22.01.2014 Views

Lectures on by Søren Johansen Department of Economics ...

Lectures on by Søren Johansen Department of Economics ...

Lectures on by Søren Johansen Department of Economics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

<str<strong>on</strong>g>Lectures</str<strong>on</strong>g> <strong>on</strong><br />

THE COINTEGRATED VECTOR AUTOREGRESSIVE MODEL<br />

<strong>by</strong> Søren <strong>Johansen</strong><br />

<strong>Department</strong> <strong>of</strong> Ec<strong>on</strong>omics<br />

University <strong>of</strong> Copenhagen<br />

and<br />

CREATES, Aarhus University<br />

INSTITUTE FOR THE ECONOMY IN TRANSITION<br />

Moscow April 7-9, 2008


<strong>Johansen</strong>, S. (2006) Cointegrati<strong>on</strong>: a survey. In: T.C. Mills and K. Patters<strong>on</strong> (eds.)<br />

Palgrave Handbook <strong>of</strong> Ec<strong>on</strong>ometrics: Volume 1, Ec<strong>on</strong>ometric Theory, Basingstoke,<br />

Palgrave Macmillan. www.math.ku.dk/~sjo<br />

Juselius, K. and Franchi, M. (2007) Taking a DSGE Model to the Data Meaningfully.<br />

Ec<strong>on</strong>omics: The Open-Access, Open-Assessment E-Journal, 1, 2007-4.<br />

www.ec<strong>on</strong>omics-ejournal.org/ec<strong>on</strong>omics/journalarticles/2007-4<br />

Exercises<br />

Temperature and sea level data<br />

1


LECTURE 2<br />

THE STATISTICAL ANALYSIS OF THE I(1) MODEL<br />

1. THE UNRESTRICTED VAR MODEL<br />

2. ESTIMATION OF THE UNRESTRICTED VAR BY REGRESSION<br />

3. CONCLUSION ON ANALYSIS OF UNRESTRICTED VAR<br />

4. REDUCED RANK REGRESSION<br />

5. ANALYSIS OF THE I(1) COINTEGRATED VAR MODEL<br />

6. ESTIMATION IN THE I(1) MODEL WITH RESTRICTIONS ON <br />

7. ESTIMATION IN THE I(1) MODEL WITH RESTRICTED DETERMINISTIC TERMS<br />

8. DETERMINATION OF COINTEGRATION RANK<br />

9. CONCLUSION 1<br />

10. A COINTEGRATION ANALYSIS OF A DYNAMIC STOCHASTIC GENERAL EQUILIBRIUM<br />

MODEL<br />

11. CONCLUSION 2


1<br />

1. THE UNRESTRICTED VAR MODEL<br />

x t = 1 x t 1 + 2 x t 2 + D t + " t ; " t i.i.d. N p (0; )<br />

Parameters:<br />

= ( 1 ; 2 ; ; )<br />

A hypothesis (or restricted model) is dened <strong>by</strong> a restricti<strong>on</strong><br />

H : g() = 0; or = h()<br />

Likelihood functi<strong>on</strong> dened from the c<strong>on</strong>diti<strong>on</strong>al density<br />

