01.02.2014 Views

biostratigraphy and paleoecology of cretaceous/tertiary boundary in ...

biostratigraphy and paleoecology of cretaceous/tertiary boundary in ...

biostratigraphy and paleoecology of cretaceous/tertiary boundary in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BIOSTRATIGRAPHY AND PALEOECOLOGY OF<br />

CRETACEOUS/TERTIARY BOUNDARY IN THE<br />

SULAIMANI REGION, KURDISTAN, NE-IRAQ<br />

A THESIS<br />

SUBMITTED TO THE COLLEGE OF SCIENCE, UNIVERSITY<br />

OF SULAIMANI, IN PARTIAL FULFILLMENT OF THE<br />

REQUIRMENTS FOR THE DEGREE OF DOCTORATE OF<br />

PHILOSOPHY IN GEOLOGY<br />

By<br />

Khalid Mahmood Ismael Sharbazheri<br />

M. Sc. In Geology , Mosul University, 1983<br />

Supervised by<br />

Dr. Qahtan A. M. Al Nuaimy<br />

Assistant Pr<strong>of</strong>essor<br />

Dr. Imad M. Ghafor<br />

Assistant Pr<strong>of</strong>essor<br />

Jan. 2008 A.D<br />

Bafranbar. 2707 KU


III


IV<br />

Dedicated:<br />

To<br />

My Wife<br />

My Daughters<br />

And<br />

My Sons


V<br />

ACKNOWLEDGEMENTS<br />

I am deeply <strong>in</strong>debted to Dr. Qahtan A. Mohammed Al Nuaimy <strong>and</strong> Dr.Imad<br />

Mahmood Ghafor for their undertak<strong>in</strong>g the task <strong>of</strong> supervis<strong>in</strong>g this<br />

dissertation <strong>and</strong> for <strong>of</strong>fer<strong>in</strong>g many suggestions <strong>and</strong> corrections dur<strong>in</strong>g all stages<br />

<strong>of</strong> the work. My best thanks to the Head <strong>of</strong> the Department <strong>of</strong> Geology Dr. Kamal<br />

Haji Karim <strong>and</strong> the Dean <strong>of</strong> the College <strong>of</strong> Science (Dr. Parykhan M. Jaf ), for<br />

their generous help <strong>and</strong> assistance throughout this work especially <strong>of</strong>fer<strong>in</strong>g the<br />

available facilities . I would like to express my gratitude to the University<br />

presidency for provid<strong>in</strong>g the f<strong>in</strong>ancial support for transportation (dur<strong>in</strong>g<br />

fieldwork) <strong>and</strong> pr<strong>in</strong>t<strong>in</strong>g the draft <strong>and</strong> f<strong>in</strong>al copy <strong>of</strong> this work.<br />

I am <strong>in</strong>debted also to Dr. Rund Al Hammoody / Department <strong>of</strong> Geology,<br />

University <strong>of</strong> Mosul for her pioneer<strong>in</strong>g <strong>in</strong> provid<strong>in</strong>g me the <strong>in</strong>ternet key for<br />

application the catalogue <strong>and</strong> atlas <strong>of</strong> Paleocene planktonic foram<strong>in</strong>ifera.<br />

My genu<strong>in</strong>e thanks to my friends; Dr. Bakhtear Muhammad Ameen , Dr. Dler<br />

Hussen Baban , Mr. Musher Mustafa, Mrs. Razawa Hama Rasheed , Mr. Serwan<br />

Hama Ahmed , <strong>and</strong> Mr Jabar Muhammad from the Department <strong>of</strong> Geology,<br />

University <strong>of</strong> Sulaimani for help<strong>in</strong>g me <strong>in</strong> the fieldwork <strong>and</strong> the s<strong>of</strong>tware<br />

programm<strong>in</strong>g <strong>in</strong> this dissertation.<br />

My s<strong>in</strong>cere thank goes to Pr<strong>of</strong>. Dr. Mart<strong>in</strong> Langer at the Institute for<br />

Paleontology, University <strong>of</strong> Bonn/Germany for <strong>of</strong>fer<strong>in</strong>g available facilities <strong>in</strong> the<br />

library, the references <strong>and</strong> scann<strong>in</strong>g electron microscope photo process<strong>in</strong>g. Also<br />

I would like to express my gratitude to Pr<strong>of</strong>. Dr. Basim Al- Qayim for his<br />

contributions <strong>and</strong> discussion dur<strong>in</strong>g this work.<br />

F<strong>in</strong>ally, I would like to express my special appreciation for my wife, Sh<strong>in</strong>a<br />

Darwesh, for her endurance dur<strong>in</strong>g the preparation <strong>of</strong> this effort.<br />

Khalid<br />

Jan. 2008


VI<br />

Abstract<br />

The Cretaceous / Tertiary (K/T) <strong>boundary</strong> section, which crop out <strong>in</strong> the<br />

studied regions are located with<strong>in</strong> the High Folded zone (Dokan <strong>and</strong> Smaquli<br />

area), Imbricated Zone (Sirwan valley, Barz<strong>in</strong>ja <strong>and</strong> Qala Cholan area) <strong>in</strong><br />

Northeastern Iraq. Is extended <strong>in</strong> northwest-southeast direction as narrow trend<br />

near <strong>and</strong> parallel to the Iraqi/ Iranian border. These units ma<strong>in</strong>ly consist <strong>of</strong> flysch<br />

<strong>and</strong> flysch type successions <strong>of</strong> thick beds <strong>of</strong> clastic rocks <strong>of</strong> Tanjero / Kolosh<br />

Formations <strong>in</strong> (Sirwan, Qulka <strong>and</strong> Gali sections) or flysch to molasses<br />

Tanjero/Red bed series (Swaiss group) <strong>in</strong> (Kato <strong>and</strong> Qishlagh sections).<br />

The study is specially focused on analysis <strong>of</strong> all the uncerta<strong>in</strong> aspects <strong>of</strong> the<br />

<strong>boundary</strong> zones, such as lithostratigraphy, <strong>biostratigraphy</strong>, paleoenvironment<br />

reconstruction, <strong>paleoecology</strong> nature <strong>of</strong> contact, age determ<strong>in</strong>ation, local <strong>and</strong><br />

regional correlation <strong>in</strong> order to answer many <strong>of</strong> the questions raised naturally<br />

through different researches <strong>and</strong> studies s<strong>in</strong>ce decades by different authors <strong>in</strong><br />

<strong>and</strong> outside Iraqi regions about lithostratigraphic, biostratigraphic nature <strong>of</strong> the<br />

contact, age, <strong>paleoecology</strong>, paleoenvironment reconstruction, correlation with<br />

regional, cont<strong>in</strong>ental <strong>and</strong> <strong>in</strong>tercont<strong>in</strong>ental similarities.<br />

The detail lithostratigraphic study achieved on the cropped upper most part <strong>of</strong><br />

the Upper Cretaceous successions (upper part <strong>of</strong> Tanjero Formation) <strong>in</strong> Sirwan<br />

valley, Kato, Qishlagh And Qulka sections, with the lower most part <strong>of</strong> Kolosh<br />

Formation <strong>and</strong> Red Bed Series <strong>of</strong> the Early Tertiary, while <strong>in</strong> the Gali section<br />

(Smaquli area) the studied stratigraphic units <strong>in</strong>clude the upper part <strong>of</strong> Shiranish<br />

Formation, Shiranish-Tanjero transition unit, Tanjero Formation <strong>and</strong> Kolosh<br />

Formation.<br />

Eight biozones were recorded <strong>in</strong> the studied area, based on identified<br />

planktonic foram<strong>in</strong>iferal assemblages with<strong>in</strong> uppermost part <strong>of</strong> Shiranish<br />

Formation, Shiranish-Tanjero transition unit (Reddish to pale brown succession),<br />

Tanjero Formation <strong>in</strong> Smaquli area (Gali section) <strong>and</strong> upper part <strong>of</strong> Tanjero<br />

Formation <strong>in</strong> all other studied sections, <strong>and</strong> also four biozones are recorded


VII<br />

with<strong>in</strong> the lower part <strong>of</strong> Kolosh Formation (Lower Paleocene) <strong>in</strong> Smaquli, Dokan<br />

<strong>and</strong> Sirwan areas.<br />

The biostratigraphic correlations on the studied sections are based on<br />

planktonic foram<strong>in</strong>iferal zonations. The correlation showed a comparison<br />

between the biostratigraphic zones established <strong>in</strong> this study with other equivalent<br />

<strong>of</strong> the commonly used planktonic zonal scheme around the Cretaceous/Tertiary<br />

<strong>boundary</strong> <strong>in</strong> <strong>and</strong> outside <strong>of</strong> Iraq.<br />

The paleoenvironment <strong>of</strong> Cretaceous/Tertiary <strong>boundary</strong> sequences <strong>in</strong> the<br />

Sulaimani region, NE-Iraq, Kurdistan are determ<strong>in</strong>ed by us<strong>in</strong>g foram<strong>in</strong>ifera<br />

especially planktonic through Late Maastrichtian <strong>and</strong> Early Danian. Lithologically<br />

it is concerned with Tanjero <strong>and</strong> Kolosh Clastic Formations regionally, <strong>and</strong><br />

Tanjero-Red Bed Series <strong>in</strong> the studied area.<br />

Paleobathymetric <strong>and</strong> paleoecological factors are studied through the<br />

distribution patterns <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>ifera <strong>and</strong> <strong>in</strong>clude the total<br />

numbers <strong>of</strong> foram<strong>in</strong>iferal species, the diversity <strong>and</strong> statistical analysis <strong>of</strong> planktonic,<br />

benthonic forams, the Planktonic/Benthonic ratio <strong>and</strong> the Agglut<strong>in</strong>ated/Calcareous<br />

ratio.<br />

The available data on dist<strong>in</strong>guished planktonic foram<strong>in</strong>ifera evidenced that<br />

the Cretaceous/Tertiary nature <strong>in</strong> the present study displays both gradual <strong>and</strong><br />

sudden catastrophic ext<strong>in</strong>ction pattern approximately halve number <strong>in</strong><br />

planktonic foram<strong>in</strong>iferal species before the K/T <strong>boundary</strong> <strong>and</strong> complete<br />

species ext<strong>in</strong>ction at or near the K/T <strong>boundary</strong> which <strong>in</strong>dicates no Cretaceous<br />

planktonic foram<strong>in</strong>iferal survivorship <strong>in</strong>to the Danian except (Guembelitria<br />

cretacea) <strong>and</strong> (Hedbergella monmothensis) <strong>in</strong> the lower most Danian.<br />

The recorded planktonic foram<strong>in</strong>iferal biozones <strong>in</strong> the studied area reveal<br />

the cont<strong>in</strong>uous sedimentation without evidence <strong>of</strong> any hiatus, <strong>in</strong> addition that the<br />

appearance <strong>of</strong> the new lower most Danian planktonic forams <strong>in</strong>dicates gradual<br />

sedimentation especially at Smaquli, Dokan <strong>and</strong> Sirwan area,<br />

The sedimentation rate mean <strong>in</strong> graphical method by us<strong>in</strong>g biozone<br />

(m/myr) or years/meter was estimated for total studied stratigraphic


VIII<br />

successions from the upper part <strong>of</strong> Tanjero Formation <strong>and</strong> lower part <strong>of</strong> Kolosh<br />

Formation around K/T <strong>boundary</strong>, reveals the cont<strong>in</strong>uations <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g the<br />

sediment accumulation rate without <strong>in</strong>terruption or any gaps to be disclosed.


Subject<br />

1- Chapter One:<br />

IX<br />

LIST OF CONTENTS<br />

Introduction<br />

Page<br />

1<br />

1.1- Preface ................................................................................................................................................. 1<br />

1.2- Location <strong>and</strong> Geomorphology.............................................................................................................. 2<br />

1.3- Geological Sett<strong>in</strong>g …………………………………………………………………………………………….. 3<br />

1.4- general stratigraphy ............................................................................................................................. 5<br />

1.4.1- Upper Cretaceous formations …………………………………………………………………………….. 6<br />

1.4.1.1- Shiranish Formation ………………………………………………………………………………….….. 6<br />

1.4.1.2-Tanjero Formation …………………………………………………………………………………………. 8<br />

1.4.2- Lower Tertiary formations …………………………………………………………………………………. 10<br />

1.4.2.1- Kolosh Formation …………………………………………………………………………………………. 11<br />

1.4.2.2- Red Bed Series (Suwais Group) ………………………………………………………………………... 14<br />

1.5- previous biostratigraphic studies on Shiranish - Tanjero Formations ……………………………... 15<br />

1.6- Review on the Upper Cretaceous – Lower Tertiary Contact on Iraq ………………………………… 17<br />

1.7- Methodology ……………………………………………………………………………………………………. 19<br />

1.7.1- Studied Sections …………………………………………………………………………………………….. 19<br />

1.7.2- Samples collection <strong>and</strong> preparation …………………………………………………………………….. 20<br />

1.8 The aim <strong>of</strong> the Study ………………………………………………………………………………………….. 22<br />

2- Chapter Two:<br />

23<br />

Lithostratigraphy<br />

2.1- Preface …………………………………………………………………………………………………………. 23<br />

2.2- Lithostratigraphy <strong>of</strong> Sirwan sections ……………………………………………………………………… 23<br />

2.3- Lithostratigraphy <strong>of</strong> Kato section …………………………………………………………………………... 28<br />

2.4- Lithostratigraphy <strong>of</strong> Qishlagh section ……………………………………………………………………. 29<br />

2.5- Lithostratigraphy <strong>of</strong> Qulka section (Dokan area) ………………………………………………………... 33<br />

2.6- Lithostratigraphic <strong>of</strong> Gali section (Smaquli area) .............................................................................. 37<br />

3- Chapter Three:<br />

42<br />

Biostratigraphy<br />

3.1-Preface …………………………………………………………………………………………………………… 42<br />

3.2- Biostratigraphy ………………………………………………………………………………………………… 42<br />

3.2.1- Biostratigraphy <strong>of</strong> the Upper Cretaceous Formations……………………………………………… 47<br />

3.2.1.1- Globotruncana aegyptiaca Interval Zone (CF8) ……………………………………………………... 50<br />

3.2.1.2- Gansser<strong>in</strong>a gansseri Interval Zone (CF7)…………………………………………………………….. 52<br />

3.2.1.3- Contusotruncana contusa Interval Zone (CF6)……………………………………………………… 54


3.2.1.4- Pseudotextularia <strong>in</strong>termedia Interval Zone (CF5)……………………………………………………. 55<br />

3.2.1.5- Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4)………………………………………………….. 60<br />

3.2.1.6- Pseudoguembel<strong>in</strong>a hariaensis Interval Zone (CF3)…………………………………………………. 63<br />

3.2.1.7- Pseudoguembel<strong>in</strong>a palpebra Interval Zone (CF2)…………………………………………………… 66<br />

3.2.1.8- Plummerita hantken<strong>in</strong>oides Total Range Zone (CF1)……………………………………………….. 68<br />

3.2.2- Biostratigraphy <strong>of</strong> the Early Paleocene Formations………………………………………………….. 71<br />

3.2.2.1- (P0) Gumbelitria cretacea Interval Zone........................................................................................ 71<br />

3.2.2.2- ( Pá) Parvularugoglobier<strong>in</strong>a eugub<strong>in</strong>a Total Range Zone............................................................ 72<br />

3.2.2.3- ( Pá & P0 ) <strong>in</strong> Dokan <strong>and</strong> Sirwan valley.......................................................................................... 76<br />

3.2.2.4- (P1) Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a- Praemurica unc<strong>in</strong>ata Interval Zone…………………… 77<br />

3.2.2.4.1- (P1a) Parvularugoglobier<strong>in</strong>a eugub<strong>in</strong>a – Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Interval Subzone.......... 78<br />

3.2.2.4.2- (P1b) Subbot<strong>in</strong>a trilocul<strong>in</strong>oides- Globanomal<strong>in</strong>a compressa/Praemurica <strong>in</strong>constans<br />

Interval Subzone........................................................................................................................................... 79<br />

X<br />

4- Chapter Four:<br />

Depositional environment <strong>and</strong> <strong>paleoecology</strong><br />

86<br />

4.1-Preface .................................................................................................................................................... 86<br />

4.2- Planktonic species diversity or species richness ……………………………………………………… 87<br />

4.3- Signor- Lipps Effect............................................................................................................................... 89<br />

4.4- Planktic/Benthic foram<strong>in</strong>iferal ratio <strong>and</strong> Benthic Foram<strong>in</strong>iferal Assemblage………………………. 90<br />

4.4.1- Maastrichtian...................................................................................................................................... 93<br />

4.4.2- Paleocene........................................................................................................................................... 100<br />

4.5- The Nature <strong>of</strong> Maastrichtian/Paleogene <strong>boundary</strong>………………………………………………………. 103<br />

4.6- Method <strong>of</strong> graphical correlation…………………………………………………………………………….. 105<br />

4.7- Sedimentation rate around Cretaceous/Tertiary <strong>boundary</strong>……………………………………………. 108<br />

6- CHAPTER FIVE<br />

conclusions<br />

112<br />

References<br />

122<br />

Plates<br />

List <strong>of</strong> Figures <strong>and</strong> Table<br />

Figure No. Title Page<br />

Fig (1.1) Location <strong>and</strong> Geological map <strong>of</strong> the studied area (modified from Sissakian, 2000) 4<br />

Fig (1.2) General stratigraphy <strong>of</strong> Cretaceous/Tertiary <strong>boundary</strong> at the studied sections 5


XI<br />

Fig (1.3) Upper Campanian - Maastrichtian facies map <strong>of</strong> Middle East (Buday, 1980) with<br />

general location <strong>of</strong> the studied area.<br />

7<br />

Fig (1.4) A: Modification <strong>of</strong> the time exp<strong>and</strong>ed stratigraphic column <strong>of</strong> Bellen et al (1959) to<br />

show<strong>in</strong>g the gradational contact between Kometan <strong>and</strong> Shiranish Formations.<br />

B: orig<strong>in</strong>al column <strong>of</strong> the above author without modification. (After Karim et al., 2007)<br />

Fig (1.5) Paleocene –Lower Eocene facies map <strong>of</strong> Middle east (Buday, 1980 with general<br />

location <strong>of</strong> the studied area.<br />

Fig (1, 6) Correlation <strong>of</strong> the previous biostratigraphic zonation on Cretaceous/Tertiary <strong>boundary</strong><br />

<strong>in</strong> the studied region <strong>and</strong> different localities <strong>of</strong> Iraq.<br />

Fig (2.1) Lithostratigraphic column <strong>of</strong> studied section <strong>in</strong> Sirwan valley show<strong>in</strong>g<br />

conventional lithologic constituent.<br />

Fig (2.2) Schematic geologic cross section <strong>of</strong> the studied section (Sirwan valley)<br />

8<br />

13<br />

18<br />

24<br />

26<br />

Fig (2.3) Image show<strong>in</strong>g the Cretaceous/Tertiary contact between Tanjero- Kolosh Formations<br />

<strong>and</strong> three ridge form<strong>in</strong>g conglomerate beds at the lower part <strong>of</strong> Kolosh Formation<br />

Fig (2.4) Image show<strong>in</strong>g a- conglomerate bed. b- Systematic sampl<strong>in</strong>g with<strong>in</strong> the upper part <strong>of</strong><br />

Tanjero Formation, Sirwan valley<br />

27<br />

27<br />

Fig (2.5) Lithostratigraphic column <strong>of</strong> Kato section show<strong>in</strong>g conventional lithologic<br />

constituent.<br />

Fig (2.6) Lithostratigraphic column <strong>of</strong> Qishlagh section show<strong>in</strong>g conventional lithologic<br />

constituent.<br />

28<br />

31<br />

Fig (2.7) Schematic geologic cross section <strong>of</strong> the Qishlagh Section Qala Cholan area 32<br />

Fig (2. 8) (a) show<strong>in</strong>g reworked fossils <strong>of</strong> large foram. <strong>of</strong> L<strong>of</strong>tusia, Omphalocyclus <strong>and</strong><br />

Orbitoides <strong>in</strong> the transitional zone between Tanjero <strong>and</strong> Red Bed Series.<br />

(b) Show<strong>in</strong>g the conglomerate bed <strong>of</strong> 3 m. thick, which conta<strong>in</strong> reworked <strong>and</strong> dwarfed fossils<br />

at the base <strong>of</strong> Red Bed Series.<br />

33<br />

Fig (2.9) Schematic geologic cross section <strong>of</strong> the Qulka Section Dokan area 35<br />

Fig (2.10) Lithostratigraphic column <strong>of</strong> Qulka section <strong>in</strong> Dokan area show<strong>in</strong>g<br />

conventional lithologic constituent.<br />

36<br />

Fig (2. 11) Photo image (a) Show<strong>in</strong>g the conglomerate bed <strong>of</strong> 1.5 m. thick, which previously<br />

concluded to be the contact l<strong>in</strong>e <strong>of</strong> Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> Dokan area by different<br />

authors. (b) S<strong>of</strong>t, friable <strong>and</strong> weathered <strong>in</strong>traformational conglomerate <strong>and</strong> pebbly s<strong>and</strong>stone<br />

from the lower part <strong>of</strong> Kolosh Formation, rich <strong>in</strong> reworked fossils <strong>of</strong> Corals. Gastropods,<br />

Pelecypods, Ech<strong>in</strong>oids <strong>and</strong> Brachiopods<br />

37<br />

Fig (2.12) Schematic geologic cross section <strong>of</strong> the (Gali Section) Smaquli area 39<br />

Fig (2.13) Lithostratigraphic column <strong>of</strong> Gali section <strong>in</strong> Smaquli area show<strong>in</strong>g conventional<br />

lithologic constituent. 40<br />

Fig (2.14) Image show<strong>in</strong>g the graditional contact (change <strong>in</strong> color) between Shiranish Formation<br />

<strong>and</strong> Reddish to pale brown succession<br />

41


XII<br />

Table No. Title Page<br />

Table (3.1) Show<strong>in</strong>g the number <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>iferal Genera <strong>and</strong> species<br />

identified <strong>in</strong> the studied sections from the Tanjero <strong>and</strong> Kolosh Formations 44<br />

Figure No. Title Page<br />

Fig ( 3.1) Biostratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at Cretaceous/Tertiary <strong>boundary</strong>,<br />

Sirwan area, (Sirwan section) 45<br />

Fig (3.2 ) Biostratigraphic range chart <strong>of</strong> benthonic foram<strong>in</strong>ifera at Cretaceous/Tertiary <strong>boundary</strong>,<br />

Sirwan area, (Sirwan section) 46<br />

Fig (3.3) Biostratigraphic range chart <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>ifera, Cretaceous<br />

/Tertiary <strong>boundary</strong> <strong>in</strong> Kato area (Kato section)<br />

48<br />

Fig (3.4 ) Biostratigraphic range chart <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>ifera Cretaceous<br />

/Tertiary <strong>boundary</strong>, Qala cholan area, (Qishlagh section) 49<br />

Fig (3.5) Biostratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at Cretaceous/Tertiary <strong>boundary</strong>,<br />

Dokan area, (Qulka section) 56<br />

Fig (3.6 ) Biostratigraphic range chart <strong>of</strong> benthonic foram<strong>in</strong>ifera at Cretaceous/Tertiary <strong>boundary</strong>,<br />

Dokan area, (Qulka section) 57<br />

Fig (3.7) (<strong>in</strong> 2 parts). – Part 1: Biotratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at Cretaceous<br />

/Tertiary <strong>boundary</strong> <strong>in</strong> Smaquli area (Gali section) 58<br />

Fig (3.7) Part 2:- Biostratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at Cretaceous/Tertiary<br />

Boundary <strong>in</strong> Smaquli area (Gali section) Cont<strong>in</strong>ued. 59<br />

Fig (3.8) Biostratigraphic range chart <strong>of</strong> benthonic foram<strong>in</strong>ifera at Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong><br />

Smaquli area (Gali section)<br />

Fig (3.9) Genetic radiation, Phylogenetic relationship <strong>and</strong> Geologic ranges <strong>of</strong> Paleocene serial<br />

& low to high trochospiral microperforate wall structure planktonic foram<strong>in</strong>ifera (From<br />

Olsson et. al, 2000)<br />

65<br />

73<br />

Fig (3.10) Genetic radiation, Phylogenetic relationship <strong>and</strong> Geologic range <strong>of</strong> Paleocene<br />

muricate, smooth walled, non-sp<strong>in</strong>ose <strong>and</strong> sp<strong>in</strong>ose concellate wall structure <strong>of</strong><br />

trochospiral planktonic foram<strong>in</strong>ifera (From Olsson et. al, 2000)<br />

Fig (3.11) Genetic radiation <strong>and</strong> phylogenetic reconstruction <strong>of</strong> the Early Paleocene<br />

microperforate planktonic foram<strong>in</strong>ifera (From Liu & Olsson 1992)<br />

74<br />

75<br />

Fig (3. 12 ) Correlation chart show<strong>in</strong>g the planktonic foram<strong>in</strong>iferal biostratigraphic zones <strong>of</strong><br />

Upper Cretaceous (Maastrichtian) <strong>of</strong> the studied sections with the planktonic foram<strong>in</strong>iferal<br />

zonation commonly used <strong>in</strong> low, middle <strong>and</strong> high latitudes, <strong>in</strong> the new zonal scheme, <strong>and</strong><br />

<strong>in</strong>side the Iraq. The age <strong>of</strong> planktonic foram<strong>in</strong>iferal datum events shown. (Modified from<br />

different authors)<br />

82<br />

Fig ( 3. 13) Correlation chart show<strong>in</strong>g the planktonic foram<strong>in</strong>iferal biostratigraphic zones <strong>of</strong><br />

Upper Maastrichtian/lower Danian <strong>of</strong> the studied sections with the planktonic foram<strong>in</strong>iferal<br />

zonation commonly used <strong>in</strong> low, middle <strong>and</strong> high latitudes, <strong>in</strong> the new zonal scheme. The<br />

age <strong>of</strong> planktonic foram<strong>in</strong>iferal datum events shown. (Modified from different authors)<br />

83


XIII<br />

Fig (3.14). High resolution planktonic foram<strong>in</strong>iferal biozone for the Maastrichtian <strong>and</strong> Early<br />

Danian (Cretaceous/Tertiary) <strong>boundary</strong> at Gali section (Smaquli area) <strong>and</strong> other studied<br />

localities. Note that this biozones significantly ref<strong>in</strong>es the resolution for the upper<br />

Maastrichtian, by replac<strong>in</strong>g the Abathomphalus mayaroensis zone by four biozones.<br />

84<br />

Fig (3.15) Correlation <strong>of</strong> the previous Planktonic foram<strong>in</strong>iferal biostratigraphic zonation on<br />

Cretaceous/Tertiary <strong>boundary</strong> with the present study <strong>in</strong> the studied region <strong>and</strong> different<br />

localities <strong>of</strong> Iraq.<br />

85<br />

Fig (4.1) Planktonic foram<strong>in</strong>iferal species richness across the Tunisian cont<strong>in</strong>ental shelf-slope<br />

based on data from the <strong>in</strong>ner shelf Seldja section (Keller <strong>and</strong> other,1998) , middle shelf Elles<br />

section ( Abramovich <strong>and</strong> Keller,2002), <strong>and</strong> outer shelf to upper slope El Kef section (Li <strong>and</strong><br />

Keller 1998c,). Note: The species richness <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g depth across the shelf<br />

<strong>and</strong> is a function <strong>of</strong> available ecological niches <strong>and</strong> depth habitats (from Keller 2004)<br />

89<br />

Fig (4.2) Upper depth limits <strong>and</strong> paleobathymetric distribution <strong>of</strong> Upper Cretaceous <strong>and</strong> Lower<br />

Paleogene benthonic foram<strong>in</strong>ifera (1): van Morkhoven et al.(1986), fold out, p.8, fig,5; (2):<br />

Speijer (1994), p. 84,fig.6; (3):Tjalsma <strong>and</strong> Lohmann (1983); (4): Widmark (2000), p.376;<br />

(5): Berggren <strong>and</strong> Aubert (1975); (6):R. Speijer, press. Comm., 2001; (7): Widmark <strong>and</strong><br />

Speijer 1997a; (8): Kam<strong>in</strong>ski et al.1988;(1c): modified after van Morkhoven et al.(1986),<br />

(from Alegret <strong>and</strong> Thomas 2001)<br />

92<br />

Fig (4.3): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the Late Cretaceous/Early Paleocene succession <strong>in</strong> Gali<br />

section (Smaquli area)<br />

94<br />

Fig (4.4): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong> Qulka<br />

section (Dokan area)<br />

96<br />

Fig (4.5): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong> Sirwan<br />

section (Sirwan valley)<br />

97<br />

Fig (4.6): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong> Qishlagh<br />

section (Qala Cholan area)<br />

99<br />

Fig (4.7: The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong> Kato<br />

section (Barz<strong>in</strong>ja area)<br />

101<br />

Fig (4.8): Graphic correlation shows the depositional rate <strong>of</strong> sediment between Smaquli <strong>and</strong><br />

Qulka sections, Note: Change <strong>in</strong> the gradient <strong>in</strong> the early stage (dog-Leg) <strong>in</strong>dicate highest<br />

rate <strong>of</strong> deposition <strong>in</strong> Qulka section than Smaquli section<br />

106<br />

Fig (4.9): Graphic correlation shows the depositional rate <strong>of</strong> sediment between Smaquli <strong>and</strong><br />

Sirwan sections. Note: Change <strong>in</strong> the gradient <strong>in</strong> the early stage (dog-Leg) <strong>in</strong>dicate highest<br />

rate <strong>of</strong> deposition <strong>in</strong> Sirwan section than Smaquli section<br />

107<br />

Fig (4.10): Graphic correlation shows the depositional rate <strong>of</strong> sediment between Qulka <strong>and</strong><br />

Sirwan sections. Note: NO Change <strong>in</strong> the gradient o observed, a best-fit l<strong>in</strong>e constructed<br />

completely which <strong>in</strong>dicate similar rate <strong>of</strong> deposition <strong>in</strong> Qulka <strong>and</strong> Sirwan section<br />

107


XIV<br />

Fig (4.11): Sedimentation rate <strong>of</strong> the Upper Cretaceous/Lower Tertiary Succession from<br />

gali section Smaquli area plotted vs. planktonic foram<strong>in</strong>iferal zonal scheme. The age (Time)<br />

<strong>of</strong> foram<strong>in</strong>iferal datum events shown (<strong>in</strong> MY)<br />

110<br />

Fig (4.12): Sedimentation rate <strong>of</strong> the Upper Cretaceous/Lower Tertiary Succession from<br />

Qulka section Dokan area plotted vs. planktonic foram<strong>in</strong>iferal zonal scheme. The age (Time)<br />

<strong>of</strong> foram<strong>in</strong>iferal datum events shown (<strong>in</strong> MY)<br />

110<br />

Fig (4.13): Sedimentation rate <strong>of</strong> the Upper Cretaceous/Lower Tertiary Succession from<br />

Sirwan section plotted vs. planktonic foram<strong>in</strong>iferal zonal scheme. The age (Time) <strong>of</strong><br />

foram<strong>in</strong>iferal datum events shown (<strong>in</strong> MY)<br />

111


Chapter one<br />

Introduction<br />

CHAPTER ONE<br />

Introduction<br />

1.1- Preface<br />

The Tanjero, Kolosh <strong>and</strong> Red Bed Series bas<strong>in</strong>, as a part <strong>of</strong> the Neotethys,<br />

was strongly deformed by the Alp<strong>in</strong>e orogeny dur<strong>in</strong>g their activity cont<strong>in</strong>ued<br />

from Jurassic to Miocene where a huge thickness <strong>of</strong> sediments was<br />

accumulated. These successions are generally well exposed <strong>in</strong> different<br />

localities <strong>and</strong> different types <strong>of</strong> stratigraphic units <strong>in</strong> Zagros mounta<strong>in</strong> regions<br />

such as the Balambo, Qulqula, Qamchuqa, Aqra-Bekhme, Kometan, Shiranish<br />

<strong>and</strong> Tanjero Formations, <strong>in</strong> addition to the Kolosh, Gercus Formations <strong>and</strong><br />

Red Bed Series. The bas<strong>in</strong>s <strong>of</strong> these units have a complicated history <strong>of</strong><br />

development <strong>and</strong> tectonics, this history was demonstrated by different<br />

characteristics <strong>of</strong> these stratigraphic units.<br />

Biostratigraphic analysis <strong>in</strong>volves the <strong>in</strong>terpretation <strong>of</strong> the nature <strong>of</strong><br />

contact between Tanjero / Kolosh <strong>and</strong> Tanjero / Red Bed series, evolution,<br />

estimation the age <strong>of</strong> biozones by high resolution planktonic foram<strong>in</strong>iferal<br />

zonation <strong>and</strong> paleoenvironmental <strong>in</strong>terpretation <strong>in</strong> accordance to planktonic<br />

<strong>and</strong> benthonic foram<strong>in</strong>iferal assemblages relationship by exam<strong>in</strong><strong>in</strong>g different<br />

geologic variables associated <strong>in</strong> this study. The geologic variables <strong>in</strong> the<br />

present study <strong>in</strong>clude the traditional <strong>and</strong> biostratigraphic analysis based on<br />

detail study <strong>of</strong> (5) exposed sections throughout the studied area. The detailed<br />

field <strong>and</strong> lab studies were directed towards planktonic foram<strong>in</strong>iferal zonation<br />

<strong>and</strong> paleoenvironmental <strong>in</strong>terpretation to <strong>in</strong>terpret architecture <strong>and</strong><br />

biostratigraphic relation, <strong>in</strong> addition to the correlation <strong>and</strong> comparisons with<br />

similar <strong>and</strong> related studies achieved <strong>in</strong> this field regionally or globally.<br />

Dur<strong>in</strong>g the last decades the analysis <strong>of</strong> the Cretaceous/ Tertiary (K/T)<br />

<strong>boundary</strong> has been one <strong>of</strong> the most frequently mentioned topics <strong>in</strong> the earth<br />

science <strong>and</strong> several hypotheses have been suggested to expla<strong>in</strong> the causes<br />

beh<strong>in</strong>d the global mass ext<strong>in</strong>ction <strong>in</strong> several groups <strong>of</strong> organism across this<br />

<strong>boundary</strong>, both mar<strong>in</strong>e <strong>and</strong> terrestrial forms were affected by the ext<strong>in</strong>ction<br />

event, which implies a multitude <strong>of</strong> causes for the Late Cretaceous ext<strong>in</strong>ctions,<br />

1


Chapter one<br />

Introduction<br />

such as plate tectonics' (cont<strong>in</strong>ental rift<strong>in</strong>g) the asteroid-impact, volcanisms,<br />

acid ra<strong>in</strong>s, iridium <strong>in</strong>crease <strong>and</strong> CO 2 release <strong>and</strong> the result<strong>in</strong>g climate changes.<br />

The K/T <strong>boundary</strong> has been studied <strong>in</strong> different localities <strong>and</strong> regions <strong>in</strong> the<br />

world for different sense <strong>and</strong> purposes by different methods, such as tectonic,<br />

geochemical, stratigraphic, <strong>and</strong> biostratigraphic. The Cretaceous/ Tertiary<br />

Boundary <strong>in</strong> Kurdistan Region were not studied completely, especially <strong>in</strong><br />

Sulaimani region which represents an important part <strong>of</strong> Zagros area.<br />

This study deals with the <strong>biostratigraphy</strong> <strong>and</strong> paleoenvironment <strong>of</strong><br />

Cretaceous/Tertiary <strong>boundary</strong> sequences <strong>in</strong> the Sulaimani region, NE-Iraq,<br />

Kurdistan, depend<strong>in</strong>g on planktonic foram<strong>in</strong>ifera through Late Maastrichtian<br />

<strong>and</strong> Early Paleocene. Lithologically it is concerned with Tanjero <strong>and</strong> Kolosh<br />

clastic Formations, Tanjero-Red Bed Series or Shiranish-Kolosh Formations<br />

regionally <strong>in</strong> the studied area.<br />

The study is specially concentrated on analysis <strong>of</strong> all the uncerta<strong>in</strong> aspects<br />

