25.01.2014 Views

A Low Power, Fully Differential Bulk Driven OTA in 180 nm ... - ijcee

A Low Power, Fully Differential Bulk Driven OTA in 180 nm ... - ijcee

A Low Power, Fully Differential Bulk Driven OTA in 180 nm ... - ijcee

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 3, June 2012<br />

A <strong>Low</strong> <strong>Power</strong>, <strong>Fully</strong> <strong>Differential</strong> <strong>Bulk</strong> <strong>Driven</strong> <strong>OTA</strong> <strong>in</strong> <strong>180</strong><br />

<strong>nm</strong> CMOS Technology<br />

Rekha S. and Laxm<strong>in</strong>idhi T.<br />

Abstract—A low voltage, low power bulk driven Operational<br />

Transconductance Amplifier (<strong>OTA</strong>) with feed-forward<br />

compensation is presented. The <strong>OTA</strong> is designed <strong>in</strong> <strong>180</strong> <strong>nm</strong><br />

technology and achieves an open loop DC ga<strong>in</strong> of 44.05 dB, 3 dB<br />

bandwidth of 408 kHz and Unity Ga<strong>in</strong> Bandwidth (UGB) of<br />

9.07 MHz. <strong>OTA</strong> is stable with phase marg<strong>in</strong> of 45º and a ga<strong>in</strong><br />

marg<strong>in</strong> of 66 dB for a pure capacitive load of 1 pF. <strong>OTA</strong><br />

operates on 0.5 V supply consum<strong>in</strong>g a power of 30 µW. As an<br />

application, a fifth order Chebyshev low pass filter is designed<br />

for a bandwidth of 480 kHz. Filter follows the ideal response up<br />

to an attenuation of 50 dB.<br />

Index Terms—<strong>Bulk</strong> driven, CMOS, feed-forward frequency<br />

compensation<br />

I. INTRODUCTION<br />

One of the important analog modules on a System On Chip<br />

(SOC) is the cont<strong>in</strong>uous time filter perform<strong>in</strong>g tasks like<br />

antialias<strong>in</strong>g, equalization etc. Filters used <strong>in</strong> biomedical<br />

applications like heart rate detectors and hear<strong>in</strong>g aids etc.,<br />

and front end of the sensor networks demand small size and<br />

low power consumption. Popular topologies of filters <strong>in</strong>clude<br />

active-RC and Transconductance – C filters. Among these,<br />

because of negative feedback, active-RC filters provide<br />

higher dynamic range for a given power. Operational<br />

Amplifier (Opamp) is the ma<strong>in</strong> build<strong>in</strong>g block of the<br />

active-RC filter. However, low output impedance<br />

requirement of Opamp makes it power hungry. For this<br />

reason, <strong>OTA</strong>s are widely used <strong>in</strong> place of Opamps but with<br />

some careful design [1], [2]. Various designs of <strong>OTA</strong> are<br />

described <strong>in</strong> the literature. This paper presents the design of a<br />

low power <strong>OTA</strong> for low power applications.<br />

Scal<strong>in</strong>g dimensions <strong>in</strong> CMOS technology requires<br />

proportional scal<strong>in</strong>g <strong>in</strong> supply voltage as well. Though lower<br />

supply voltages result <strong>in</strong> lower power consumption, as the<br />

supply reduces there is a need to ma<strong>in</strong>ta<strong>in</strong> relatively larger<br />

threshold voltage <strong>in</strong> order to reduce subthreshold currents.<br />

One of the circuit techniques to overcome this threshold<br />

voltage problem is to use bulk driven <strong>in</strong>put MOSFETs which<br />

are operated <strong>in</strong> weak <strong>in</strong>version mode. The first bulk driven<br />

MOS transistor concept was proposed <strong>in</strong> [3] <strong>in</strong> 1987.<br />

Accord<strong>in</strong>g to this concept, the signal is applied to the bulk<br />

nodes of the MOSFETs whereas bias<strong>in</strong>g is done through the<br />

gates of the devices. <strong>Bulk</strong> modulates the current flow through<br />