f (x t jx t 1 ; x t 2 ; : : : ; x 0 ; x 1 ) = (2) p=2 1<br />

p<br />

det()<br />

exp(<br />

1<br />

2 "0 t 1 " t );<br />

" t = x t 1 x t 1 2 x t 2 D t<br />

and<br />

L() =<br />

TY<br />

f (x t jx t 1 ; x t 2 ; : : : ; x 0 ; x 1 )<br />

t=1


2<br />

2. ESTIMATION OF THE UNRESTRICTED VAR BY REGRESSION<br />

Let<br />

x t = 1 x t 1 + 2 x t 2 + D t + " t ; " t i.i.d. N p (0; )<br />

B 0 = ( 1 ; 2 ; ); z 0 t = (x 0 t 1; x 0 t 2; D 0 t); x t = B 0 z t + " t<br />

Likelihood equati<strong>on</strong>s and the soluti<strong>on</strong><br />

TX<br />

TX<br />

(x ^B0 t z t )zt 0 = 0; ^B0 = x t zt(<br />

0<br />

t=1<br />

t=1<br />

TX<br />

t=1<br />

z t zt) 0 1 = M xz Mzz 1 = B 0 + M "z Mzz<br />

1<br />

L 2=T<br />

max<br />

^" t = x ^B0 t z t<br />

TX<br />

^ = T 1 ^" t^" 0 t = T 1 (M xx M xz Mzz 1 M zx )<br />

t=1<br />

= (2e) p j^j


3<br />

Inference is asymptotically normal:<br />

If x t is stati<strong>on</strong>ary<br />

Law <strong>of</strong> Large Numbers : M zz<br />

P<br />

! > 0<br />

Central Limit Theorem : T 1 M z"<br />

d<br />

! Npp (0; )<br />

T 1=2 ( ^B B) = T 1=2 M 1<br />

zz M z"<br />

w<br />

! N(0; 1 )<br />

^ = T 1 (M xx M xz M 1<br />

zz M zx ) = T 1 (M "" M "z M 1<br />

zz M z" ) P ! <br />

f = #(B)<br />

2 log LR(B = h()) = 2 log max B=h() L(B)<br />

max B L(B)<br />

#()<br />

w<br />

! 2 (f)


29<br />

DLEVEL<br />

15<br />

10<br />

Actual and Fitted<br />

1.00<br />

0.75<br />

0.50<br />

Autocorrelati<strong>on</strong>s<br />

5<br />

0.25<br />

0<br />

0.00<br />

­0.25<br />

­5<br />

­0.50<br />

­10<br />

­0.75<br />

­15<br />

1883 1890 1897 1904 1911 1918 1925 1932 1939 1946 1953 1960 1967 1974 1981 1988 1995 2002<br />

­1.00<br />

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Lag<br />

3<br />

2<br />

Standardized Residuals<br />

0.45<br />

0.40<br />

0.35<br />

Histogram<br />

SB ­D H : C hiSqr(2) = 0.07 [0.96]<br />

K ­S = 0.95 [5% C .V. = 0.08]<br />

J­B: ChiSqr(2) = 0.29 [0.86]<br />

1<br />

0.30<br />

0<br />

0.25<br />

0.20<br />

­1<br />

0.15<br />

­2<br />

0.10<br />

0.05<br />

­3<br />

1883 1890 1897 1904 1911 1918 1925 1932 1939 1946 1953 1960 1967 1974 1981 1988 1995 2002<br />

0.00<br />

­3.2 ­1.6 0.0 1.6 3.2<br />

1.Residual analysis.


30<br />

DTEMP<br />

0.3<br />

0.2<br />

Actual and Fitted<br />

1.00<br />

0.75<br />

0.50<br />

Autocorrelati<strong>on</strong>s<br />

0.1<br />

0.25<br />

­0.0<br />

0.00<br />

­0.25<br />

­0.1<br />

­0.50<br />

­0.2<br />

­0.75<br />

­0.3<br />

1883 1890 1897 1904 1911 1918 1925 1932 1939 1946 1953 1960 1967 1974 1981 1988 1995 2002<br />

­1.00<br />

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Lag<br />

3<br />

2<br />

Standardized Residuals<br />

0.40<br />

0.35<br />

Histogram<br />

SB ­D H : C hiSqr(2) = 1.47 [0.48]<br />

K ­S = 0.89 [5% C .V. = 0.08]<br />

J­B: ChiSqr(2) = 1.34 [0.51]<br />

0.30<br />

1<br />

0.25<br />

0<br />

0.20<br />

­1<br />

0.15<br />

0.10<br />

­2<br />

0.05<br />

­3<br />

1883 1890 1897 1904 1911 1918 1925 1932 1939 1946 1953 1960 1967 1974 1981 1988 1995 2002<br />