<strong>of</strong> the formations, such as stratigraphy, <strong>biostratigraphy</strong>, paleoenvironment,<br />

paleogeography, bas<strong>in</strong> analysis, age <strong>and</strong> regional geology. In the present<br />

study there are attempts to answer many <strong>of</strong> the questions raised naturally<br />

through different researches <strong>and</strong> studies s<strong>in</strong>ce this decade by different<br />

authors <strong>in</strong> <strong>and</strong> outside Iraqi regions about stratigraphy, <strong>biostratigraphy</strong>, nature<br />

<strong>of</strong> the contact, age determ<strong>in</strong>ation, <strong>paleoecology</strong>, paleogeographic<br />

reconstruction, <strong>and</strong> correlation with regional, cont<strong>in</strong>ental <strong>and</strong> <strong>in</strong>tercont<strong>in</strong>ental<br />

similarities.<br />

1.2- Location <strong>and</strong> Geomorphology<br />

The studied area is located with<strong>in</strong> the Imbricated Zone (proximal area) was<br />

represented by Qishlagh, Kato <strong>and</strong> Sirwan valley sections (High Folded<br />

Zones) <strong>and</strong> <strong>in</strong> the High <strong>and</strong> Low Folded Zones (distal area) represented by<br />

Qulka <strong>and</strong> Gali sections. The studied area is located with<strong>in</strong> Sulaimani <strong>and</strong> near<br />

by Erbil Governorates <strong>in</strong> northeastern Iraq. It extended from Halabja town<br />

<strong>in</strong> southeast to Koy S<strong>in</strong>jaq town <strong>in</strong> the northwest. This area is located between<br />

latitude (35 0 10 - ) <strong>and</strong> (36 0 30 - ) north <strong>and</strong> longitude (46 0 10 - ) <strong>and</strong> (44 0 40 - )<br />

east, (Fig.1.1 ). The ma<strong>in</strong> outcrop <strong>of</strong> the studied sections is located at Smaquli<br />

2


Chapter one<br />

Introduction<br />

area north <strong>of</strong> Koy S<strong>in</strong>jaq town by about 25 Km. This area is represented<br />

geomorphologically by mounta<strong>in</strong> series <strong>and</strong> narrow or wide subsequent (strike)<br />

valleys trend<strong>in</strong>g northwest—southeast. The Mounta<strong>in</strong>s <strong>and</strong> valleys are<br />

dissected by, at least, two large consequent valleys <strong>and</strong> tens <strong>of</strong> smaller ones.<br />

The large valleys are those <strong>in</strong> which the Little Zab <strong>and</strong> Diala Rivers. The<br />

outcrops <strong>of</strong> the studied sections consist ma<strong>in</strong>ly <strong>of</strong> alternation <strong>of</strong> thick beds <strong>of</strong><br />

flysch type marl, shale, marly limestone, claystone <strong>and</strong> s<strong>and</strong>stone <strong>of</strong> Tanjero-<br />

Kolosh Formations, ridge form<strong>in</strong>g massive pale grey tough recrystalized<br />

occasionally dolomitized, siliclastic limestone <strong>of</strong> <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g Aqra Formation<br />

<strong>and</strong> thick beds <strong>of</strong> red claystone, s<strong>and</strong>stone <strong>and</strong> conglomerate molasses type<br />

<strong>of</strong> Red Bed Series.<br />

1.3- Geological Sett<strong>in</strong>g<br />

The studied area is located at the southern <strong>boundary</strong> (<strong>in</strong> front) <strong>of</strong> the Zagros<br />

Thrust Belt, which is developed from the bas<strong>in</strong> fill <strong>of</strong> the Neo-Tethys <strong>and</strong><br />

collid<strong>in</strong>g <strong>of</strong> the Iranian <strong>and</strong> Arabian plates (Buday 1980). Structurally, the<br />

studied area is located with<strong>in</strong> two different zones. The outcrops <strong>of</strong> Qishlagh<br />

section ( Qala Cholan area), Kato section (Barz<strong>in</strong>ja area) <strong>and</strong> Sirwan valley<br />

section (Halabja area) are located <strong>in</strong> the Imbricated Zone while that <strong>of</strong> Dokan<br />

section ( Dokan area) <strong>and</strong> Gali section (Smaquli area) are located exactly on<br />

the high folded Zone, as divided by Buday <strong>and</strong> Jassim (1987) (Fig.1.1 <strong>and</strong><br />

1.2).<br />

Because <strong>of</strong> <strong>in</strong>tense imbrications, the studied area <strong>in</strong> Qishlagh, Kato <strong>and</strong><br />

Sirwan valley is characterized by obscured anticl<strong>in</strong>es <strong>and</strong> syncl<strong>in</strong>es which<br />

have been stacked together as very thick <strong>and</strong> tight packages which were<br />

overturned toward southwest (Karim 2004). These imbrications <strong>in</strong>clude<br />

Qulqula, Balambo, Aqra, <strong>and</strong> other units such as Kometan, Shiranish, Tanjero,<br />

Kolosh Formations <strong>and</strong> the Red Bed Series.<br />

3


Chapter one<br />

Introduction<br />

Fig. (1.1) Location <strong>and</strong> geological map <strong>of</strong> the studied area (from Sissakian et al., 2000).<br />

4


Chapter one<br />

Introduction<br />

The Tanjero Formation underlies the Red Bed Series directly; Numan<br />

(2000) <strong>and</strong> Karim (2004) regarded the bas<strong>in</strong> <strong>of</strong> latter formation <strong>and</strong> Kolosh<br />

Formations as Zagros Early Forel<strong>and</strong> Bas<strong>in</strong>. In the Tagaran, Qala Cholan,<br />

Qishlagh, Sura Qqalat <strong>and</strong> Mawat area, the Tanjero Formation overlied by<br />

Red Bed Series graditionaly. Lawa et al., (1998), Karim (2004) <strong>and</strong><br />

Sharbazheri, (2007). mentioned that the contact is gradational <strong>in</strong> some places<br />

<strong>and</strong> unconformable <strong>in</strong> others.<br />

Even as <strong>in</strong> the other three studied sections (Sirwan valley, Dokan <strong>and</strong><br />

Smaquli Gali sections), the Tanjero Formation underlies directly the Kolosh<br />

Formation, <strong>and</strong> the nature <strong>of</strong> the contact expla<strong>in</strong>ed briefly <strong>in</strong> subsequent<br />

chapters.<br />

1.4- General stratigraphy<br />

The general stratigraphy <strong>of</strong> the Cretaceous/Tertiary <strong>boundary</strong> <strong>of</strong> Upper<br />

Campanian-Maastrichtian <strong>and</strong> Paleocene-Lower Eocene cycles <strong>of</strong> the studied<br />

sections was shown <strong>in</strong> Fig (1.2), the studied sections <strong>in</strong> the Sulaimani area<br />

Fig (1.2) General stratigraphy <strong>of</strong> Cretaceous/Tertiary <strong>boundary</strong> at the studied sections.<br />

comparatively comprise wide distribution <strong>and</strong> show rapid lateral variation <strong>in</strong><br />

depositional environment, consequently the present study will <strong>in</strong>clude several<br />

5


Chapter one<br />

Introduction<br />

lithologic units dur<strong>in</strong>g Upper Cretaceous-Lower Tertiary. The follow<strong>in</strong>g is a<br />

review on the previous studies about lithostratigraphy <strong>and</strong> <strong>biostratigraphy</strong> <strong>of</strong><br />

the <strong>in</strong>corporated formations.<br />

1.4.1- Upper Cretaceous Formations<br />

Bellen et al., (1959), Ditmar et al., (1971),Kassab (1974 & 1975), Buday<br />

(1980),Karim (2004), Jassim & G<strong>of</strong>f (2006) <strong>and</strong> others def<strong>in</strong>ed the Upper<br />

Cretaceous cycles as the Upper Campanian –Maastrichtian sedimentary cycle<br />

based on the ages attributed to the Shiranish <strong>and</strong> Tanjero Formations at their<br />

type localities <strong>and</strong> the other similar rock units. Fig (1.3)<br />

1.4.1.1- Shiranish Formation<br />

The Shiranish Formation was first def<strong>in</strong>ed by Henson (1940) from the High<br />

Folded Zone <strong>of</strong> North Iraq, near the village <strong>of</strong> Shiranish Islam, Northeast <strong>of</strong><br />

Zakho. The formation belongs among the most widespread units to the Upper<br />

Campanian- Maastrichtian cycle <strong>in</strong> North Iraq. It is represents distal portion <strong>of</strong><br />

deeper forel<strong>and</strong> bas<strong>in</strong> near by its neighbor<strong>in</strong>g Tanjero Formation too Karim<br />

(2004). The Formation, <strong>in</strong> its type area, comprises th<strong>in</strong> bedded argillaceous<br />

limestones (locally dolomitic) overla<strong>in</strong> by blue pelagic marls (Owen <strong>and</strong> Nasr,<br />

1958; Bellen et al., 1959, <strong>in</strong> Jassim & G<strong>of</strong>f. 2006). Al Qayim, (1992), divided<br />

the formation <strong>in</strong>to three lithologic units <strong>in</strong> its type locality.<br />

The Shiranish Formation is also recognized <strong>in</strong> NE Syria (Dubertret, 1966<br />

<strong>and</strong> Brew et al., 2002 <strong>in</strong> Jassim & G<strong>of</strong>f. 2006). Maastrichtian foram<strong>in</strong>iferal<br />

limestone <strong>and</strong> marl <strong>in</strong> central Syria can be partly correlated with the Shiranish<br />

Formation (Ponicarov et al., 1967 <strong>in</strong> Jassim & G<strong>of</strong>f. 2006). Al Mutwali <strong>and</strong> Al<br />

Juboury (2005) studied Shiranish Formation from S<strong>in</strong>jar area, northwestern<br />

Iraq <strong>and</strong> lithologically they are divided <strong>in</strong>to three units; these units embrace an<br />

alternation <strong>of</strong> marl, marly limestone, limestone, s<strong>and</strong>y limestone <strong>and</strong> lenses <strong>of</strong><br />

breccia. In SE Turkey the Shiranish Formation is equivalent to the Kermav<br />

marls <strong>of</strong> the Mard<strong>in</strong> area (Beer 1966 <strong>in</strong> Buday, 1980). Towards, the SE <strong>of</strong> Iran<br />

the formation is equivalent to the upper part <strong>of</strong> pelagic Grupi Formation<br />

(James & Wynd 1965), <strong>and</strong> the Upper Cretaceous Marl Group it is equivalent<br />

to Tayrat Formation from Kuwait <strong>and</strong> Upper part <strong>of</strong> Aruma Formation <strong>in</strong> Saudi<br />

6


Chapter one<br />

Introduction<br />

Arabia (Kent et al.,1951 <strong>in</strong> Jassim & G<strong>of</strong>f . 2006). Abdel-Kireem (1983 -<br />

1986b) studied the lithostratigraphy <strong>and</strong> <strong>paleoecology</strong> <strong>of</strong> exposed Shiranish<br />

Formation <strong>in</strong> Sulaimani-Dokan region, <strong>and</strong> subdivided the formation <strong>in</strong>to two<br />

lithologic members.<br />

Fig (1.3) Upper Campanian- Maastrichtian facies map <strong>of</strong> Middle East (Buday 1980) with general<br />

location <strong>of</strong> studied area<br />

7


Chapter one<br />

Introduction<br />

The Shiranish Formation <strong>in</strong> the studied area overlies Kometan Formation<br />

conformably. This evidence was studied <strong>in</strong> the recent years <strong>and</strong> dur<strong>in</strong>g<br />

fieldwork, new observations are recorded <strong>in</strong> many different localities that show,<br />

dist<strong>in</strong>ct character <strong>in</strong> opposite to previous studies, like gradational contact<br />

between the Kometan <strong>and</strong> Shiranish Formations. The gradation contact can<br />

be seen as the regular alternat<strong>in</strong>g <strong>of</strong> beds <strong>of</strong> white limestone <strong>and</strong> bluish white<br />

marl. Fig (1.4) (Karim et al., 2007).<br />

In the studied area the Shiranish Formation overerla<strong>in</strong> by Tanjero<br />

Formation graditionally <strong>and</strong> the contact is marked by the first appearance <strong>of</strong><br />

gray s<strong>and</strong>stone or siltstone beds at the top <strong>of</strong> Shiranish Formation (bluish<br />

white marl <strong>and</strong> marly limestone) <strong>and</strong> start<strong>in</strong>g <strong>of</strong> olive green lithology <strong>of</strong> Tanjero<br />

Formation.<br />

Fig. (1.4) A: Modification <strong>of</strong> the time exp<strong>and</strong>ed stratigraphic column <strong>of</strong> Bellen et al (1959)<br />

show<strong>in</strong>g the gradational contact between Kometan <strong>and</strong> Shiranish Formations.<br />

B: Orig<strong>in</strong>al column <strong>of</strong> the above authors without modification. (After Karim et al., 2007)<br />

1.4.1.2- Tanjero Formation<br />

Accord<strong>in</strong>g to Bellen et al. (1959), Tanjero Formation is first def<strong>in</strong>ed <strong>and</strong><br />

described under the name <strong>of</strong> Tanjero Formation by Dunn<strong>in</strong>gton (1952). From<br />

the selected type section at Sirwan valley, 2 km to the south <strong>of</strong> Kani<br />

Karweshkan village, near Halabja town (Fig 1.1 ) <strong>and</strong> at the right bank <strong>of</strong><br />

8


Chapter one<br />

Introduction<br />

Sirwan river (upstream <strong>of</strong> Dialla river). The type section comprises two<br />

divisions. The lower division comprises pelagic marl, <strong>and</strong> occasional beds <strong>of</strong><br />

argillaceous limestone with siltstone beds <strong>in</strong> the upper part (Bellen et al.<br />

1959).The upper division comprises silty marl, s<strong>and</strong>stone, conglomerate, <strong>and</strong><br />

s<strong>and</strong>y or silty organic detrital limestone, it <strong>in</strong>terf<strong>in</strong>gers with the Aqra Limestone<br />

Formation. The s<strong>and</strong>stone is composed predom<strong>in</strong>antly <strong>of</strong> gra<strong>in</strong>s <strong>of</strong> chert <strong>and</strong><br />

green igneous <strong>and</strong> metamorphic rocks. The conglomerates conta<strong>in</strong> pebbles <strong>of</strong><br />

Mesozoic limestones, dolomites, recrystalized limestones <strong>and</strong> radiolarian<br />

chert. The thickness <strong>of</strong> the formation is highly variable. The maximum<br />

thickness <strong>of</strong> the formation is about 2000 meters between Row<strong>and</strong>us <strong>and</strong><br />

Chwarta (Jassim <strong>and</strong> G<strong>of</strong>f 2006)<br />

The Tanjero Formation outcrop extends <strong>in</strong>to Southeast Iran where it was<br />

referred to as the Maastrichtian flysch by (Kent et al., 1952 <strong>in</strong> (Jassim <strong>and</strong> G<strong>of</strong>f<br />

2006), <strong>and</strong> described as chert conglomerate by James <strong>and</strong> Wynd (1965). In<br />

Turkey, the Cretaceous parts <strong>of</strong> the Garmav Formation are equivalent to the<br />

Tanjero Formation (Buday 1980)<br />

In the study area, the formation has great variation <strong>in</strong> thickness which<br />

reflects tectonic activity <strong>and</strong> character <strong>of</strong> forel<strong>and</strong> depositional bas<strong>in</strong>, <strong>in</strong> the<br />

Barz<strong>in</strong>ja- Kato proximal area only the lower part <strong>of</strong> 50m rema<strong>in</strong>ed, the other<br />

part is eroded <strong>and</strong> represented by <strong>in</strong>cised valley <strong>and</strong> Kato conglomerate.<br />

(Karim, 2004). In the Smaquli area the thickness is reduced to 72m which<br />

represents the distal part <strong>of</strong> the bas<strong>in</strong> <strong>and</strong> completely vanished by about 5Km<br />

south <strong>of</strong> Shaqlawa city.<br />

Al-Mehaidi (1975) discussed briefly the stratigraphy <strong>and</strong> tectonic <strong>of</strong> the<br />

formation with<strong>in</strong> the Chuarta area <strong>and</strong> mentioned the occurrence <strong>of</strong> the Aqra<br />

Formation <strong>in</strong> the upper part <strong>of</strong> Tanjero Formation as a lens. AI-Rawi (1981)<br />

studied <strong>in</strong> detail the sedimentology, <strong>and</strong> petrology <strong>of</strong> the formation <strong>in</strong> selected<br />

sections (Sulaimani, Dokan <strong>and</strong> Raw<strong>and</strong>oz). He mentioned that the lower part<br />

at Sulaimaniya has shallow environment <strong>of</strong> deposition <strong>and</strong> concluded that the<br />

paleocurrent is toward northwest <strong>and</strong> flow parallel to the axis <strong>of</strong> the Tanjero<br />

trough.<br />

9


Chapter one<br />

Introduction<br />

Abdel-Kireem(1986 a) studied the formation with<strong>in</strong> stratigraphy <strong>of</strong> Upper<br />

Cretaceous <strong>and</strong> Lower Tertiary <strong>of</strong> Sulaimaniya- Dokan Region, <strong>and</strong> suggested<br />

to remove the word "clastic" from the name <strong>of</strong> the formation <strong>and</strong> to add its<br />

lower part with<strong>in</strong> the Shiranish Formation. Abdel-Kireem (1986b) studied<br />

planktonic forams <strong>and</strong> stratigraphy <strong>of</strong> Tanjero Formations, <strong>and</strong> subdivided the<br />

formation <strong>in</strong>to three units accord<strong>in</strong>g to the micr<strong>of</strong>acies <strong>and</strong> lith<strong>of</strong>acies.<br />

Jaza (1992), recognized the turbidite <strong>and</strong> submar<strong>in</strong>e fan (as depositional<br />

feature <strong>of</strong> the bas<strong>in</strong>) dur<strong>in</strong>g the sedimentary facies analysis <strong>of</strong> the formation <strong>in</strong><br />

selected sections from Sulaimaniya district , <strong>and</strong> divided the rock body <strong>of</strong> the<br />

formation <strong>in</strong>to sixteen lith<strong>of</strong>acies <strong>and</strong> suggested further detailed study <strong>of</strong> the<br />

formation to reconstruct depositional model for the whole bas<strong>in</strong> <strong>and</strong> its relation<br />

to tectonics. M<strong>in</strong>as (1997), studied sequence stratigraphy <strong>of</strong> the formation <strong>and</strong><br />

laid Tanjero Formation <strong>in</strong> deeper environment than Shiranish Formation. Al-<br />

Rawi <strong>and</strong> Al-Rawi (2002), studied the formation as turbidite example <strong>of</strong> flysch<br />

type <strong>in</strong> a northeast <strong>and</strong> north <strong>of</strong> Iraq, <strong>and</strong> concluded that the formation<br />

deposited <strong>in</strong> deeper environment, except the limestone beds, which are<br />

deposited <strong>in</strong> shallower condition.<br />

Karim (2004 <strong>and</strong> 2006); Karim <strong>and</strong> Surdashy (2005a, 2005b, <strong>and</strong> 2006)<br />

studied <strong>in</strong> detail the bas<strong>in</strong> analysis, paleocurrent, tectonic history <strong>and</strong><br />

sequence stratigraphy <strong>of</strong> Tanjero Formation. They <strong>in</strong>dicated an unconformity<br />

at the lower part <strong>of</strong> Tanjero Formation which was represented by about 500m<br />

<strong>of</strong> boulder <strong>and</strong> gravel conglomerate, <strong>and</strong> found about four ma<strong>in</strong> <strong>in</strong>cised valleys<br />

<strong>in</strong> the Sulaimani area dur<strong>in</strong>g Maastrichtian. They mentioned that this<br />

conglomerate is deposited dur<strong>in</strong>g sea level fall (lowst<strong>and</strong> system tract)<br />

1.4.2- Lower Tertiary Formations<br />

The lower Tertiary Formations are the most widespread <strong>and</strong> well known<br />

lithologic units <strong>in</strong> both surface <strong>and</strong> subsurface sections throughout almost all<br />

structural units <strong>of</strong> Iraq Figure 1.5 However, the Tertiary sediments have a<br />

small areal distribution <strong>in</strong> the High Folded, Imbricated, <strong>and</strong> Northern Thrust<br />

Zones Units. (Buday 1980)<br />

10


Chapter one<br />

Introduction<br />

Ditmar et al., (1971) subdivided the Tertiary Group <strong>in</strong>to two sedimentary<br />

cycles, the Paleocene- Lower Eocene Cycle <strong>and</strong> the Middle Eocene cycle. The<br />

Paleocene- Lower Eocene units <strong>in</strong> the studied locations represented by thick<br />

sequence clastic rocks <strong>of</strong> Kolosh Formation <strong>and</strong> Suwais Group (Red bed<br />

Series) where it overlies the Tanjero Formation.<br />

1.4.2.1- Kolosh Formation<br />

The formation was first described by Dunn<strong>in</strong>gton (1952, <strong>in</strong> Bellen et al.,<br />

1959) at Kolosh village, north <strong>of</strong> Koy S<strong>in</strong>jaq <strong>in</strong> the High Folded Zone; Ditmar et<br />

al., (1971) mentioned the occurrence <strong>of</strong> S<strong>in</strong>jar Formation too at its upper part<br />

<strong>in</strong> the type locality. The formation accord<strong>in</strong>g to the orig<strong>in</strong>al description consists<br />

<strong>of</strong> shale <strong>and</strong> s<strong>and</strong>stones composed <strong>of</strong> green rock, chert, <strong>and</strong> radiolarite.<br />

Bellen et al., (1959) described the follow<strong>in</strong>g units from Kolosh type locality<br />

from the top to the base:<br />

1- 144m <strong>of</strong> limestone <strong>and</strong> marl with Miscellanea miscella, ostracods <strong>and</strong><br />

miliolids;<br />

2- 30m <strong>of</strong> limestone with Dictyokath<strong>in</strong>a simplex Smout, Lokhartia sp.<br />

Valvul<strong>in</strong>ids, miliolids, ostracods;<br />

3- 113.5m <strong>of</strong> limestone <strong>and</strong> shales, red shales <strong>and</strong> s<strong>and</strong>stone with the same<br />

fossils but without Dictyokarh<strong>in</strong>a simplex Smout;<br />

4- 6m <strong>of</strong> limestone with Saudia labyr<strong>in</strong>thia; miliolids <strong>and</strong> rotalids,<br />

5- 410m <strong>of</strong> blue shale <strong>and</strong> green s<strong>and</strong>.<br />

Accord<strong>in</strong>g to Ditmar et al., (1971), the follow<strong>in</strong>g fossils were dist<strong>in</strong>guished <strong>in</strong><br />

the type locality: Ammodiscus <strong>in</strong>certus, Globorotalia angulata, Globiger<strong>in</strong>a<br />

bulloides, Gyroid<strong>in</strong>a soldanii, Loxostoma appl<strong>in</strong>ae, Nodosaria zippei,<br />

Nuttalides trumpyi, Pseudovalvul<strong>in</strong>eria sp, Teredolites sp, Ovulites morlleti, O.<br />

cf elongate, Tr<strong>in</strong>ocladus perplexuz, Griphoporella arabica. Funcoporella<br />

diplopora, Cymoporella sp.<br />

Toward the west, the formation comprises distal lithologic character <strong>of</strong><br />

mudstone, siltstone, <strong>and</strong> argillaceous limestone beds <strong>in</strong> subsurface sections at<br />

the Chamchamal, Taq Taq <strong>and</strong> Mushorah region. (Jassim & G<strong>of</strong>f, 2006)<br />

11


Chapter one<br />

Introduction<br />

The Kolosh Formation extends <strong>in</strong>to Turkey, where it is represented by the<br />

clastic facies <strong>of</strong> the Garmav Formation (Alt<strong>in</strong>li, 1966 <strong>in</strong> Jassim & G<strong>of</strong>f, 2006).<br />

In southeast <strong>of</strong> Iran, the upper part <strong>of</strong> the Amiran Formation <strong>of</strong> the (James <strong>and</strong><br />

Wynd,1965) <strong>and</strong> the purple shales <strong>of</strong> the Lower Pabda Formation can be<br />

correlated with the Kolosh Formation. (Jassim & G<strong>of</strong>f, 2006)<br />

The <strong>biostratigraphy</strong> <strong>of</strong> Kolosh Formations were studied by Kassab (1972,<br />

1974, 1975, 1976 <strong>and</strong> 1978) <strong>and</strong> Kassab et al., (1986) at the type locality <strong>and</strong><br />

other locations <strong>in</strong> north <strong>and</strong> northeast <strong>of</strong> Iraq. They recognized the planktonic<br />

foram<strong>in</strong>iferal Zones <strong>of</strong> Lowermost Middle Paleocene, represented by<br />

Globorotalia unc<strong>in</strong>ata partial range Zone. Fig (1.6)<br />

Munim (1976) <strong>and</strong> Jacob (1978) recorded the Late Lower Paleocene at<br />

Z<strong>and</strong>our village, by recogniz<strong>in</strong>g Globorotalia tr<strong>in</strong>idadensis Zone <strong>in</strong> Kolosh<br />

Formation. Al-Mutwali (1983) <strong>and</strong> Al-Omari et al., (1988), through their study <strong>of</strong><br />

<strong>biostratigraphy</strong> <strong>of</strong> Kolosh Formation at Shaqlawa area, they recognized<br />

Globorotalia tr<strong>in</strong>idadensis Zone which is <strong>in</strong>dicated to the Late Lower<br />

Paleocene age. Fig (1.6)<br />

Al-Shaibani et al., (1986) dur<strong>in</strong>g their stratigraphic analysis on the<br />

Tertiary-Cretaceous contact <strong>in</strong> Dokan area, (North Iraq), they placed the<br />

contact <strong>in</strong> Zone P3 ( Middle Thanetian), based on overlapp<strong>in</strong>g <strong>of</strong> the range <strong>of</strong><br />

Globorotalia (T.) tr<strong>in</strong>idadensis Bolli, 1957, <strong>and</strong> Subbot<strong>in</strong>a velascoensis<br />

Cushman,1925 <strong>and</strong> other species. Fig (1.6)<br />

Raffo (1989) recorded the follow<strong>in</strong>g Danian species Eoglobiger<strong>in</strong>a<br />

appressa, Eoglobiger<strong>in</strong>a edita praeedita, Globorotalia (Tu.) compressa<br />

planocompressa; Grt. (Tu.) archaeocompressa; Grt. (Tu.) ra<strong>in</strong>wateri; Grt. (Tu.)<br />

sp. Type VII, dur<strong>in</strong>g his study on planktonic foram<strong>in</strong>ifera <strong>and</strong> <strong>biostratigraphy</strong> <strong>of</strong><br />

Aaliji Formation <strong>and</strong> the nature <strong>of</strong> the contact with underly<strong>in</strong>g Shiranish<br />

Formation at Mushorah well (No.1) (northwest Iraq) Fig (1.6 )<br />

Ghafor <strong>and</strong> Karim (1999), studied the <strong>biostratigraphy</strong> <strong>of</strong> the upper part <strong>of</strong><br />

Kolosh Formation from Sartaq-Bamo <strong>in</strong> northeastern Iraq <strong>and</strong> they recognized<br />

the Globororalia velascoensis Zone <strong>of</strong> Upper Paleocene age.<br />

12


Chapter one<br />

Introduction<br />

Fig (1, 5) Paleocene – Lower Eocene facies map <strong>of</strong> Middle East (Buday 1980) with general<br />

location <strong>of</strong> studied area<br />

13


Chapter one<br />

Introduction<br />

1.4.2.2- Red Bed Series (Suwais Group)<br />

The Series was first described by Bolton (1958) as a Suwais Red Beds (the<br />

name comes from Suwais village) <strong>in</strong> the Imbricate Zone about 20km to the<br />

north <strong>of</strong> Sangasar town <strong>and</strong> to the north <strong>of</strong> the Ranyia city. The lithology <strong>of</strong> the<br />

series at the type section is divided <strong>in</strong>to four units; they are as follows from<br />

bottom to top:<br />

-Unit 1, Consists <strong>of</strong> different types <strong>of</strong> limestone beds (fossiliferous, detrital<br />

<strong>and</strong> conglomeratic limestone)<br />

-Unit 2, this unit consists <strong>of</strong> f<strong>in</strong>e clastic (ferrug<strong>in</strong>ous red shale <strong>and</strong> blue<br />

siltstone) with some <strong>in</strong>terlayer <strong>of</strong> limestone <strong>and</strong> conglomerate. The<br />

thickness <strong>of</strong> this unit is about 300m.<br />

-Unit 3, Polymictic conglomerate is conta<strong>in</strong><strong>in</strong>g boulder <strong>and</strong> blocks <strong>of</strong><br />

limestones, chert, igneous <strong>and</strong> metamorphic rock fragments.<br />

-Unit 4, Composed <strong>of</strong> marly shale <strong>and</strong> s<strong>and</strong>stone with some conglomerate.<br />

Al-Mehaidi (1975), divided the Series at Chwarta area <strong>in</strong>to four parts.<br />

Karim (1975) studied the Series paleontologically <strong>and</strong> claimed that the age <strong>of</strong><br />

the series is Miocene. Buday (1980), reviewed the earlier studies about the<br />

series with illustration <strong>of</strong> the regional distribution <strong>and</strong> <strong>in</strong>terpretation <strong>of</strong> different<br />

lithology. Al-Ameri et al., (1990), <strong>in</strong>vestigated the palynology <strong>of</strong> Unit one <strong>of</strong><br />

Suwais Red Beds <strong>in</strong> Chwarta Area; they concluded that this unit deposited<br />

dur<strong>in</strong>g Santonian. Lawa et al. (1998), recorded gradational contact between<br />

Red Bed Series <strong>and</strong> Tanjero Formation <strong>in</strong> Chwarta area; while Karim<br />

(2004), recorded both gradational <strong>and</strong> unconformable contact <strong>in</strong> different<br />

localities <strong>in</strong> Chwarta <strong>and</strong> Q<strong>and</strong>il area.<br />

Al-Qayim (2000) studied the sedimentation <strong>and</strong> tectonic environment <strong>of</strong><br />

the Suwais Red Beds from northeast marg<strong>in</strong> <strong>of</strong> the Arabian plate, <strong>and</strong><br />

concluded that the unit <strong>in</strong>dicates flysch type sequence with variable facies.<br />

Lawa 2004, <strong>in</strong> Al-Barz<strong>in</strong>jy, 2005 showed by sketch that the Red Bed<br />

Series have been deposited dur<strong>in</strong>g Paleocene <strong>and</strong> <strong>in</strong> an <strong>in</strong>termounta<strong>in</strong> bas<strong>in</strong><br />

above the sea level where the Kolosh Formation located to the southwest <strong>of</strong><br />

the series, <strong>and</strong> separated both bas<strong>in</strong>s from each other by mounta<strong>in</strong> ranges.<br />

14


Chapter one<br />

Introduction<br />

Al-Barz<strong>in</strong>jy (2005) dur<strong>in</strong>g the study <strong>of</strong> stratigraphy <strong>and</strong> bas<strong>in</strong> analysis <strong>of</strong><br />

Red Bed Series at northeast Iraq, claimed that the depositional bas<strong>in</strong> <strong>of</strong> lower<br />

Tertiary sequences <strong>of</strong> Red Bed, Kolosh, <strong>and</strong> Gercus Formations are the same<br />

<strong>and</strong> there were no paleohigh at the time <strong>of</strong> deposition to separate these units.<br />

1.5 - Previous biostratigraphic works on Shiranish –Tanjero Formations<br />

Bellen et al. (1959) has described briefly the distribution, age, lithology,<br />

fossil content, <strong>and</strong> stratigraphy <strong>of</strong> the Shiranish <strong>and</strong> Tanjero Formations, <strong>in</strong><br />

addition to geographic distribution at different localities.<br />

The most representative fossils foram<strong>in</strong>ifera <strong>of</strong> Shiranish Formation<br />

recorded <strong>in</strong> the type locality are: - Globiger<strong>in</strong>a cretacea, Globotruncana<br />

tricar<strong>in</strong>ata, G. lapparenti pendens, G. fornicata, G. stiwarti, G. Leopoldi, G.<br />

arca, G. gagneb<strong>in</strong>i, G. gansseri, G. cf.rosetta, <strong>and</strong> Pseudotextularia spp.,<br />

Anomal<strong>in</strong>a ammonoides, Boliv<strong>in</strong>a <strong>in</strong>crassata, Bulim<strong>in</strong>a sp., Bulim<strong>in</strong>ella laevis,<br />

Boliv<strong>in</strong>oides dracco, Cibicides beaumontianus, Gyroid<strong>in</strong>a<br />

naranjo<strong>in</strong>sis,Gyroid<strong>in</strong>a sp., Marsonella oxycona, Nodosaria sp., Textularia<br />

cretosa.(Buday 1980)<br />

The fossils reported by (Bellen et al., 1959) <strong>in</strong> Tanjero Formation are:-<br />

Gryphaea vesiclaris, Hippurites cf.morgani, H, nov. spp., Prairadiolites<br />

cyl<strong>in</strong>draceous, Turbo clathratus, vacc<strong>in</strong>ates cf. gallopry<strong>in</strong>cialis, L<strong>of</strong>tusia<br />

morgani, L. elongata, L. persica, L. nov.sp., Omphalocyclus macropora,<br />

Siderolites calcitrapoides, Globiger<strong>in</strong>a cretacea, G. sp., Globiger<strong>in</strong>ella cf.<br />

aspera, Globotruncana stuarti, G. leupoldi, G. lapparenti bulloides, G.<br />

lapparenti tricarnata, G. arca , G. fornicata, G. marg<strong>in</strong>ata, Gumbel<strong>in</strong>a<br />

spp.,Pseudotextularea elegans, Pseudolithothamnium album, Tr<strong>in</strong>ocladus. sp.,<br />

Ovulites sp.<br />

Two planktonic foram<strong>in</strong>iferal zones <strong>and</strong> five subzones are recognized by<br />

Kassab (1972, 1974, 1975c, 1975d, 1976b) <strong>and</strong> Kassab et al (1986) dur<strong>in</strong>g<br />

their <strong>biostratigraphy</strong> study <strong>of</strong> the Shiranish <strong>and</strong> Tanjero Formations at their<br />

type localities <strong>and</strong> six other sections <strong>in</strong> north <strong>and</strong> northeast Iraq . They<br />

deducted the Late Campanian –Maastrichtian age to the both Formations <strong>in</strong><br />

Iraq, these zones as follow from base to the top:<br />

15


Chapter one<br />

Introduction<br />

a- Globotruncana fornicata –stuartiformis-elevata-roseta- ventricoza Zone.<br />

1- Globotruncana calcarata-- elevata--aegyptiaca Subzone (Late Campanian)<br />

2- Globotruncana arca – tricar<strong>in</strong>ata - subcircumnodifer Subzone (Early<br />

Maastrichtian)<br />

b - Globotruncana contusa- esnehensis- duwi Zone<br />

1- G. gansseri- bahijae- Gubler<strong>in</strong>a cuvillieri Subzone (Middle Maastrichtian)<br />

2- Abathomphalus mayaroensis Subzone (Late Maastrichtian)<br />

3- Globotruncana falsocalcarata Subzone (Late Maastrichtian)<br />

Abawi et al., (1982) <strong>and</strong> Abdel-Kireem (1986a &b) <strong>in</strong>cluded both formations<br />

with<strong>in</strong> stratigraphy <strong>of</strong> Upper Cretaceous <strong>in</strong> northeast Iraq, <strong>and</strong> they recognized<br />

five planktonic foram<strong>in</strong>iferal subzones under two zones as follow from the base<br />

to the top:<br />

a- Globotruncana fornicata-arca-stuarti Assemblage Zone<br />

Globotruncana calcarata Subzone (Late Campanian)<br />

b- Globotruncana aegyptiaca –lapparenti-stuarti Assemblage Zone.<br />

1- Rugotruncana subcircumnodifer Subzone (Early Maastrichtian)<br />

2- Globotruncana gansseri Subzone (Middle Maastrichtian)<br />

3- Globotruncana contusa Subzone (Middle Maastrichtian)<br />

4- Abathomphalus mayaroensis Subzone (Late Maastrichtian)<br />

Al-Mutwali <strong>and</strong> Al-Jubouri (2005) determ<strong>in</strong>ed the age <strong>of</strong> Shiranish<br />

Formation by Late Campanian—Late Maastrichtian through the <strong>biostratigraphy</strong><br />