Manuscript received <strong>in</strong> April 13, 2012; revised May 24, 2012. This work<br />

was supported <strong>in</strong> part by the Department of Information Technology, MCIT,<br />

and GOI.<br />

The authors are with National Institute of Technology Karnataka,<br />

Surathkal (e-mail: rsbhat_99@ yahoo.com, laxm<strong>in</strong>idhi_t@ yahoo.com).<br />

the transistor. In [3], a bulk driven <strong>OTA</strong> is proposed. The<br />

research there on led to many bulk driven <strong>OTA</strong> designs, for<br />

example [4].<br />

Commonly used Miller compensation scheme to stabilize<br />

the <strong>OTA</strong> <strong>in</strong> feedback, suffers from poor ga<strong>in</strong>-bandwidth<br />

product. When such a <strong>OTA</strong> is used to realize a filter, the<br />

realizable filter bandwidth is limited by the <strong>OTA</strong><br />

ga<strong>in</strong>-bandwidth. Feed-forward compensation scheme is<br />

found to be effective <strong>in</strong> push<strong>in</strong>g the ga<strong>in</strong>-bandwidth product<br />

of the <strong>OTA</strong> to a higher value [5]- [7].<br />

II. FEED-FORWARD <strong>OTA</strong><br />

The block schematic of fully differential feed-forward<br />

compensated <strong>OTA</strong> is shown <strong>in</strong> Fig. 1 [7]. In the figure, g m1<br />

and g m2 are fully differential transconductors form<strong>in</strong>g the<br />

forward path of the <strong>OTA</strong> and g m3 , also a fully differential<br />

transconductor, form<strong>in</strong>g the feed-forward path. A<br />

simplified s<strong>in</strong>gle ended model of the <strong>OTA</strong> <strong>in</strong> Fig.1 is shown<br />

<strong>in</strong> Fig. 2. The correspond<strong>in</strong>g transfer function can be written<br />

as follows.<br />

v ip<br />

v im<br />

+<br />

g<br />

- + -<br />

m1<br />

g m2<br />

- + - +<br />

+<br />

-<br />

g m3<br />

Fig. 1. <strong>Fully</strong> differential feed-forward compensated <strong>OTA</strong><br />

v i<br />

where ω<br />

-<br />

+<br />

g m1 g m2<br />

r 1 c 1 r 2 c 2<br />

g m3<br />

Fig. 2. S<strong>in</strong>gle ended Feed-forward compensated <strong>OTA</strong><br />

v o<br />

v op<br />

v om<br />

⎡ s ⎤<br />

gm<br />

1gm2rr<br />

1 2 ⎢1<br />

+<br />

V<br />

ω<br />

⎥<br />

o<br />

⎣ z ⎦<br />

(1)<br />

=<br />

Vi<br />

⎡ s ⎤⎡ s ⎤<br />

⎢1+ ⎥⎢1+<br />

⎥<br />

⎢⎣ ωp<br />

1⎥⎢ ⎦⎣ ωp2⎥⎦<br />

1 1 ωp 1gm1gm2r1<br />

= , ωp<br />

= and ω<br />

z<br />

= .<br />

rc rc<br />

g<br />

p1 2<br />

1 1 2 2<br />

m3<br />

396


International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 3, June 2012<br />

The feed-forward path thus <strong>in</strong>troduces a left half s-plane<br />

zero at s = - ω z which improves the phase marg<strong>in</strong> of the <strong>OTA</strong><br />

without compromis<strong>in</strong>g the band width.<br />

III. FULLY DIFFERENTIAL BULK DRIVEN TRAN CONDUCTOR<br />

It is a common practice to use source coupled differential<br />

pair to realize the transconductor. But due to the limitations<br />

on overhead when operat<strong>in</strong>g with low supply voltages, it is<br />

common to use a pseudo differential architecture. A pseudo<br />

differential transconductor is shown <strong>in</strong> Fig. 3. In the figure,<br />

vip and vim are the differential <strong>in</strong>puts and vop and vom are<br />

the differential outputs. M1 and M2 are the <strong>in</strong>put transistors<br />

operat<strong>in</strong>g <strong>in</strong> saturation. M3 and M4 form the NMOS loads<br />