0.00<br />

­3.2 ­1.6 0.0 1.6 3.2


31<br />

Roots <strong>of</strong> the Compani<strong>on</strong> Matrix<br />

1.0<br />

Rank(PI)=2<br />

0.5<br />

0.0<br />

­0.5<br />

­1.0<br />

­1.0 ­0.5 0.0 0.5 1.0 1.5


3. CONCLUSION ON ANALYSIS OF UNRESTRICTED VAR<br />

Inference is based <strong>on</strong> asymptotic results. Each asymptotic result is proved under suitable<br />

assumpti<strong>on</strong>s, and these have to be checked for the particular applicati<strong>on</strong> before<br />

the results can be applied. Thus the tests are interrelated and supplement each other.<br />

The VAR model assumes<br />

1. Linear c<strong>on</strong>diti<strong>on</strong>al mean explained <strong>by</strong> the past observati<strong>on</strong>s and deterministic terms<br />

(Check for unmodelled systematic variati<strong>on</strong>, the choice <strong>of</strong> lag length, choice <strong>of</strong> informati<strong>on</strong><br />

set (data), possible outliers, n<strong>on</strong>linearity, n<strong>on</strong> c<strong>on</strong>stant parameters)<br />

2. C<strong>on</strong>stant c<strong>on</strong>diti<strong>on</strong>al variance<br />

(Check for ARCH effects, but also for regime shifts in the variance)<br />

3. Independent Normal errors, mean zero, variance <br />

(Check for lack <strong>of</strong> autocorrelati<strong>on</strong>, distributi<strong>on</strong>al form)<br />

Some assumpti<strong>on</strong>s crucial<br />

C<strong>on</strong>stant parameters, Independent errors<br />

Others less so<br />

ARCH, Distributi<strong>on</strong> <strong>of</strong> residuals<br />

5


6<br />

4. REDUCED RANK REGRESSION<br />

C<strong>on</strong>sider the (n<strong>on</strong> linear, reduced rank) regressi<strong>on</strong><br />

U t = 0 V t +<br />

where and are p r: Dene residuals<br />

Z t + " t<br />

and product moments<br />

R ut = U t M uz Mzz 1 Z t = (U t jZ t )<br />

R vt = V t M vz Mzz 1 Z t = (V t jZ t )<br />

<br />

Suu S uv<br />

TX<br />

= T 1<br />

S vv<br />

S vu<br />

t=1<br />

<br />

Rut<br />

R vt<br />

<br />

Rut<br />

R vt<br />

0


7<br />

The (n<strong>on</strong> linear, reduced rank) regressi<strong>on</strong><br />

U t = 0 V t +<br />

Z t + " t<br />

Solve the eigenvalue problem<br />

for eigenvalues and eigenvectors<br />

det(S vv S vu S 1<br />

uu S uv ) = 0<br />

1 > 1 > : : : > p > 0; v 1 ; : : : ; v p ; v 0 iS vv v j = 1 fi=jg<br />

The reduced rank regressi<strong>on</strong> estimates (T.W.Anders<strong>on</strong> 1951) are<br />

^ = (v 1 ; : : : ; v r )<br />

This analysis will be called RRR(U; V jZ)<br />

^ = S uv^(^0 Svv^)<br />

1<br />

^ = S uu S uv^(^0 Svv^)<br />

1^0 Svu


8<br />

5. ANALYSIS OF THE I(1) COINTEGRATED VAR MODEL<br />

H r : x t = 0 x t 1 +<br />

Xk 1<br />

where " t i.i.d. N p (0; ) and and are (p r):<br />

MLE = RRR(x t ; x t 1 jx t 1 ; : : : ; x t k+1 ; D t ): Dene<br />

i=1<br />

ix t i + D t + " t ;<br />

R 0t = (x t jx t 1 ; : : : ; x t k+1 ; D t ) and R 1t = (x t 1 jx t 1 ; : : : ; x t k+1 ; D t )<br />