<strong>of</strong> the follow<strong>in</strong>g biozones<br />

1- Globotruncana calcarata (Late Campanian)<br />

2- Globotruncanella havanensis- Roseta fornicata Zone (Early Maastrichtian)<br />

3- Globotruncana aegyptiaca Zone (Early Maastrichtian)<br />

4- Globotruncana gansseri Zone (Late Maastrichtian)<br />

Bakkal et al., (1993), studied <strong>biostratigraphy</strong> <strong>of</strong> Shiranish Formation <strong>in</strong><br />

Higran area, <strong>and</strong> determ<strong>in</strong>ed the age <strong>of</strong> Shiranish Formation as Middle —Late<br />

Maastrichtian, by recogniz<strong>in</strong>g two planktonic foram<strong>in</strong>iferal subzones <strong>of</strong><br />

Globotruncana gansseri gansseri <strong>and</strong> Kassabiana falsocalcarata subzones<br />

under the Globotruncana contusa stuartiformis biozone.<br />

16


Chapter one<br />

Introduction<br />

Lawa et al. (1998) argued the <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g carbonate layers <strong>in</strong> the upper<br />

part <strong>of</strong> the Tanjero Formation at Chwarta-Mawat area <strong>and</strong> concluded that<br />

these layers belong to Aqra Formation with Late Maastrichtian age accord<strong>in</strong>g<br />

to existence <strong>of</strong> Abathomphalus mayaroensis Subzone.<br />

Sharbazheri (2007) estimated the age <strong>of</strong> unconformity with<strong>in</strong> Tanjero<br />

Formation, by about (1.23 my) duration through thick succession <strong>of</strong> 500m<br />

conglomerate <strong>and</strong> red claystone layers at the lower part <strong>of</strong> Tanjero Formation<br />

at Chwarta area, depend<strong>in</strong>g on describ<strong>in</strong>g the follow<strong>in</strong>g planktonic<br />

foram<strong>in</strong>iferal biostratigraphic zones from the base upward: Globotruncana<br />

aegyptiaca Interval Zone (CF8), Gansser<strong>in</strong>a gansseri Interval Zone (CF7)<br />

Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4), Pseudoguembel<strong>in</strong>a<br />

hariaensis Interval Zone (CF3) with miss<strong>in</strong>g zones <strong>of</strong> Contusotruncana<br />

contusa Interval zone (CF6) <strong>and</strong> Pseudotextularia <strong>in</strong>termedia Interval zone<br />

(CF5).<br />

1.6 – Review on the Upper Cretaceous- Lower Tertiary Contact <strong>in</strong> Iraq.<br />

The Upper Cretaceous <strong>and</strong> Lower Tertiary sedimentary rocks <strong>in</strong> Iraq have<br />

been the subject <strong>of</strong> numerous stratigraphic <strong>and</strong> paleontological <strong>in</strong>vestigations.<br />

Such sediments are well developed <strong>in</strong> both surface <strong>and</strong> subsurface exactly the<br />

exposed part at north <strong>and</strong> northeastern territory<br />

The Upper Cretaceous <strong>and</strong> Lower Tertiary <strong>boundary</strong> is marked by one <strong>of</strong><br />

the most dramatic ext<strong>in</strong>ction <strong>of</strong> different groups <strong>of</strong> organism; especially the<br />

planktonic foram<strong>in</strong>ifera, the recognition <strong>of</strong> the major paleoclimatic change<br />

dur<strong>in</strong>g the late Maastrichtian has focused new attention on global climate<br />

changes <strong>and</strong> their effect on mar<strong>in</strong>e organism.<br />

In particular the last half million years <strong>of</strong> the Maastrichtian is <strong>in</strong>creas<strong>in</strong>gly<br />

recognized as a time <strong>of</strong> rapid <strong>and</strong> extreme climatic changes characterized by<br />

maximum cool<strong>in</strong>g at about 65, 5 Ma, followed by (3-4 0 ) C greenhouse warm<strong>in</strong>g<br />

<strong>and</strong> major Deccan volcanic activity between 65.4 <strong>and</strong> 65.2 Ma. (Li & Keller,<br />

1998a) (Keller 2001) (Barrera, 1994; Courtillot et al., 1996, H<strong>of</strong>fman et al.,<br />

2000, <strong>in</strong> Keller, 2004)<br />

17


Chapter one<br />

Introduction<br />

Fig (1, 6) Correlation <strong>of</strong> the previous biostratigraphic zonation on Cretaceous/Tertiary<br />

<strong>boundary</strong> <strong>in</strong> the studied region <strong>and</strong> different localities <strong>of</strong> Iraq.<br />

18


Chapter one<br />

Introduction<br />

Dunn<strong>in</strong>gton (1955, 1957), recorded the <strong>in</strong>dication <strong>of</strong> great gap <strong>in</strong> the<br />

stratigraphic column, <strong>in</strong> his biostratigraphic studies about the nature <strong>of</strong> the<br />

Cretaceous/Tertiary contact <strong>in</strong> Dohuk, Aqra <strong>and</strong> northern Iraq, evidenced by<br />

the period <strong>of</strong> great regression <strong>of</strong> the ocean dur<strong>in</strong>g Late Maastrichtian <strong>and</strong> Early<br />

Paleocene time followed by the uplift<strong>in</strong>g <strong>of</strong> the area due to the tectonic<br />

orogeny, consequently this region undergone the process <strong>of</strong> erosion <strong>and</strong><br />

period <strong>of</strong> non deposition. This phenomenon is applied for almost greater area<br />

<strong>of</strong> Iraq, exactly <strong>in</strong> the region <strong>of</strong> the northern <strong>and</strong> northeastern part.<br />

Al-Omari (1970) dur<strong>in</strong>g his study on foram<strong>in</strong>ifera <strong>of</strong> Mesozoic <strong>and</strong> Cenozoic<br />

at wells Butmah-9 <strong>and</strong> A<strong>in</strong>zala 16, 17 from the northwestern part <strong>of</strong> Iraq,<br />

confirmed that the Aaliji Formation overlies the Shiranish Formation<br />

unconformably.<br />

Other biostratigraphic studies carried out <strong>in</strong> Iraq <strong>and</strong> especially <strong>in</strong> the area <strong>of</strong><br />

study are summarized <strong>in</strong> Fig (1.6).<br />

1.7 - Methodology<br />

1.7.1 - Studied Sections<br />

Five sections were selected for foram<strong>in</strong>iferal biostratigraphic study <strong>of</strong> the<br />

Cretaceous / Tertiary <strong>boundary</strong> (Fig1.1 <strong>and</strong>.1.2). The general stratigraphy <strong>and</strong><br />

structural condition <strong>of</strong> these sections are represented either by photos or<br />

diagrams. These sections are as follow:<br />

1- Gali section: It is located with<strong>in</strong> Smaquli area about 25 Km. north <strong>of</strong> Koy<br />

S<strong>in</strong>jaq town on the northeast limb <strong>of</strong> Awagird mounta<strong>in</strong> at plung<strong>in</strong>g <strong>of</strong> Safeen<br />

anticl<strong>in</strong>e <strong>in</strong> the direction <strong>of</strong> southeast, at the latitude (36 0 10 - 51.3 = ) <strong>and</strong><br />

longitude (44 0 36 - 40.8 = ) <strong>and</strong> for distance 1 km. south east <strong>of</strong> Gali village.<br />

(Fig. 1, 1 <strong>and</strong> 1, 2)<br />

2- Dokan section: Is directly located to the southwest direction <strong>of</strong> about 3 km<br />

from Dokan Dam along the left bank <strong>of</strong> Qulka valley. (Fig .1, 1 & 1,2). At<br />

latitude (35 0 56 - 22.0 = ) <strong>and</strong> longitude (44 0 56 - 13.6 = )<br />

3- Qishlagh section: It is located directly north <strong>of</strong> Qala Cholan, 15 Km. west<br />

<strong>of</strong> Chwarta Town, at the latitude (35 0 43 - 69.2 = ) <strong>and</strong> longitude (45 0 29 -<br />

03.0 = ) (Fig.1.1 & 1. 2)<br />

19


Chapter one<br />

Introduction<br />

4- Kato section: This section is located at 8 km to the southeast <strong>of</strong> Chwarta<br />

town, (Barz<strong>in</strong>ja area) Kato mounta<strong>in</strong>, at latitude (35 0 40 - 39.1 = ) <strong>and</strong> longitude<br />

(45 0 37 - 25.7 = ) near Suerala village (Fig.1, 1 & 1, 2)<br />

5- Sirwan Section: located at the Sirwan valley, on the right bank <strong>of</strong> Sirwan<br />

river (upstream <strong>of</strong> Diyala river), (2) km to the south <strong>of</strong> Kani Karweshkan<br />

village, near Halabja Town at latitude (35 0 07 - 26.7 = ) <strong>and</strong> longitude<br />

(45 0 52 - 34.7 = ). Most <strong>of</strong> the base part <strong>of</strong> type section for Tanjero Formation<br />

was covered under water mass <strong>of</strong> Darb<strong>and</strong>ekhan Dam. (Fig.1, 1 & 1, 2)<br />

1.7.2 - Samlpe collection <strong>and</strong> preparation<br />

All samples were collected from the studied sections at the field after<br />

remov<strong>in</strong>g the surface contam<strong>in</strong>ated soil <strong>and</strong> try<strong>in</strong>g to obta<strong>in</strong> fresh <strong>and</strong> un<br />

weathered materials. Samples were collected at <strong>in</strong>terval range between (20 –<br />

50) cm at or near the Cretaceous / Tertiary contact <strong>and</strong> at <strong>in</strong>terval <strong>of</strong> 50cm to<br />

3m away from the contact.<br />

572 samples from five sections (Figs. 4.1-7) were analyzed for planktonic<br />

<strong>and</strong> benthonic foram<strong>in</strong>ifera, by us<strong>in</strong>g (50) gm from each sample. Three special<br />

techniques were chose for the preparation <strong>and</strong> extraction <strong>of</strong> foram<strong>in</strong>iferal<br />

content <strong>in</strong> this study:<br />

1- Acetic acid method: The sample here was broken down <strong>in</strong>to small<br />

fragments <strong>of</strong> about 3 - 5 mm <strong>in</strong> diameter, placed <strong>in</strong> beaker. The small fragment<br />

(soaked) <strong>in</strong> acetic acid. The prepared solution termed as ethanoic acid solution<br />

CH 3 COOH, made up <strong>of</strong> (80%) acetic acid <strong>and</strong> (20%) H 2 O for the duration time<br />

between (1 – 6) hours. The proposed technique based on cold-disaggregat<strong>in</strong>g<br />

with acetic acid. The acetic acid causes a very slow reaction that<br />

disaggregates the rocks without destroy<strong>in</strong>g <strong>and</strong> corrod<strong>in</strong>g fossil content. This<br />

method firstly was used by (Lirer 2000). The time <strong>of</strong> desegregations varies<br />

with the type <strong>of</strong> rock (amount <strong>of</strong> % CaCO 3 ) ranged between 1 – 2 hours for<br />

marl , claystone <strong>and</strong> shale, 2 – 3 hours for shale <strong>and</strong> marly limestone, 4 – 6<br />

hours are sufficient for limestone, this <strong>in</strong>dicates that the porosity <strong>and</strong> degree<br />

<strong>of</strong> lithification play an important role on disaggregation time.<br />

20


Chapter one<br />

Introduction<br />

2- Hydrogen peroxide method: Another preparation method was <strong>in</strong>troduced <strong>in</strong><br />

this research is hydrogen peroxide oxidation method,( H 2 O 2 ) , oxidizes organic<br />

mater <strong>and</strong> produc<strong>in</strong>g (CO 2 ) pressure <strong>in</strong> the pore spaces proved to be w<strong>in</strong>n<strong>in</strong>g<br />

<strong>and</strong> it is the most favored method to separate foram<strong>in</strong>iferal test from the rock<br />

type <strong>of</strong> s<strong>of</strong>t, friable, porous <strong>and</strong> permeable rocks. The method used H 2 O 2<br />

(concentration <strong>of</strong> 20 - 30% ) <strong>and</strong> water with duration time between 2 – 3<br />

hours.<br />

3-The third method is more classical <strong>and</strong> traditional preparation for extraction<br />

foram<strong>in</strong>ifera from the rock matrix, <strong>in</strong> which the particles were boiled <strong>in</strong> water<br />

for 3 – 5 hours with addition <strong>of</strong> few grams <strong>of</strong> Sodium hydroxide ( Na OH) or<br />

Sodium carbonate (Na 2 CO 3) which produces CO 2 as well as crystals <strong>of</strong> salt<br />

with<strong>in</strong> the pore spaces.<br />

-The disaggregated samples were washed under tap water through a 63-µm<br />

sieve until clean foram<strong>in</strong>iferal residues were recovered. Then to remove the<br />

residual encrustations <strong>and</strong> clay materials the residue is dipped aga<strong>in</strong> <strong>in</strong> beaker<br />

with water diluted desogen <strong>and</strong> placed <strong>in</strong>to an ultrasonic vibrator for half hour.<br />

The use <strong>of</strong> ultrasonic cleaner proved to be successful <strong>in</strong> mechanical clean<strong>in</strong>g<br />

<strong>of</strong> <strong>in</strong>dividual specimens without break<strong>in</strong>g them. The f<strong>in</strong>al washed residue was<br />

dried <strong>in</strong> an oven at 50 C o or by us<strong>in</strong>g the s<strong>and</strong> bath, Planktonic <strong>and</strong> benthonic<br />

foram<strong>in</strong>ifera are well preserved <strong>in</strong> the Smaquli area for both Upper Cretaceous<br />

<strong>and</strong> Lower Tertiary (Danian) forams, but <strong>in</strong> other sections the preservation is<br />

moderate, although orig<strong>in</strong>al calcite shells are recrystallized <strong>in</strong> some samples<br />

<strong>of</strong> Sirwan section.<br />

For each sample about 200—300 specimen were picked from<br />

representative sample split. Population counts for each sample are based on<br />

r<strong>and</strong>om split, <strong>of</strong> specimens from 63 µm <strong>and</strong> 150 µm fraction respectively.<br />

Planktonic <strong>and</strong> benthonic foram<strong>in</strong>ifera were picked from each sample <strong>and</strong><br />

mounted. The rema<strong>in</strong><strong>in</strong>g samples were used to search<strong>in</strong>g for rare species.<br />

A- Laboratory analysis <strong>and</strong> scann<strong>in</strong>g electron microscope photography<br />

were processed <strong>in</strong> the Institute for Paleontology, University <strong>of</strong> Bonn, Germany.<br />

21


Chapter one<br />

Introduction<br />

1.8 -The aim <strong>of</strong> the study:<br />

The aim <strong>of</strong> this study <strong>in</strong>cludes the follow<strong>in</strong>g aspects:<br />

1- Complete <strong>and</strong> high resolution biostratigraphic zonation <strong>of</strong> the sections <strong>in</strong><br />

the studied area.<br />

2- Regional biostratigraphic correlation <strong>of</strong> the sections with<strong>in</strong> the area <strong>of</strong> the<br />

study <strong>and</strong> global correlation with other similar sequences<br />

3- Indicat<strong>in</strong>g the age <strong>of</strong> the sequences, by us<strong>in</strong>g the new zonal scheme <strong>and</strong><br />

the age <strong>of</strong> planktonic foram<strong>in</strong>iferal datum events with correlative <strong>and</strong> relative<br />

methods.<br />

4- Depositional <strong>and</strong> paleoenvironmental study <strong>of</strong> the units based on sequence<br />

analysis <strong>of</strong> the formations along the studied section.<br />

5- Paleogeobathymetric <strong>in</strong>terpretation <strong>of</strong> the studied sections.<br />

6. To establish the relations between the Red Bed Series <strong>and</strong><br />

contemporaneous Kolosh Formation <strong>in</strong> the high <strong>and</strong> low folded zones.<br />

7- The nature <strong>of</strong> the contact between Late Maastrichtian <strong>and</strong> early Paleocene.<br />

8- Interpretation <strong>and</strong> determ<strong>in</strong>ation <strong>of</strong> depositional rate <strong>and</strong> Graphical<br />

correlation between the studied sections.<br />

22


Chapter Two<br />

CHAPTER TWO<br />

Lithostratigraphy<br />

LITHOSTRATIGRAPHY<br />

2.1-Preface<br />

In this chapter, a detailed study <strong>of</strong> the exposed uppermost part <strong>of</strong> the<br />

Upper Cretaceous successions (upper part <strong>of</strong> Tanjero Formation) <strong>and</strong> the<br />

Early Tertiary (lower most part <strong>of</strong> Kolosh Formation <strong>and</strong> Red Bed Series) were<br />

carried out <strong>in</strong> Sirwan valley, Kato, Qishlagh, Dokan <strong>and</strong> Gali section (Smaquli<br />

area). The studied stratigraphic sections <strong>in</strong>clude the upper part <strong>of</strong> Shiranish<br />

Formation, (Shiranish-Tanjero transition unit), Tanjero, Red Bed Series <strong>and</strong><br />

Kolosh Formations.<br />

2.2- Lithostratigraphy <strong>of</strong> Sirwan section<br />

The studied section <strong>in</strong> Sirwan valley represents the uppermost part <strong>of</strong><br />

Tanjero Formation <strong>and</strong> the lower part <strong>of</strong> Kolosh Formation, only 255m from<br />

the upper portion <strong>of</strong> Tanjero Formation were studied from the rest <strong>of</strong> (1500 m.)<br />

thickness <strong>and</strong> 65m from the lower part <strong>of</strong> Kolosh Formation, <strong>in</strong>clud<strong>in</strong>g the<br />

description <strong>and</strong> detailed lithologic constituent, <strong>and</strong> fieldwork <strong>in</strong>vestigation is<br />

<strong>in</strong>ferred <strong>and</strong> shown <strong>in</strong> figs (2.1, 2.2, 2.3). The most characteristic lithologic<br />

component <strong>of</strong> Tanjero Formation comprises alternation <strong>of</strong> bluish marl, marly<br />

siltstone, dark grey weathered s<strong>and</strong>stone, pebbly s<strong>and</strong>stone, dark grey shale,<br />

sometime organic rich shale, <strong>and</strong> seven weathered friable <strong>in</strong>traformational<br />

conglomerate beds distributed along this <strong>in</strong>terval, they range <strong>in</strong> thickness from<br />

0.5m to 2m, the pebble component <strong>of</strong> these conglomerate beds consists <strong>of</strong><br />

chert, limestone, <strong>and</strong> metamorphic particles Fig (2.4a). The lateral distribution<br />

<strong>of</strong> conglomerate beds ranges between 200 – 2000m.<br />

23


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.1) Lithostratigraphic column <strong>of</strong> studied section <strong>in</strong> Sirwan valley show<strong>in</strong>g lithologic<br />

characters. (Not to scale, the thickness shown on each portion <strong>of</strong> discussion)<br />

24


Chapter Two<br />

Lithostratigraphy<br />

The thickness, alternations between f<strong>in</strong>e <strong>and</strong> coarse sediments, with<br />

different dist<strong>in</strong>ctive lithologic composition <strong>and</strong> abundant reworked high<br />

diversity species richness <strong>of</strong> radiolarian micr<strong>of</strong>ossils, silica sphere <strong>and</strong><br />

microtectites?, reveal that these sediments were eroded <strong>and</strong> derived from<br />

short distance <strong>of</strong> h<strong>in</strong>terl<strong>and</strong> source area <strong>of</strong> Qulqula Formation <strong>in</strong> the eastern<br />

side <strong>of</strong> the Tanjero forel<strong>and</strong> bas<strong>in</strong>, <strong>and</strong> great deformation dur<strong>in</strong>g later phases<br />

<strong>of</strong> the Laramide orogeny along the Arabian <strong>and</strong> Iranian plate marg<strong>in</strong>. The<br />

foram<strong>in</strong>ifera commonly represented <strong>in</strong> this <strong>in</strong>terval <strong>of</strong> Tanjero Formation with<br />

three diluted foram<strong>in</strong>iferal survivorships, both planktonic <strong>and</strong> benthonic<br />

moderately preserved, restricted to f<strong>in</strong>e clastics <strong>of</strong> marl, shale, marly limestone<br />

<strong>and</strong> clay siltstone, without any <strong>in</strong>terruptions <strong>of</strong> deposition evidenced by<br />

cont<strong>in</strong>uation <strong>of</strong> foram<strong>in</strong>iferal biozones. It is worthy to mention that the<br />

<strong>in</strong>traformational conglomerate beds were formed by submar<strong>in</strong>e fans dur<strong>in</strong>g<br />

cyclic pulses <strong>of</strong> tectonic activity (Karim 2004).<br />

The Lower Tertiary lithostratigraphic unit is represented by Kolosh<br />

Formation which overlies the Tanjero Formation marked by 3m thick <strong>of</strong><br />

conglomerate bed at the base, Figs (2.1, 2.2 2.3), which is <strong>in</strong> the lithologic<br />

characteristic po<strong>in</strong>t <strong>of</strong> view, while the biostratigraphic <strong>in</strong>vestigation results <strong>in</strong><br />

this criterion <strong>in</strong>dicate the most probable new condition <strong>of</strong> conformable contact.<br />

Only 65m <strong>of</strong> the lower part <strong>of</strong> Kolosh Formation <strong>in</strong>vestigated. The most<br />

characteristic lithologic component <strong>of</strong> Kolosh Formation comprises alternation<br />

<strong>of</strong> dark grey shale, bluish green marl, organic rich shale, with th<strong>in</strong> layer <strong>of</strong><br />

siltstone, occasionally <strong>in</strong>tervened by th<strong>in</strong> marly limestone layers <strong>and</strong> f<strong>in</strong>e<br />

weathered s<strong>and</strong>stone, <strong>and</strong> three ridges form<strong>in</strong>g diagnostic pale grey yellowish<br />

slightly weathered conglomerate beds distributed vertically along the lower<br />

part <strong>of</strong> the Kolosh Formation, with the thickness <strong>of</strong> 3.0m, 10.0m <strong>and</strong> 13m,<br />

respectively Fig (2.3). The distribution <strong>of</strong> foram<strong>in</strong>iferal content was recorded<br />

from twenty samples from sample 185 to sample 205 after the Tanjero-<br />

Kolosh contact by 14m thickness, which <strong>in</strong>dicates barrens from foram<strong>in</strong>ifera,<br />

otherwise the reworked radiolarians frequently observed <strong>in</strong> all samples <strong>of</strong><br />

Kolosh Formation with rare reworked planktonic foram<strong>in</strong>ifera <strong>of</strong> Tanjero<br />

Formation.<br />

25


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.2) Schematic geologic cross section <strong>of</strong> the studied section (Sirwan Valley)<br />

26


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.3) Image show<strong>in</strong>g the Cretaceous/Tertiary contact between Tanjero- Kolosh Formations,<br />

Sirwan valley section <strong>and</strong> three ridge form<strong>in</strong>g conglomerate beds at the lower part <strong>of</strong> Kolosh<br />

Formation<br />

As mentioned above,<br />

the activations <strong>of</strong> Laramide Orogeny along the<br />

Arabian <strong>and</strong> Iranian plate marg<strong>in</strong> <strong>and</strong> great deformation dur<strong>in</strong>g later phases<br />

were still cont<strong>in</strong>uous for the period <strong>of</strong> lower Tertiary (Paleocene) time (Karim<br />

2004). Moreover, the Kolosh Formation was overla<strong>in</strong>ed by S<strong>in</strong>jar Formation<br />

gradually <strong>in</strong> the studied sections <strong>and</strong> marked by the regular change from f<strong>in</strong>e<br />

clastic sediment <strong>of</strong> Kolosh Formation to non clastic limestone beds <strong>of</strong> S<strong>in</strong>jar<br />

Formation.<br />

Fig (2.4) Image show<strong>in</strong>g a- conglomerate bed with<strong>in</strong> upper part <strong>of</strong> Tanjero Formation, Sirwan<br />

Valley. b- Systematic sampl<strong>in</strong>g with<strong>in</strong> friable greenish grey silty marlstone <strong>of</strong> upper part <strong>of</strong><br />

Tanjero Formation, Sirwan Valley<br />

27


Chapter Two<br />

Lithostratigraphy<br />

2.3- Lithostratigraphy <strong>of</strong> Kato section<br />

The Kato section is located <strong>in</strong> Barz<strong>in</strong>ja area, lithostratigraphically <strong>in</strong>cludes<br />

the upper part <strong>of</strong> Tanjero Formation <strong>and</strong> the lowermost part <strong>of</strong> Red Bed<br />

Series. The lower part <strong>of</strong> Tanjero Formation was previously studied by<br />

Sharbazheri (2007) <strong>in</strong> order to determ<strong>in</strong>e the age <strong>of</strong> the barren zone belong<strong>in</strong>g<br />

to the 500m <strong>in</strong>traformational Kato Conglomerate which estimated by (1.23<br />

m.y). Only 98m <strong>of</strong> rema<strong>in</strong><strong>in</strong>g part from Tanjero Formation have been<br />

studied <strong>in</strong> this section, with 12m from the lower part <strong>of</strong> Red Bed Series, the<br />

description <strong>and</strong> lithologic constituent <strong>and</strong> fieldwork <strong>in</strong>vestigation is <strong>in</strong>ferred as<br />

shown <strong>in</strong> fig (2.5).<br />

Fig (2.5) Lithostratigraphic column <strong>of</strong> Kato section show<strong>in</strong>g conventional lithologic<br />

constituent. (Not to scale, the thickness shown on each portion <strong>of</strong> discussion)<br />

28


Chapter Two<br />

Lithostratigraphy<br />

In the Kato section Tanjero Formation is underla<strong>in</strong>ed by Shiranish<br />

Formation gradationally, as a rule the contact is marked at the first appearance<br />

<strong>of</strong> gray s<strong>and</strong>stone or siltstone beds at the top <strong>of</strong> Shiranish Formation. The<br />

Red Bed Series overlies the Tanjero Formation conformably with a transitional<br />

contact. The studied Cretaceous part <strong>in</strong> Kato section is divided <strong>in</strong>to three units.<br />

Unit one comprises 40m <strong>of</strong> thick bedded succession <strong>of</strong> fossiliferous limestone<br />

<strong>and</strong> <strong>in</strong>terbedded calcareous shale, the limestone form<strong>in</strong>g a ridge <strong>of</strong> massive<br />

pale grey, tough, recrystallized, occasionally dolomitized, <strong>and</strong> characterized by<br />

several b<strong>and</strong>s rich <strong>in</strong> rudist, gastropods, pelecypods, brachiopods, <strong>and</strong> other<br />

macro <strong>and</strong> micr<strong>of</strong>ossils. This unit was mentioned previously as <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g<br />

Aqra limestone by Al-Mehaidi (1975) <strong>and</strong> Lawa et. al., (1998). The Aqra unit is<br />

overla<strong>in</strong>ed by 35m <strong>of</strong> alternation <strong>of</strong> th<strong>in</strong> bedded pale grey limestone, grey<br />

shale, marl, friable s<strong>and</strong>stone <strong>and</strong> calcareous fossiliferous s<strong>and</strong>stone with<br />

claystone <strong>and</strong> detrital fossiliferous limestone <strong>of</strong> second unit (Tanjero<br />

Formation). The third unit represents a transitional <strong>in</strong>terval between Tanjero<br />

Formation <strong>and</strong> Red Bed Series; it comprises 23m <strong>of</strong> alternation <strong>of</strong> th<strong>in</strong> bedded<br />

pale gray unfossiliferous limestone, olive green s<strong>and</strong>stone, red clay, friable<br />

reddish s<strong>and</strong>stone, siltstone, <strong>and</strong> detrital s<strong>and</strong>y reworked fossiliferous<br />

limestone at lower part, <strong>and</strong> dark organic rich shale bed <strong>of</strong> 20 cm thickness at<br />

the base <strong>of</strong> this <strong>in</strong>terval. The lower part <strong>of</strong> the Red Bed comprises alternation<br />

<strong>of</strong> thick bedded, red claystone, friable red bed <strong>of</strong> s<strong>and</strong>stone <strong>and</strong> siltstone, with<br />

lenses <strong>of</strong> conglomerate. The contact placed on the l<strong>in</strong>e when the olive green<br />

colour <strong>of</strong> sediment is vanished <strong>and</strong> the appearance <strong>of</strong> completely red colour <strong>of</strong><br />

sediment <strong>and</strong> conglomerate beds.<br />

2.4 - Lithostratigraphy <strong>of</strong> Qishlagh section<br />

The exposed rocks <strong>of</strong> Qishlagh section appeared <strong>in</strong> Qala Cholan area figs<br />

(2.6, 2.7) which <strong>in</strong>cludes the upper part <strong>of</strong> Tanjero Formation <strong>and</strong> the lower<br />

most part <strong>of</strong> Red Bed Series, the lithologic nature comprises <strong>of</strong> 45m <strong>of</strong> flysch<br />

type <strong>of</strong> Tanjero clastic sediments with dark grey to olive green marl, shale, <strong>and</strong><br />

bluish white calcareous marl <strong>and</strong> th<strong>in</strong> layer <strong>of</strong> fossiliferous friable s<strong>and</strong>y<br />

limestone <strong>in</strong>tervened by streak <strong>of</strong> limestone at the base <strong>of</strong> this <strong>in</strong>terval, this<br />

unit followed by 115m <strong>of</strong> <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g Aqra Limestone which consists <strong>of</strong><br />

29


Chapter Two<br />

Lithostratigraphy<br />

medium to massive well bedded ridge form<strong>in</strong>g recrystalized pale grey<br />

limestone <strong>and</strong> s<strong>and</strong>stone to silty limestone occasionally dolomitized rich <strong>in</strong><br />

rudist <strong>and</strong> other macro <strong>and</strong> micr<strong>of</strong>ossils <strong>in</strong>tercalated by with beds <strong>of</strong> shale <strong>and</strong><br />

calcareous shale at the lower <strong>and</strong> upper part <strong>of</strong> this <strong>in</strong>terval. The Aqra<br />

Limestone <strong>in</strong>terval overla<strong>in</strong>ed by 67m <strong>of</strong> Tanjero Formation with alternation <strong>of</strong><br />

bluish white marl, marly siltstone, th<strong>in</strong> bedded recrystalized fossiliferous<br />

limestone <strong>and</strong> weathered pale grey friable s<strong>and</strong>stone layer with some pebbly<br />

s<strong>and</strong>stone, clay ball <strong>and</strong> pillow structure.<br />

The third unit <strong>of</strong> this section is transitional zone 35m <strong>of</strong> clastic <strong>in</strong>creas<strong>in</strong>g<br />

upward consists <strong>of</strong> reddish weathered friable s<strong>and</strong>stone pebbly s<strong>and</strong>stone<br />

rich <strong>in</strong> reworked L<strong>of</strong>tusia, Omphalocyclus <strong>and</strong> Orbitoides fig(2.8a) at the base<br />

<strong>and</strong> followed by alternation grey shale, marl, friable detrital s<strong>and</strong>y limestone<br />

with purple to reddish claystone, <strong>and</strong> two conglomerate beds at the upper part<br />

<strong>of</strong> this <strong>in</strong>terval, the conglomerate genetically comprises igneous, metamorphic<br />

<strong>and</strong> sedimentary orig<strong>in</strong> <strong>of</strong> the pebbles <strong>and</strong> they extended laterally for limited<br />

short distances. This <strong>in</strong>terval is characterized by shell debris <strong>of</strong> macr<strong>of</strong>ossils<br />

such as solitary corals cyclolites, ech<strong>in</strong>oids, dwarfed gastropods, <strong>and</strong><br />

pelecypodes.The transition <strong>in</strong>terval overla<strong>in</strong>ed by typical molasses <strong>of</strong> Red Bed<br />

Series <strong>in</strong> this section marked by 3m <strong>of</strong> friable brownish weathered<br />

conglomerate <strong>of</strong> metamorphic <strong>and</strong> sedimentary pebbles <strong>and</strong> complete reddish<br />

color (fig 2.8b) with reworked dwarfed fossils <strong>of</strong> corals, brachiopod, ech<strong>in</strong>oid,<br />

gastropod <strong>and</strong> pelecypods, followed by red beds <strong>of</strong> claystone, s<strong>and</strong>stone,<br />

pebbly s<strong>and</strong>stone. It is important to mention that <strong>in</strong> addition to Kato <strong>and</strong><br />

Qishlagh sections, other three prelim<strong>in</strong>ary outcrops were taken <strong>in</strong>to<br />

consideration for sampl<strong>in</strong>g on Tanjero/ Red Bed contact like (Zardabee,<br />

Tagaran <strong>and</strong> Shakha Sur) sections <strong>in</strong> order to get high foram<strong>in</strong>iferal<br />

survivorship recovery, but it proved useless result from the foram<strong>in</strong>iferal<br />

recovery po<strong>in</strong>t <strong>of</strong> view.<br />

30


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.6) Lithostratigraphic column <strong>of</strong> Qishlagh section show<strong>in</strong>g lithologic characters.<br />

(Not to scale, thicknesses shown opposite each unit)<br />

31


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.7) Schematic geologic cross section <strong>of</strong> the Qishlagh locality <strong>in</strong> Qala Cholan area<br />

32


Chapter Two<br />

Lithostratigraphy<br />

Fig (2. 8) (a) show<strong>in</strong>g reworked fossils <strong>of</strong> large foram. <strong>of</strong> L<strong>of</strong>tusia, Omphalocyclus <strong>and</strong><br />

Orbitoides <strong>in</strong> the transitional zone between Tanjero <strong>and</strong> Red Bed Series. (b) Show<strong>in</strong>g the<br />

conglomerate bed <strong>of</strong> 3 m. thick, which conta<strong>in</strong> reworked <strong>and</strong> dwarfed fossils at the base <strong>of</strong> Red<br />

Bed Series.<br />

2.5 - Lithostratigraphy <strong>of</strong> Qulka section (Dokan area)<br />

The measured part <strong>of</strong> studied section covered 163m <strong>of</strong> upper part <strong>of</strong><br />

Tanjero Formation <strong>and</strong> 54m from the lower part <strong>of</strong> Kolosh Formation. The<br />

detailed stratigraphic section is shown <strong>in</strong> Figs (2.9, 2.10, & 2.11) on both side<br />

<strong>of</strong> conglomerate bed, which formerly supposed to be the contact or key marker<br />

for Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> the studied area by different authors. The<br />

well exposed rocks <strong>of</strong> studied section <strong>of</strong> Tanjero Formation at Qulka section<br />

represented by 63m <strong>of</strong> olive green to pale grey marl <strong>and</strong> bluish white<br />

calcareous marl <strong>in</strong>tervened by streak <strong>of</strong> limestone ve<strong>in</strong>s <strong>and</strong> 3m dark grey to<br />

olive green s<strong>of</strong>t, friable s<strong>and</strong>stone occasionally with siltstone, clay ball <strong>and</strong><br />

pillow structure at the middle part <strong>of</strong> this <strong>in</strong>terval. Followed by 59m <strong>of</strong><br />

<strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g Aqra Limestone unit which consists <strong>of</strong> well bedded ridge form<strong>in</strong>g<br />

recrystalized pale grey to yellowish limestone <strong>and</strong> s<strong>and</strong>stone to silty limestone<br />

occasionally dolomitized <strong>in</strong>tercalated by th<strong>in</strong> beds <strong>of</strong> shale, calcareous shale,<br />

marl <strong>and</strong> s<strong>and</strong>stone beds through this <strong>in</strong>terval. The Aqra Limestone <strong>in</strong>terval <strong>in</strong><br />

this section varies from its equivalent at Qishlagh <strong>and</strong> Kato sections, by very<br />

low frequency <strong>of</strong> macr<strong>of</strong>ossils <strong>and</strong> short lateral distribution. The <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g<br />

Aqra limestone unit overla<strong>in</strong>ed by 41m <strong>of</strong> Tanjero flysch type emergence aga<strong>in</strong><br />

by alternation <strong>of</strong> olive green to dark grey calcareous shale, marl, th<strong>in</strong> bedded<br />

s<strong>and</strong>y limestone ,friable weathered s<strong>and</strong>stone, some pebbly s<strong>and</strong>stone bluish<br />

33


Chapter Two<br />

Lithostratigraphy<br />

white marl, marly siltstone, th<strong>in</strong> bedded recrystalized limestone <strong>and</strong> with clay<br />

ball <strong>and</strong> pillow structure. In this section, it is significant to mention that there<br />

are 3 conglomerate beds at the upper part <strong>of</strong> this unit, with the thickness <strong>of</strong><br />

