757 G + SiC = C + Si3N4, BN D4

G, Si3N4, C, BN

Si3N4, SiC, C, BN

1687 L = Si, Si3N4, BN, SiC D5

Si3N4, SiC, BN, Si

L, SiC,

BN, Si

1669 L + SiC = B4C + Si, BN D6

1757 u9

G + SiC = C + Si3N4

1687 d5

L = Si, SiC, Si3N4

1687 d6

L = Si, Si3N4, BN

1673 K

SiC, BN, Si, B4C

L, BN,

Si, B4C

1657 d7

L = Si + SiB6, B4C

1657 L = Si + SiB6,, BN, B4C D7

1657 d8

L = Si + SiB6, BN

BN, Si,

B4C, SiB6

1471 d9

Si + SiB6=SiB3, B4C

1471 Si + SiB6 = SiB3, B4C, BN D8

1471 d10

Si + SiB6 = SiB3, BN

BN, B4C, SiB3, SiB6

BN, Si, B4C, SiB3

298 K


Si-B-C-N phase diagram at 1673 K with 4 of 9 4-phase equilibria

B

SiB n

SiB 6

B 4

C

BN

N

Si 3 N 4

L

C

SiC

Si


Si-B-C-N concentration tetrahedron with indicated

plane at a constant B content of 25 at.%

T = 1400°C (1673 K)

B 4+δ

C

B

SiB n

SiB 6

SiB 3

BN

N

Si 3

N 4

C

SiC

Si


Si-B-C-N concentration tetrahedron with indicated

plane at a constant B content of 10 at.%

Si 3.0 B 1.0 C 4.3 N 2.0

( T2-1 precursor, PML,

Max-Planck-Institut,

Stuttgart, Germany )

B

SiB n

SiB

B 4+δ

C

6 SiB 3

Si

BN

N

T2-1

Si 3 N 4

C

SiC


Isothermal Section at 10 mol-% B in the Si-B-C-N System

B 4+δ C

B

SiB n

SiB 6

N

BN

T2-1

Si 3 N 4

C

SiC

Si

T = 1400°C

(1673 K)


Isothermal Sections at 10 mol-% B in the Si-B-C-N System

T = 1673 K

(1400°C)

T = 1873 K

(1600 °C)


System Si-B-C-N

- Metastable phase separation -

B

SiB n

a - Si-B-C-N

B 4+δ C

BN

SiB 6

SiB 3

a - BNC y +

a-Si 3+ x C x N 4-x

t - BNC y Si 3 N 4 SiC

1

4

N

a-BNC y Si 3

N 4

a-Si 3+ x C x N 4-x

C

1

4

Si


a - Si-B-C-N

B

SiB n

stable

a - C y (BN) +

a-Si 1 3+ x C x N 4 4-x

B 4+δ

C

SiB 6

SiB 3

not stable

t - BNC y Si 3 N 4 SiC

BN

N

Si 3

N 4

C

a-BNC y

a-Si 3+ x C x N 4-x

T2-1

SiC

1

4

Si

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!