TX<br />

S ij = T 1 R it Rjt; 0 jS 11 S 10 S00 1 S 01j = 0; ^ = (v1 ; : : : ; v r );<br />

t=1<br />

L 2=T<br />

max (H r ) = jS 00 j<br />

2 log LR(H r jH p ) = T<br />

rY<br />

(1 ^i ); Lmax 2=T (H p ) = jS 00 j<br />

i=1<br />

pX<br />

i=r+1<br />

log(1 ^i )<br />

Bartlett (1938) Can<strong>on</strong>ical Correlati<strong>on</strong>s between x t and x t 1 .<br />

pY<br />

(1 ^i );<br />

i=1


34<br />

The two eigenvectors for temperature sea level<br />

0.24<br />

0.12<br />

0.00<br />

­0.12<br />

­0.24<br />

­0.36<br />

1881 1890 1899 1908 1917 1926 1935 1944 1953 1962 1971 1980 1989<br />

3.6<br />

2.4<br />

1.2<br />

0.0<br />

­1.2<br />

­2.4<br />

1881 1890 1899 1908 1917 1926 1935 1944 1953 1962 1971 1980 1989


8. DETERMINATION OF COINTEGRATION RANK<br />

The model and the test<br />

H r : x t = 0 x t 1 + P k 1<br />

i=1 ix t i + D t + " t<br />

2 log LR(H r jH p ) = T P p<br />

i=r+1 log(1 ^i )<br />

Theorem: Under I(1) assumpti<strong>on</strong>s and if the rank is r, the asymptotic distributi<strong>on</strong> <strong>of</strong><br />

2 log LR(H r jH p ) is given as a functi<strong>on</strong> <strong>of</strong> Brownian moti<strong>on</strong> <strong>of</strong> dimensi<strong>on</strong> p r. The<br />

distributi<strong>on</strong> depends <strong>on</strong> the type <strong>of</strong> deterministic terms and is tabulated <strong>by</strong> simulati<strong>on</strong>.<br />

We rst test<br />

pX<br />

H 0 : r = 0 versus H p : r p; Test: 2 log LR(H 0 jH p ) = T log(1 ^i ):<br />

If this is rejected, we test<br />

H 1 : r = 1 versus H p : r p; Test: 2 log LR(H 1 jH p ) = T<br />

i=1<br />

pX<br />

log(1<br />

i=2<br />

^i ) etc.<br />

10


11<br />

Rank determinati<strong>on</strong> for temperature and sea level data<br />

p-r r EigVal TraceTest 95Fract p-val<br />

2 0 0:168 20:76 15:41 0:005<br />

1 1 0:003 0:36 3:84 0:54<br />

The tted ECM model for temperature and sea level data<br />

h t = 4:15 (T t 1 0:0031 h t 1) 0:2805 h t 1 + 3:04 T t 1 + 2:22<br />

(t=0:86) (t= 7:37) (t= 3:11) (t=0:60) (t=3:55)<br />

T t = 0:40 (T t 1 0:0031 h t 1) 0:0024 h t 1 0:053 T t 1 0:023<br />

(t= 4:26) (t= 7:37) (t= 1:40) (t= 0:54)<br />

Note h t weakly and str<strong>on</strong>gly exogenous<br />

(t= 1:91)


33<br />

0.6<br />

Temperature versus Sea Level<br />

0.4<br />

Temperature<br />

0.2<br />

0.0<br />

­0.2<br />

­0.4<br />

­80 ­40 0 40 80 120<br />

Sea Level


12<br />

A partial model for (T t ; h t ) c<strong>on</strong>diti<strong>on</strong>al <strong>on</strong> the forcing (weakly exogenous) variables<br />