(0.5 m., –1.5 m., – 0.2 m.) respectively, the conglomerate bed with thickness<br />

<strong>of</strong> 1.5m is previously concluded to be the marker bed <strong>of</strong> Cretaceous/Tertiary<br />

<strong>boundary</strong> at studied section by different authors, Fig (2.11a). Whereas the<br />

negate event is that the exact Cretaceous/Tertiary contact comes after 14m<br />

above the previously mentioned contact, without any obvious change <strong>in</strong><br />

lithologic characters between Tanjero <strong>and</strong> Kolosh Formations at sample No. <strong>of</strong><br />

K20 with the first appearance <strong>of</strong> Paleocene <strong>in</strong>dex foram. taxon .<strong>and</strong><br />

disappearance <strong>of</strong> the Upper Cretaceous planktonic foram<strong>in</strong>ifera <strong>of</strong><br />

Globotruncanids, Heterohelicids <strong>and</strong> Rugoglobiger<strong>in</strong>ids. The contact l<strong>in</strong>e<br />

placed at the base <strong>of</strong> friable, s<strong>of</strong>t <strong>and</strong> weathered f<strong>in</strong>e s<strong>and</strong>stone <strong>and</strong> silty<br />

s<strong>and</strong>stone <strong>of</strong> (5m.) thickness with dilution <strong>of</strong> foram<strong>in</strong>iferal content by abrupt<br />

change <strong>and</strong> without more Cretaceous planktonic foram<strong>in</strong>ifera, <strong>and</strong> the<br />

recognition <strong>of</strong> the major paleoclimatic transform dur<strong>in</strong>g the late Maastrichtian<br />

has focused new attention on climate changes <strong>and</strong> their effect on mar<strong>in</strong>e<br />

organisms, this was reflected on foram<strong>in</strong>iferal survivorship <strong>in</strong> the studied area.<br />

The Kolosh Formation consists <strong>of</strong> 5m s<strong>of</strong>t, friable, weathered s<strong>and</strong>stone,<br />

siltstone at the base, followed by dark grey shale, olive green marl <strong>and</strong> organic<br />

rich shale alternate with th<strong>in</strong> layer <strong>of</strong> siltstone, f<strong>in</strong>e s<strong>and</strong>stone occasionally<br />

<strong>in</strong>tervened th<strong>in</strong> marly limestone layers, <strong>and</strong> 2m <strong>of</strong> s<strong>and</strong>stone, pebbly<br />

s<strong>and</strong>stone <strong>and</strong> friable conglomerate Fig (2.11b) rich <strong>in</strong> reworked fossils <strong>of</strong><br />

solitary corals, <strong>and</strong> small gastropods, pelecypod <strong>and</strong> brachiopods at the<br />

middle part <strong>of</strong> studied <strong>in</strong>terval.<br />

34


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.9) Schematic geologic cross section <strong>of</strong> the Qulka Section <strong>in</strong> Dokan area<br />

35


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.10) Lithostratigraphic column <strong>of</strong> Qulka section <strong>in</strong> Dokan area show<strong>in</strong>g lithologic<br />

characters. (Not to scale, the thickness shown on each portion <strong>of</strong> discussion)<br />

36


Chapter Two<br />

Lithostratigraphy<br />

Fig (2. 11) Photo image (a) Show<strong>in</strong>g the conglomerate bed <strong>of</strong> 1.5 m. thick, which is previously<br />

concluded to be the contact l<strong>in</strong>e <strong>of</strong> Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> Dokan area by different<br />

authors. (b) S<strong>of</strong>t, friable <strong>and</strong> weathered <strong>in</strong>traformational conglomerate <strong>and</strong> pebbly s<strong>and</strong>stone<br />

from the lower part <strong>of</strong> Kolosh Formation, rich <strong>in</strong> reworked fossils <strong>of</strong> corals. gastropods,<br />

pelecypods, ech<strong>in</strong>oids <strong>and</strong> brachiopods.<br />

2.6 - Lithostratigraphy <strong>of</strong> Gali section (Smaquli area)<br />

The well exposed rocks <strong>of</strong> measured part <strong>of</strong> studied Gali section, <strong>in</strong><br />

Smaquli Mounta<strong>in</strong> area covered 15m <strong>of</strong> the upper most part <strong>of</strong> Shiranish<br />

Formation, then 74m <strong>of</strong> the reddish to pale brown succession (Shiranish-<br />

Tanjero transition unit), 72m Tanjero Formation <strong>and</strong> 49m Kolosh Formation<br />

<strong>and</strong> 10m <strong>of</strong> the lower most part <strong>of</strong> Gercus Formation. The detailed<br />

lithostratigraphic section is shown <strong>in</strong> Figs (2.12, 2.13, <strong>and</strong> 2.14).<br />

In the studied section, the reddish to pale brown succession (Shiranish-<br />

Tanjero transition unit) consists <strong>of</strong> 74m alternation <strong>of</strong> th<strong>in</strong> well bedded<br />

fossiliferous reddish to pale brown clay, marl alternate with th<strong>in</strong> reddish shale<br />

<strong>and</strong> papery shale <strong>in</strong>tercalated by th<strong>in</strong> pale brown some time to pale grey<br />

calcareous marl <strong>of</strong> 5cm to 10cm thickness from the base to the top <strong>of</strong> this<br />

<strong>in</strong>terval. Throughout the studied area the reddish to pale brown succession<br />

(Shiranish-Tanjero transition unit) is underla<strong>in</strong>ed by Shiranish Formation. It is<br />

likely form<strong>in</strong>g a normal stratigraphic <strong>boundary</strong> <strong>of</strong> conformable gradational<br />

contact from bluish white marl <strong>and</strong> marly limestone <strong>of</strong> Shiranish Formation to<br />

the first appearance <strong>of</strong> reddish to pale brown clay or marl beds <strong>of</strong> the<br />

transitional unit Fig (2.14).<br />

37


Chapter Two<br />

Lithostratigraphy<br />

The upper contact <strong>of</strong> the red unit marked by start<strong>in</strong>g <strong>of</strong> olive green <strong>and</strong> dark<br />

grey lithology with the first appearance <strong>of</strong> 20cm hard well bedded s<strong>and</strong>stone at<br />

the base <strong>of</strong> Tanjero Formation. The Tanjero Formation is represented by 72m<br />

<strong>and</strong> subdivided lithologically <strong>in</strong>to three dist<strong>in</strong>ct units based on field observation<br />

Figs (2.12, 2.13) .These three units are described briefly as follows from the<br />

base to the top.<br />

- Unit A: 24m thick consists <strong>of</strong> olive green to dark grey shale alternate with<br />

grey marl <strong>and</strong> claystone , with three layers <strong>of</strong> hard, f<strong>in</strong>e to medium gra<strong>in</strong><br />

s<strong>and</strong>stone at the base <strong>of</strong> 20cm thickness, middle part <strong>of</strong> 15cm thickness <strong>and</strong><br />

the upper part <strong>of</strong> 10cm. thickness.<br />

- Unit B: 20m Consists <strong>of</strong> alternation <strong>of</strong> th<strong>in</strong> olive green beds <strong>of</strong> marl, dark<br />

grey organic shale, papery calcareous shale <strong>and</strong> th<strong>in</strong> limestone beds <strong>of</strong> 3-6 cm<br />

thickness, repeated <strong>in</strong> cyclic way every two meter <strong>in</strong> this <strong>in</strong>terval <strong>and</strong> two<br />

limestone beds <strong>of</strong> 20cm thickness at the middle <strong>and</strong> the upper part <strong>of</strong> this unit.<br />

-Unit C: 28m Consists <strong>of</strong> dark organic papery shale <strong>and</strong> <strong>in</strong>terlayred by th<strong>in</strong><br />

beds <strong>of</strong> dark grey marl with oily impregnated friable s<strong>of</strong>t <strong>and</strong> weathered pale<br />

brown three s<strong>and</strong>stone beds <strong>of</strong> 3m , 1.8m <strong>and</strong> 1m thickness at the upper part<br />

<strong>of</strong> this unit respectively.<br />

The overly<strong>in</strong>g formation is Kolosh Formation <strong>of</strong> 49m thick consists ma<strong>in</strong>ly <strong>of</strong><br />

dark grey organic rich shale alternate with marl <strong>and</strong> th<strong>in</strong> layer <strong>of</strong> siltstone <strong>and</strong><br />

hard s<strong>and</strong>stone beds <strong>of</strong> 5cm to 10cm thickness, occasionally <strong>in</strong>tercalated with<br />

th<strong>in</strong> marly limestone layers <strong>and</strong> 5 red claystone beds at the last 10 meters <strong>of</strong><br />

the upper most part <strong>of</strong> Kolosh formation, which starts from 30 cm to 2m<br />

respectively.<br />

38


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.12) Schematic geologic cross section <strong>of</strong> the Gali section <strong>in</strong> Smaquli area<br />

39


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.13) Lithostratigraphic column <strong>of</strong> Gali section <strong>in</strong> Smaquli area show<strong>in</strong>g conventional<br />

lithologic constituent. (Not to scale, the thickness shown on each portion <strong>of</strong> discussion)<br />

40


Chapter Two<br />

Lithostratigraphy<br />

Fig (2.14) Image show<strong>in</strong>g the graditional contact (change <strong>in</strong> color) between Shiranish<br />

Formation <strong>and</strong> Reddish to pale brown succession<br />

The Kolosh Formation overla<strong>in</strong>ed by the Gercus Formation, the contact is<br />

seems to be conformable by lithologic evidence <strong>of</strong> graditional change from<br />

dark grey organic rich sediments <strong>of</strong> Kolosh Formation to red, purple mudstone,<br />

s<strong>and</strong>stone, gritty marl, pebbly s<strong>and</strong>stone <strong>and</strong> conglomerates. The contact<br />

placed on the l<strong>in</strong>e where the sediment colour ma<strong>in</strong>ly began with red lithology.<br />

paleontologically there were no significant fossils recorded <strong>in</strong> this <strong>in</strong>terval <strong>of</strong><br />

lower most part <strong>of</strong> Gercus Formation <strong>in</strong> which six samples were studied for<br />

both foram<strong>in</strong>iferal <strong>and</strong> palynomorphs evidence.<br />

41


Chapter Three Biostratigraphy<br />

CHAPTER THREE<br />

BIOSTRATIGRAPHY<br />

3.1: Preface<br />

The comprehensive studies <strong>of</strong> planktonic foram<strong>in</strong>iferal <strong>biostratigraphy</strong> dur<strong>in</strong>g<br />

the last five decades have proved to be more useful <strong>and</strong> more accurate way<br />

among the large number <strong>of</strong> micropaleontological branches, especially than<br />

benthonic foram<strong>in</strong>ifera for regional, <strong>in</strong>terregional <strong>and</strong> <strong>in</strong>tercont<strong>in</strong>ental correlation<br />

over the Cretaceous <strong>and</strong> Tertiary periods. A number <strong>of</strong> datum events <strong>and</strong> series<br />

<strong>of</strong> zonation for different regions have been proposed. ( e.g. Bolli 1966; Postuma<br />

1971; Blow 1979; Caron 1985; Berggren & Miller 1988; Berggren et al.,1995;<br />

Berggren & Norris 1997; Keller 1988 , 2002, 2004; Keller et al 1995; Li & Keller<br />

1998a,b; Abramovich et al., 2002; <strong>and</strong> Olsson et al., 2000). That is due to wide<br />

geographic distribution, their occurrence <strong>in</strong> the deeper mar<strong>in</strong>e environment,<br />

short geologic range as well as known morphological feature <strong>of</strong> the <strong>in</strong>dex<br />

species.<br />

3.2: BIOSTRATIGRAPHY<br />

The samples which conta<strong>in</strong> micr<strong>of</strong>ossils collected from the studied sections<br />

yielded rare, predom<strong>in</strong>ant to extremely abundant groups, bad to well preserved,<br />

accord<strong>in</strong>g to different localities <strong>of</strong> studied sections. It is looked as the radiation<br />

stage <strong>of</strong> biotic evolution <strong>and</strong> high diversity <strong>of</strong> globotruncanids, rugoglobiger<strong>in</strong>ids,<br />

globiger<strong>in</strong>ids <strong>and</strong> heterohelicids planktonic foram<strong>in</strong>ifera <strong>in</strong> Smaquli area (Gali<br />

section), high to moderate occurrence <strong>in</strong> Qulka section (Dokan area), moderate<br />

<strong>in</strong> Sirwan section <strong>and</strong> low occurrence, low diversity <strong>in</strong> both Kato <strong>and</strong> Qishlagh<br />

sections with moderate calcareous <strong>and</strong> agglut<strong>in</strong>ated benthonic forams <strong>in</strong> general<br />

Table (3.1), (Figs.3.1 – 3.8). The foram<strong>in</strong>ifera occurs cont<strong>in</strong>uously <strong>in</strong> the<br />

sedimentary succession <strong>of</strong> the all studied sections, generally shows <strong>in</strong>cessant <strong>in</strong><br />

sedimentary sequence without any <strong>in</strong>terruptions, except <strong>of</strong> Sirwan section which<br />

is evidenced by three diluted <strong>in</strong>tervals <strong>of</strong> foram<strong>in</strong>iferal survivorship <strong>in</strong> the studied<br />

upper part <strong>of</strong> Tanjero Formation, <strong>and</strong> the fourth one at the base <strong>of</strong> Paleocene<br />

just after the ext<strong>in</strong>ction catastrophe <strong>of</strong> organism at the uppermost part <strong>of</strong><br />

Maastrichtian. The Upper Maastrichtian –Lower Paleocene <strong>in</strong>terval <strong>in</strong> general<br />

attracted particular attention because <strong>of</strong> the foram<strong>in</strong>ifera is relatively moderate<br />

42


Chapter Three Biostratigraphy<br />

<strong>and</strong> is mostly well preserved, especially <strong>in</strong> Smaquli area which showed highest<br />

species diversity than other sections, at the contact <strong>of</strong> Cretaceous/Tertiary<br />

<strong>boundary</strong><br />

Table 3.1 shows the statistics <strong>of</strong> identified planktonic <strong>and</strong> benthonic<br />

foram<strong>in</strong>iferal genera <strong>and</strong> species belong<strong>in</strong>g to all studied localities were<br />

recorded from the studied sections (Figs. 3.1 - 3.8). The planktonic foram<strong>in</strong>ifera<br />

<strong>of</strong> globotruncanids, heterohelicids, rugoglobiger<strong>in</strong>ids, globiger<strong>in</strong>elloidids <strong>and</strong><br />

globiger<strong>in</strong>ids are the most prevalent planktonic forams <strong>in</strong> the studied area <strong>and</strong><br />

they show the best <strong>in</strong>dication <strong>of</strong> typical Tethyan fauna type.<br />

The comprehensive <strong>and</strong> motif plan <strong>in</strong> this work was deduced from the<br />

recently planktonic foram<strong>in</strong>iferal zonation <strong>and</strong> correlation for the sediments <strong>in</strong><br />

tropical/subtropical regions, are widely based on that <strong>of</strong> Berggren & Miller<br />

(1988), Li <strong>and</strong> Keller (1998a & b), Liu <strong>and</strong> Olsson (1992), Berggren et al.,<br />

(1995), Berggren & Norris (1997), Olsson et al., (2000), Arenillas et al., (2001),<br />

Elnady & Shah<strong>in</strong> (2001), Samir (2002), Abramovich et al., (2002), Keller (2002)<br />

<strong>and</strong> (2004), Abramovich <strong>and</strong> Keller (2003), Obaidalla (2005), Smit (2005), <strong>and</strong><br />

Sharbazheri (2007), <strong>and</strong> used exclusively as the biostratigraphic framework <strong>in</strong><br />

this study. Fortunately, this zonation proved satisfactory successful results<br />

essentially achieved <strong>in</strong> different localities <strong>of</strong> the world.<br />

Li <strong>and</strong> Keller (1998a) subdivided the Maastrichtian zonal scheme <strong>in</strong>to eight<br />

Cretaceous Foram<strong>in</strong>iferal (CF) zones labeled (CF8) to (CF1) from the base to<br />

the top; this new biozonation provides accurate <strong>and</strong> significantly higher<br />

biostratigraphic resolution than previous zonal schemes. They calibrated their<br />

ranges to the paleomagnatic time scale <strong>in</strong> the DSDP Site 525A, <strong>and</strong> on<br />

Tunisian sections (Li <strong>and</strong> Keller 1998b), their age estimation were also<br />

correlated with magnetochron ages by Berggren et al (1995), <strong>and</strong> consequently<br />

the criteria for age estimation <strong>and</strong> determ<strong>in</strong>ation rate <strong>of</strong> sedimentation can be<br />

proved easily through biostratigraphic correlation <strong>and</strong> datum event comparison.<br />

The genetic classification <strong>and</strong> identification used <strong>in</strong> this study for the<br />

Maastrichtian <strong>and</strong> Lower Paleocene sediments respectively follow that <strong>of</strong> Boli<br />

(1966), Postuma (1971), Kassab (1974), (1975d) <strong>and</strong> (1976), Masters (1977),<br />

Blow (1979), Jenk<strong>in</strong>s <strong>and</strong> Murray (1981), Caron (1985), Loeblich <strong>and</strong> Tappan<br />

43


Chapter Three Biostratigraphy<br />

(1988), Berggren & Miller (1988), Berggren et al., (1995), Georgescu (1996 <strong>and</strong><br />

2002), BouDagher-Fadel et al (1997), Berggren & Norris (1997), Olsson et<br />

al., (2000), Elnady & Shah<strong>in</strong> (2001), Arenillas et al., (2001).<br />

The biostratigraphic correlation <strong>of</strong> the studied sections is based on<br />

planktonic foram<strong>in</strong>iferal zonations (Figs.3.12 - 3.13), which shows a comparison<br />

between the biostratigraphic zones established <strong>in</strong> this study with other<br />

equivalent <strong>of</strong> the commonly used planktonic zonal scheme<br />

around the<br />

Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> <strong>and</strong> outside <strong>of</strong> Iraq.<br />

Table (3.1) Show<strong>in</strong>g the number <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>iferal Genera <strong>and</strong> species<br />

identified <strong>in</strong> the studied sections from the Tanjero <strong>and</strong> Kolosh Formations<br />

Location Formation Epoch Foram type<br />

Total Total<br />

Genera Species<br />

Genera Species<br />

No. No.<br />

No. No.<br />

Sirwan Tanjero Late Maas. Pl. 20 62<br />

Sirwan Kolosh<br />

Early<br />

30 79<br />

Pl. 11 18<br />

Paleocene<br />

Sirwan Tanjero Late Maas. Ben. 36 58<br />

Sirwan Kolosh<br />

Early<br />

40 62<br />

Ben. 32 52<br />

Paleocene<br />

Kato Tanjero Late Maas. Pl. 14 30 14 30<br />

Kato Tanjero Late Maas. Ben. 25 38 25 38<br />

Qishlagh Tanjero Late Maas. Pl. 13 26 13 26<br />

Qishlagh Tanjero Late Maas. Ben. 28 42 28 42<br />

Dokan Tanjero Late Maas. Pl. 18 53<br />

Dokan Kolosh<br />

Early<br />

26 68<br />

Pl. 9 16<br />

Paleocene<br />

Dokan Tanjero Late Maas. Ben. 36 52<br />

Dokan Kolosh<br />

Early<br />

38 57<br />

Ben. 31 43<br />

Paleocene<br />

Gali<br />

Trunsit.unit<br />

Maas. Pl. 23 82<br />

+ Tanjero<br />

35 101<br />

Gali Kolosh<br />

Early<br />

Paleocene<br />

Pl. 14 21<br />

Gali<br />

Trunsit.unit<br />

Maas. Ben. 38 66<br />

+ Tanjero<br />

38 71<br />

Gali Kolosh<br />

Early<br />

Paleocene<br />

Ben. 30 50<br />

44


Chapter Three Biostratigraphy<br />

C R E T A C E O U S T E R T I A R Y PERIOD<br />

L A T E M A A S T R I C H T I A N P A L E O C E N E EPOCH--AGE<br />

T A N J E R O F O R M A T I O N K O L O S H Fn. FORMATION<br />

1 40 80 100 110 120 130 140 150 160 177 180 185 195 200 210 SAMPLE No<br />

LITHOLOGY<br />

1 63 110 140 160 170 180 190 210 230 255 280 300 320 THICKNESS m.<br />

P0<br />

CF.zones<br />

CF 5 CF 4 CF 3 CF 2 CF 1<br />

& P 1a P1b (Li&Killer,1998a)<br />

P.<br />

<strong>in</strong>termedia<br />

R. fructicosa P. hariaensis<br />

P.<br />

palpebra<br />

P.<br />

hantk.<br />

- ---- ----- ----- ------ ------------------ ---------- ----- --- ---- --- -- -- -<br />

-- --- ----- -- ------- ------------------ -- -------- --- --- --- --- ---- --<br />

--- ----- ------- ------ -------- ---- ---------- ----<br />

- ----- ---- ---------------- ----------------- ------------------<br />

- --- ---- ---- ---------------- ------------ ----- ----------------<br />

------- ------------------------- ---- -- ----<br />

-- ----- ----- ---------- -------------- ---- ----------- ------ ------ ------ ---<br />

---- -- --------------- --------- -- ---------------- -- -- - - - -<br />

----- -- ---- --- -- -- --- --- --- ------------------------- -- -- -- -- --- - ----<br />

- -- - -- ---- ---- -- -- ----------------- --- -- -- -- - - -- -- --- - --<br />

--- -- - - --- --- --- -- --- --- --- --- ---- -- -- - - -<br />

----- - -- -- -- - -- --- -- - - - -- ------------------------------------ ---- ---<br />

--- ----------------------- --- --- -- - -- - --- - -<br />

------------------------- ---- -- --- -- - -- - -<br />

-- ---- -- -- ---------------- ------------ --- -------------------0<br />

---- ----- ---------------- ----<br />

- ---- ------ ----- ---<br />

------ ------- ---------------- ---------- ----- -------------------- --- --- - -- --- -- --- --<br />

--- ------- ---------------- ------ ----- ---- ----------------------------------- ---- - --- -- -<br />

---- - ---- ----------------- ------ ---- ----- -----------------------<br />

---- ------ ---------------- ----- ------- --- --<br />

--- - --- -------- ------- ----- ----- ----- --------------- ---- --- -- --<br />

----- ----- ------<br />

---- ---- ---- - --<br />

----- ------ ---- ----- ------- ------- ---------------- --- -- ---- - --- ---<br />

------ ------ ----------------- --- ----- ---- -- ---------------- --- -- --- --- -----<br />

----- ------ --------- -- ----- --- -- ---------- ------ ------- --------<br />

-- ------ ----- ------------------ ---- ---------- ---------------- -----<br />

--- ---- -----<br />

---- ------ --------<br />

--- ------- ----------<br />

- - ------ ----------------- ------ ---- --------------- - ------- --- - - ------<br />

---- ------ -- - -- -<br />

--- -- -- --- ------------- ---- ---- ---- ---- -- --- -<br />

---------------------------- -- ---<br />

- ---- ---- ------- ----- --- ---- ------ ------------ --- -- --- --- ---- --- -- -<br />

--- ------- ------- --- ---- --- ----- ------- ----- --- ---- -- -- --- ---<br />

---------------- -------- --- --- -- --- --- -- ------------------ ---- ---- ---<br />

----- ---- ------------ -- ---- ---- -- --- - - -<br />

--- ------ ------ ------ ---- ---- ------<br />

---- -------- ---- ------ ----- --------- --- --- ---- --- -- --<br />

-- ----- -------- ------ -------- ------ ----<br />

-- ----- -------- ---------------- -- ------- ------ ------------------- ------ ------ ------ ----- ----<br />

-- ---- -- ----- ---------------- -- ------ ------- ---- ----- --- ---- ----- --- ----<br />

- ---- ------- ------- ----- - ----- ---- ----------- ----<br />

0----- --------- ------ ---------- ---- -------- -------- ------ ----- ---- -- ---- ----- ------ --<br />

---- --- --- --- ----<br />

--- --- - ---- -----------------<br />

0------ ------------------ -- --- - ---- -- --- --<br />

----- ----------- -------- ---- --- ----- ---- ---- -- --- -- --<br />

--- ------ ----- ------ ----------------- ----- ------ ----- ------ ---- -- - - - - -<br />

- - ---- - -------- ----------------- ------- ----- --- ------ ---- ---- - ---- -- --<br />

- --- -- -------- - ---------------- ---------------- -- ------- --- ----- ----<br />

-- -- -- -- -- -- -- -- --<br />

----------------- --<br />

------ ------<br />

-------<br />

-- ---- ----- -------- - --- -------- - - ----------- ---<br />

----- ---- --- -------- ------------------- ---- --- - -- ---- -------<br />

-- ------ --- ---------<br />

0----------0<br />

pá<br />

Heterohelix navarroensis Loeblich<br />

= globulosa (Ehrenberg)<br />

= striata (Ehrenberg)<br />

= punctulats (Cushman)<br />

= pulchra (Brotzen)<br />

Laeviheterohelix glabrans (Cushman)<br />

Planoglobul<strong>in</strong>a carseyae (Plummer)<br />

= acervul<strong>in</strong>oides (Egger)<br />

Rugoglobiger<strong>in</strong>a rugosa (Plummer)<br />

= scotti (Bronnimann)<br />

= hexacamerata Bronnimann<br />

= macrocephala Bronnimann<br />

= pennyi Bronnimann<br />

= reicheli Bronnimann<br />

Gansser<strong>in</strong>a gansseri (Reuss)<br />

= wiedenmayeri (G<strong>and</strong>olfi)<br />

Globotruncanita stuarti (de Lapparent)<br />

= stuartiformis Dalbez<br />

= conica White<br />

= pettersi G<strong>and</strong>olfi<br />

= angulata Tilev<br />

Globotruncana aegyptiaca Nakkady<br />

= orientalis El-Naggar<br />

= falsocalcarata Kerdany & Abdelsalam<br />

= falsostuarti Sigal<br />

= dupeublie Caron et al.<br />

= lapparenti Boli<br />

= arca (Cushman)<br />

= bulloides Vohgler<br />

= rosetta Carsey<br />

= <strong>in</strong>signis (G<strong>and</strong>olfi)<br />

Contusotruncana contusa (Cushman)<br />

= fornicata Plummer<br />

= plicata White<br />

= walfischensis Todd<br />

Rugotruncana circumnodifer (F<strong>in</strong>lay)<br />

= subcircumnodifer (G<strong>and</strong>olfi)<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi)<br />

= pschadae (Keller)<br />

Globiger<strong>in</strong>elloides volutes (White)<br />

= multisp<strong>in</strong>ata (Lalicker)<br />

= prairiehillensis Pessango<br />

= bolli Pessango<br />

Pseudotextularia elegans (Rzehak)<br />

= deformis (kiko<strong>in</strong>e)<br />

= <strong>in</strong>termedia (De Klasz)<br />

Racemiguembel<strong>in</strong>a fructicosa (Egger)<br />

= poweli Smith & Pessango<br />

Pseudoguembel<strong>in</strong>a costulata (Cushman)<br />

= hariaensis Nederbragt<br />

= palpebra<br />

= excolata (Cushman)<br />

Hedbergella monmothensis (Olsson)<br />

= holmdelensis Olsson<br />

Abathomphalus mayaroensis (Bolli)<br />

Archaeoglobiger<strong>in</strong>a carteri (Kassab)<br />

= blowi Pessango<br />

= cretacea (d Orbigny)<br />

Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e<br />

Gumbelitria cretacea Cushman<br />

= dammula (Volosh<strong>in</strong>a)<br />

Plummerita hantken<strong>in</strong>oides (Bronnimann)<br />

SUBZONE<br />

Cretaceous planktonic foram<strong>in</strong>ifera<br />

Parvularugoglobiger<strong>in</strong>a alabam<strong>in</strong>sis (Liu & Olsson)<br />

Rectoguembel<strong>in</strong>a cretacea Cushman<br />

Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich & Tappan)<br />

= hornerstownensis (Olsson)<br />

Chiloguembel<strong>in</strong>a morsei (Kl<strong>in</strong>e)<br />

= midwayensis (Cushman)<br />

Globoconusa daubjergensis (Bronnimann)<br />

Parasubbot<strong>in</strong>a pseudobulloides (Plummer)<br />

Subbot<strong>in</strong>a trivalis (Subbot<strong>in</strong>a)<br />

= trilocul<strong>in</strong>oides (Plummer)<br />

Globanomal<strong>in</strong>a archeocompressa (blow)<br />

= planocompressa (Shutskaya)<br />

Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a)<br />

= eobulloides Morozova<br />

= simplicissma Blow<br />

Praemurica taurica (Morozova)<br />

= pseudo<strong>in</strong>constans (blow)<br />

Guembelitria cretacea Cushman<br />

--------------------------------------------<br />

--------------------------------------------<br />

---------------------------------------<br />

--------------------------------------------<br />

--------------------------------------------<br />

--------------------------------------------<br />

-----------------------------<br />

--------------------------------------------<br />

--------------------------------------------<br />

0-----------<br />

--------------------------------------------<br />

--------------------------------------------<br />

--------------------------------------------<br />

------------------------------------------<br />

-------------------------------<br />

-------------------------------------<br />

--------------------------------------------<br />

-----------------------------<br />

Fig (3.1) Biostratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at Cretaceous/Tertiary <strong>boundary</strong>, Sirwan<br />

area, (Sirwan section)<br />

Paleocene planktonic<br />

foram<strong>in</strong>ifera<br />

45


Chapter Three Biostratigraphy<br />

C R E T A C E O U S T E R T I A R Y PERIOD<br />

L A T E M A A S T R I C H T I A N P A L E O C E N E EPOCH--AGE<br />

T A N J E R O F O R M A T I O N Kolosh FORMATION<br />

1 40 80 100 110 120 130 140 150 160 177 180 185 195 200 210 SAMPLE No<br />

LITHOLOGY<br />

1 63 110 140 160 170 180 190 210 230 255 280 300 320 THICKNESS m.<br />

P0<br />

CF.zones<br />

CF 5 CF 4 CF 3 CF 2 CF 1<br />

& P 1a P1b (Li&Killer,1998a)<br />

P.<br />

P. P.<br />

R. fructicosa P. hariaensis<br />

<strong>in</strong>termedia.<br />

palpebra hant.<br />

Pá<br />

SUBZONE<br />

---- - -------- --- --------------- --<br />

-------- --- ---- --- - - - - - - - - - - -<br />

------------ ------- -- --<br />

-------- ---------- - ------- -<br />

--- ------ ---------- -- ---- ------ -----<br />

-- -- - ----- ---- -------- -------- -----<br />

-------- -------- ------- ----- ------ ---- --------<br />

---- --- ------ ------ -- - -----<br />

-------- --------- --------- - ---- ---- ---- ----<br />

-------- ------ -- -- --- --- - -<br />

-- --- ---<br />

---- -------- ------ --- -------- - - - - -<br />

-------- ----- ---- ------- - ---- - -- -<br />

------ -----<br />

---------- ----- --- - - -<br />

-- -- -- ---- ---- ------- - - ---- - - -<br />

-------- ------ ----- --- --- -- -- - - --<br />

-- --- ----- -------- ------- ---- -- - - - -<br />

-------- - ------- -- ----- ------- -<br />

------- ----- - - -<br />

-------- -------- ------ ------- --------- ----- - - - - - - - - - - -<br />

---- --- ---- ---- --------- ----- ---- -<br />

---- -------- ----- - -- --- -- - ---- -- --<br />

---- - - ---- --------------- ---- - - ----<br />

-- -- --- -- ----------- - -- -----<br />

----- -------- ------- ------- --- - - --<br />

------ -- - - - -- -<br />

----- ------- - - - - - -<br />

-- -- ---- ---<br />

-------- -------- ----- -------- -------- -- ----<br />

-------- -------------- ---------------- ---- --- ---- - - -<br />

--- -------- ------ -- ---- -- ------ - -<br />

-------- --- ------ --- -------- --- -<br />

-------- ------------ -- ---- ----- - - - - -<br />

-------- ---- ------ --- --------- -------- - -<br />

---- - ------- ------------- - ---- --- - - - -<br />

-------- ----- ---- -------- -- --- - - - - - -<br />

-------- -------- ------- --- --- ----- -<br />

-------- -------- ------- ---- --- ---- -- ---<br />

---- ------ -------- ----- -----------<br />

-- -------- --- -- -------- - ----- ---- - - -<br />

---- ------ -------- ---- -- - - - - -<br />

-------- -------- -- --- -- -- --- ---<br />

-- --<br />

--- -------- -------- -------- ---- --<br />

---------------- ----- ------ -----<br />

------<br />

---- -------- ------- --- ----- ---<br />

-------- ---- ------ -- -- --- -- -- - - -<br />

-------- ------ ------- ------------- ----- --- - - - - -<br />

--- -------- ------ ------<br />

-------- -------- ------ ---------- ----- -<br />

--------- ---- -------- ----- - -<br />

------- -------- --- ---- ------ --- -- - - - ----<br />

------ -----<br />

--------- ---- ----- ------ ---<br />

-- -- -- -- -- -- -- -- - - -<br />

-- --- - -- -- -- -- -- - -- -<br />

---- --- ---- ----<br />

--- --- - --<br />

--- -- --<br />

----- --- - -- --<br />

------ ----- ----<br />

-- -- --<br />

---- ----- -------<br />

-- - ---- - --- --<br />

--<br />

--- --- -- -- -<br />

------ - ---<br />

----- ---- ---<br />

--- - --- --- -<br />

-- - --<br />

- --- -- - - --<br />

--- -- -- - -<br />

--- -- -- -- --<br />

--- --- -- -<br />

---- - --- ---- ----<br />

---- - --<br />

--- ---<br />

-- --- ------- ---- ---<br />

----- -------<br />

--- -- - --<br />

- -- - --- ---<br />

--- --- -- --<br />

------ ----<br />

-- --------<br />

--- --- ----<br />

------ -<br />

--- ---- -- -- ---<br />

-----<br />

--- ---- ------<br />

----- -- --<br />

---- -------<br />

--- -- --- --<br />

- --- ---- -- --<br />

---- -------- ---<br />

---- ---- -----<br />

--- ------<br />

----- --- ---<br />

---------- ---<br />

---------<br />

- ------ - ---<br />

--- --------<br />

----- -----<br />

------ --- - -----<br />

---- ---- -- -<br />

-----<br />

-------<br />

--- --- ---- ---<br />

--- ------<br />

FORAMINIFERA<br />

BENTHONIC<br />

Boliv<strong>in</strong>a <strong>in</strong>crassata Reuss<br />

Boliv<strong>in</strong>oides draco (Marsson)<br />

= delicates Cushman<br />

= miliaris Hittcrmar & Koch<br />

Astacolua sp.<br />

Rzehak<strong>in</strong>a epigone (Rzehak)<br />

Cibicidoides dayi (White)<br />

= subcar<strong>in</strong>atos Cushman & Deaderick<br />

Osangularia navarrana (Cushman)<br />

Pullenia jarvisi Cushman<br />

Pyrul<strong>in</strong>oides sp.<br />

Ne<strong>of</strong>labell<strong>in</strong>a rugosa (d Orbigny).<br />

= delicatissima (Plummer)<br />

Bulim<strong>in</strong>a ovulum Reuss<br />

= midwayensis<br />

Praebulim<strong>in</strong>a ovulum (Reuss)<br />

= aspera (Cushman &Parker)<br />

Uviger<strong>in</strong>a graciliformis<br />

Ool<strong>in</strong>a apiculata Reuss<br />

Globorotalites michel<strong>in</strong>ianus (d Orbigny)<br />

Ammodiscus <strong>cretaceous</strong> (Reuss)<br />

= preuvianus<br />

Marsonella oxycona (Reuss)<br />

Dorothia smokynensis Wall<br />

= retusa<br />

= rosetta<br />

Textularia astutia. Lalicker<br />

Spiroplectam<strong>in</strong>a laevis. (Roemer)<br />

= spectabilis (Grzybowski)<br />

= dentata (Alth)<br />

= navicula (d Orbigny)<br />

Stilomella midwayensis. (Cushman &Todd)<br />

Nodosaria m<strong>in</strong>or Hantken<br />

= aff<strong>in</strong>is Reuss<br />

= cf. limbata d'Orbigny.<br />

Pseudonodosaria sp.<br />

= appressa Loeblich & Tappan<br />

Dental<strong>in</strong>a elegans d Orbogny<br />

= <strong>in</strong>ornata (d Orbogny)<br />

Dental<strong>in</strong>oides canul<strong>in</strong>a Marie<br />

Noneonella <strong>in</strong>secta (Schwager)<br />

Pleurostomella paleocenica (Cushman)<br />

Paralabam<strong>in</strong>a hillebrndti (Fisher)<br />

= laevis. (Beissel)<br />

Lenticul<strong>in</strong>a muennsteri<br />

= navicula. (d Orbigny).<br />

= gunderbookaensis. Cresp<strong>in</strong><br />

Gavel<strong>in</strong>ella micra.<br />

= danica<br />

Lagena hispida Reuss<br />

Fissur<strong>in</strong>a? sp.<br />

Coryphostomata midwayensis. (Cushman)<br />

Gyroid<strong>in</strong>a girardana (Reuss)<br />

Gaudryna pyramidata. Cushman<br />

= pulv<strong>in</strong>a<br />

Gyroid<strong>in</strong>oides globosus. (Hagenow)<br />

= exsertus (Belford)<br />

Clavul<strong>in</strong>oides globulifera.Ten Dam &Sigal<br />

Conicospiril<strong>in</strong>a sp.<br />

Rotalia spp<br />

Omphalocyclus macroporus (Lamark)<br />

Orbitoides medius (d Archiac)<br />

.<br />

Fig (3.2) Biostratigraphic range chart <strong>of</strong> benthonic foram<strong>in</strong>ifera at Cretaceous/Tertiary <strong>boundary</strong>, Sirwan<br />

area, (Sirwan section)<br />

46


Chapter Three Biostratigraphy<br />

It is important to mention that the conventional <strong>in</strong>dex species Abathomphalus<br />

mayaroensis <strong>of</strong> Late Maastrichtian recorded very rare presentation <strong>and</strong> it is<br />

frequently absent <strong>in</strong> shallow cont<strong>in</strong>ental shelf sections <strong>in</strong> all studied regions<br />

which may be due to paleoenvironment condition <strong>of</strong> the deeper <strong>and</strong> more<br />

bas<strong>in</strong>al oceanic environment around low latitudes restrictions <strong>of</strong> the species<br />