and operate <strong>in</strong> weak <strong>in</strong>version.<br />

V DD<br />

transfer function can be written as <strong>in</strong> (2).<br />

( c c )<br />

2 ⎡ sc ⎤⎡ 1<br />

+ ⎤<br />

1 2 ⎢1<br />

−<br />

c<br />

c<br />

s<br />

g<br />

mb<br />

r r ⎥⎢1<br />

+ ⎥<br />

V<br />

=<br />

⎣ g ⎦⎣<br />

g<br />

o mb<br />

mb ⎦ (2)<br />

2<br />

V<br />

As + Bs + 1<br />

i<br />

V DD<br />

M 1 M 2<br />

v im<br />

v om<br />

v op<br />

v ip<br />

M 1d M 2d<br />

M 3 M 4<br />

M 5<br />

i dc<br />

v cm<br />

v cmfb<br />

v ip<br />

v om<br />

M 1 M 2<br />

v im<br />

v op<br />

v cm<br />

M 3 M 4<br />

M 5<br />

i dc<br />

v cmfb<br />

Fig. 3. Pseudo differential bulk driven transconductor<br />

v ip<br />

c c<br />

-g mb<br />

v om<br />

R <strong>in</strong> C <strong>in</strong> R out C out<br />

Fig. 4. S<strong>in</strong>gle ended small signal model of the transconductor<br />

A s<strong>in</strong>gle ended small signal equivalent circuit of the<br />

differential transconductor is shown <strong>in</strong> Fig. 4. In the figure,<br />

g mb is the transconductance of bulk driven transistor (M 1 /<br />

M 2 ). C <strong>in</strong> and C out are the effective capacitances at <strong>in</strong>put and<br />

output respectively. Similarly, R <strong>in</strong> and R out are the effective<br />

<strong>in</strong>put and output resistances respectively. C c is the effective<br />

coupl<strong>in</strong>g capacitance between the <strong>in</strong>put and the output (bulk<br />

and the dra<strong>in</strong>). This coupl<strong>in</strong>g capacitance can not be ignored<br />

as it is the dra<strong>in</strong> junction capacitance and it <strong>in</strong>troduces a right<br />

half plane zero. A simple scheme to compensate for this<br />

effect is shown <strong>in</strong> Fig. 5. It is to be noted that this will only<br />

compensate for the capacitance but will not cancel the<br />

capacitance altogether.<br />

IV. BULK DRIVEN FEED-FORWARD <strong>OTA</strong><br />

<strong>Bulk</strong> driven feed-forward <strong>OTA</strong> shown <strong>in</strong> Fig. 1 is realized<br />

us<strong>in</strong>g the differential transconductor shown <strong>in</strong> Fig. 5. S<strong>in</strong>gle<br />

ended small signal equivalent circuit of the differential<br />

feed-forward <strong>OTA</strong> is shown <strong>in</strong> Fig. 6 and the correspond<strong>in</strong>g<br />

where<br />

Fig. 5. <strong>Fully</strong> differential <strong>Bulk</strong> driven Transconductor<br />

A = r<br />

1<br />

1<br />

2<br />

( c c + 2c<br />

c + 2c<br />

c + 3c<br />

)<br />

1<br />

r2<br />

1 2 c 1 c 2 c<br />

,<br />

B = r c + r c<br />

2<br />

2<br />

+ g<br />

r r c<br />

mb 1 2<br />

And r1, c 1 and r 2 , c 2 represent the effective impedance seen<br />

at the <strong>in</strong>termediate node of the forward path and output<br />

respectively with respect to small signal ground. In (2), it can<br />

be seen that there are two zeros, one on the left half of s-plane<br />

− gmb<br />

(at )and the other on the right half of s-plane (at<br />

c + c<br />

g<br />

c<br />

mb<br />

c<br />

1<br />

c<br />

). While the left half plane zero is <strong>in</strong>troduced by the<br />

feed-forward transconductor to compensate the <strong>OTA</strong>, the<br />

right half plane zero is <strong>in</strong>troduced due to the coupl<strong>in</strong>g<br />

capacitance, c c . Note that the transistors M 1d and M 2d <strong>in</strong> Fig.<br />