W MGG (CO2 and Methan) and Aerosols (Sulphate)<br />

<br />

Tt<br />

= 0 Tt 1<br />

h<br />

1 + 0 W MGGt 1<br />

t h<br />

2<br />

+ + "<br />

t 1 Aerosol t<br />

t 1<br />

Cointegrating relati<strong>on</strong><br />

^ 0 x t = T t 0:0065<br />

(t= 3:52) h t 0:768<br />

(t=4:68) wmgg t 1:478<br />

(t=3:51) aerosol t


38<br />

0.4<br />

Temperature against Temperature*<br />

0.3<br />

0.2<br />

0.1<br />

­0.0<br />

­0.1<br />

­0.2<br />

­0.3<br />

­0.4<br />

­0.3 ­0.2 ­0.1 ­0.0 0.1 0.2 0.3


39<br />

2.0<br />

1.5<br />

1.0<br />

TEMP<br />

WMGGS<br />

LEVELSTAR<br />

AEROSOLSTAR<br />

TEMPSTAR<br />

0.5<br />

0.0<br />

­0.5<br />

­1.0<br />

­1.5<br />

­2.0<br />

­2.5<br />

1881 1892 1903 1914 1925 1936 1947 1958 1969 1980 1991<br />

2.Plot <strong>of</strong> the comp<strong>on</strong>ents <strong>of</strong> the tted Temperature for simplied forcing variables


13<br />

6. ESTIMATION IN THE I(1) MODEL WITH RESTRICTIONS ON <br />

C<strong>on</strong>sider the model<br />

x t = 0 x t 1 +<br />

Xk 1<br />

i=1<br />

and the hypothesis H : = H; so that under H<br />

x t = 0 H 0 x t 1 +<br />

Xk 1<br />

i=1<br />

ix t i + D t + " t ;<br />

Estimate <strong>by</strong> RRR(x t ; H 0 x t 1 jx t 1 ; : : : ; x t k+1 ; D t ).<br />

Similarly for hypotheses = (b; H); = H ; ? = H<br />

ix t i + D t + " t ;<br />

But not for = (H 1 1 ; H 2 2 ) and general n<strong>on</strong>-linear hypotheses.<br />

General optimizati<strong>on</strong> algorithm or switching algorithms used for programs.


14<br />

7. ESTIMATION IN THE I(1) MODEL WITH RESTRICTED DETERMINISTIC TERMS<br />

The model for and (p r) with restricted c<strong>on</strong>stant term 1 = 0; 0 ? 0 = 0<br />

Xk 1<br />

0 <br />

x t = 0 x t 1 + ix t i + 0 xt<br />

0 + " t = <br />

1<br />

Xk 1<br />

+<br />

0 1<br />

ix t<br />

i=1<br />

i=1<br />

<br />

xt<br />

Estimate <strong>by</strong> RRR(x t ; 1<br />

jx<br />

1 t 1 ; : : : ; x t k+1 )<br />

The model for and (p r) with restricted linear term 0 ? 1 = 0<br />

i + " t<br />

x t = 0 x t 1 +<br />

Xk 1<br />

i=1<br />

ix t i + 0 + 0 1t + " t ;<br />

0 <br />

xt<br />

= <br />

1<br />

Xk 1<br />

+<br />

1 t<br />

ix t<br />

i=1<br />

<br />

xt<br />

Estimate <strong>by</strong> RRR(x t ; 1<br />

jx<br />

t t 1 ; : : : ; x t k+1 ; 1)<br />

i + 0 + " t


15<br />

9. CONCLUSION<br />

We have shown that the unrestricted VAR model is estimated <strong>by</strong> Ordinary Least Squares,<br />

but the cointegrated VAR model is estimated <strong>by</strong> Reduced Rank Regressi<strong>on</strong>.<br />

The same algorithm can be used for a number <strong>of</strong> useful hypotheses <strong>on</strong> the cointegrating<br />

coefcients and adjustment parameters. The algorithm can also be used for<br />

suitable restricti<strong>on</strong>s <strong>on</strong> the deterministic terms.<br />

The Reduced Rank Regressi<strong>on</strong> solves all the models H 0 ; : : : ; H p simultaneously.