Canudo et al., (1991), <strong>and</strong> <strong>in</strong> high latitudes disappear prior to K/T <strong>boundary</strong><br />

(Blow, 1979). Therefore the A. mayaroensis Biozone is geographically <strong>and</strong><br />

ecologically restricted. In such cases it is better to replace the A. mayaroensis<br />

Biozone by other biozones to avoid any ambiguous <strong>and</strong> vague situation about<br />

first appearance <strong>and</strong> last ext<strong>in</strong>ction datum event. (Figs 3.12 <strong>and</strong> 3.13)<br />

For the Paleogene subdivisions zonal scheme previously have been<br />

developed <strong>in</strong> two widely separated geographic areas: the eastern hemisphere<br />

(Caucasus mounta<strong>in</strong>s, e.g. Subbot<strong>in</strong>a, 1953; Krashen<strong>in</strong>ikov, 1969), <strong>and</strong> <strong>in</strong> the<br />

western hemisphere (Tr<strong>in</strong>idad, e.g. Bolli, 1957 a, b <strong>in</strong> Samir, 2002).<br />

A discussion <strong>of</strong> all subsequent modifications <strong>of</strong> the orig<strong>in</strong>al zonal scheme<br />

proposed by Bolli (1966), Blow (1979), Berggren & Miller (1988), Berggren et al.,<br />

(1995), Berggren & Norris (1997), Olsson et al., (2000), represent the base <strong>of</strong><br />

Paleocene zonal scheme for this study with other mentioned authors <strong>in</strong> Fig<br />

(3.13) which shows a comparison between this zonal scheme <strong>and</strong> earlier<br />

developed schemes. It is worthy to remember that the orig<strong>in</strong>al, genetic radiation,<br />

phylogenetic reconstruction relationship <strong>and</strong> geologic ranges <strong>of</strong> Paleocene<br />

planktonic foram<strong>in</strong>ifera were established by Liu & Olsson (1992), <strong>and</strong> Olsson et<br />

al., (2000), which form the base pr<strong>in</strong>ciples datum event <strong>of</strong> work<strong>in</strong>g group up on<br />

the( Atlas <strong>of</strong> Paleocene Planktonic Foram<strong>in</strong>ifera) by Olsson et al.,(2000), figs<br />

(4.9 -4.11)<br />

3.2.1- Biostratigraphy <strong>of</strong> the Upper Cretaceous Formations:<br />

Accord<strong>in</strong>g to identified planktonic foram<strong>in</strong>iferal assemblages with<strong>in</strong> upper<br />

most part <strong>of</strong> Shiranish Formation, Reddish to pale brown succession, Tanjero<br />

Formation <strong>in</strong> Smaquli area <strong>in</strong> addition <strong>in</strong> upper part <strong>of</strong> Tanjero Formation <strong>in</strong> all<br />

other sections, eight biozones are recorded from the studied sections. The<br />

biostratigraphic zones <strong>of</strong> the studied area are described from the bottom to the<br />

top as below:<br />

47


Chapter Three Biostratigraphy<br />

U P P E R C R E T A C E O U S PERIOD<br />

LATE MAASTRICHTIAN EPOCH--AGE<br />

1 10 20 25 30 40 45 SAMPLE NO.<br />

LITHOLOGY<br />

1 10 20 30 40 50 60 70 80 90 100 110 THICKNESS m.<br />

(Interf<strong>in</strong>ger<strong>in</strong>g Aqra Lst.) Tanjero Formation Transitional unit Red Bed FORMATION<br />

CF4 CF 3 ---------<br />

Planktonic foram.CF.<br />

zones(Li&Killer,1998a)<br />

R. fructicosa P.hariaensis--------------------?? SUBZONE<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

--- --------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

-------------------------------------------------- ---<br />

------------------------------------------------------<br />

- -- ----------------------- --------------------------<br />

--------<br />

--------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

-------------- ---------------------------------------<br />

---- - -- - - -- - - - - - - -<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------ -----------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

------------------------------------------------------<br />

--------------<br />

------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

--------------------------------------------------------------- ---- ---<br />

---------------------------------------------------------------<br />

--------------------------------------------------------------- --- -----<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

--------------------------------------------------------------- ---------- ----------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

------------- -------------------------------------------------- ----<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

--------------------------------------------------------------- -----------------------<br />

--------------------------------------------------------------- --------------------------------------<br />

---------------------------------------------------------------<br />

--------------------------------------------------------- ----- -----<br />

--------------------------------------------------------------<br />

---------------------------------------------------------------<br />

---------------------------------------------------------------<br />

-------------------------------------------------------------<br />

--------------------------------------------------------------- ---------------<br />

--------------------------------------------------------------- ----------------------------<br />

--------------------------------------------------------------- --------------------------<br />

------------------ -------------------------------------------- -------------------------<br />

--------------------------------------------------------------- ---------------------------<br />

--------------------------------------------------------------- -----------------------------<br />

--------------------------------------------------------------- ------------------------------<br />

--------------------------------------------------------------- -------------------------------<br />

--------------------------------------------------------------- -----------------------<br />

Reworked Foram.<br />

--------------------------<br />

--------------------------<br />

--------------------------<br />

-------------------------<br />

--------------------------<br />

--------------------------<br />

--------------------------<br />

--------------------------<br />

--------------------------<br />

----------------------<br />

N o r e c o r d s o f foram<strong>in</strong>ifera<br />

Heterohelix navarroensis Loeblich<br />

= globulosa (Ehrenberg)<br />

= striata (Ehrenberg)<br />

Planoglobul<strong>in</strong>a carseyae (Plummer)<br />

= brazoensis Mart<strong>in</strong><br />

Rugoglobiger<strong>in</strong>a rugosa (Plummer)<br />

= scotti (Bronnimann)<br />

= hexacamerata Bronnimann<br />

= macrocephala Bronnimann<br />

Gansser<strong>in</strong>a gansseri (Reuses)<br />

Globotruncanita stuarti (de Lapparent)<br />

= stuartiformis Dalbez<br />

= conica White<br />

Contusotruncana contusa (Cushman)<br />

= fornicata Plummer<br />

Globotruncana aegyptiaca Nakkady<br />

= arca (Cushman)<br />

= gagneb<strong>in</strong>i Tilev<br />

= dupeublie Caron et al.<br />

= falsostuarti Sigal<br />

Abathomphalus mayaroensis (Bolli)<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi)<br />

Gumbelitria cretacea Cushman<br />

Pseudotextularia elegans (Rzehak)<br />

= deformis (kiko<strong>in</strong>e)<br />

= <strong>in</strong>termedia De Klasz).<br />

Racemiguembel<strong>in</strong>a fructicosa (Egger)<br />

Pseudoguembel<strong>in</strong>a costulata (Cushman)<br />

= hariaensis Nederbragt<br />

Planoglobul<strong>in</strong>a carseyae (Plummer)<br />

Boliv<strong>in</strong>oides draco (Marsson)<br />

Boliv<strong>in</strong>a <strong>in</strong>crassata Reuss<br />

Cibicides dayi (White)<br />

= subcar<strong>in</strong>atos Coshman &Deaderick<br />

= excavate Brotzen<br />

Osangularia navarrana (Cushman)<br />

Pullenia jarvisi Cushman<br />

Pyrul<strong>in</strong>oides sp.<br />

Ne<strong>of</strong>labell<strong>in</strong>a rugosa (d Orbigny).<br />

Bulim<strong>in</strong>a ovulum Reuss<br />

Praebulim<strong>in</strong>a quadrata<br />

= ovulum<br />

Ool<strong>in</strong>a apiculata Reuss<br />

Ammodiscus <strong>cretaceous</strong> (Reuss)<br />

= pruvianus<br />

Nodosaria m<strong>in</strong>or Hantken<br />

Marsonella oxycona (Reuss)<br />

Globorotalites michel<strong>in</strong>ianus (d Orbigny)<br />

Globorotaloides sp.<br />

Spiroplectam<strong>in</strong>a israelskyi Hillebr<strong>and</strong>t<br />

= dentata (Alth)<br />

= sp.<br />

Ammospaeroid<strong>in</strong>a pseudoapiculata.<br />

Lenticul<strong>in</strong>a muennsteri<br />

Paralabam<strong>in</strong>a hillebrndti (Fisher)<br />

= laevis. (Beissel)<br />

Dorothia crassa<br />

= smokynensis Wall<br />

= retusa<br />

Gyroidijna girardana (Reuss)<br />

Conicospiril<strong>in</strong>a sp.<br />

Omphalocyclus macroporus (Lamark)<br />

Orbitoides medius (d Archiac)<br />

= tissoti Shlumberger<br />

L<strong>of</strong>tusia elongata Brady<br />

= morgani Douville<br />

= persica Brady<br />

= m<strong>in</strong>or Coxi<br />

FORAMINIFERA<br />

PLANKTONIC FORAMINIFERA<br />

BENTHONIC FORAMINIFERA<br />

Fig (3.3) Biostratigraphic range chart <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>ifera, Cretaceous /Tertiary <strong>boundary</strong><br />

<strong>in</strong> Kato area (Kato section)<br />

48


Chapter Three Biostratigraphy<br />

UPPER C R E T A C E O U S TERTIARY PERIOD<br />

E-MAAS. L A T E M A A S T R I C H T I A N PALEOCENE EPOCH--AGE<br />

Tanjero Interf<strong>in</strong>gur<strong>in</strong>g Aqra lst.. Tanjero Transitional Red Bed FORMATION<br />

1 5 11 18 23 29 33 38 41 46 47 50 52 53 58 SAMPLE No<br />

LITHOLOGY<br />

1 20 45 75 100 130 160 200 225 245 265 275 THICKNESS M.<br />

CF 5 CF 4 ------<br />

Planktonic foram<strong>in</strong>iferal. CF.<br />

zones (Li&Killer,1998a)<br />

P.<strong>in</strong>termed. R .fructicusa ----- SUBZONE<br />

FORAMINIFERA<br />

------------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

-----------------------<br />

-------- ---------------<br />

---------- -------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

-----------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

-----------------------<br />

------------------------<br />

------------------------<br />

------------------------<br />

-----------------------<br />

-----<br />

------------------------<br />

----------------------- -- --<br />

----------------------- - - -- -- --<br />

-----------------------<br />

---------------------- --- --- - -- --- -- --<br />

------------------------ - - --- --- --- --<br />

----------------------- --- --- --<br />

------------------------ - --- - -- --<br />

----------------------- -- - - - - -- ---- -<br />

------------------------- --- ---<br />

-------------------------- -- - -<br />

------------------------------ --- --- - - -- -<br />

---------------------- --- ------ ----- ---- ---- ---- -- -- -----<br />

--------------------------- ---- ---- ------- ---- --------- ----<br />

-------------------------- --- -- -- -- ---- ----- -------------------- ----<br />

-------------------- ------------------- ----- --- --- --- ----- ---- ------------------<br />

---- ---------- ------ ----- --- --- - --- ----- -- --- --<br />

---------------------- ---- ---- ---- --- ------ -- --------------<br />

------------- -------- -- --- -- -- -- ----- --------------------<br />

---- ------ - - - ------ ---- --- ------ ---- ----- -----------------<br />

- -- --------- --- -- --- --- --- ---- ---- ----- -----------<br />

-------- ---- --- -- -- --- --- --- ------------------<br />

----------------------- -- ---- ---- --- -- --- -----------<br />

--------------------------------------- -------------- ---------------- -----------<br />

------------------- ---- ------ ---- --- ---- ---- ------ ---------------<br />

------------------------------------ -- --- ------------- --------- ---- ---------<br />

------------------- -- ----- ---- ----- ------ --------- -----------<br />

------------------------------- ---- ---------- ------------------ -----------<br />

---------------------------------------- -------- -------- ----------- -----------<br />

----------------------- --------- --- ---------- ---------- -------------------------- -------- -----------<br />

---- --- ------ ----------------------------------------------- - --------------------------<br />

-------------------------------------- ----------------- --------------------------<br />

------------------------------------------------------- --------------------------<br />

------------------------------------- ---------------- ----------------------------<br />

-----------------------------------------------------------------------------------<br />

-------------------------------------- -------------- ----------------------------<br />

-------------------------------------------------------------------------------<br />

-------------------------------------- --------------- -----------------------<br />

-------------------------------------------------------------- ---------------<br />

-------------------------------------------------------------------------------<br />

-------------------------------------- --------------- -----------------------<br />

-------------------------------------------------------------- ---------------<br />

-------------------------------------------------------------------------------<br />

Rewor<br />

ked<br />

Foram<br />

<strong>in</strong>ifera<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

----------<br />

no r e c o r d s <strong>of</strong> foram<strong>in</strong>ifera<br />

Heterohelix navarroensis Loeblich<br />

= globulosa (Ehrenberg)<br />

= striata (Ehrenberg)<br />

= punctulats (Cushman)<br />

Planoglobul<strong>in</strong>a carseyae (Plummer)<br />

= brazoensis Mart<strong>in</strong><br />

Rugoglobiger<strong>in</strong>a rugosa (Plummer)<br />

= scotti (Bronnimann)<br />

= hexacamerata Bronnimann<br />

= macrocephala Bronnimann<br />

Gansser<strong>in</strong>a gansseri (Reuss)<br />

Globotruncanita stuarti (de Lapparent)<br />

= stuartiformis Dalbez<br />

= conica White<br />

Globotruncana aegyptiaca Nakkady<br />

Contusotruncana contusa (Cushman)<br />

= fornicata Plummer<br />

= plicata White<br />

Globotruncana arca (Cushman)<br />

= gagneb<strong>in</strong>i Tilev<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi)<br />

Globiger<strong>in</strong>elloides volutes (White)<br />

Pseudotextularia elegans (Rzehak)<br />

= deformis (kiko<strong>in</strong>e)<br />

Racemiguembel<strong>in</strong>a fructicosa (Egger)<br />

Pseudoguembel<strong>in</strong>a costulata (Cushman)<br />

Boliv<strong>in</strong>a <strong>in</strong>crassata Reuss<br />

Boliv<strong>in</strong>oides draco (Marsson)<br />

Cibicidoides dayi (White)<br />

= subcar<strong>in</strong>atos Cushman & Deaderick<br />

= excavate Brotzen<br />

Osangularia navarrana (Cushman)<br />

Pullenia jarvisi Cushman<br />

Pyrul<strong>in</strong>oides sp.<br />

Ne<strong>of</strong>labell<strong>in</strong>a rugosa (d Orbigny).<br />

Bulim<strong>in</strong>a ovulum Reuss<br />

Ool<strong>in</strong>a apiculata Reuss<br />

Globorotalites michel<strong>in</strong>ianus (d Orbigny)<br />

Ammodiscus <strong>cretaceous</strong> (Reuss)<br />

= pruvianus<br />

Marsonella oxycona (Reuss)<br />

Dorothia smokynensis Wall<br />

= retusa<br />

= rosetta<br />

Textularia astutia. Lalicker<br />

Spiroplectam<strong>in</strong>a israelskyi Hillebr<strong>and</strong>t<br />

= laevis. (Roemer)<br />

= sp.<br />

Ammospaeroid<strong>in</strong>a pseudoapiculata.<br />

Gyroid<strong>in</strong>a girardana (Reuss)<br />

Gyroid<strong>in</strong>oides globosus. (Hagenow)<br />

Gaudryna pyramidata. Cushman<br />

Clavul<strong>in</strong>oides globulifera.Ten Dam &Sigal<br />

Conicospiril<strong>in</strong>a sp.<br />

Rotalia sp.<br />

Valvulamm<strong>in</strong>a sp.<br />

Omphalocyclus macroporus (Lamark)<br />

Orbitoides medius (d Archiac)<br />

= tissoti Shlumberger<br />

= apiculatus Shlumberger<br />

Lepidorbitioides socialis (Leymerie)<br />

Siderolites sp.<br />

L<strong>of</strong>tusia elongata Brady<br />

= morgani Douville.<br />

= persica Brady<br />

= m<strong>in</strong>or Coxi<br />

= coxi Henson<br />

= sp.<br />

PLANKTONIC FORAMINIFERA<br />

BENTHONIC FORAMINIFERA<br />

Fig (3.4) Biostratigraphic range chart <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>ifera Cretaceous /Tertiary<br />

<strong>boundary</strong>, Qala Cholan area, (Qishlagh section)<br />

49


Chapter Three Biostratigraphy<br />

3.2.1.1- Globotruncana aegyptiaca Interval Zone (CF8)<br />

The Globotruncana aegyptiaca (CF8) zone was orig<strong>in</strong>ally established <strong>and</strong><br />

described by Caron (1985).It is marked by the <strong>in</strong>terval from the First Appearance<br />

Datum (FAD) <strong>of</strong> the nom<strong>in</strong>ate species to the First Appearance Datum (FAD) <strong>of</strong><br />

Gansser<strong>in</strong>a gansseri (Bolli). In the studied Gali section (Smaquli area) is def<strong>in</strong>ed<br />

by the first appearance FAD <strong>of</strong> <strong>in</strong>dex taxon (Globotruncana aegyptiaca<br />

Nakkady,)with<strong>in</strong> the first sample taken from the upper part <strong>of</strong> Shiranish<br />

Formation at the base to the FAD <strong>of</strong> Gansser<strong>in</strong>a gansseri (Bolli) at sample No.8<br />

(plate. 2, Figs. 10-12) with<strong>in</strong> reddish unit at the top. This zone covers frequent<br />

occurrence <strong>of</strong> the nom<strong>in</strong>ate species for 15m. <strong>in</strong>terval <strong>in</strong> the upper part <strong>of</strong> the<br />

Shiranish Formation <strong>and</strong> 8m. from the lower part <strong>of</strong> reddish unit. This <strong>in</strong>terval<br />

may not represent all <strong>in</strong>terval <strong>of</strong> the biozone because the first sample <strong>of</strong> our<br />

section may not fit with<strong>in</strong> the FAD <strong>of</strong> the nom<strong>in</strong>ate species. This part <strong>of</strong><br />

Globotruncana aegyptiaca zone <strong>in</strong>dicates early Maastrichtian for the cropped<br />

<strong>in</strong>terval, <strong>and</strong> corresponds to that <strong>of</strong> Caron (1985), <strong>in</strong> tropical regions, Shah<strong>in</strong><br />

(1992), <strong>in</strong> Egypt, it is equivalent to the same zone recorded <strong>in</strong> the south Atlantic<br />

DSPT Site 525A <strong>and</strong> Tunisia by Li <strong>and</strong> Keller (1998a,b), Abramovich et al.,<br />

(2002), <strong>in</strong> Madagascar, Al-Mutwali <strong>and</strong> Al-Jubouri, (2005), north Iraq,<br />

Sharbazheri (2007). In the studied section a well diversified planktonic<br />

foram<strong>in</strong>iferal species are recorded, e.g. Heterohelix navarroensis Loeblish, H.<br />

globulosa (Ehrenberg), H. striata (Ehrenberg), H. reussi (Cushman), H.<br />

nauttalli (Voorwijk), H. punctulats (Cushman), H. pulchra (Brotzen),<br />

Planoglobul<strong>in</strong>a carseyae (Plummer), P. brazoensis Mart<strong>in</strong>, Rogoglobiger<strong>in</strong>a<br />

rugosa (Plummer), R. scotti (Bronnimann), R. hexcamerata Bronnimann,<br />

R. macrocephala Bronnimann, R. rotundata Bronnimann, R. milamensis Smith<br />

& Pessango, Gansser<strong>in</strong>a wiedenmayeri (G<strong>and</strong>olfi), Globotruncanita stuarti (de<br />

Lapparent), G. stuartiforms Dalbez, G. conica White, Rugotruncana<br />

subcircumnodifer ( G<strong>and</strong>olfi), R. circumnodifer ( F<strong>in</strong>lay), Globotruncana<br />

aegyptica Nakkady, Glt. orientalis El-Naggar, (Carsey), Glt. falsostuarti Sigal,<br />

Glt. mariei Banner & Blow, Glt. arca (Cushman), Glt. gagneb<strong>in</strong>i Tilev, Glt.<br />

bulloides Vohgler, Glt. l<strong>in</strong>neiana (d Orbigny), Glt. ventricosa White, Glt.<br />

<strong>in</strong>signis (G<strong>and</strong>olfi), Glt. dupeublie Caron et al., Glt lapparenti Boli,<br />

50


Chapter Three Biostratigraphy<br />

Contusotruncana fornicata Plummer, Globotruncanella petaloidea (G<strong>and</strong>olfi), G.<br />

havanensis (Voorwuk), Pseudotextularia elegans (Rzehak), P. Deforms<br />

(Keko<strong>in</strong>e), P.<strong>in</strong>termedia (De Clasz), Pseudoguembel<strong>in</strong>a costulata (Cushman),<br />

Globiger<strong>in</strong>elloides voluta (White), G. multispi<strong>in</strong>ata (Lalicker), G. prairiehille<strong>in</strong>sis<br />

Pessango, G. subcar<strong>in</strong>atus Bronnimann, G. bolli Pessango, G. ultramicra<br />

(Subbot<strong>in</strong>a), Archaeoglobiger<strong>in</strong>a cretacea (d Orbigny), A. blowi Passango,<br />

Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e, Gumbelitria cretacea Cushman, G. Dammula<br />

(Volosh<strong>in</strong>a) Hedbergella monmothensis (Olsson).<br />

Beside these planktonic foram<strong>in</strong>iferal assemblages moderate benthonic<br />

foram<strong>in</strong>iferal species were recorded (Fig. 4.8) e.g: Boliv<strong>in</strong>a <strong>in</strong>crassata Reuss,<br />

Boliv<strong>in</strong>oides draco (Marsson), B. miliaris Hitt & Koch, Cibicidoides dayi<br />

(White), C. subcar<strong>in</strong>atos Cushman & Deaderick , C. excavata Brotzen,<br />

Osangularia navarrana (Cushman), Pullenia jarvisi Cushman, Pyrul<strong>in</strong>oides sp.,<br />

Ne<strong>of</strong>labell<strong>in</strong>a rugosa (d Orbigny), N. delicatissima (Plummer), Bulim<strong>in</strong>a<br />

midwayensis, Uviger<strong>in</strong>a graciliformis, Ool<strong>in</strong>a apiculata Reuss, Globorotalites<br />

michel<strong>in</strong>ianus (d Orbigny), Ammodiscus <strong>cretaceous</strong> (Reuss), A. pruvianus,<br />

Marsonella oxycona (Reuss), Dorothia smokynensis Wall, D. retusa, D. rosetta,<br />

Textularia astutia. Lalicker, Spiroplectam<strong>in</strong>a israelskyi Hillebr<strong>and</strong>t, S, laevis.<br />

(Roemer), Stensio<strong>in</strong>a excolata (Cushman), Nodosaria m<strong>in</strong>or Hantken, N. aff<strong>in</strong>is<br />

Reuss, N. cf. limbata d'Orbigny, Pseudonodosaria sp., P. appressa Loeblich &<br />

Tappan, Dental<strong>in</strong>a elegans d Orbogny, D.<strong>in</strong>ornata (d Orbogny), Dental<strong>in</strong>oides<br />

canul<strong>in</strong>a Marie, Noneonella <strong>in</strong>secta (Schwager), Pleurostomella subnodosa<br />

(Reuss), Paralabam<strong>in</strong>a hillebrndti (Fisher), P. laevis. (Beissel), P. carseyae<br />

(Plummer), Lenticul<strong>in</strong>a muennsteri, L. navicula. (d Orbigny),. L.<br />

gunderbookaensis. Cresp<strong>in</strong>, Gavel<strong>in</strong>ella danica , Lagena sp., Coryphostomata<br />

midwayensis. (Cushman), Gyroid<strong>in</strong>a girardana (Reuss), Gaudryna pyramidata.<br />

Cushman, G. pulv<strong>in</strong>a, Gyroid<strong>in</strong>oides globosus. (Hagenow), Clavul<strong>in</strong>oides<br />

globulifera.Ten Dam & Sigal,<br />

Accord<strong>in</strong>g to the all above mentioned authors, <strong>and</strong> Khalil <strong>and</strong> Mashally<br />

(2004), SW S<strong>in</strong>ai Egypt, (Elnady <strong>and</strong> Shah<strong>in</strong> 2001), N E S<strong>in</strong>ai, Mart<strong>in</strong>es (1989),<br />

South America, Abdel-Kareem & Samir (1995), Western Desert Egypt, Fars<br />

(1984), Egypt. Al-Mutwali (1996), (Al Mutwali <strong>and</strong> Al Jabouri, 2005), Iraq. The<br />

51


Chapter Three Biostratigraphy<br />

age estimation <strong>of</strong> this biozone <strong>in</strong>dicates Early Maastrichtian age. Li <strong>and</strong> Keller<br />

(1998a), recorded the time span <strong>of</strong> this biozone from 72.48Ma to 70.39 Ma<br />

estimated by absolute ages based on magnetochron ages. Premoli Silva et al.,<br />

(1998), <strong>in</strong> their study <strong>of</strong> bio-isotope stratigraphy on eastern Mediterranean, <strong>and</strong><br />

Maestas et al., (2003), recorded the Globotruncana aegyptiaca Zone from the<br />

Upper Campanian age.<br />

The Geologic Time Scale (GTS2004) by Gradste<strong>in</strong> et al., (2004), (Fig.3.12),<br />

accompany<strong>in</strong>g International Stratigraphic Chart, issued under auspices <strong>of</strong> the<br />

International Commission on Stratigraphy (ICS), shows the current<br />

chronostratigraphic scale <strong>and</strong> ages with estimation <strong>of</strong> uncerta<strong>in</strong>ty for all stage<br />

boundaries, placed this span <strong>of</strong> time 72.48Ma to 70.39 Ma under the upper limit<br />

<strong>of</strong> Campanian. The chronostratigrapic duration age was estimated based on<br />

different techniques <strong>and</strong> methods to construct a GTS (2004) placed the<br />

Maastrichtian stage between time <strong>in</strong>tervals <strong>of</strong> (70.6 - + 0.6 Ma) at the base, <strong>and</strong><br />

to (65.5 + - 0.3 Ma) at the top.<br />

3.2.1.2- Gansser<strong>in</strong>a gansseri Interval Zone (CF7)<br />

The Gansser<strong>in</strong>a gansseri (CF7) zone was <strong>in</strong>troduced by Bronnimann (1952),<br />

as Globotruncana gansseri Zone for the first time <strong>and</strong> placed <strong>in</strong>to the Early<br />

Maastrichtian <strong>of</strong> Tr<strong>in</strong>idad <strong>in</strong> (Samir, 2002). In the studied section, this Biozone is<br />

def<strong>in</strong>ed by the <strong>in</strong>terval between the FAD <strong>of</strong> nom<strong>in</strong>ate species Gansser<strong>in</strong>a<br />

gansseri (Bolli) <strong>and</strong> the FAD <strong>of</strong> Contusotruncana contusa (Cushman), (plate. 2,<br />

Figs. 1-3) at Gali section (Smaquli area), lower part <strong>of</strong> reddish to pale brown<br />

succession. This zone covered abundant occurrence <strong>of</strong> the nom<strong>in</strong>ate species for<br />

(20m.). Most <strong>of</strong> the workers <strong>in</strong> the zonal scheme placed Gansser<strong>in</strong>a gansseri<br />

zone <strong>in</strong>formally at the middle- lower Maastrichtian (Li <strong>and</strong> Keller, 1998a), <strong>and</strong><br />

(Abramovich et al., 2002) <strong>in</strong> DSDP Site 525A. (Fars, 1984), (Abdel-Kareem &<br />

Samir, 1995), (Lun<strong>in</strong>g et al., 1998), (Elnady <strong>and</strong> Shah<strong>in</strong>, 2001), <strong>and</strong> (Samir,<br />

2002), Egypt. (Kassab 1974, 1975c, 1975d & 1976b), (Abawi et al., 1982)<br />

(Abdel-Kareem, 1986a, b), (Kassab et al., 1986), (Al-Mutwali, 1996), (Al-Mutwali<br />

<strong>and</strong> Al-Jubouri, 2005), <strong>and</strong> (Sharbazheri 2007), Iraq. (Chacon <strong>and</strong> Mart<strong>in</strong>-<br />

Chivelet, 2005), Spa<strong>in</strong>. (Premoli Silva et al., 1998), Italy. (Changkham <strong>and</strong> Jafar,<br />

1998), India. While (Khalil <strong>and</strong> Mashally, 2004), <strong>in</strong> Egypt, <strong>and</strong> Caron (1985), <strong>in</strong><br />

52


Chapter Three Biostratigraphy<br />

general this zone has been recorded from Middle Maastrichtian. Obaidalla<br />

(2005), Egypt, placed this zone on the base <strong>of</strong> Late Maastrichtian. Maestas et<br />

al., (2003), from California Mexico placed this Zone at upper Campanian- Lower<br />

Maastrichtian.<br />

Note: it is worthy to pay attention to the first appearance <strong>of</strong> A. mayaroensis<br />

which occurs 25m. above the first appearance <strong>of</strong> G. gansseri, therefore the A.<br />

mayaroensis not used as a zonal marker because <strong>of</strong> many studies have shown<br />

that both (FA) <strong>and</strong> (LA) <strong>of</strong> this species are diachronous. In addition, this taxon is<br />

rarely present <strong>in</strong> cont<strong>in</strong>ental shelf due to its deeper environmental habitat. (Li<br />

<strong>and</strong> Keller, 1998), (Huber, 1992), (Nederbragt, 1991).<br />

In addition to the <strong>in</strong>dex species, the planktonic assemblages <strong>of</strong> this zone<br />

<strong>in</strong>clude:<br />

Heterohelix navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata<br />

(Ehrenberg), H reussi (Cushman), H. nauttalli (Voorwijk), H. punctulats<br />

(Cushman),H. pulchra (Brotzen), Planoglobul<strong>in</strong>a carseyae (Plummer), P.<br />

brazoensis Mart<strong>in</strong>, Rogoglobiger<strong>in</strong>a rugosa (Plummer), R. hexcamerata<br />

Bronnimann, R. macrocephala Bronnimann, R. milamensis Smith&Pessa,<br />

Gansser<strong>in</strong>a gansseri (Reuss), G. wiedenmayeri (G<strong>and</strong>olfi), Globotruncanita<br />

stuarti (de Lapparent),Globotruncanita stuartiforms Dalbez, Globotruncanita<br />

conica White, Globotruncanita pettersi G<strong>and</strong>ulfi, Rugotruncana<br />

subcircumnodifer ( G<strong>and</strong>olfi) R. circumnodifer ( G<strong>and</strong>olfi), ,Globotruncana<br />

aegyptica Nakkady, Glt. orientalis Elnaggar, Glt. rosetta (Carsey), Glt.<br />

falsostuarti Sigal, Glt. mariei Banner & Blow, Glt. arca (Cushman), Glt.<br />

gagneb<strong>in</strong>i Tilev, ,Glt. bulloides Vohgler, Glt. l<strong>in</strong>ne<strong>in</strong>a (d<br />

Orbigny),Glt. ventricosa White, Glt. <strong>in</strong>signis (G<strong>and</strong>olfi), Glt. dupeublei<br />

Caron et al., Glt. lapparenti Boli, Contusotruncana fornicata (Plummer)<br />

,Abathomphalus mayaroensis (Bolli), Abathomphalus <strong>in</strong>termedius (Boli),<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi), Globotruncanella havanensis<br />

(Voorwuk), Pseudotextularia elegans (Rzehak),Pseudotextularia deformis<br />

(kiko<strong>in</strong>e), P. <strong>in</strong>termedia (De Clasz), Pseudoguembel<strong>in</strong>a costulata (Cushman),<br />

Gubler<strong>in</strong>a cuvillieri kiko<strong>in</strong>e, Globiger<strong>in</strong>elloides voluta (White), G. multispi<strong>in</strong>ata<br />

(Lalicker), G. prairiehille<strong>in</strong>sis Pessagno, G. subcar<strong>in</strong>atus Bronnimann, G. bolli<br />

53


Chapter Three Biostratigraphy<br />

Pessango, G. ultramicra (Subbot<strong>in</strong>a),, Archaeoglobiger<strong>in</strong>a cretacea (d<br />

Orbigny), A. blowi Passango, Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e, Gumbelitria cretacea<br />

Cushman, G. dammula (Volosh<strong>in</strong>a) Hedbergella monmothensis (Olsson). In<br />

addition to these planktonic foram<strong>in</strong>iferal assemblages moderate benthonic<br />

foram<strong>in</strong>iferal Species were recorded (Fig 3.8). The age estimation <strong>of</strong> this<br />

biozone by (Li <strong>and</strong> Keller 1998a), records the time span <strong>of</strong> 70.39Ma to 69.56 Ma<br />

830 Ky estimat<strong>in</strong>g absolute ages based on magnetochron ages with 41ky/m,<br />

moderate rate <strong>of</strong> deposition (Fig.4.11)<br />

Age: early Maastrichtian.<br />

3.2.1.3- Contusotruncana contusa Interval Zone (CF6)<br />

Dalbeiez (1955) proposed the Globotruncana contusa Zone for the Upper<br />

Maastrichtian <strong>of</strong> Tunisia. Biostratigraphic <strong>in</strong>terval <strong>of</strong> this zone is def<strong>in</strong>ed by the<br />

FAD <strong>of</strong> Contusotruncana contusa (Cushman) at the base <strong>and</strong> last appearance<br />

(LAD) <strong>of</strong> Globotruncana l<strong>in</strong>neniana (d Orbigny) at the top. (plate. 1, Figs. 6-8). In<br />

the present study at Gali section, this Zone (CF6) covers an <strong>in</strong>terval <strong>of</strong> 25<br />

meters. This Zone yielded an assemblage <strong>of</strong> planktonic foram<strong>in</strong>ifera which<br />

totally resembles that <strong>of</strong> the underly<strong>in</strong>g Gansser<strong>in</strong>a gansseri Zone (CF7), except<br />

for the first appearance <strong>of</strong> Contusotruncana contusa (Cushman),<br />

Contusotruncana plicata White, C. patelliformis (G<strong>and</strong>olfi), , Globotruncana<br />

rosetta Carsey, Racemiguemel<strong>in</strong>a powli Smith <strong>and</strong> Pessango, Hedbergella<br />

holmdelensis Olsson, Rugoglobiger<strong>in</strong>a scoti (Bronnimann), <strong>and</strong> mark the<br />

term<strong>in</strong>ation <strong>of</strong> Guembelitria dammula (Volosh<strong>in</strong>a), Globotruncana gagneb<strong>in</strong>i<br />