5 attempt to reduce c c to a m<strong>in</strong>imum so that the effect of right<br />

half plane zero is m<strong>in</strong>imized.<br />

c c c c<br />

v i -g mb -g v o<br />

mb<br />

c 1 r c r 2 2<br />

1<br />

c c<br />

-v i -g mb<br />

Fig. 6. Small signal model of feed-forward <strong>OTA</strong><br />

V. SIMULATION RESULTS<br />

A bulk driven differential transconductor is designed <strong>in</strong><br />

<strong>180</strong> <strong>nm</strong> technology to operate at 0.5 V supply. The <strong>in</strong>put and<br />

output common mode voltages of the transconductor are<br />

fixed at 0.25 V. In Fig. 5, gates of M 1 and M 2 are biased to<br />

carry a quiescent current of 10 µA and are sized for a bulk<br />

transconductance of 45 µS. Gates of M 3 and M 4 are biased<br />

2<br />

397


International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 3, June 2012<br />

with a common mode feedback voltage which sets the output<br />

common mode voltage. Transconductor is modeled and<br />

modeled values are as follows.<br />

R <strong>in</strong><br />

R out<br />

C <strong>in</strong><br />

= 14.36 MΩ<br />

= 385.8 kΩ<br />

= 443.577 fF<br />

C out = 189.632 fF<br />

C c = 0.68248 fF<br />

After compensation. It is worth not<strong>in</strong>g that, without the<br />

compensation, C c was 47 fF. Fig. 7 compares the frequency<br />

response of the transistor level transconductor and that of its<br />

model.<br />

Fig. 7. Frequency response of Transistor level differential Transconductor<br />

and of its model<br />

A bulk driven feed-forward compensated <strong>OTA</strong> then built<br />

us<strong>in</strong>g the transconductors. Fig. 8 compares the frequency<br />

response of the transistor level differential <strong>OTA</strong> and of its<br />

model (Fig. 4). <strong>OTA</strong> has an open loop DC ga<strong>in</strong> of 44 dB.<br />

Under no load condition the <strong>OTA</strong> has a 3 dB bandwidth of<br />

601 kHz, UGB of 22 MHz, phase marg<strong>in</strong> of 68.5º and a ga<strong>in</strong><br />

marg<strong>in</strong> of 54.89 dB. It is to be noted that, if it were a Miller<br />

compensation, for the same UGB of 22 MHz, the 3-dB<br />

bandwidth would have been 138 kHz. For a pure capacitive<br />

load of 1 pF, <strong>OTA</strong> has 3 dB bandwidth of 408 kHz, UGB of<br />

9.07 MHz, a phase marg<strong>in</strong> of 45º and a ga<strong>in</strong> marg<strong>in</strong> of 66 dB.<br />

If resistive loads are considered, the phase marg<strong>in</strong> is sure to<br />

be improved as the damp<strong>in</strong>g <strong>in</strong>creases. Table I lists the<br />

parameters of the <strong>OTA</strong>. A comparison of performance<br />

parameters of the designed <strong>OTA</strong> with other low voltage<br />

<strong>OTA</strong>s found <strong>in</strong> the literature is listed <strong>in</strong> Table II.<br />