16<br />

10. A COINTEGRATION ANALYSIS OF A DYNAMIC STOCHASTIC GENERAL EQUILIBRIUM<br />

MODEL<br />

This analysis <strong>of</strong> a DSGE model is based up<strong>on</strong><br />

1. Ireland, P. 2004. A method for taking models to the data. Journal <strong>of</strong> Ec<strong>on</strong>omic<br />

Dynamics and C<strong>on</strong>trol 28, 1205-1226.<br />

2. Juselius, K. and Franchi, M. (2007) Taking a DSGE Model to the Data Meaningfully.<br />

Ec<strong>on</strong>omics: The Open-Access, Open-Assessment E-Journal, 1, 2007-4.


17<br />

THE DATA<br />

The data 1948:1 to 2002:2 from<br />

Federal Reserve Bank <strong>of</strong> St. Louis' FRED database and<br />

Bureau <strong>of</strong> Labor Statistics' Establishment Survey.<br />

N t = Civilian, n<strong>on</strong>-instituti<strong>on</strong>al populati<strong>on</strong>, age 16 and over.<br />

C t = Real Pers<strong>on</strong>al C<strong>on</strong>sumpti<strong>on</strong> Expenditures in chained 1996 dollars/N t<br />

I t = Real Gross Private Domestic Investment in chained 1996 dollars=N t<br />

H t = Hours <strong>of</strong> wage and salary workers <strong>on</strong> private, n<strong>on</strong>-farm payrolls=N t .<br />

Y t = I t + C t


THE DSGE MODEL<br />

The Cobb-Douglas producti<strong>on</strong> functi<strong>on</strong> is Y t = A t Kt ( t H t ) 1<br />

labor-augmenting technological progress'.<br />

18<br />

where is `gross rate <strong>of</strong><br />

Utility functi<strong>on</strong> E t [ P 1<br />

i=0 i (log C t+i H t+i )] is maximized with respect to fC t ; H t g 1 t=0<br />

subject to<br />

First order c<strong>on</strong>diti<strong>on</strong>s<br />

log(A t ) = (1 ) log A + log(A t 1 ) + " t ; jj < 1<br />

Y t = C t + I t<br />

K t+1 = (1 )K t + I t<br />

C t H t = (1<br />

)Y t<br />

1 = E t [ C t<br />

C t+1<br />

( Y t+1<br />

K t+1<br />

+ 1<br />

)]


19<br />

STATISTICAL ASSUMPTIONS AND ANALYSIS OF PETER IRELAND<br />

The variables (y t = log Y t ; k t = log K t ; i t = log I t ; c t = log C t ) trend stati<strong>on</strong>ary (with same<br />

trend):<br />

^y t = log Y t t log y; ^kt = log K t t log k<br />

^{ t = log I t t log i; ^c t = log C t t log c<br />

^a t = log A t a; ^ht = log H t h<br />

stati<strong>on</strong>ary mean zero. Steady state values are (y; k; i; c; a; h):<br />

Linearized rst order c<strong>on</strong>diti<strong>on</strong>s<br />

F OC1 : C t H t = (1<br />

)Y t : c t + h t = y t + <br />

F OC2 : 1 = E t [ C t<br />

( Y t+1<br />

+ 1 )] : E t c t+1 = <br />

C t+1 K 1 + 2 E t (y t+1 k t+1 )<br />

t+1<br />

Cobb Douglas : Y t = A t Kt ( t H t ) 1 : y t = a t + k t + (1 )h t + (1 )t log


The linearized ec<strong>on</strong>omic theory model in state space form, because k t is unobserved<br />

<br />

^kt a1 a<br />

state equati<strong>on</strong> : = 2 ^kt 1 0<br />

+ "<br />

^a t 0 ^a t 1 1 t<br />

0 1<br />

^y t<br />

<br />

observati<strong>on</strong> equati<strong>on</strong> : @ ^c t<br />

A ^kt<br />

= C<br />

^a ^h t<br />

t<br />

The steady state values and (a 1 ; a 2 ; C) are (simple) computable functi<strong>on</strong>s <strong>of</strong> parameters:<br />