Tilev, Globotruncana bulloides Vohgler, Glt. <strong>in</strong>signis (G<strong>and</strong>olfi), Glt. mariei<br />

Banner & Blow, Glt. ventricosa White, Globotruncanella havanensis<br />

(Voorwuk),Globiger<strong>in</strong>illoides boli Passango, Archaeoglobiger<strong>in</strong>a blowi<br />

Pessango, A. cretacea (d Orbigny).<br />

As def<strong>in</strong>ed above, the present Biozone (CF6) is correlatable with the Zone<br />

recorded by (Li <strong>and</strong> Keller, 1998a <strong>and</strong> b),<strong>and</strong> (Abramovich et al., 2002), at<br />

DSDP Site 525A. (Samir 2002), from Egypt. (Sharbazheri 2007), NE Iraq. To<br />

the lower part <strong>of</strong> Rosita contusa Zone recorded <strong>in</strong> the Northeast <strong>of</strong> Iraq by<br />

(Abawi et al., 1982 <strong>and</strong> Abdel-Kareem 1986), <strong>in</strong> Italy (Premoli Silva <strong>and</strong> Sliter<br />

1995, 1999) (Premoli Silva et al 1998), (Abdel-Kareem & Samir 1995) Egypt,<br />

54


Chapter Three Biostratigraphy<br />

<strong>and</strong> it is correlated with the middle part <strong>of</strong> Gansser<strong>in</strong>a gansseri Zone <strong>of</strong> (Al-<br />

Mutwali 1996), Hammoudi 2000 <strong>and</strong> Al-Mutwali <strong>and</strong> Al-Jubouri 2005), Iraq.<br />

(Chacon <strong>and</strong> Mart<strong>in</strong>-Chivelet 2005) Spa<strong>in</strong> <strong>and</strong> other different localities <strong>of</strong> the<br />

world (Robaszynski et al.,1984) <strong>and</strong> (Caron, 1985) general, (Maestas et al<br />

2003), USA. (Obaidalla 2005), Egypt. (Figs. 4.12 - 4. 13).<br />

Magnetochron records <strong>of</strong> this biozone by (Li <strong>and</strong> Keller 1998a show that the<br />

age estimation <strong>of</strong> the time span from (69.56 Ma) to (69.06Ma) 500 Ky/25meters<br />

estimat<strong>in</strong>g absolute ages based on magnetochron ages with 20 Ky/meter<br />

which <strong>in</strong>dicate higher rate <strong>of</strong> deposition than (CF7) (Fig. 5.11)<br />

Age: Late early Maastrichtian.<br />

3.2.1.4- Pseudotextularia <strong>in</strong>termedia Interval Zone (CF5)<br />

The Pseudotextularia <strong>in</strong>termedia Zone (CF5) is def<strong>in</strong>ed by the LAD <strong>of</strong> the<br />

Globotruncana l<strong>in</strong>neiana (d Orbigny) at the base <strong>and</strong> the FAD <strong>of</strong><br />

Racemiguembel<strong>in</strong>a fructicosa (Egger) at the top (plate 2, Fig 9). Nederbragt<br />

(1990), orig<strong>in</strong>ally <strong>in</strong>troduced this Biozone as the <strong>in</strong>terval from the FAD <strong>of</strong><br />

Planoglobul<strong>in</strong>a acervul<strong>in</strong>oides at the base <strong>and</strong> the FAD Racemiguembel<strong>in</strong>a<br />

fructicosa at the top. In the present study, the def<strong>in</strong>ition is constra<strong>in</strong>ed accord<strong>in</strong>g<br />

to Li <strong>and</strong> Keller (1998 a <strong>and</strong> b).The <strong>in</strong>terval <strong>of</strong> this Zone is 19 meters thick <strong>in</strong> Gali<br />

section.<br />

The recorded planktonic foram<strong>in</strong>iferal assemblages <strong>in</strong> this biozone<br />

represented by well diversified forms <strong>of</strong> Heterohelix navarroensis Loeblish, H.<br />

globulosa (Ehrenberg), H. striata (Ehrenberg), H. punctulats (Cushman), H.<br />

nauttalli (Voorwijk), H. reussi (Cyshman), H. pulchra (Brotzen), Planoglobul<strong>in</strong>a<br />

carseyae (Plummer), P. brazoensis Mart<strong>in</strong>, P. acervul<strong>in</strong>oides (Egger),<br />

Rugoglobiger<strong>in</strong>a rugosa (Plummer), R. scotti (Bronnimann), R.<br />

hexacamerata Bronnimann , R. macrocephala Bronnimann, R. milamensis<br />

Smith & Pessango, Gansser<strong>in</strong>a gansseri (Reuss), G. wiedenmayeri<br />

(G<strong>and</strong>olfi), Globotruncanita stuarti (de Lapparent), G. stuartiformis Dalbez,<br />

G. conica White, G. pettersi G<strong>and</strong>olfi, G. angulata Tilev, Globotruncana<br />

aegyptiaca Nakkady, Glt.orientalis El-Naggar, Glt. falsostuarti Sigal, Glt.<br />

dupeublie Caron et al., Glt. lapparenti Boli, Glt. arca (Cushman), Glt. rosetta<br />

Carsey, Contusotruncana contusa (Cushman), C. plicata White, C.<br />

55


Chapter Three Biostratigraphy<br />

Patelliformis (G<strong>and</strong>olfi), Rugotruncana circumnodifer (G<strong>and</strong>olfi), R.<br />

subcircumnodifer (G<strong>and</strong>olfi), Globotruncanella petaloidea (G<strong>and</strong>olfi),<br />

C R E T A C E O U S T E R T I A R Y PERIOD<br />

L A T E - M A A ST R I C H T I A N P A L E O C E N E EPOCH--AGE<br />

Tanjero Interf<strong>in</strong>ger<strong>in</strong>g (Aqra Lst) Tanjero Kolosh FORMATION<br />

T48 T40 T35 T28 T22 T14 T10 T1 K1 K7 K11 K16 K20 K30 K45 K55 K65 SAMPLE No<br />

LITHOLOGY<br />

1 30 60 90 110 125 135 140 145 150 160 170 200 217 THICKNESS m.<br />

P<br />

CF.zones<br />

CF 5 CF4 CF3 CF2 CF1<br />

0 P 1a<br />

P1b (Li&Killer,1998a)<br />

P.<strong>in</strong>ter. R. fructicosa P. hariaensis P. palpebra P.hant. á<br />

SUBZONE<br />

------------------------- ------ ------ ------ ----------------------------- ---------- ---------------------<br />

------------------- ----------- ------- -------- ---------------------------- ---------- ------------------<br />

---------------------------------- ------- ------ ---------- ----------- ---------- -----<br />

---------------------------- ---------- -----------<br />

----------------------------------- --------------------- ----------------------------- -----------------------<br />

--------- ---- ------ ---- -------- ---------- ----- ----- -----<br />

---------------------------- --------------- ----------- --------- ---------- -------<br />

--------------------------------------------------------------------------------------------------------------------------------------------------------<br />

------------- -------- ----------------------------------------------------------<br />

------------------- --------------- --------------- --------------------<br />

------------------------------- -- ---------- ------------ -----------------------------------------------------------------<br />

-----------------------------------------------------<br />

--------------------------<br />

-----------------------------------------------------------------------------------------------------------0<br />

-------------------------------- ----- ---<br />

--------------------------------------------------------------------------------------------------------------------------------------------------------<br />

-----------------------------------------------------------------------------------------------------------------------------------------------<br />

----------------------------------------------------------------------------------------------------------------------------------------<br />

--------------------<br />

------------------------ ------- --------- ---- ----- ------ ------ ------------------------------------------------<br />

------------------------------------------------------------------------------------------------------------------------------------------<br />

------------------------------------------------------<br />

----------------------------- - ------- --------- --------- ----- --------------------------------- --<br />

---------------------------------------------------------------------------------------------------------------------------------<br />

----------------------------------<br />

--------------------------------------------------------------------------------------------------------------------------------------------------------<br />

------------------------------ --- - -- - -- -<br />

------- - --- --- -- ----- --- ---- -- --- -----------------------------------------------<br />

------------------------------------ ----- ------- ----- ------- ------------------------------------------------<br />

----------------------------------- ---------- -------- --- ------ ---- --------------------------<br />

--------------------------------------------------------------------------------------------------------------------------------------------------------<br />

----------------------------------------------<br />

------------------------------------------ --------- --------- ---------------------------------------------------------<br />

---------------------------------<br />

------------------------------------------ -------- ------ ---------- -------------- ---------------------------------<br />

------------------------------------------------ ---------- -------- --------- ----------<br />

---------------------------------<br />

--------------------------------------------------------------------------------------------------------------------------------------------------------<br />

-------------------------------------------------------------------------------------------------------------------------------<br />

------------------------------------ --------- ----- ----- ----- ----- ----<br />

0---------------------------------------------------------------------------------------------------------------------<br />

------------------------------------ ---- ---- --- --- -------- ---- --- --- ----<br />

------------------------------ ------ ---------- -------- ------- ------- -----------------------------------------------------<br />

0------------ --------------- ------------------------------------- -- --- ---<br />

-------- -------- --- ------- ----- ------------------------------------------------------<br />

--------------------------------------- ---- -------- ------------ ---------- -------------- -------------------- --------------------<br />

----------------------------- ----------- ---- -------- --------- ------------------------------------------------------------<br />

-------------------------------------- ------- --------- ------- ------- -------- ---------------------------------------------------<br />

---- ----- ---- -- -- -- --<br />

-------- -------- -----<br />

------------ ----- ----- ------ --- --- ------------ --------------------------<br />

---------- --- --<br />

0-------------0<br />

Heterohelix navarroensis Loeblish<br />

= globulosa (Ehrenberg)<br />

= striata (Ehrenberg)<br />

= punctulats (Cushman)<br />

Planoglobul<strong>in</strong>a carseyae (Plummer)<br />

= brazoensis Mart<strong>in</strong><br />

= acervul<strong>in</strong>oides (Egger)<br />

Rugoglobiger<strong>in</strong>a rugosa (Plummer)<br />

= scotti (Bronnimann)<br />

= hexacamerata Bronnimann<br />

= macrocephala Bronnimann<br />

= pennyi Bronnimann<br />

= rotundata Bronnimann<br />

Gansser<strong>in</strong>a gansseri (Reuss)<br />

Globotruncanita stuarti (de Lapparent)<br />

= stuartiformis Dalbez<br />

= conica White<br />

Globotruncana aegyptiaca Nakkady<br />

= falsocalcarata Kerdany & Abdelsalam<br />

= falsostuarti Sigal<br />

= dupeublie Caron et al.<br />

= gagneb<strong>in</strong>i Tilev<br />

= lapparenti Boli<br />

= arca (Cushman)<br />

= bulloides Vohgler<br />

Contusotruncana contusa (Cushman)<br />

= fornicata Plummer<br />

= plicata White<br />

Rugotruncana circumnodifer (F<strong>in</strong>lay)<br />

= subcircumnodifer (G<strong>and</strong>olfi)<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi)<br />

= havanensis (Voorwuk)<br />

Globiger<strong>in</strong>elloides volutes (White)<br />

= multisp<strong>in</strong>ata (Lalicker)<br />

= subcar<strong>in</strong>ata Bronnimann<br />

= prairiehillensis Pessango<br />

= bolli Pessango<br />

Pseudotextularia elegans (Rzehak)<br />

= deformis (kiko<strong>in</strong>e)<br />

= <strong>in</strong>termedia (De Klasz)<br />

Racemiguembel<strong>in</strong>a fructicosa (Egger)<br />

= poweli Smith & Pessango<br />

Pseudoguembel<strong>in</strong>a costulata (Cushman)<br />

= hariaensis Nederbragt<br />

= palpebra<br />

= excolata (Coshman)<br />

Hedbergella monmothensis (Olsson)<br />

= holmdelensis Olsson<br />

Abathomphalus mayaroensis (Bolli)<br />

Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e<br />

Gumbelitria cretacea Cushman<br />

= dammula (Volosh<strong>in</strong>a)<br />

Plumeri. hantken<strong>in</strong>oides (Bronnimann)<br />

Cretaceous planktonic foram<strong>in</strong>ifera<br />

Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich & Tappan)<br />

= hornerstownensis (Olsson)<br />

Chiloguembel<strong>in</strong>a Morse (Kl<strong>in</strong>e)<br />

= midwayensis (Cushman)<br />

Globoconusa daubjergensis (Bronnimann)<br />

Parasubbot<strong>in</strong>a pseudobulloides (Plummer)<br />

Subbot<strong>in</strong>a trivalis (Subbot<strong>in</strong>a)<br />

= trilocul<strong>in</strong>oides (Plummer)<br />

Globanomal<strong>in</strong>a archeocompressa (blow)<br />

= planocompressa (Shutskaya)<br />

Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a)<br />

= eobulloides Morozova<br />

= simplicissma Blow<br />

Praemurica taurica (Morozova)<br />

= pseudo<strong>in</strong>constans (blow)<br />

Guembelitria cretacea Cushman<br />

--------------------------<br />

---------------------------------<br />

------------------------------------------------<br />

------------------------------------------------<br />

---------------------<br />

------------------------------------------------<br />

------------------------------------------------<br />

----------------<br />

------------------------------------------------<br />

------------------------------------------------<br />

------------------------------------------------<br />

------------------------------------------------<br />

-------------------------------------<br />

-------------------------------------<br />

------------------------------------------------<br />

-------------<br />

Paleocene planktonic<br />

foram<strong>in</strong>ifera<br />

Fig (3.5) Biostratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at Cretaceous/Tertiary<br />

<strong>boundary</strong> <strong>in</strong> Dokan area (Qulka section)<br />

56


Chapter Three Biostratigraphy<br />

C R E T A C E O U S T E R T I A R Y PERIOD<br />

L A T E M A A ST R I C H T I A N P A L E O C E N E EPOCH--AGE<br />

Tanjero Interf<strong>in</strong>. (Aqra Lst) Tanjero Kolosh FORMATION<br />

T48 T40 T35 T28 T22 T14 T10 T1 K1 K7 K11 K16 K20 K30 K45 K55 K65 SAMPLE No<br />

LITHOLOGY<br />

1 30 60 90 110 125 135 140 145 150 160 170 200 217 THICKNESS m.<br />

P<br />

CF.zones<br />

CF 5 CF4 CF3 CF2 CF1<br />

0 P 1a P1b (Li&Killer,1998a)<br />

P.<strong>in</strong>ter. R. fructicosa P. hariaensis P. palpebra P.hant. á<br />

SUBZONE<br />

-------------- ---- --- ------ ------ ------------------------ ------- --<br />

--------- --- ------------- --------------------- ---- ---- --- ----<br />

----------------- ---- ---- ---<br />

- ---- - ------ ---- --- - ----- -- --- ---- --- --- ---<br />

------ ---- ---- ---- -- --- ---- ---- -- ----- --- -<br />

---- ----- --- -- ---- ----- ----- - ---- ---- ---- ----<br />

------ --------- ----- --- ------ -- ---- ----- --- - --<br />

--------- ---- ------ ----- --- --- ---- ----<br />

-- --- -- -- -- -<br />

----- --- ---- --- - ------ --- ---- ----- --- --- -- ---- -<br />

------ ------ -- ----- ---- - ---- ---<br />

------ ------ --- -- ------- -- ------ -------- ---- ------ -<br />

---- ------ ----- ---- ------- ---- ---- - -<br />

--- --- ------ ----- --- -- --- ---- ---- - -- - --<br />

--- ----- ---- - ---- -- ------- ---- --- --- -- --<br />

----- ---- -- -- ---<br />

------- ----- --- ----- ---- ---- --- -- ---<br />

---- ----- -- ------ ----- --- ----- ----- -- -- --<br />

-------- ------ -- ----- ------ ----- ----- ---- -- -<br />

---- -- -- ---- - ---- --- ---- -------- ---- --- -<br />

- ------ -------- ---- ------ ---- ----- --- ---- ----<br />

-- ------------ --------- ---- ----<br />

--- ---- - -- ----- ---- ------ - ---- --- --- -- -<br />

---- ------- -------- ------ ------- ---- ------ -- -<br />

-- ---- ----- ------ -------- ----- -----<br />

------- -- -------- ------- -- --- ----- - -- ------- -- --<br />

---- --- -- ------ ---- -------- -- -- - -- ---<br />

- ----- ---------- ------- -- ------ - ---- ----- ---- --<br />

--- ---- -- --------- ---- --- ---- ------ --<br />

- ------- ------ ----- --- ---- ------- ----- ----- ------ - ---<br />

----- ---------- ------- ----- --------- ---- ----- --- --<br />

-- --------- ------ --------- ------ ---- --- --<br />

--- -------- -------- ----- ----- ---------- ---- - ---- - --<br />

---- ------ ------------- ------- ---- ----- ------- --<br />

-- ---------- ------ --- -------- ----- ---- ---- - --<br />

--- --- ----- ---- - ------- ---- -<br />

--- --------- ------------ ------ ----- -- ---<br />

---------- ------------ ----------- ---- ---- - -- - --<br />

- -- -- ----- -- -- --<br />

-- ----- ----------- ----------- ---- ----- ---- ---- ---<br />

------- -- ----- ------- ----- ---- ---- - --- --<br />

----- ------- --------- ----------- --- -- ---- -- ---<br />

------ ---- --------- ------- ------------ - -- -- --<br />

------- -------- --- ----- - ------ ----- -- -----<br />

-- ------- -- --------- ------ ----- -- ---<br />

--------- ----- -----<br />

------ --- ---- ---------- --------- ---------<br />

------------------------ ------------------ ----<br />

------------------- ------------- ---<br />

--------------------------------------------------------- ---<br />

-----------------------------------<br />

---------------------------------------<br />

--- ----<br />

--- - ---- - ----<br />

--- -- ---- --- ---<br />

--- --- -----<br />

---- -- - -----<br />

---- --- -- - ---<br />

-- --- -- - --- -- ---<br />

--- --- -- ---<br />

--- --- - --<br />

- -- ---- --- --<br />

-- -- - -- - -- - --<br />

---- -- ----<br />

- -- - -- -- --- --<br />

--- -- ----<br />

-- --- --- ---<br />

-----<br />

--- -- -------<br />

-- -- -- -- -- - --<br />

- -- -- -<br />

--- ------- -- --<br />

-- -- - ------ -----<br />

------- ------ ---<br />

-- -- ------ -------<br />

- - ------- ---- --<br />

-- --- ---- -- -- ---<br />

-- --- ---- --- ---<br />

--- --- --- ---<br />

- ---- --- -- ----<br />

-- ---- --- ----<br />

-----<br />

- ---- -- -------- -<br />

--- - --- -- --<br />

-- -- -- ---- --- --<br />

--- -- --- -----<br />

----<br />

---- - --- - ---<br />

----- - -- -- -- - -<br />

--- --- ---<br />

-- -- -- -- --<br />

- ---- - ----<br />

----- - ---- - ----<br />

--- --- ---<br />

- ---- ---<br />

Benthonic<br />

foram<strong>in</strong>ifera<br />

Boliv<strong>in</strong>a <strong>in</strong>crassata Reuss<br />

Boliv<strong>in</strong>oides draco (Marsson)<br />

= delicates Cushman<br />

= sp.<br />

Rzehak<strong>in</strong>a epigone (Rzehak)<br />

Cibicidoides dayi (White)<br />

= subcar<strong>in</strong>atos Cushman & Deaderick<br />

Osangularia navarrana (Cushman)<br />

Pullenia jarvisi Cushman<br />

Ne<strong>of</strong>labell<strong>in</strong>a rugosa (d Orbigny).<br />

= delicatissima (Plummer)<br />

Ellipsonodosaria plumerae (Cushman)<br />

Bulim<strong>in</strong>a ovulum Reuss<br />

= midwayensis<br />

Praebulim<strong>in</strong>a ovulum<br />

Uviger<strong>in</strong>a graciliformis<br />

Ool<strong>in</strong>a apiculata Reuss<br />

Globorotalites michel<strong>in</strong>ianus (d Orbigny)<br />

Ammodiscus <strong>cretaceous</strong> (Reuss)<br />

= pruvianus<br />

Marsonella oxycona (Reuss)<br />

Dorothia smokynensis Wall<br />

= retusa<br />

= rosetta<br />

Textularia astutia. Lalicker<br />

Spiroplectam<strong>in</strong>a israelskyi Hillebr<strong>and</strong>t<br />

= laevis. (Roemer)<br />

= dentata (Alth)<br />

Nodosaria m<strong>in</strong>or Hantken<br />

= cf. limbata d'Orbigny.<br />

Pseudonodosaria sp.<br />

= appressa Loeblich & Tappan<br />

Dental<strong>in</strong>a elegans d Orbogny<br />

= <strong>in</strong>ornata (d Orbogny)<br />

Dental<strong>in</strong>oides canul<strong>in</strong>a Marie<br />

Noneonella <strong>in</strong>secta (Schwager)<br />

Pleurostomella subnodosa (Reuss)<br />

Paralabam<strong>in</strong>a hillebrndti (Fisher)<br />

= laevis. (Beissel)<br />

= carseyae (Plummer)<br />

Lenticul<strong>in</strong>a muennsteri<br />

= navicula. (d Orbigny).<br />

Gavel<strong>in</strong>ella micra.<br />

= danica<br />

Lagena sp.<br />

Coryphostomata midwayensis. (Cushman)<br />

Gyroid<strong>in</strong>a girardana (Reuss)<br />

Gaudryna pyramidata. Cushman<br />

Gyroid<strong>in</strong>oides globosus. (Hagenow)<br />

Clavul<strong>in</strong>oides globulifera.Ten Dam &Sigal<br />

Rotalia spp.<br />

Valvulamm<strong>in</strong>a sp.<br />

Omphalocyclus macroporus (Lamar)<br />

Orbitoides medius (d Archiac)<br />

= tissoti Shlumberger<br />

L<strong>of</strong>tusia morgani Douville<br />

= m<strong>in</strong>or Coxi<br />

Fig (3.6) Biostratigraphic range chart <strong>of</strong> benthonic foram<strong>in</strong>ifera at Cretaceous/Tertiary<br />

<strong>boundary</strong> <strong>in</strong> Dokan area (Qulka section)<br />

57


Chapter Three Biostratigraphy<br />

C R E T A C E O U S T E R T I A R Y PERIOD<br />

LATE CAMP. EARLY Y MAASTRICHTIAN ----- LA TE MAASTRICHTIAN P A L E O C E N E EPOCH--AGE<br />

Shiranish Shiranish/Tanjero transition unit Tanjero Kolosh FORMATION<br />

1 3 5 10 15 20 25 30 35 40 45 50 55 60 70 80 90 100 110 115 120 130 140 146 SAMPLE No<br />

58<br />

LITHOLOGY<br />

1 15 30 50 70 89 100 113 143 171 200 230 THICKNESS m.<br />

CF.zones<br />

CF 8 CF 7 CF 6 CF 5 CF 4 CF 3 CF 2 CF 1 P<br />

pá P 1a<br />

(Li&Killer,1998a)<br />

Glt. G. C. P.<br />

P.<br />

P.<br />

P. 0<br />

P1b<br />

R. fructicosa<br />

aegyptiaca. gansseri contusa <strong>in</strong>term.<br />

hariaensis palpebra hantk.<br />

SUBZONE<br />

------------------------------------------------- -------------- ------ ----------------------------- --------- ---- --- ----- ---<br />

------------------- ------------- ----------- --- --------------- -------- ---- ---------------------------- ----- -- -- --- --- --- --- --- -<br />

---------------------------------- -- ------- ------ ----- ---------- ----- ----------- -------- ---- -- ---- ---- ---- ---------- -- ---<br />

----------------------------------------------------------------------------------------------------------------------------------------<br />

-----------------------------------------------------------------------------------------------------------------------------------------------------------<br />

-------------------------------------------------------------------------------------------- ------------------------------------------------------------ --- --<br />

---------------------------------------------------------------------------------------------------------------------<br />

-------------------- ------------- --------------------<br />

----------------------------------- --------------------- -------------- ----------------------------- ----------- ------ ------ ------ ---<br />

----------- -------- --------- ---- -- ------ ---- --- -------- ------------------- ---------- ----- ----- ----- --- -- -- --<br />

--------------- ----------- --------- ---------- ----------- -- -- -- - - - - -<br />

------------------------------------------------------------------------------------------------------------------------------------------------ -- -- --- --- - -<br />

------------- -------- -------------------------------------------- --- -- -- -- - - -- --<br />

------------------- --------------- --------- --------------- ------ ------- ------- ------ --- --- --- ---- -- -- -<br />

------------------------------- -- ---------- ---------- ------------ --------- -------------------------------------------------------------<br />

--------------------------------------------- --- ----<br />

----------------------- ---- -- -- -- -- -<br />

-------------------------------------------------------------------------<br />

--------------------------------------------- --- -- -- -- --<br />

0----------------------------------------------------------------------------------------------------------------0<br />

--------------------------------------------------------------------------------------------------<br />

-------------------------------- ------------ ----- ----------------- ---<br />

---------------------------------------------------------------------------------------------------------------------------------------------------------------------<br />

---------------------------------------------------------------------------------------------------------------------------------------------------------------------<br />

----------------------------------------------------------------------------------------------------------------------------------<br />

---------------------------------------------------------------------------------------------<br />

----------------------------------------------------------------------------------------------------------------------------------------------------------<br />

---------------------------------------------------------------------0<br />

-----------------------------------------------------------------------------------<br />

--------------------------<br />

------------------- ------- --------- ---- ----- ------ ------ ------------------------------------------ --- -- ---- - ---<br />

--------------------------------------------------------------------------------------------------------------------------- --- -- --- --- ---<br />

------------------------------------------------------<br />

----------------------------- - ------- --------- --------- ----- --------------------------------- ------ -------<br />

----------------------------------------------------------------------------------------------------------------------<br />

----------------------------------------------------- ---<br />

---------------------------------------------------------------------------------------<br />

--------------------------------------------------------<br />

---------------------------------------------------<br />

----------------------------------------<br />

------------------------------------------<br />

0----------------------------------------------------------------------------------------- --- --- -- - --<br />

------------------------------ --- - -- - -- -<br />

--- -- ----- --- ---- -- --- ------------------------ ---- ---- ---- ---- -- -- ---<br />

- ------- ------ -- ------- -------- ------ ------- -------- ---<br />

------------------------------- -- --- ---<br />

---------------------------------------------------------<br />

------------------------------------ ----- ------- ----- ------- ------------------------------------------------------------------<br />

----------------------------------- ---------- -------- --- ------ ---- ------------<br />

-------------------------------------------------------------------------------------------------------------------- ---- -- --- --- -- ---- -- -- -- -<br />

------------------------------------------------------------------------ ---------------------------------------<br />

--------------------------------- -- ---- ---- -- --- ---- ---<br />

-------------------<br />

------------------------------------------ --------- --------- ---------------------------------------------------------<br />

------------------------------------------- -------------------- --------------------- -<br />

------------------------------------------ -------- ------ ---------- -------------- ------ --- --- ---- --- -- -- -- --<br />

------------------------------------------------ ---------- -------- --------- ---------- -----<br />

--------------------------------- ---- ----------- --- -------- ---------<br />

-- --------- --------- ---------------------------------------------<br />

---------------------------------------------------------------------------------------------------------------------------------------------------------------------<br />

--------------------------------------------------------------------------------------------------------------------------- ------ ----- ---<br />

------------------------------------ --------- ----- ----- ----- ----- ----<br />

0------------------------------------- ------ --- ---- --- --- -- --<br />

---- ---- --- --- -------- ---- --- --- ----<br />

------- ------- ------------------------------------------------------------------<br />

0-------------------------------- - -- --<br />

-----------------------------------------------------------------<br />

---------- -------------- -------------------- ---------------------------------<br />

- --------- ----------- ---- -------- --------- -------------------------------------------------------------------------<br />

- ------- --------- ------- ------- -------- ----------------------------------------------------------------<br />

--- ----- -- -- -- -- -- --<br />

-------------------------------------------<br />

----------------------------------------- --------- - - -<br />

------------------------------ - - - - -<br />

--------------------- --------------- -------- --------- ---------------------------------------------------------------------<br />

--- ----- ---- ---------- ---------------------------------------<br />

------------------------------------------ -------- -------- ----------<br />

-------- -------- ----- ---- - --- --- ---- - - ----------- --- -- -----<br />

------------ ----- --------- -------- -------- ---- -- ----- ------ --- --- ------------ -------------------------- - - -- ---<br />

---------- --- ----------------------- ------------<br />

---------------- ---<br />

0--------0<br />

Heterohelix navarroensis Loeblish<br />

= globulosa (Ehrenberg)<br />

= striata (Ehrenberg)<br />

= punctulats (Cushman)<br />

= nauttalli (Voorwijk)<br />

= reussi (Cyshman)<br />

= pulchra (Brotzen)<br />

Laeviheterohelix glabrans (Coshman)<br />

Planoglobul<strong>in</strong>a carseyae (Plummer)<br />

= brazoensis Mart<strong>in</strong><br />

= acervul<strong>in</strong>oides (Egger)<br />

Rugoglobiger<strong>in</strong>a rugosa (Plummer)<br />

= scotti (Bronnimann)<br />

= hexacamerata Bronnimann<br />

= macrocephala Bronnimann<br />

= pennyi Bronnimann<br />

= rotundata Bronnimann<br />

= milamensis Smith & Pessango<br />

= reicheli Bronnimann<br />

Gansser<strong>in</strong>a gansseri (Reuss)<br />

= wiedenmayeri (G<strong>and</strong>olfi)<br />

Globotruncanita stuarti (de Lapparent)<br />

= stuartiformis Dalbez<br />

= conica White<br />

= pettersi G<strong>and</strong>olfi<br />

= angulata Tilev<br />

Globotruncana aegyptiaca Nakkady<br />

= l<strong>in</strong>ne<strong>in</strong>a (d Orgigny)<br />

= orientalis El-Naggar<br />

= falsocalcarata Kerdany & Abdelsalam<br />

= falsostuarti Sigal<br />

= dupeublie Caron et al.<br />

= gagneb<strong>in</strong>i Tilev<br />

= lapparenti Boli<br />

= arca (Cushman)<br />

= bulloides Vohgler<br />

= rosetta Carsey<br />

= <strong>in</strong>signis (G<strong>and</strong>olfi)<br />

= mariei Banner & Blow<br />

= ventricosa White<br />

= sp.<br />

Contusotruncana contusa (Cushman)<br />

= fornicata Plummer<br />

= plicata White<br />

= Patelliformis (G<strong>and</strong>olfi)<br />

= walfischensis Todd<br />

= sp. (nov. sp?)<br />

Rugotruncana circumnodifer (G<strong>and</strong>olfi)<br />

= subcircumnodifer (G<strong>and</strong>olfi)<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi)<br />

= havanensis (Voorwuk)<br />

= pschadae (Keller)<br />

= sp.<br />

Globiger<strong>in</strong>elloides volutes (White)<br />

= multisp<strong>in</strong>ata (Lalicker)<br />

= subcar<strong>in</strong>atus Bronnimann<br />

= prairiehillensis Pessango<br />

= bolli Pessango<br />

= ultramicra (Subbot<strong>in</strong>a)<br />

Pseudotextularia elegans (Rzehak)<br />

= deformis (kiko<strong>in</strong>e)<br />

= <strong>in</strong>termedia (De Klasz)<br />

Racemiguembel<strong>in</strong>a fructicosa (Egger)<br />

= poweli Smith & Pessango<br />

Pseudoguembel<strong>in</strong>a costulata (Cushman)<br />

= hariaensis Nederbragt<br />

= palpebra<br />

= excolata (Cushman)<br />

Hedbergella monmothensis (Olsson)<br />

= holmdelensis Olsson<br />

Abathomphalus mayaroensis (Bolli)<br />

= <strong>in</strong>termedius (Bolli)<br />

Kugler<strong>in</strong>a rotundata (Bronnimann)<br />

Costellager<strong>in</strong>a cf. bulbosa Belford<br />

Archaeoglobiger<strong>in</strong>a carteri (Kassab)<br />

= blowi Pessango<br />

= cretacea (d Orbigny)<br />

Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e<br />

Gumbelitria cretacea Cushman<br />

= dammula (Volosh<strong>in</strong>a)<br />

Tr<strong>in</strong>itella scotti Bronnimann<br />

Plummerita hantken<strong>in</strong>oides (Bronnimann)<br />

Fig (3.7) – Part 1: Biostratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at<br />

Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> Smaquli area (Gali section)<br />

Cretaceous planktonic foram<strong>in</strong>ifera


Chapter Three Biostratigraphy<br />

C R E T A C E O U S T E R T I A R Y PERIOD<br />

LATE CAMP. EARL Y MAASTRICHTIAN ----- LA TE MAASTRICHTIAN P A L E O C E N E EPOCH--AGE<br />

Shiranish Shiranish/Tanjero transition unit Tanjero Kolosh FORMATION<br />

1 3 5 10 15 20 25 30 35 40 45 50 55 60 70 80 90 100 110 115 120 130 140 146 SAMPLE No<br />

LITHOLOGY<br />

1 15 30 50 70 89 100 113 143 171 200 230 THICKNESS m.<br />

CF.zones<br />

CF 8 CF 7 CF 6 CF 5 CF 4 CF 3 CF 2 CF 1 P<br />

(Li&Killer,1998a)<br />

Glt.<br />

aegyptiaca.<br />

G.<br />

gansseri<br />

C.<br />

contusa<br />

P.<br />

<strong>in</strong>term.<br />

R. fructicosa<br />

P.<br />

hariaensis<br />

P.<br />

palpebra<br />

P.<br />

hantk.<br />

0<br />

pá P 1a P1b<br />

SUBZONE<br />

Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a (Luterbacher & Premoli Silva)<br />

Parvularugoglobigir<strong>in</strong>a extensa (Blow)<br />

Rectoguembel<strong>in</strong>a cretacea Cushman<br />

Hedbergella monmouthensis (Olsson),<br />

Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich & Tappan)<br />

= hornerstownensis (Olsson)<br />

Chiloguembel<strong>in</strong>a morsei (Kl<strong>in</strong>e)<br />

= midwayensis (Cushman)<br />

Globoconusa daubjergensis (Bronnimann)<br />

Parasubbot<strong>in</strong>a aff pseudobulloides (Olsson et al)<br />

Parasubbot<strong>in</strong>a pseudobulloides (Plummer)<br />

Subbot<strong>in</strong>a trivalis (Subbot<strong>in</strong>a)<br />

= trilocul<strong>in</strong>oides (Plummer)<br />

Globanomal<strong>in</strong>a archeocompressa (blow)<br />

= planocompressa (Shutskaya)<br />

Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a)<br />

= eobulloides Morozova<br />

= simplicissma Blow<br />

Praemurica taurica (Morozova)<br />

= pseudo<strong>in</strong>constans (blow)<br />

Guembelitria cretacea Cushman<br />

----------<br />

----------<br />

------------------<br />

----<br />

-----------------<br />

------------------------------------------<br />

----------------------------<br />

------------------------------------------<br />

- ----------------------------------------<br />

----------<br />

--------------------------------<br />

------------------------------------------<br />

---------<br />

-------------- --------- ------------------<br />

------------------------------------------<br />

------------------------------------------<br />

------------------------------------------<br />

-------------------------------<br />

------------------------------------------<br />

--------------------------------<br />

-----------------------<br />

Paleocene planktonic foram<strong>in</strong>ifera<br />

Fig (3.7) Part 2:- Biostratigraphic range chart <strong>of</strong> planktonic foram<strong>in</strong>ifera at<br />

Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> Smaquli area (Gali section) Cont<strong>in</strong>ued.<br />

Globiger<strong>in</strong>elloides volutes (White), G. subcar<strong>in</strong>atus Bronnimann, G.<br />

prairiehillensis Pessango, Pseudotextularia elegans (Rzehak), P.<br />

59<br />

deformis<br />

(kiko<strong>in</strong>e), P. <strong>in</strong>termedia (De Klasz), Racemiguembel<strong>in</strong>a poweli Smith &<br />