TABLE I: PARAMETERS OF <strong>OTA</strong><br />

Parameter<br />

Simulate<br />

d values<br />

of <strong>OTA</strong><br />

Supply [V] 0.5<br />

Open loop DC ga<strong>in</strong> [dB] 44<br />

No load 601<br />

3 dB bandwidth [kHz] I pF capacitive load 408<br />

No load 22<br />

UGB [MHz]<br />

I pF capacitive load 9.07<br />

No load 68.5<br />

Phase marg<strong>in</strong><br />

I pF capacitive load 45<br />

[degree]<br />

No load 54.89<br />

Ga<strong>in</strong> marg<strong>in</strong> [dB] I pF capacitive load 66<br />

<strong>Power</strong> [μW] 30 *<br />

Technology [μm] 0.18<br />

Input referred<br />

noise [nV/√Hz]<br />

* exclud<strong>in</strong>g CMFB circuit<br />

@10 kHz 95.8<br />

@1 MHz 65.72<br />

Fig. 8. Frequency response of feed-forward <strong>OTA</strong><br />

TABLE II: COMPARISON WITH OTHER LOW VOLTAGE <strong>OTA</strong> DESIGNS<br />

Parameter [4] [8] [9] [10] [11] [12]<br />

Present<br />

work<br />

Supply (V) 0.5 1 1 0.8 0.9 1.3 0.5<br />

DC ga<strong>in</strong><br />

(dB)<br />

52 70 49 53 70 84 44<br />

UGB<br />

(MHz)<br />

2.5 0.2 1.3 1.3<br />

0.00<br />

6<br />

1.3 9.07<br />

<strong>Power</strong> (μW) 110 5 300 -- 0.5 460 30 *<br />

Technology<br />

(μm)<br />

0.18 0.35 2 0.5 2.5 0.7 0.18<br />

C L (pF) 20 7 22 20 12 -- 1<br />

Input<br />

referred<br />

noise @ 10 220 260 181 -- -- -- 95.8<br />

kHz<br />

[nV/√Hz]<br />

Input<br />

referred<br />

noise @ 1<br />

MHz<br />

[nV/√Hz]<br />

90 -- 43.6 -- -- -- 65.72<br />

* exclud<strong>in</strong>g CMFB circuit<br />

To demonstrate the application of the designed <strong>OTA</strong>, a<br />

fifth order Chebyshev low pass filter is designed and the<br />

schematic of the filter is shown <strong>in</strong> Fig. 9. The filter has a<br />

bandwidth of 480 kHz and a pass band ripple of 1 dB. It is<br />

derived from the ladder architecture [6].<br />

V ip<br />

V im<br />

R<br />

R<br />

R<br />

2<br />

R<br />

2<br />

C 2<br />

C 3<br />

C 4<br />

C 5<br />

R<br />

R<br />

R<br />

R z C 1<br />

R z<br />

R z<br />

R z<br />

R z<br />

-<br />

+<br />

+<br />

-<br />

+<br />

-<br />

-<br />

+<br />

- +<br />

R<br />

R<br />

R<br />

R z C R 1 z C R z<br />

R 2<br />

2 C 3 z C 4 R z<br />

C 5<br />

R<br />

R<br />

2<br />

R<br />

2<br />

+<br />

- -<br />

+<br />

+<br />

-<br />

- + + -<br />

R<br />

R<br />

R<br />

R<br />

R<br />

2<br />

2<br />

Fig. 9. Schematic of fifth order chebyshev filter.<br />

Fig. 10 shows the magnitude response of the transistor<br />

level filter. It can be seen that the response closely matches<br />

with the ideal response up to 1 MHz where the attenuation of<br />

the filter is about 50 dB. The deviation beyond 1 MHz is<br />

attributed to parasitic poles/zeros.<br />

VI. CONCLUSIONS<br />

A fully differential low power <strong>OTA</strong> is described. The <strong>OTA</strong><br />

designed is <strong>in</strong> <strong>180</strong> <strong>nm</strong> CMOS technology and is feed-forward<br />

compensated. It has 44 dB DC ga<strong>in</strong>, 9.07 MHz UGB, 45º<br />

phase marg<strong>in</strong> and 66 dB ga<strong>in</strong> marg<strong>in</strong> at 1 pF pure capacitive<br />

V op<br />

V om<br />

398


International Journal of Computer and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4, No. 3, June 2012<br />

load consum<strong>in</strong>g a power of 30µW from 0.5 V supply. A fifth<br />

order Chebyshev low pass active – RC filter with the cutoff<br />

frequency of 480 kHz is designed as an application of the<br />

<strong>OTA</strong>. Filter response closely matches with the ideal response<br />

up to 1 MHz where the attenuation of the filter is 50 dB.<br />

Fig. 10. Magnitude response of fifth order chebyshev filter<br />

REFERENCES<br />

[1] C. F. Wheatley and H. A. Wittl<strong>in</strong>ge, “<strong>OTA</strong> obsoletes OPAMP," <strong>in</strong><br />

Proc. of National Econ. Conference I, pp.152-157, 1969.<br />

[2] Y. P. Tsividis, “Integrated Cont<strong>in</strong>uous time filters design – An<br />

Overview,” IEEE Journal of solid state circuits, vol. 29, no. 3, pp.<br />

166-176, March 1994.<br />

[3] A .Guz<strong>in</strong>ski, M. Bialko, and J. C. Matheau, “Body driven differential<br />

amplifier for applications <strong>in</strong> cont<strong>in</strong>uous time active-C filter," <strong>in</strong> Proc.<br />

European Conf. Circuit Theory and Design (ECCTD'87), pp. 315-320,<br />

1987.<br />

[4] S. Chatterjee, Y. Tsividis, and P. K<strong>in</strong>get, “0.5V Analog Circuit<br />

Techniques and their Application <strong>in</strong> <strong>OTA</strong> and filter design," IEEE<br />