= (; ; ; ; ; A; ; ): (http://www2.bc.edu/~irelandp.)<br />

Observati<strong>on</strong> equati<strong>on</strong> is singular<br />

`We need a stochastic formulati<strong>on</strong> to make simplied relati<strong>on</strong>s elastic enough for applicati<strong>on</strong>s',<br />

Haavelmo (1943).<br />

20


The model c<strong>on</strong>sidered <strong>by</strong> Ireland adds an autoregressive error to the observati<strong>on</strong> equati<strong>on</strong><br />

^k t = a 1^kt 1 + a 2^a t 1<br />

21<br />

^a t = ^a t<br />

1 + " t<br />

0<br />

@<br />

1<br />

^y t<br />

<br />

^c t<br />

A ^kt<br />

= C<br />

^a ^h t<br />

t<br />

u t = Du t<br />

t ; i.i.d. N 3 (0; V ) independent <strong>of</strong> " t i.i.d. N(0; 2 ).<br />

1 + t<br />

+ u t<br />

Thus the ve variables, ^y t ; ^k t ; ^c t ; ^h t ; ^a t are driven <strong>by</strong> four errors, " t ; 1t ; 2t ; 3t :


23<br />

THE VAR APPROACH.<br />

The Data<br />

The data 1948:1 to 2002:2 from<br />

Federal Reserve Bank <strong>of</strong> St. Louis' FRED database and<br />

Bureau <strong>of</strong> Labor Statistics' Establishment Survey.<br />

N t = Civilian, n<strong>on</strong>-instituti<strong>on</strong>al populati<strong>on</strong>, age 16 and over.<br />

C t = Real Pers<strong>on</strong>al C<strong>on</strong>sumpti<strong>on</strong> Expenditures in chained 1996 dollars/N t<br />

I t = Real Gross Private Domestic Investment in chained 1996 dollars=N t<br />

H t = Hours <strong>of</strong> wage and salary workers <strong>on</strong> private, n<strong>on</strong>-farm payrolls=N t .<br />

Y t = I t + C t<br />

add the variable<br />

K t = Capital Stock Formati<strong>on</strong>=N t<br />

x t = (log Y t ; log C t ; log K t ; log H t )<br />

Analyse the data in two periods 1960 : 1 1979 : 4 and 1981 : 1 2002 : 1<br />

Model in each period<br />

x t = 0 x t 1 + 1 x t 1 + 0 + 1 t + D t + " t


24<br />

Hypotheses <strong>of</strong> interest: two scenarios<br />

Possibility I: If log A t is n<strong>on</strong> stati<strong>on</strong>ary then<br />

Possibility II: If log A t is stati<strong>on</strong>ary then<br />

I(1) y t k t (1 )h t (unit root in a t )<br />

I(0) c t y t + h t (F OC1)<br />

I(0) y t k t (F OC2)<br />

I(0) h t<br />

I(0) y t k t (1 )h t<br />

I(0) c t y t + h t (F OC1)<br />

I(0) y t k t (F OC2)<br />

I(1) h t


Main assumpti<strong>on</strong>s in Irelands paper<br />

Strutural assumpti<strong>on</strong>s: Parameters c<strong>on</strong>stant over time<br />

Exogeneity assumpti<strong>on</strong>s: log A t and log K t drive the system (technology shocks)<br />

Stati<strong>on</strong>arity assumpti<strong>on</strong>s log Y t ; log K t ; log C t ; log I t trend stati<strong>on</strong>ary, log A t ; log H t stati<strong>on</strong>ary,<br />

the errors u t are stati<strong>on</strong>ary<br />

Distributi<strong>on</strong>s " t ; t Gaussian and f" t g independent <strong>of</strong> f t g<br />