Pessango, Pseudoguembel<strong>in</strong>a costulata (Cushman), P.<br />

excolata (Cushman),<br />

Hedbergella monmothensis (Olsson), P. holmdelensis Olsson,<br />

Abathomphalus <strong>in</strong>termedius (Bolli), Archaeoglobiger<strong>in</strong>a carteri (Kassab),<br />

Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e, Gumbelitria cretacea Cushman.<br />

Due to high similarities <strong>of</strong> foram<strong>in</strong>iferal occurance, the present Zone (CF5)<br />

is equvalent to that <strong>of</strong> Li <strong>and</strong> Keller (1998a,b), (Abramovich et al., 2002), (Samir<br />

2002) , it is most likely equivalent to the upper part <strong>of</strong> Gansser<strong>in</strong>a gansseri<br />

Zone recorded <strong>in</strong> the North <strong>and</strong> Northeast <strong>of</strong> Iraq <strong>and</strong> different regions <strong>of</strong> the<br />

world (Al-Mutwali <strong>and</strong> Al-Jubouri, 2005), (Al-Mutwali, 1996), (Hammoudi, 2000),<br />

(Caron 1985), (Ubaidalla, 2005), (Robaszynski et al., 1984), (D Hont & Keller,<br />

1991), <strong>and</strong> it is equivalent to the upper part <strong>of</strong> Glt. contusa Zone <strong>of</strong> (Abawi et al.,<br />

1982, <strong>and</strong> Abdel-Kareem, 1986), <strong>and</strong> Glt.contusa-R. fructicosa Zone <strong>of</strong> (Premoli


Chapter Three Biostratigraphy<br />

Silva <strong>and</strong> Sliter, 1995, 1999) from Italy. (Abdel-Kareem & Samir. 1995), Egypt.<br />

(Fig. 3.12)<br />

The Pseudotextularia <strong>in</strong>termedia Zone spans about 0.73Myr (69.06-<br />

68.33Ma), (730Ky/19) meters estimat<strong>in</strong>g absolute ages based on magnetochron<br />

ages with (38.5 Ky/meter) <strong>of</strong> moderate rate <strong>of</strong> deposition (Fig.3. 12 – 3. 13),<br />

(Fig,5.11)<br />

Age: Late Early Maastrichtian.<br />

Note: it is important to mention that the Pseudotextularia <strong>in</strong>termedia Zone was<br />

recorded also from the other studied sections (only the upper part) <strong>in</strong> which the<br />

lower limit not studied. This biozone represented by moderate diversity <strong>of</strong><br />

planktonic foram<strong>in</strong>iferal assemblage by 43 species <strong>in</strong> Sirwan section, (Fig.3.1),<br />

44 species <strong>in</strong> Qulka section (Fig.3.5) <strong>and</strong> Low diversity planktonic foram<strong>in</strong>iferal<br />

assemblage by (27) species <strong>in</strong> Qishlagh section, (Fig.3.4)<br />

3.2.1.5- Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4)<br />

Racemiguembel<strong>in</strong>a fructicosa zone (CF4) was <strong>in</strong>troduced by Li <strong>and</strong> Keller<br />

(1998 a <strong>and</strong> b) as a biostratigraphic <strong>in</strong>terval between FAD <strong>of</strong> Racemiguembel<strong>in</strong>a<br />

fructicosa (Egger) at the base <strong>and</strong> the FAD <strong>of</strong> Pseudoguembel<strong>in</strong>a hariaensis at<br />

the top. The FAD <strong>of</strong> Racemiguembel<strong>in</strong>a fructicosa (Egger) <strong>in</strong> the studied section<br />

recorded from the upper most part <strong>of</strong> reddish to pale brown unit <strong>and</strong> covers the<br />

basal part <strong>of</strong> the Tanjero Formation (sample no.38) to the FAD <strong>of</strong><br />

Pseudoguembel<strong>in</strong>a hariaensis Nederbragt with<strong>in</strong> Tanjero Formation (sample<br />

no.58). (plate. 1, Fig. 9). Atta<strong>in</strong><strong>in</strong>g a thickness <strong>of</strong> 23m. at Gali section (Fig 3.7)<br />

110 meters Sirwan section (Fig 3.1) 32 meters Kato section (Fig 3.3) 83 meters<br />

Qulka section (Fig 3.5), while the upper limit <strong>of</strong> this zone <strong>in</strong> Qishlagh section not<br />

recorded due to change <strong>of</strong> environmental parameters which is represented by<br />

thick bedded <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g limestone <strong>of</strong> Aqra Formation at the upper part <strong>of</strong><br />

Tanjero Formation<br />

It is important to mention that the zonal scheme <strong>of</strong> Cretaceous foram<strong>in</strong>ifera<br />

(CF) proposed by Li <strong>and</strong> Keller (1998 a&b), which replaces the Abathomphalus<br />

mayaroensis zone with four zones (R. fructicosa zone, P. hariaensis Zone, P.<br />

palpebra Zone, P. hantken<strong>in</strong>oides Zone), for a much improved age estimate for<br />

60


Chapter Three Biostratigraphy<br />

the late Maastrichtian (Fig. 3.12). The total range zone <strong>of</strong> A. mayaroensis Zone<br />

characterized the Upper Maastrichtian <strong>in</strong> low latitude regions as well as the<br />

Tethyan paleogeographic realm. However it has been found that A. mayaroensis<br />

is very rare or absent <strong>in</strong> high latitude regions (Blow, 1979) <strong>and</strong> <strong>in</strong> the present<br />

section also, consequently it is more accurate to use the new zonal scheme.<br />

Most <strong>of</strong> the workers <strong>in</strong> the zonal scheme placed Racemiguembel<strong>in</strong>a<br />

fructicosa zone at the lower Late Maastrichtian (Li <strong>and</strong> Keller, 1998a&b),<br />

(Abramovich et al., 2002), at DSDP Site 525A. (Keller et al., 1995), from Tunisia.<br />

(Obaidalla 2005), <strong>and</strong> (Samir 2002), Egypt. As def<strong>in</strong>ed above, the present<br />

Biozone (CF4) is correlatable with the lower part <strong>of</strong> A. mayaroensis <strong>of</strong> (Abawi et<br />

al., 1982 <strong>and</strong> Abdel-Kareem 1986), (Premoli Silva <strong>and</strong> Sliter 1995, 1999),Italy.<br />

(Caron 1985), <strong>and</strong> (Robaszynski et al., 1984), general. (Fig. 3.12).<br />

This zone covered abundant occurrence <strong>of</strong> the nom<strong>in</strong>ate species, <strong>in</strong> addition<br />

to the <strong>in</strong>dex planktonic 55 species identified from Gali section, e.g: Heterohelix<br />

navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata (Ehrenberg), H.<br />

punctulats (Cushman), H. nauttalli (Voorwijk), H. reussi (Cyshman), H. pulchra<br />

(Brotzen) , Planoglobul<strong>in</strong>a carseyae (Plummer), P. brazoensis Mart<strong>in</strong>, P.<br />

acervul<strong>in</strong>oides (Egger), Rugoglobiger<strong>in</strong>a rugosa (Plummer), R. scotti<br />

(Bronnimann), R. hexacamerata Bronnimann, R. macrocephala Bronnimann,<br />

R. pennyi Bronnimann, R. milamensis Smith & Pessango, R. reicheli<br />

Bronnimann, Gansser<strong>in</strong>a gansseri (Reuss), Globotruncanita stuartiformis<br />

Dalbez, G. conica White, G. pettersi G<strong>and</strong>olfi, G. angulata Tilev,<br />

Globotruncana aegyptiaca Nakkady, Glt. falsostuarti Sigal, Glt. dupeublie<br />

Caron et al., Glt. lapparenti Boli, Glt. arca (Cushman), Contusotruncana<br />

contusa (Cushman), C. plicata White, C. Patelliformis (G<strong>and</strong>olfi), C.<br />

walfischensis Todd, C. sp. (nov. sp?), Rugotruncana circumnodifer (G<strong>and</strong>olfi),<br />

R. subcircumnodifer (G<strong>and</strong>olfi), Globotruncanella petaloidea (G<strong>and</strong>olfi), G.<br />

pschadae (Keller), Globiger<strong>in</strong>elloides volutes (White), G. subcar<strong>in</strong>atus<br />

Bronnimann, G. prairiehillensis Pessango, Pseudotextularia elegans (Rzehak),<br />

P. deformis (kiko<strong>in</strong>e), P. <strong>in</strong>termedia (De Klasz), Racemiguembel<strong>in</strong>a<br />

fructicosa (Egger), R. poweli Smith & Pessango, Pseudoguembel<strong>in</strong>a<br />

costulata (Cushman), P. palpebra, P. excolata (Cushman), Hedbergella<br />

61


Chapter Three Biostratigraphy<br />

monmothensis (Olsson), H. holmdelensisOlsson, Abathomphalus mayaroensis<br />

(Bolli), A. <strong>in</strong>termedius (Bolli), Kugler<strong>in</strong>a rotundata (Bronnimann),<br />

Archaeoglobiger<strong>in</strong>a carteri (Kassab) Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e, Gumbelitria<br />

cretacea Cushman,<br />

The planktonic foram<strong>in</strong>iferal assemblages represented by moderate number<br />

<strong>of</strong> species diversities <strong>in</strong> both Sirwan <strong>and</strong> Qulka section represented by 45<br />

species (figs. 3.2 <strong>and</strong> 3.5), while this number was reduced to 30 species <strong>in</strong> Kato<br />

section <strong>and</strong> 26 species <strong>in</strong> Qishlagh section , <strong>in</strong> Qishlagh the same assemblage<br />

<strong>and</strong> number <strong>of</strong> species cont<strong>in</strong>ued from previous P. Intermedia Biozone to R.<br />

fructicosa zone with addition to the nom<strong>in</strong>ate species <strong>of</strong> R. fructicosa, at the<br />

lower part <strong>of</strong> 10 meters only, after that all planktonic foram<strong>in</strong>iferal assemblages<br />

disappeared <strong>and</strong> replaced by larger foram<strong>in</strong>iferal community with other smaller<br />

benthonic forams for the total rema<strong>in</strong><strong>in</strong>g <strong>in</strong>terval <strong>of</strong> Tanjero Formation till the<br />

transitional <strong>in</strong>terval between Tanjero Formation <strong>and</strong> Red Bed series which is<br />

characterised by concentration <strong>of</strong> reworked larger foram<strong>in</strong>iferal assemblage <strong>and</strong><br />

dwarfed macr<strong>of</strong>ossils <strong>of</strong> pelecypods, gastropodes, brachiopodes <strong>and</strong> solitary<br />

corals like Cyclolites. planktonic forams represented by: Heterohelix<br />

navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata (Ehrenberg), H.<br />

punctulats (Cushman), Planoglobul<strong>in</strong>a carseyae (Plummer), P. brazoensis<br />

Mart<strong>in</strong>, Rugoglobiger<strong>in</strong>a rugosa (Plummer), R. scotti (Bronnimann), R.<br />

hexacamerata Bronnimann, R. macrocephala Bronnimann, Gansser<strong>in</strong>a<br />

gansseri (Reuss), Globotruncanita stuarti (de Lapparent), G. stuartiformis<br />

Dalbez , G. conica White, Globotruncana aegyptiaca Nakkady,<br />

Contusotruncana contusa (Cushman), C. fornicata Plummer, C. plicata White,<br />

Globotruncana arca (Cushman), Glt. gagneb<strong>in</strong>i Tilev Globotruncanella<br />

petaloidea (G<strong>and</strong>olfi), Globiger<strong>in</strong>elloides volutes (White), Pseudotextularia<br />

elegans (Rzehak), P. deformis (kiko<strong>in</strong>e), Racemiguembel<strong>in</strong>a fructicosa (Egger),<br />

Pseudoguembel<strong>in</strong>a costulata (Cushman),<br />

The benthonic forams represented by : Boliv<strong>in</strong>a <strong>in</strong>crassata Reuss,<br />

Boliv<strong>in</strong>oides draco (Marsson), Cibicidoides dayi (White), C. subcar<strong>in</strong>atus<br />

Cushman & Deaderick, C. excavata Brotzen, Osangularia navarrana<br />

(Cushman), Pullenia jarvisi Cushman, Pyrul<strong>in</strong>oides sp. Ne<strong>of</strong>labell<strong>in</strong>a rugosa (d ,<br />

62


Chapter Three Biostratigraphy<br />

Orbigny), Bulim<strong>in</strong>a ovulum Reuss, Ool<strong>in</strong>a apiculata Reuss, Globorotalites<br />

michel<strong>in</strong>ianus (d , Orbigny), Ammodiscus <strong>cretaceous</strong> (Reuss), A. pruvianus,<br />

Marsonella oxycona (Reuss), Dorothia smokynensis Wall, D. retusa, D.<br />

rosetta, Textularia astutia. Lalicker, Spiroplectam<strong>in</strong>a israelskyi Hillebr<strong>and</strong>t, S.<br />

laevis. (Roemer), Gyroid<strong>in</strong>a girardana (Reuss), Gyroid<strong>in</strong>oides globosus.<br />

(Hagenow), Gaudryna pyramidata. Cushman, Clavul<strong>in</strong>oides globulifera.Ten Dam<br />

&Sigal, Conicospiril<strong>in</strong>a sp. Rotalia sp. Valvulamm<strong>in</strong>a sp. Omphalocyclus<br />

macroporus (Lamark), Orbitoides medius (d Archiac), O. tissoti Shlumberger, O.<br />

apiculatus Shlumberger, Lepidorbitioides socialis (Leymerie), Siderolites sp.<br />

L<strong>of</strong>tusia elongata Brady, L. morgani Douville, L. persica Brady, L. m<strong>in</strong>or Cox , L.<br />

coxi Henson, L. sp.These assemblages <strong>of</strong> benthonic foram<strong>in</strong>ifera <strong>in</strong> addition to<br />

macr<strong>of</strong>ossils like ech<strong>in</strong>oides, gastropods, cephalopods, brachiopods, corals <strong>and</strong><br />

pelecypods (coral like rudistids ),<strong>in</strong>dicate the fundamental variation <strong>in</strong> lithology<br />

<strong>and</strong> Faunal assemblages from Tanjero clastics to the <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g <strong>in</strong>terval <strong>of</strong><br />

Aqra Limestone represents quite graditional change to reefal facies, probably<br />

formed due to the presence <strong>of</strong> submerged high with<strong>in</strong> the Tanjero forel<strong>and</strong><br />

bas<strong>in</strong> at the end <strong>of</strong> the Maastrichtian resulted from the term<strong>in</strong>ation <strong>of</strong><br />

Paraxysmal phases <strong>of</strong> Laramide orogeny. ( Lawa et al.,1998, Al Omari et al.,<br />

1989, Al Mutwali <strong>and</strong> Abawi, 2005)<br />

The age estimation <strong>of</strong> this biozone by (Li <strong>and</strong> Keller, 1998a), records the<br />

time span between (68.33 Ma) to (66.83 Ma) (1500 KY) estimat<strong>in</strong>g absolute<br />

ages based on magnetochron ages with (62 ky/m) low rate <strong>of</strong> deposition <strong>in</strong> Gali<br />

section, (13, 5 ky/m) high rate sedimentation <strong>in</strong> Sirwan area. (18 ky/m) high rate<br />

<strong>of</strong> deposition <strong>in</strong> Qulka section Dokan area. (Figs. 3.10 -3.11).<br />

Age: Early Late Maastrichtian.<br />

3.2.1.6- Pseudoguembel<strong>in</strong>a hariaensis Interval Zone (CF3)<br />

The Pseudoguembel<strong>in</strong>a hariaensis zone was def<strong>in</strong>ed by Li <strong>and</strong> Killer, (1998a)<br />

as a partial range <strong>of</strong> the nom<strong>in</strong>ate species between the FAD <strong>of</strong><br />

Pseudoguembel<strong>in</strong>a hariaensis Nederbragt <strong>and</strong> the LAD <strong>of</strong> Gansser<strong>in</strong>a gansseri<br />

(Bolli). In the studied area this zone also marked by the FAD <strong>of</strong> the nom<strong>in</strong>ate<br />

species to the last occurrence <strong>of</strong> Gansser<strong>in</strong>a gansseri (Bolli). (Plate 16; Fig. 6).It<br />

is covers the <strong>in</strong>tervals <strong>of</strong> (21)meter <strong>in</strong> Gali section, (23) meters <strong>in</strong> Qulka section<br />

63


Chapter Three Biostratigraphy<br />

<strong>and</strong> 30 meters <strong>in</strong> Sirwan section. This zone shows reliable abundance <strong>of</strong><br />

Pseudoguembel<strong>in</strong>a hariaensis Nederbragt <strong>and</strong> other assemblages' planktonic<br />

foram<strong>in</strong>ifera which totally resembles that <strong>of</strong> the underly<strong>in</strong>g Racemiguembl<strong>in</strong>a<br />

fructicosa zone (CF4), <strong>in</strong> Gali section with the follow<strong>in</strong>g planktonic forams <strong>of</strong> 50<br />

species like: Heterohelix navarroensis Loeblish, H. globulosa (Ehrenberg), H.<br />

striata (Ehrenberg), H. punctulats (Cushman),H. nauttalli (Voorwijk), H. reussi<br />

(Cyshman), Laeviheterohelix glabrans (Cyshman), Planoglobul<strong>in</strong>a carseyae<br />

(Plummer), P. brazoensis Mart<strong>in</strong>, P. acervul<strong>in</strong>oides (Egger), Rugoglobiger<strong>in</strong>a<br />

rugosa (Plummer), R. scotti (Bronnimann), R. hexacamerata Bronnimann, R.<br />

macrocephala Bronnimann, R. pennyi Bronnimann,R. reicheli Bronnimann, R.<br />

rotundata Bronnimann, Gansser<strong>in</strong>a gansseri (Reuss), Globotruncanita<br />

stuartiformis Dalbez, G. conica White, G. pettersi G<strong>and</strong>olfi, G. angulata<br />

Tilev, Globotruncana aegyptiaca Nakkady, Glt. falsostuarti Sigal, Glt.<br />

dupeublie Caron et al., Glt. lapparenti Boli, Contusotruncana contusa<br />

(Cushman), C. plicata White, C. Patelliformis (G<strong>and</strong>olfi), C. walfischensis<br />

Todd, C. sp. (nov. sp?), Rugotruncana circumnodifer (G<strong>and</strong>olfi),<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi), G. pschadae (Keller), Globiger<strong>in</strong>elloides<br />

volutes (White), G. subcar<strong>in</strong>atus Bronnimann, Pseudotextularia elegans<br />

(Rzehak), P. deformis (kiko<strong>in</strong>e), Racemiguembel<strong>in</strong>a fructicosa (Egger),<br />

Pseudoguembel<strong>in</strong>a costulata (Cushman), P. palpebra, P. excolata (Cushman),<br />

Hedbergella monmothensis (Olsson), H. holmdelensisOlsson, Abathomphalus<br />

mayaroensis (Bolli), Kugler<strong>in</strong>a rotundata (Bronnimann), Costellager<strong>in</strong>a cf.<br />

bulbosa Belford, Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e, Gumbelitria cretacea Cushman.<br />

The species number <strong>of</strong> planktonic foram<strong>in</strong>ifera <strong>in</strong> this zone is reduced to 45<br />

species at Sirwan section (Fig. 3.1) <strong>and</strong> 40 species <strong>in</strong> Qulka section Dokan area<br />

(Fig. 3.5). While this number shows its relative decreas<strong>in</strong>g to 27 species <strong>in</strong> Kato<br />

section (Fig. 3.3). This zone is recorded only from the marly <strong>and</strong> shaley<br />

limestone layers between the last 12 meters <strong>of</strong> Aqra <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g Limestone<br />

with<strong>in</strong> Tanjero Formation which is <strong>in</strong>terrupted 10 meters <strong>of</strong> unfossiliferous<br />

s<strong>and</strong>stone <strong>and</strong> marl. In the upper part <strong>of</strong> Tanjero Formation at Kato section.<br />

64


Chapter Three Biostratigraphy<br />

C R E T A C E O U S T E R T I A R Y PERIOD<br />

LATE CAM.----EARLY MAASTRICHTIAN ----------- LATE MAASTRICHTIAN P A L E O C E N E EPOCH--AGE<br />

Shiranish Shiranish/Tanjero trans. unit Tanjero Kolosh FORMATION<br />

1 3 5 10 15 20 25 30 35 40 45 50 55 60 70 80 90 100 110 115 120 130 140 146 SAMPLE No<br />

65<br />

LITHOLOGY<br />

1 15 30 50 70 89 100 113 143 171 200 230 THICKNESS m.<br />

CF.zones<br />

CF 8 Cf 7 CF 6 CF 5 CF 4 CF 3 CF 2 CF 1<br />

P<br />

P P<br />

(Li&Killer,1998a)<br />

P 1a 1<br />

P.<br />

P. P. P. 0<br />

Glt,<br />

C.<br />

R.<br />

á<br />

G. gansseri<br />

<strong>in</strong>termed<br />

hariaens palpe hantk<br />

aegyptiaca<br />

contusa<br />

fructicosa<br />

b SUBZONE<br />

ia.<br />

is bra <strong>in</strong>i.<br />

- --- -- -- ---- --- ----- ---- --- --- -- --<br />

--- ---- ------ --- -- ---- ----- ---- -----<br />

---- ----- --- -- ---- ---- ------- ---- ----- --- -- -- -- --<br />

-- -- -- --- ----- -- -- ---<br />

---- ------ -- ---- ---- --- --- ------- ---- ------ --- ---<br />

---- ------ ---- ----- --- -- ------ ------ --- --- - - -<br />

--- ------- --- ------ ----- ----- ---- ------ -- ---- -- -<br />

---- ------- ----- ---- ------ --- ---- ----- --- --- --- ---<br />

--- -------- ------ ------ ------ ----- ----- -------- -------- ----- ----- - --<br />

------ ---- ------ ----- ----<br />

------- ---- ---- ----- ---- ----- --- --- --- --<br />

- ------- ------ -- -- -<br />

---- -------- ----- ---- --- ---- ------- --- ---- -- -<br />

---- ------ ------ -------<br />

--------- --- ---- ------- ---- -- --- ---<br />

--- --- ------------ ------ ----- ------- --------- ---- --- --<br />

------- -- -------- ------- ------- ------- -- -<br />

----- ----- --- ---------- ----- -- ---- ------ ----- -- -- -<br />

--- ----- --- ----- ---- --- --- ---- -- ---- --- --- -- -<br />

- --- --- --- ------ --- ---- ---- -<br />

--- ----------- ---- --- --- -- - --- --- ---- -- -- - - - -- --<br />

-------- --- --- ------- ---- ------<br />

---- - ----- ---- ----- ---- --- --- ----- ----- ---- -- --- --<br />

--- -- -- --- -- --- --- ---<br />

---- ----- ----- --- --- --- ----- ---- -- --<br />

---------- ---- ------ --- ---- ----- - ---- ---- -- --- -- - -<br />

---- ---------- ----- ------------ ---- --- ------- - -<br />

--- -- - ------ ------ ----------- ---- -------- ---- -- -- -<br />

--- ---- --- ----- ---------<br />

- ----- ----- ------- ---- -- ---- --- --- --- ---- ---- -- ---<br />

--------- ------- -------- --- ------- ----- ---- ---- --- ------- -- --<br />

------ -- --- ---- ----- ---- -- ---- -- --- --- --- --- -- -<br />

-------- ------ ----- - -- - -<br />

-- --- --- -- ---- --- ----- ---<br />

-- --- ------ --- -- ---- - -- -- ----<br />

---------- --------- - -- ----- ---- ---- ----- - --<br />

---- ------ ------------- - -------- --------- - -- --<br />

--------- -------- ------- -- ------- --- ---- --- ---- ---- - -- -- -<br />

---------- --------- -- ----- ---- - --- -- ----- --<br />

------ --------- ------------ ---------- ---- ----- --- -------<br />

--- ----- -- -------- -------------- ----- --<br />

---- ---- ------ ----- ------ --- --- ------- ----- ---- -- -<br />

----- ----- --------- ------------ ----- ---------- ----- ---<br />

-------- -------- ------------------- ----- -------- ----- -- --<br />

----- ------ ------ ----- ------ --- --- - --- - -- --- -<br />

------ ------ ----- ----- --- ------- ----- - --- ---- -<br />

------- ------------------- ----- ------ ------ --- -----<br />

---- ---- -- ---- - ---- --- ---- -- -- ------ ----- -- -- --<br />

----- - -------- ---- ---- -------- ----- ----- ---- ---<br />

----- ------ ----------- ------------ ------- -------- ------- --- ---- -- - --<br />

---------- ------ --------- -------- -------- - -- -- -----------<br />

-------- ------ ---- --- ----- ------ ----- - -- ---- ---- -- -- -- --<br />

---- ---- --- ---- -------- --- - -----<br />

------- ----- ---- --- --- ----- ---------- ---<br />

------ ---- ----- ---- ---------<br />

----- ----- ----- ---- ----- --- ---<br />

- -------- --- ---- --- ------ --- --- -- - -- --<br />

----- ---------- ---- ------ ----------- ------ -- ---- - -- - -<br />

---------- ------ --- ----- ----- ---<br />

------- ----- ----- --- ---- ------- --<br />

---- ------ ---- - -- --- -- -<br />

---------- ------- -------- ---- --<br />

- ------ ----- ---- -------- ----- --- ----- ---- ---<br />

-------- ------- ---- -------<br />

- -- ------- ----- ----- -- ----- ------ --<br />

------ --- ---- -- --<br />

- ----- --- ---<br />

----- ----- --<br />

-- --- ---<br />

------ ----- ----<br />

--- --- -- -- -- --<br />

-- -- --- ---- --- - -<br />

- -- -- ---- ---- ---<br />

-- -- - -- ---- --<br />

-- - --- -- --<br />

-- -- -- -- -<br />

-- ---- --- ----- --<br />

-- --- -----<br />

--- --- ---- --<br />

---- ---- --- ---<br />

----- -- - - - --<br />

----- --- -- - -- - -<br />

- --- --- -- --<br />

-- ---<br />

---- - -- -<br />

- ------ ----- -- --<br />

--- ---<br />

---- -- -- -- -<br />

------ - ---<br />

-- -------- ---<br />

-- ----- --- --<br />

----- --- --- -- ----<br />

- --- -- --<br />

--- --- --- - - --<br />

- - - -- ---<br />

-- ---- -- ---<br />

-- - -- --- ----<br />

------ --- ---- -----<br />

--- --- ---- -----<br />

-- ---- ----- --<br />

---- --------- ----<br />

---- - ----- --<br />

-- -- --<br />

-- ----- -- --<br />

- -- ---- --- -- ---<br />

--- - --- -- --<br />

---- --- ---<br />

-- --- - - --- ---<br />

---- ------ ---- --<br />

-- --- ---- - --<br />

------- ----------<br />

-- ---- ------<br />

--- ---- -- ----<br />

-----<br />

- ----<br />

--- --- -- ----<br />

-- ------ ----- ---<br />

Fig (3.8) Biostratigraphic range chart <strong>of</strong> benthonic foram<strong>in</strong>ifera at Cretaceous/Tertiary<br />

<strong>boundary</strong> <strong>in</strong> Smaquli area (Gali section)<br />

FORAMINIFERA<br />

BENTHONIC<br />

Boliv<strong>in</strong>a <strong>in</strong>crassata Reuss<br />

Boliv<strong>in</strong>oides draco (Marsson)<br />

= delicates Cushman<br />

= miliaris Hitt & Koch<br />

= sp.<br />

Cibicidoides dayi (White)<br />

= subcar<strong>in</strong>atos Cushman & Deaderick<br />

= excavata Brotzen<br />

Osangularia navarrana (Cushman)<br />

Pullenia jarvisi Cushman<br />

= qu<strong>in</strong>queloba (Reuss)<br />

Pyrul<strong>in</strong>oides sp.<br />

Ne<strong>of</strong>labell<strong>in</strong>a rugosa (d Orbigny).<br />

= delicatissima (Plummer)<br />

Bulim<strong>in</strong>a ovulum Reuss<br />

= midwayensis<br />

Praebulim<strong>in</strong>a ovulum (Reuss)<br />

= aspera (Cushman &Parker)<br />

= laevis (Beissel)<br />

= carseyae (Plummer)<br />

Uviger<strong>in</strong>a graciliformis<br />

Ool<strong>in</strong>a apiculata Reuss<br />

= golbosa (Montagu)<br />

Globorotalites michel<strong>in</strong>ianus (d Orbigny)<br />

= sp.<br />

Ammodiscus <strong>cretaceous</strong> (Reuss)<br />

= pruvianus<br />

Marsonella oxycona (Reuss)<br />

Dorothia smokynensis Wall<br />

= retusa<br />

= rosetta<br />

= sp.<br />

Textularia astutia. Lalicker<br />

Spiroplectam<strong>in</strong>a israelskyi Hillebr<strong>and</strong>t<br />

= laevis. (Roemer)<br />

= dentata (Alth)<br />

= navicula (d Orbigny)<br />

Stilomella midwayensis. (Cushman &Todd)<br />

Stensio<strong>in</strong>a excolata (Cushman)<br />

Nodosaria m<strong>in</strong>or Hantken<br />

= aff<strong>in</strong>is Reuss<br />

= cf. limbata d'Orbigny.<br />

Pseudonodosaria sp.<br />

= appressa Loeblich & Tappan<br />

Dental<strong>in</strong>a elegans d Orbogny<br />

= <strong>in</strong>ornata (d Orbogny)<br />

Dental<strong>in</strong>oides canul<strong>in</strong>a Marie<br />

Noneonella <strong>in</strong>secta (Schwager)<br />

Pleurostomella subnodosa (Reuss)<br />

= paleocenica (Cushman)<br />

Paralabam<strong>in</strong>a hillebrndti (Fisher)<br />

Lenticul<strong>in</strong>a muennsteri<br />

= navicula. (d Orbigny).<br />

= gunderbookaensis. Cresp<strong>in</strong><br />

= sp.<br />

Gavel<strong>in</strong>ella micra.<br />

= danica<br />

Lagena hispida Reuss<br />

= sp.<br />

Palliolattella sp.<br />

Coryphostomata midwayensis. (Cushman)<br />

Gyroid<strong>in</strong>a girardana (Reuss)<br />

Gaudryna pyramidata. Cushman<br />

= pulv<strong>in</strong>a<br />

Gyroid<strong>in</strong>oides globosus. (Hagenow)<br />

= exsertus (Belford)<br />

= subangulatus (Plummer)<br />

Clavul<strong>in</strong>oides globulifera.Ten Dam &Sigal<br />

Conicospiril<strong>in</strong>a sp.<br />

Saracenaria navicula (d Orbigny)<br />

Ellipsodimorph<strong>in</strong>a sp.


Chapter Three Biostratigraphy<br />

There is no any evidence <strong>of</strong> planktonic foram occurrence except <strong>of</strong> some larger<br />

foram<strong>in</strong>ifera <strong>and</strong> smaller benthonic till the <strong>in</strong>terval <strong>of</strong> Tanjero -- Red Bed<br />

transition unit which characterized by the presence <strong>of</strong> reworked larger forams.<br />

The benthonic foram<strong>in</strong>ifera identified from the uppermost part <strong>of</strong> Tanjero<br />

Formation are: Praebulim<strong>in</strong>a quadrata, Ool<strong>in</strong>a apiculata Reuss, Nodosaria<br />

m<strong>in</strong>or Hantken, Globorotaloides sp. Spiroplectam<strong>in</strong>a israelskyi Hillebr<strong>and</strong>t,<br />

Lenticul<strong>in</strong>a muennsteri,Dorothia crassa, D. smokynensis Wall, D. retusa,<br />

Omphalocyclus macroporus, Orbitoides medius (d Archiac), O. tissoti<br />

Shlumberger, L<strong>of</strong>tusia elongata Brady, L. morgani Douville, L. persica Brady, L.<br />

m<strong>in</strong>or Coxi,<br />

As def<strong>in</strong>ed above, the present Biozone (CF3) is correlatable with the Zone<br />

recorded by (Li <strong>and</strong> Keller, 1998a,b), (Abramovich <strong>and</strong> Keller,2003) <strong>in</strong> DSDP<br />

Site 525A. Abramovich et al., (2002) Madagascar. (Keller et al., 1995) from<br />

Tunisia. (Keller, 2004) Eastern Tethys. (Samir, 2002), (Keller, 2002), (Obaidalla,<br />

005) Egypt. (Sharbazheri, 2007) NE Iraq, <strong>and</strong> it is correlated with the middle<br />

part <strong>of</strong> Abathomphalus mayaroensis zone recorded <strong>in</strong> the Northeast <strong>of</strong> Iraq<br />

(Abawi et al., 1982, <strong>and</strong> Abdel-Kareem,1986), <strong>in</strong> Italy (Premoli Silva <strong>and</strong> Sliter,<br />

1995, 1999) (Premoli Silva et al., 1998), (Abdel-Kareem & Samir, 1995) Egypt,<br />

<strong>and</strong> (Robaszynski et al., 1984) (Caron, 1985) general.(Figs. 3.12 - 3.14) .<br />

The age estimation <strong>of</strong> this biozone by (Li <strong>and</strong> Keller, 1998a), records the<br />

Middle Late Maastrichtian, with the time span <strong>of</strong> (66.83Ma) to (65.45Ma)<br />

estimat<strong>in</strong>g absolute ages based on magnetochron ages. (1380 Ky) estimat<strong>in</strong>g<br />

absolute ages based on magnetochron ages with 66ky/m low rate <strong>of</strong> deposition<br />

<strong>in</strong> Gali section. (60 ky/m) low rate <strong>of</strong> deposition <strong>in</strong> Qulka section Dokan area.(46<br />

ky/m) low to moderate rate <strong>of</strong> sedimentation <strong>in</strong> Sirwan valley.(Figs. 3.12 & 3.13)<br />

Age: Middle Late Maastrichtian.<br />

3.2.1.7- Pseudoguembel<strong>in</strong>a palpebra Interval Zone (CF 2)<br />

This Zone (CF2) def<strong>in</strong>es the <strong>in</strong>terval between the LAD <strong>of</strong> Gansser<strong>in</strong>a<br />

gansseri at the base to the FAD <strong>of</strong> Plummerita hantken<strong>in</strong>oides at the top. Li &<br />

Keller, (1998 a <strong>and</strong> b) <strong>in</strong>troduced this zone from DSDP Site 525A <strong>and</strong> Tunisia,<br />

respectively. At Gali section <strong>in</strong> Smaquli area, the Zone (CF2) covers spans 24<br />

66


Chapter Three Biostratigraphy<br />

meters (Fig. 3.7) (Plate.16; Figs. 7, 8). The recorded planktonic assemblage <strong>of</strong><br />

this zone is characterized by the same number 50 species diversity with<br />

underly<strong>in</strong>g Pseudoguembel<strong>in</strong>a hariaensis zone, <strong>and</strong> marked by the ext<strong>in</strong>ction <strong>of</strong><br />

Heterohelix punctulatus (Cushman), Gansser<strong>in</strong>a gansseri, Globiger<strong>in</strong>elloides<br />

volutes (White), <strong>and</strong> Laeviheterohelix glabrans (Cyshman), at the upper part <strong>of</strong><br />

this zone. Besides, the planktonic foram<strong>in</strong>iferal species endur<strong>in</strong>g from the<br />

underly<strong>in</strong>g Biozones, some species shows their first appearance, e.g.<br />

Globotruncana Falsoscalcarata Kerdany & Abdelsalam, Globotruncanella sp.<br />

<strong>and</strong> Tr<strong>in</strong>itella scotti Bronnimann were appeared for the first time with this zone.<br />

In Qulka section at Dokan area, the Zone (CF2) covers spans (9) meters<br />

(Fig. 3.5) this zone represented by 37 species with the ext<strong>in</strong>ction <strong>of</strong> Gansser<strong>in</strong>a<br />

gansseri (Reuss), Globiger<strong>in</strong>elloides prairiehillensis Pessango at the base <strong>and</strong><br />

Globiger<strong>in</strong>elloides volutes (White), G. subcar<strong>in</strong>ata Bronnimann at the upper part<br />