Journal of Solid-state Circuits, vol. 40, no. 12, pp. 2373-2387, 2005.<br />

[5] J. N. Harrison and N. Weste, “350 MHz Opamp-RC filter <strong>in</strong> 0.18 µm<br />

CMOS,” IEE Electronics Letters, pp.259-260, 2002.<br />

[6] T. Laxm<strong>in</strong>idhi, V. Prasadu and S. Pavan, “Widely programmable high<br />

frequency active RC filters <strong>in</strong> CMOS technology,” IEEE transactions<br />

on circuits & Systems, vol.56, no. 2, pp.327-336, February 2009.<br />

[7] B. Thandri and J. S. Mart<strong>in</strong>ez, “A Robust feedforward compensation<br />

scheme for multistage operational Transconductance Amplifiers with<br />

no miller capacitors,” IEEE J. Solid State Circuits, vol. 38, no.2, pp.<br />

237- 243, Feb. 2003<br />

[8] K. Lasanen, E. R. Ruotsala<strong>in</strong>en, and J. Kostamovaara, “A 1- V 5μW<br />

CMOS-Opamp with <strong>Bulk</strong>-<strong>Driven</strong> Input Transistors," <strong>in</strong> Proc. 43rd<br />

IEEE Midwest Symp. on Circuits and Systems, pp. 1038-1041, pp. 8-11,<br />

2000<br />

[9] B. Blalock, P. Allen, and G.R<strong>in</strong>con-Mora, “Design<strong>in</strong>g 1-V op-amps<br />

us<strong>in</strong>g standard digital CMOS technology," IEEE Trans. Circuits<br />

Systems II, Analog Digital Signal Process, vol. 45, no. 7, pp. 769-780,<br />

1998.<br />

[10] T. Lehmann and M. Cassia, “1-V power supply CMOS cascode<br />

amplifier", IEEE J. Solid State Circuits, vol. 36, no. 7, pp.<br />

1082-1086, July 2001.<br />

[11] T. Stockstad and H. Yoshizawa, “A 0.9V- 0.5μA rail-to-rail CMOS<br />

operational amplifier," IEEE J. Solid State Circuits, vol. 37, pp.<br />

286-292, 2002.<br />

[12] G. Ferri and W. Sansen, “A 1.3V opamp <strong>in</strong> standard 0.7 μm CMOS<br />

with constant g m and rail-to-rail <strong>in</strong>put and output stages," IEEE Int.<br />

Solid State Circuits Conf. Dig. Tech. Papers, vol. 478, 1996, pp.<br />

382-383.<br />

Rekha S. was born <strong>in</strong> Puttur, India. She received the<br />

B.E. degree <strong>in</strong> Instrumentation Technology from<br />

SJCE Mysore, India and M.Tech. <strong>in</strong> Industrial<br />

Electronics from NITK (KREC) Surathkal,<br />

India.S<strong>in</strong>ce 2007 she has been an Assistant Professor<br />

with the National Institute of Technology Karnataka,<br />

Surathkal, India. Her research <strong>in</strong>terests <strong>in</strong>clude analog<br />

and digital VLSI design.<br />

Tonse Laxm<strong>in</strong>idhi was born <strong>in</strong> Udupi, South India, <strong>in</strong><br />

1975. He received the B.Tech degree <strong>in</strong> Electrical and<br />

Electronics Eng<strong>in</strong>eer<strong>in</strong>g from NMAM Institute of<br />

Technology, Nitte, India, <strong>in</strong> 1996. In 1998 he received<br />

the M.Tech degree <strong>in</strong> Industrial Electronics from the<br />

National Institute of Technologyi-Karnataka (NITK),<br />

Surathkal, India. He obta<strong>in</strong>ed his Ph.D. degree from<br />

the Departement of Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Indian<br />

Institute of Technology, Madras. His research<br />

<strong>in</strong>terests <strong>in</strong>clude analog and mixed mode <strong>in</strong>tegrated circuits and power<br />

management circuits. He is a faculty <strong>in</strong> the Department of Electronics and<br />

Communication Eng<strong>in</strong>eer<strong>in</strong>g, NITK Surathkal s<strong>in</strong>ce 1998 and currently<br />

hold<strong>in</strong>g the position of Associate Professor.<br />

399

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!