Results<br />

Coeff Estimate error Autocorr<br />

p val<br />

ARCH<br />

p val<br />

Normal<br />

p val<br />

0.9987 " t 0.004 0.78 0.00<br />

a 1 0.8824 1 0.188 0.03 0.10<br />

a 2 0.1568 2 0.001 0.00 0.10<br />

max (D) 0.9398 3 0.010 0.00 0.00<br />

A break in the parameters was observed <strong>by</strong> Peter Ireland but ignored in the analysis<br />

C<strong>on</strong>clusi<strong>on</strong> Statistical evidence from an analysis <strong>of</strong> the DSGE model cannot be c<strong>on</strong>sider<br />

reliable.<br />

22


36<br />

­0.05 khat<br />

­0.10<br />

­0.15<br />

­0.05<br />

­0.10<br />

ahat<br />

0.0<br />

1960 1970 1980 1990 2000<br />

yhat<br />

­0.05<br />

1960 1970 1980 1990 2000<br />

chat<br />

­0.1<br />

­0.10<br />

­0.15<br />

­0.2<br />

1960 1970 1980 1990 2000<br />

1960 1970 1980 1990 2000<br />

0.1<br />

hhat<br />

0.0<br />

1960 1970 1980 1990 2000


Determinati<strong>on</strong> <strong>of</strong> cointegrati<strong>on</strong> rank for two periods<br />

1960:1-1979:4 1981:1-2002.1<br />

r p r p val max p val max<br />

0 4 0.47 0:01 0.56 0.51 0.00 0.77<br />

1 3 0.25 0:43 0.73 0.27 0.03 0.71<br />

2 2 0.13 0:76 0.77 0.20 0.26 0.81<br />

3 1 0.09 0:58 0.90 1 0.08 0.44 0.96 1<br />

4 0 0.94 1 0.98 1<br />

25


26<br />

We take the models for period I and II with two lags and rank = 2 and test<br />

h t stati<strong>on</strong>ary (unit vector in ), I: Reject (0.01), II: Reject (0.00)<br />

y t ; c t ; k t are trend stati<strong>on</strong>ary (unit vector in ), I: Reject, II: Reject (all 0.00)<br />

a t ; k t acts as the main driving forces in model; i.e. k t weakly exogenous, I: Reject<br />

(0.00), II: Reject (0.00)<br />

However,<br />

c t is weakly exogenous in both periods (0.15 and 0.41) and h t in peridod II (0.07)<br />

(Thus demand shocks (labour shocks) rather than supply shocks drive the ec<strong>on</strong>omy)<br />

The shocks to k t do not c<strong>on</strong>tribute to the trends; a unit vector in ; I: Accept (0.62), II:<br />

Accept (0.65).


27<br />

More tests<br />

a t is stati<strong>on</strong>ary, y t k t (1 )h t t log stati<strong>on</strong>ary;I: Accept, II: Accept<br />

1960 : 1 1979 : 4 1981 : 1 2002:1<br />

y t = 0:65h t + 0:35k t (0:30) y t = 0:39h t + 0:61k t (0:17)<br />

y t c t trend stati<strong>on</strong>ary I: Reject (0.03), II: Reject (0.00)<br />

(F OC1) y t c t h t trend stati<strong>on</strong>ary,I: Reject (0.00), II: Reject (0.02)<br />

(F OC2) y t k t ; trend stati<strong>on</strong>ary,I: Reject (0.00), II: Reject (0.046)


28<br />

11. CONCLUSION 2<br />

When taking a model to the data <strong>on</strong>e shoudl carefully check the assumpti<strong>on</strong>s behind<br />

the model <strong>on</strong>e applies for inference.<br />

If we nd a model that describes the data well, we can test the validity <strong>of</strong> the ec<strong>on</strong>omic<br />

model assumpti<strong>on</strong>s, and if they are accepted we can test hypotheses with in the model.<br />

If they are rejected we can perhaps gain so much informati<strong>on</strong> <strong>on</strong> the behaviour <strong>of</strong> the<br />

data that we can formulate a new model and there <strong>by</strong> gain insight into the functi<strong>on</strong>ing<br />

<strong>of</strong> the ec<strong>on</strong>omy.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!