<strong>of</strong> this zone. The first appearance <strong>of</strong> Rugoglobiger<strong>in</strong>a rotundata Bronnimann at<br />

the base <strong>and</strong> Globotruncana Falsoscalcarata Kerdany & Abdelsalam, at the<br />

upper part <strong>of</strong> this zone.<br />

The Pseudoguembel<strong>in</strong>a palpebra Interval Zone (CF 2) <strong>in</strong> Sirwan valley<br />

displays spans 25 meters (Fig. 3.1), biostratigraphically represented by<br />

decreas<strong>in</strong>g species number from 49 to 38 species <strong>and</strong> there is no any dist<strong>in</strong>ctive<br />

appearance <strong>of</strong> new species with this zone. The planktonic foram<strong>in</strong>iferal<br />

assemblages <strong>of</strong> this zone <strong>in</strong> Sirwan section represented by Heterohelix<br />

navarroensis Loeblish, H. globulosa (Ehrenberg), Laeviheterohelix glabrans<br />

(Coshman), Planoglobul<strong>in</strong>a carseyae (Plummer), P. acervul<strong>in</strong>oides (Egger),<br />

Rugoglobiger<strong>in</strong>a rugosa (Plummer), R. scotti (Bronnimann) , R. hexacamerata<br />

Bronnimann, R. macrocephala Bronnimann, R. pennyi Bronnimann, R. reicheli<br />

Bronnimann, Globotruncanita stuartiformis Dalbez , G.conica White ,<br />

Globotruncana aegyptiaca Nakkady, Glt. Falsocalcarata Kerdany &<br />

Abdelsalam, Glt. falsostuarti Sigal, Glt. dupeublie Caron et al., Glt. lapparenti<br />

Boli, Contusotruncana contusa (Cushman), C. plicata White, C. walfischensis<br />

Todd, Rugotruncana circumnodifer (G<strong>and</strong>olfi), R.subcircumnodifer (G<strong>and</strong>olfi),<br />

Globotruncanella petaloidea (G<strong>and</strong>olfi), G. pschadae (Keller), Globiger<strong>in</strong>elloides<br />

prairiehillensis Pessango, Pseudotextularia elegans (Rzehak), P.deformis<br />

67


Chapter Three Biostratigraphy<br />

(kiko<strong>in</strong>e), Racemiguembel<strong>in</strong>a fructicosa (Egger), Pseudoguembel<strong>in</strong>a hariaensis<br />

Nederbragt, P. palpebra, P. excolata (Cushman), Hedbergella monmothensis<br />

(Olsson), H. holmdelensis Olsson, Gubler<strong>in</strong>a cuvillieri Kiko<strong>in</strong>e, Gumbelitria<br />

cretacea Cushman.<br />

As def<strong>in</strong>ed above, the present zone (CF2) <strong>of</strong> studied area is equivalent to the<br />

same zone <strong>of</strong> the P. palpebra Zone <strong>of</strong> South Atlantic DSDP Site 525A (Li &<br />

Keller, 1998a), (Abramovich et al.,2002); <strong>and</strong> Tunisia (Li & Keller, 1998b),<br />

(Arenillas et al.,2000); eastern Tethys (Keller, 2004), the present P. palpebra<br />

Zone is equivalent to the upper part <strong>of</strong> Abathomphalus mayaroensis Zone<br />

recorded from different parts <strong>of</strong> the world (Premoli Silva & Sliter, 1995 & 1999),<br />

(Mol<strong>in</strong>a et al., 1996) Canudo et al., 1991); from Spa<strong>in</strong>; Premoli Silva et al.,1998<br />

eastern Mediterranean; (Robaszynski et al., 1984; Caron, 1985), general;<br />

(Maestas et al., 2003), USA California; <strong>and</strong> Egypt (Obaidalla, 2005; Samir 2002;<br />

Elnady &Shah<strong>in</strong>, 2001; Lun<strong>in</strong>g et al.,1998). The present P. palpebra Zone is<br />

equivalent to the upper part <strong>of</strong> Abathomphalus mayaroensis Zone recorded from<br />

different localities from Iraq, (Al-Mutwali <strong>and</strong> Al Juboury, 2005; Al-Mutwali, 1996;<br />

Hammoudi, 2000; Abawi et al., 1982; Abdel-Kireem, 1986; Kassab, 1972, 1974,<br />

1975, 1976, 1979, <strong>and</strong> Kassab et al., 1986) (Figs 3.10 -12)<br />

The age estimation <strong>of</strong> this biozone by (Li <strong>and</strong> Keller, 1998a), records the<br />

Upper Late Maastrichtian, with the time span <strong>of</strong> (65.45Ma) to (65.30Ma)<br />

estimat<strong>in</strong>g absolute ages based on magnetochron ages. (150 Ky) estimat<strong>in</strong>g<br />

absolute ages based on magnetochron ages with (6 ky/m) high rate <strong>of</strong><br />

deposition <strong>in</strong> Gali section. (17 ky/m) high rate <strong>of</strong> deposition <strong>in</strong> Qulka section<br />

Dokan area.(6 ky/m) high rate <strong>of</strong> sedimentation <strong>in</strong> Sirwan valley. (Figs. 3.12 -14)<br />

Age: Upper Late Maastrichtian.<br />

3.2.1.8- Plummerita hantken<strong>in</strong>oides Total Range Zone (CF 1)<br />

The biostratigraphic <strong>in</strong>terval <strong>of</strong> this zone def<strong>in</strong>ed by the total range <strong>of</strong> the<br />

nom<strong>in</strong>ate taxon, Plummerita hantken<strong>in</strong>oides (Bronnimann). Pardo et al. (1996)<br />

<strong>in</strong>troduced the P. hantken<strong>in</strong>oides Zone for the latest Maastrichtian <strong>of</strong> Spa<strong>in</strong>. It<br />

marks the uppermost Cretaceous biozones. As its top marks the K/P <strong>boundary</strong>.<br />

The upper limit <strong>of</strong> this zone co<strong>in</strong>cides with the mass ext<strong>in</strong>ction <strong>of</strong> large tropical--<br />

68


Chapter Three Biostratigraphy<br />

subtropical taxa. At Studied sections, this zone covers the top (25) meters <strong>of</strong> the<br />

Maastrichtian <strong>in</strong> Sirwan area (Plate.16, Fig.12). (Plate.21, Figs.10, 11). (13)<br />

meters <strong>in</strong> Qulka section. And (15) meters <strong>in</strong> Gali section. The Characteristic<br />

recorded planktonic foram<strong>in</strong>iferal assemblage <strong>of</strong> this zone shows gradual<br />

decreas<strong>in</strong>g <strong>in</strong> both species <strong>and</strong> <strong>in</strong>dividual numbers from Pseudoguembel<strong>in</strong>a<br />

palpebra Zone to Plummerita hantken<strong>in</strong>oides Zone. (50) to (37) species <strong>in</strong> Gali<br />

section (Smaquli area), (37) to (29) species <strong>in</strong> Sirwan section <strong>and</strong> (38) to (24)<br />

species <strong>in</strong> Qulka section (Figs. 3.1, 3.5 <strong>and</strong> 3.7), at this zone. In addition, the<br />

planktonic foram<strong>in</strong>iferal species endur<strong>in</strong>g from the underly<strong>in</strong>g biozones, only two<br />

species Plummerita hantken<strong>in</strong>oides (Bronnimann) <strong>and</strong> Tr<strong>in</strong>itella scotti<br />

Bronnimann show their first appearance <strong>in</strong> Gali section <strong>and</strong> Plummerita<br />

hantken<strong>in</strong>oides (Bronnimann) <strong>in</strong> both Sirwan <strong>and</strong> Qulka section. The planktonic<br />

foram<strong>in</strong>iferal assemblages <strong>in</strong> Qulka section comprise<br />

Heterohelix navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata<br />

(Ehrenberg), Rugoglobiger<strong>in</strong>a rugosa (Plummer), R. scotti (Bronnimann), R.<br />

macrocephala Bronnimann, R. pennyi Bronnimann, R. rotundata<br />

Bronnimann, Globotruncanita stuartiformis Dalbez, G. conica White,<br />

Globotruncana falsocalcarata Kerdany & Abdelsalam, Glt. falsostuarti Sigal,<br />

Glt. dupeublie Caron et al., Contusotruncana contusa (Cushman), C. plicata<br />

White, Globotruncanella petaloidea (G<strong>and</strong>olfi), Pseudotextularia elegans<br />

(Rzehak), Pseudoguembel<strong>in</strong>a costulata (Cushman), P. hariaensis Nederbragt,<br />

P. palpebra, P. excolata (Coshman), Hedbergella monmothensis (Olsson), H.<br />

holmdelensis Olsson, Gumbelitria cretacea Cushman, Plummerita<br />

hantken<strong>in</strong>oides (Bronnimann), (Fig. 4.5).<br />

As def<strong>in</strong>ed above <strong>and</strong> based on the associated planktonic foram<strong>in</strong>iferal<br />

assemblage, the present Plummerita hantken<strong>in</strong>oides Total Range Zone (CF 1)<br />

is equivalent to the same zone recorded from Tunisia (Li & Keller, 1998b);<br />

Eastern Tethys Israel (Keller 2004), Egypt (Keller, 2002), ( Samir 2002 <strong>and</strong><br />

Obaidalla 2005), (Pardo et al. 1996), (Keller 1996); Tunisia (Arenillas et<br />

al.,2000); to the upper part <strong>of</strong> Zone (CF 1-2) from South Atlantic DSDP Site<br />

525A (Li & Keller, 1998a); <strong>and</strong> Madagascar (Abramovich et al.,2002); DSDP<br />

Site 525A (Abramovich <strong>and</strong> Keller, 2003); USA (St<strong>in</strong>nesbeck et al., 2004). The<br />

69


Chapter Three Biostratigraphy<br />

present Plummerita hantken<strong>in</strong>oides Zone is equivalent to the upper most part<br />

<strong>of</strong> Abathomphalus mayaroensis Zone recorded from different parts <strong>of</strong> the world<br />

(Canudo et al., 1991), (Smit 2005),<strong>and</strong> (Chacon & Mart<strong>in</strong>-Chivelet 2005) Spa<strong>in</strong>;<br />

(Premoli Silva & Sliter, 1995 & 1999),Italy; (Premoli Silva et al., 1998), eastern<br />

Mediterranean ; (Gov<strong>in</strong>dan et al., 1996), India; (Robaszynski et al., 1984, <strong>and</strong><br />

Caron, 1985), general; (Maestas et al., 2003), USA, California; (Mart<strong>in</strong>ez, 1989;<br />

Lun<strong>in</strong>g et al., 1998), south USA. And equivalent to Plummerita reicheli Zone <strong>of</strong><br />

(Elnady & Shah<strong>in</strong>, 2001, <strong>and</strong> Shah<strong>in</strong>, 1992,), from Egypt. The present<br />

Plummerita hantken<strong>in</strong>oides Zone is equivalent to the Kassbiana falsocalcarata<br />

Zone recorded from Shalki village <strong>and</strong> Sirwan valley (Kassab et al., 1986),<br />

(Kassab 1976). Tel Hajar.1 (Ghafor 1988), (Figs 3.12-14)<br />

The age estimation <strong>of</strong> this biozone by (Li <strong>and</strong> Keller, 1998a), records the<br />

Upper most Late Maastrichtian, with the time span <strong>of</strong> (65.30Ma) to (65.00Ma),<br />

estimat<strong>in</strong>g absolute ages based on magnetochron ages. (300 Ky) estimat<strong>in</strong>g<br />

absolute ages based on magnetochron ages with (20 ky/m) high rate <strong>of</strong><br />

deposition <strong>in</strong> Gali section. (23 ky/m) high rate <strong>of</strong> deposition <strong>in</strong> Qulka section<br />

Dokan area.(12 ky/m) high rate <strong>of</strong> sedimentation <strong>in</strong> Sirwan valley. (Figs. 3.12-14)<br />

Age: Latest Maastrichtian.<br />

It is reliable to pay attention that the decreas<strong>in</strong>g <strong>in</strong> the number <strong>of</strong> species<br />

with<strong>in</strong> the Plummerita hantken<strong>in</strong>oides Zone is cont<strong>in</strong>ued to the end <strong>of</strong> this<br />

zone at K/T <strong>boundary</strong> as observed <strong>in</strong> Gali section from (37) to (28) species, (24)<br />

to (20) species <strong>in</strong> Qulka section <strong>and</strong> (29) to (23) species <strong>in</strong> Sirwan section. The<br />

large subtropical high diversities Maastrichtian planktonic foram<strong>in</strong>iferal<br />

assemblages suddenly disappeared at the stratigraphic level that corresponds to<br />

the top <strong>of</strong> this biozone. On paleontological criterion the Cretaceous/Tertiary<br />

<strong>boundary</strong> is placed either at the mass ext<strong>in</strong>ctions <strong>of</strong> Cretaceous planktonic<br />

foram<strong>in</strong>iferal assemblages as <strong>in</strong> all studied sections, or at the first occurrence <strong>of</strong><br />

Paleocene species. It is convenient to assume that the stratigraphic <strong>in</strong>tervals <strong>of</strong><br />

transitional unit (at Tanjero – Red bed contact) <strong>in</strong> both Qishlagh <strong>and</strong> Kato<br />

sections <strong>in</strong> Qala-Cholan <strong>and</strong> Barz<strong>in</strong>ja area respectively (Figs. 3. 3 - 4), which<br />

located on border l<strong>in</strong>e <strong>and</strong> represent the proximal area <strong>of</strong> Tanjero bas<strong>in</strong>,<br />

characterized by reworked fossils <strong>of</strong> different types (macro <strong>and</strong> micr<strong>of</strong>ossils)<br />

70


Chapter Three Biostratigraphy<br />

from predeposited sediment <strong>of</strong> Tanjero bas<strong>in</strong> to be the transitional time <strong>in</strong>terval<br />

from Cretaceous to Tertiary, the second estimation is that the transitional unit<br />

may represent time <strong>in</strong>terval <strong>of</strong> latest Maastrichtian or Earliest Danian <strong>of</strong><br />

deposition, or the upper most part <strong>of</strong> Tanjero Formation chronostratigraphically<br />

may extended to the lower Paleocene while the another contradictory<br />

assumption is that the Red Bed Series may began from the upper Maastrichtian.<br />

The most important sedimentological evidence is Tagaran conglomerate<br />

with<strong>in</strong> the upper part <strong>of</strong> Tanjero formation, shows the same sedimentological<br />

orig<strong>in</strong> <strong>of</strong> that <strong>of</strong> transitional unit <strong>and</strong> conglomerate beds with<strong>in</strong> the lower part <strong>of</strong><br />

Red Bed Series. (Karim, 2004 <strong>and</strong> Al-Barz<strong>in</strong>jy, 2005), The K/T contact <strong>in</strong> the<br />

studied areas has been <strong>in</strong>terpreted as conformable contact.<br />

3.2.2- Biostratigraphy <strong>of</strong> the Early Paleocene Formations:<br />

Accord<strong>in</strong>g to identified planktonic foram<strong>in</strong>iferal assemblages with<strong>in</strong> Lower<br />

part <strong>of</strong> Kolosh Formation, <strong>in</strong> Smaquli, Dokan <strong>and</strong> Sirwan area, four biozones<br />

recorded <strong>in</strong> the region. The biostratigraphic zones <strong>of</strong> the studied area are<br />

described from the bottom to the top as below:<br />

3.2.2.1- P0. Guembelitria cretacea <strong>in</strong>terval Zone.<br />

The contact l<strong>in</strong>e between Tanjero <strong>and</strong> overly<strong>in</strong>g Kolosh Formation <strong>in</strong> Gali<br />

section placed on the last oily impregnated friable s<strong>of</strong>t <strong>and</strong> weathered pale<br />

brown f<strong>in</strong>e s<strong>and</strong>stone beds <strong>of</strong> 1 meter thickness barren <strong>of</strong> foram<strong>in</strong>ifera except<br />

for few forms <strong>of</strong> Guembelitria cretacea Cushman. This f<strong>in</strong>e s<strong>and</strong>stone bed<br />

overlied by 25cm dark organic papery shale <strong>and</strong> <strong>in</strong>terlayred by th<strong>in</strong> beds <strong>of</strong> dark<br />

grey marl which evidenced by the record <strong>of</strong> Hedbergella monmothensis (Olsson)<br />

with Guembelitria cretacea. This <strong>in</strong>terval is 1,25 meter thick represent<strong>in</strong>g the<br />

Guembelitria cretacea (P0) zone <strong>and</strong> marks the K/T <strong>boundary</strong> <strong>and</strong> def<strong>in</strong>ed as<br />

<strong>in</strong>terval between the ext<strong>in</strong>ction <strong>of</strong> Cretaceous planktonic foram<strong>in</strong>ifera, Last<br />

appearance Datum (LAD) <strong>of</strong> (Globotruncana, Rugoglobiger<strong>in</strong>a,<br />

Globiger<strong>in</strong>elloides, Heterohelicids) at the base <strong>and</strong> the first appearance datum<br />

(FAD) <strong>of</strong> Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a (loterbacher & Premoli Silva) at the<br />

top. (Plate.26, Figs. 17-18) (Fig. 3. 7 part. 2). The Guembelitria cretacea<br />

Biozone is comparatively very well exp<strong>and</strong>ed (1, 25 meter) <strong>and</strong> lithologically<br />

71


Chapter Three Biostratigraphy<br />

characterized by similar sediment constituent between both Tanjero <strong>and</strong><br />

overly<strong>in</strong>g Kolosh Formation <strong>in</strong> which no one can observe the contact l<strong>in</strong>e<br />

between these two formations <strong>in</strong> the field especially <strong>in</strong> Smaquli <strong>and</strong> Dokan area.<br />

Another important po<strong>in</strong>t to be mentioned is the lack <strong>of</strong> any reworked<br />

foram<strong>in</strong>iferal evidence to be observed with<strong>in</strong> (P0) Guembelitria cretacea zone<br />

<strong>and</strong> overly<strong>in</strong>g biozones <strong>in</strong> mentioned areas. The K/T contact <strong>in</strong> the studied areas<br />

has been <strong>in</strong>terpreted as conformable contact because <strong>of</strong> the absence <strong>of</strong> any<br />

sedimentological break, or erosional surface, no condensed section no<br />

m<strong>in</strong>eralogical record observed <strong>in</strong> addition to un<strong>in</strong>terrupted biostratigraphic<br />

record.<br />

As def<strong>in</strong>ed above <strong>and</strong> based on the associated planktonic foram<strong>in</strong>iferal<br />

assemblage, the Guembelitria cretacea zone co<strong>in</strong>cides with the same zone<br />

recorded from Tunisia (Li & Keller, 1998 b); from Egypt (Keller, 2002); Eastern<br />

Tethys Israel (Keller, 2004); general (Olsson et al., 2000), (Berggren & Norris,<br />

1997), (Berggren et al.,1995), (Keller, 1996); DSDP Site 525A (Abramovich <strong>and</strong><br />

Keller, 2003) ; Spa<strong>in</strong> (Pardo et al., 1996), (Smit, 2005). P0 is also equivalent to<br />

the Lower part <strong>of</strong> Guembelitria cretacea zone from Egypt by (Obaidalla, 2005)<br />

<strong>and</strong> Tunisia (Arenillas et al., 2000) <strong>and</strong> Canudo et al., 1991, Caravaca <strong>and</strong><br />

Agost from Spa<strong>in</strong>.<br />

The age estimation <strong>of</strong> this biozone by (Olsson et al., 2000) (Keller, 2002, <strong>and</strong><br />

2004), records the earliest Paleocene (Danian), with the time span <strong>of</strong> (65.00Ma)<br />

to (64.97Ma) estimat<strong>in</strong>g absolute ages based on magnetochron ages. (30 Ky)<br />

ages with (24 Ky/m) high rate <strong>of</strong> deposition <strong>in</strong> Gali section. (Figs. 3.12 -13)<br />

Age: Earliest Paleocene (Danian).<br />

3.2.2.2- (Pá) Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a Total Range Zone<br />

Def<strong>in</strong>ition: Biostratigraphic <strong>in</strong>terval is characterized by the total range <strong>of</strong> the<br />

nom<strong>in</strong>ate taxon. (Liu, 1993, emended. <strong>of</strong> Pá <strong>of</strong> Blow, 1979; Luterbacher <strong>and</strong><br />

Premoli Silva, 1964). (Plate .24, Figs.9-14)<br />

Luterbacher & Premoli Silva (1964) firstly used the Globiger<strong>in</strong>a eugub<strong>in</strong>a<br />

Zone for the Early Paleocene <strong>of</strong> Central Italy. Blow, (1979) used<br />

Parvularugoglobiger<strong>in</strong>a longiapertura to characterize the earliest Paleocene<br />

Zone P? (Globorotalia (Turborotalia) longiapertura). However, this assemblage<br />

72


Chapter Three Biostratigraphy<br />

seems to be close to those <strong>of</strong> the Pv. eugub<strong>in</strong>a Zone. Moreover, <strong>in</strong> (Samir<br />

2002), most workers have <strong>in</strong>cluded Pv. longiapertura with Pv. eugub<strong>in</strong>a group<br />

(e.g. Olsson et al., 1992). In the studied section <strong>of</strong> Smaquli area, this zone<br />

covers the <strong>in</strong>terval <strong>of</strong> 18 meters is characterized by a small-sized planktonic<br />

foram<strong>in</strong>iferal assemblage <strong>of</strong> a worldwide distribution, that represented by<br />

Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a (Luterbacher & Premoli Silva),<br />

Parvularugoglobigir<strong>in</strong>a extensa (Blow), Hedbergella monmouthensis (Olsson),<br />

Rectoguembel<strong>in</strong>a cretacea Cushman, Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich &<br />

Tappan), W. hornerstownensis (Olsson), Chiloguembel<strong>in</strong>a morsei (Kl<strong>in</strong>e), Ch.<br />

midwayensis (Cushman), Globoconusa daubjergensis (Bronnimann),<br />

Parasubbot<strong>in</strong>a aff pseudobulloides (Olsson et al), Subbot<strong>in</strong>a trivalis (Subbot<strong>in</strong>a),<br />

Globanomal<strong>in</strong>a archeocompressa (blow), Gl. planocompressa (Shutskaya),<br />

Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a), E. eobulloides Morozova, E. simplicissma<br />

Blow, Praemurica taurica (Morozova), Guembelitria cretacea Cushman,<br />

( Fig.3.7 part.2)<br />

Fig (3.9) Genetic radiation, Phylogenetic relationship <strong>and</strong> Geologic range <strong>of</strong> Paleocene serial & low to high<br />

trochospiral microperforate wall structure planktonic foram<strong>in</strong>ifera (From Olsson et. al, 2000)<br />

73


Chapter Three Biostratigraphy<br />

Fig (3.10) Genetic radiation, Phylogenetic relationship <strong>and</strong> Geologic range <strong>of</strong> Paleocene<br />

muricate, smooth walled, non-sp<strong>in</strong>ose <strong>and</strong> sp<strong>in</strong>ose concellate wall structure <strong>of</strong><br />

trochospiral planktonic foram<strong>in</strong>ifera (From Olsson et. al, 2000)<br />

74


Chapter Three Biostratigraphy<br />

Fig (3.11) Genetic radiation <strong>and</strong> phylogenetic reconstruction <strong>of</strong> the Early Paleocene<br />

microperforate planktonic foram<strong>in</strong>ifera (From Liu & Olsson 1992)<br />

Based on faunal similarities, the present Pv. eugub<strong>in</strong>a Zone is equivalent to<br />

the same zone recorded from Tunisia (Keller, 1998 b); Egypt (Elnady & Shah<strong>in</strong>,<br />

2001, Samir 2002 , Lun<strong>in</strong>g et al, 1998, Shah<strong>in</strong> 1992); Spa<strong>in</strong> (Smit 2005); A<strong>in</strong><br />

Settara ,Tunisia (Arenillas et al., 2000); (Li & Keller, 1998 b); (Abramovich <strong>and</strong><br />

Keller, 2003); Egypt (Keller, 2002); Eastern Tethys Israel (Keller, 2004), general<br />

(Olsson et al.2000); (Berggren & Norris 1997); (Berggren et al.1995); (Keller<br />

1996); to P1a <strong>of</strong> (Pardo et al. 1996), (Fig 3. 13-14)<br />

The age estimation <strong>of</strong> this biozone by Olsson et al., 2000, Li <strong>and</strong> Keller<br />

1998a, Keller, 2002, 2004, records the earliest Paleocene (Danian), with the<br />

time span <strong>of</strong> (64.97Ma) to (64.90Ma) estimat<strong>in</strong>g absolute ages based on<br />

magnetochron ages. 70Ky ages with 4 Ky/m high rate <strong>of</strong> deposition <strong>in</strong> Gali<br />

section. (Figs. 3.12 -14)<br />

Age: Earliest Paleocene (Danian).<br />

75


Chapter Three Biostratigraphy<br />

3.2.2.3- (Pá & p0) <strong>in</strong> Dokan <strong>and</strong> Sirwan valley.<br />

In the present study, the earliest Paleocene P0 (Guembelitria cretacea)<br />

Zone, <strong>and</strong> Pá Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a Zone) which is well observed<br />

<strong>in</strong> Smaquli area, was not recorded completely or cont<strong>in</strong>uously <strong>in</strong> both Qulka <strong>and</strong><br />

Sirwan sections<br />

The Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> Dokan area placed on the base <strong>of</strong> s<strong>of</strong>t<br />

weathered friable f<strong>in</strong>e s<strong>and</strong>stone <strong>and</strong> claystone <strong>of</strong> 5 meter thickness with very<br />

rare occurrence (Few <strong>in</strong>dividuals) <strong>of</strong> Guembelitria cretacea Cushman <strong>and</strong><br />

Globoconusa daubjergensis (Bronnimann) recorded from the upper most part <strong>of</strong><br />

this s<strong>and</strong>stone unit (Fig.3.5). As <strong>in</strong> Gali section, the base <strong>of</strong> this f<strong>in</strong>e s<strong>and</strong>stone<br />

marks the ext<strong>in</strong>ction (Datum event) or disappearance <strong>of</strong> Cetaceous planktonic<br />

foram<strong>in</strong>ifera<br />

While <strong>in</strong> Sirwan valley, the Cretaceous/Tertiary <strong>boundary</strong> placed on the<br />

base <strong>of</strong> 3 meters <strong>of</strong> pale grey to yellowish, weathered friable conglomerate. This<br />

conglomerate <strong>and</strong> overly<strong>in</strong>g 12 meters <strong>of</strong> dark grey organic rich shale alternate<br />

with marl, marly limestone <strong>and</strong> th<strong>in</strong> layer <strong>of</strong> siltstone, s<strong>and</strong>stone, are barren <strong>of</strong><br />

foram<strong>in</strong>ifera, as mentioned previously <strong>in</strong> Chapter Two that the sedimentary<br />

succession <strong>of</strong> the studied sections <strong>in</strong> Sirwan valley shows evidence <strong>of</strong> three<br />

diluted <strong>in</strong>tervals <strong>of</strong> foram<strong>in</strong>iferal survivorship <strong>in</strong> the studied upper part <strong>of</strong> Tanjero<br />

Formation, <strong>and</strong> the fourth one at the base <strong>of</strong> Paleocene just after the ext<strong>in</strong>ction<br />

catastrophe <strong>of</strong> organism at the uppermost part <strong>of</strong> Maastrichtian.<br />

The age estimation <strong>of</strong> this <strong>in</strong>terval depend<strong>in</strong>g on Magnetic polarity <strong>and</strong><br />

recorded datum events by (Olsson et al., 2000), (Keller 2002, 2004), with the<br />

time span <strong>of</strong> (65.00Ma) end <strong>of</strong> Plummerita hantken<strong>in</strong>oides to 64.90Ma last<br />

occurrence <strong>of</strong> Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a, estimat<strong>in</strong>g absolute ages based<br />

on magnetochron ages. 100 Ky with 20 Ky/m high rate <strong>of</strong> deposition <strong>in</strong> Qulka<br />

section. And with 6.5 Ky/m high rate <strong>of</strong> deposition <strong>in</strong> Sirwan section (Figs. 3.12-<br />

13)<br />

Sedimentologically any evidence <strong>of</strong> erosional surface, condensed section or<br />

m<strong>in</strong>eralogical record, trace fossils or hard ground was not observed beside<br />

these significant po<strong>in</strong>ts, the great lithologic similarity between both Tanjero <strong>and</strong><br />

overly<strong>in</strong>g Kolosh Formations <strong>in</strong> which no one can observe or dist<strong>in</strong>guished the<br />

76


Chapter Three Biostratigraphy<br />

contact l<strong>in</strong>e <strong>of</strong> K/T <strong>boundary</strong> <strong>in</strong> the field. As there is no sign for the presence <strong>of</strong><br />

an unconformity, we propose that this <strong>in</strong>terval may be equivalent to both P0 &<br />

Pá (G. cretacea - P. eugub<strong>in</strong>a Zone). In addition to these categories the<br />

sedimentation rate <strong>of</strong> deposition <strong>in</strong> all studied sections particularly <strong>in</strong> Sirwan<br />

section, closely at Cretaceous/Tertiary <strong>boundary</strong> recorded high to very high rate<br />

<strong>of</strong> sedimentation which reveals cont<strong>in</strong>uous un<strong>in</strong>terrupted sedimentary<br />

sequences. Otherwise the significant amount <strong>of</strong> conglomerate beds with<strong>in</strong> the<br />

studied upper part <strong>of</strong> Tanjero Formation represented by 7 repeated beds <strong>of</strong> 0.5<br />

to 2 meters thickness) <strong>and</strong> three conglomerate beds with<strong>in</strong> the lower part <strong>of</strong><br />

Kolosh Formation. That reveals the <strong>in</strong>traformational conglomerate beds <strong>of</strong><br />

limited lateral extensions. (Figs. 2.3 & 2.4), this could be attributed to either its<br />

extremely short duration, or its restriction to near shore, or diluted <strong>in</strong><br />

foram<strong>in</strong>iferal survivorship rather than open ocean environments as outl<strong>in</strong>ed by<br />

Berggren & Norris, (1997). Entirely the presence <strong>of</strong> three local conglomerate<br />

beds <strong>in</strong> the upper most part <strong>of</strong> Tanjero Formation <strong>in</strong> Qulka section susta<strong>in</strong> <strong>and</strong><br />

displays the same valid conception. (Fig.2.11)<br />

3.2.2.4- P1. Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a - Praemurica unc<strong>in</strong>ata<br />

Interval Zone<br />

(P1; def<strong>in</strong>ed <strong>in</strong> Berggren et al., 1995, emend. <strong>of</strong> Berggren & Miller, 1988).<br />

Def<strong>in</strong>ition: Biostratigraphic <strong>in</strong>terval between the LAD <strong>of</strong> Parvularugoglobiger<strong>in</strong>a<br />

eugub<strong>in</strong>a at the base <strong>and</strong> the FAD <strong>of</strong> Praemurica unc<strong>in</strong>ata at the top.<br />

Accord<strong>in</strong>g to Berggren & Norris (1997) <strong>and</strong> Olsson et al.,( 2000) the P1 zone is<br />

subdivided <strong>in</strong>to three subzones based on the sequential appearances <strong>of</strong><br />

Subbot<strong>in</strong>a trilocul<strong>in</strong>oides (P1a/P1b <strong>boundary</strong>) <strong>and</strong> Globanomal<strong>in</strong>a compressa<br />

/Praemurica <strong>in</strong>constans (P1b/P1c <strong>boundary</strong>). In the studied area <strong>of</strong> (Gali, Qulka<br />

<strong>and</strong> Sirwan) sections only, P1a Zone <strong>and</strong> Lower part <strong>of</strong> P1b Zone encountered.<br />

(Fig. 3.13)<br />

77


Chapter Three Biostratigraphy<br />

3.2.2.4.1- (P1a) Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a - Subbot<strong>in</strong>a<br />

trilocul<strong>in</strong>oides <strong>in</strong>terval subzone<br />

Def<strong>in</strong>ition: Biostratigraphic <strong>in</strong>terval between the LAD <strong>of</strong> Parvularugoglobiger<strong>in</strong>a<br />

eugub<strong>in</strong>a <strong>and</strong> the FAD <strong>of</strong> Subbot<strong>in</strong>a trilocul<strong>in</strong>oides. (P1a; def<strong>in</strong>ed <strong>in</strong> Berggren et<br />

al., 1995; emendation <strong>of</strong> Parasubbot<strong>in</strong>a pseudobulloides Subzone (P1a) <strong>in</strong><br />

Berggren <strong>and</strong> Miller, 1988)<br />

In the present study, the P1a Subzone atta<strong>in</strong>s a thickness <strong>of</strong> 35 meter <strong>in</strong><br />

Sirwan section, 40 meter <strong>in</strong> Qulka section <strong>and</strong> 25 meter <strong>in</strong> Gali section, (Figs.3.<br />

1, 3. 5 <strong>and</strong> 3. 7 part 2) (Figs. 3.12-14). The associated planktonic foram<strong>in</strong>iferal<br />

assemblage <strong>in</strong> Gali section is generally similar to that recorded from the<br />

underly<strong>in</strong>g Pá Zone except for the absence <strong>of</strong> Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a<br />

(Luterbacher & Premoli Silva), Parvularugoglobigir<strong>in</strong>a extensa (Blow),<br />

Hedbergella monmouthensis (Olsson), <strong>and</strong> Parasubbot<strong>in</strong>a aff pseudobulloides<br />

(Olsson et al), <strong>in</strong> the lower part. While the Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich &<br />

Tappan), Rectoguembel<strong>in</strong>a cretacea Cushman, <strong>and</strong> Guembelitria cretacea<br />

Cushman were disappeared <strong>in</strong> the middle <strong>in</strong>terval <strong>of</strong> this biozone, this Zone<br />

characterized by the first appearance <strong>of</strong> Parasubbot<strong>in</strong>a pseudobulloides<br />

(Plummer) <strong>and</strong> Praemurica pseudo<strong>in</strong>constans (Blow) at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> this<br />

Biozone <strong>in</strong> Smaquli area.<br />

The associated planktonic foram<strong>in</strong>iferal assemblage is represented by<br />

complete occurrences <strong>of</strong> the follow<strong>in</strong>g species <strong>in</strong> Sirwan area:<br />

Parvularugoglobiger<strong>in</strong>a alabam<strong>in</strong>sis (Liu & Olsson), Rectoguembel<strong>in</strong>a cretacea<br />

Cushman, Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich & Tappan), W. hornerstownensis<br />

(Olsson), Chiloguembel<strong>in</strong>a morsei (Kl<strong>in</strong>e), Ch. midwayensis (Cushman),<br />

Globoconusa daubjergensis (Bronnimann), Parasubbot<strong>in</strong>a pseudobulloides<br />

(Plummer), Subbot<strong>in</strong>a trivalis (Subbot<strong>in</strong>a), Globanomal<strong>in</strong>a archeocompressa<br />

(blow), G. planocompressa (Shutskaya), Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a), E.<br />

eobulloides Morozova, E. simplicissma Blow, Praemurica taurica (Morozova),<br />

P. pseudo<strong>in</strong>constans (blow), Guembelitria cretacea Cushman, <strong>in</strong> Qulka section<br />

the assemblages comprise (15) species belong<strong>in</strong>g to (9) Genus like:<br />

Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich & Tappan), W. hornerstownensis (Olsson),<br />

Chiloguembel<strong>in</strong>a Morse (Kl<strong>in</strong>e), W. midwayensis (Cushman), Globoconusa<br />

78


Chapter Three Biostratigraphy<br />

daubjergensis (Bronnimann), Parasubbot<strong>in</strong>a pseudobulloides (Plummer),<br />

Subbot<strong>in</strong>a trivalis (Subbot<strong>in</strong>a), Globanomal<strong>in</strong>a archeocompressa (blow), S.<br />

planocompressa (Shutskaya), Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a), E. eobulloides<br />

Morozova, E. simplicissma Blow, Praemurica taurica (Morozova), P.<br />

pseudo<strong>in</strong>constans (blow), Guembelitria cretacea Cushman. In which the<br />

Guembelitria cretacea Cushman is represented <strong>in</strong> the lower part <strong>and</strong><br />

Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich & Tappan), <strong>and</strong> Globoconusa daubjergensis<br />

(Bronnimann) is prolonged to the middle part <strong>of</strong> this biozone.<br />

Based on faunal similarities, the comb<strong>in</strong>ed P1a Subzones <strong>of</strong> studied sections<br />

could be equivalent to the lower part <strong>of</strong> Morozovella pseudobulloides Zone <strong>of</strong><br />

Bolli (1966), Caron (1985),P1a Subzone <strong>of</strong> Blow, (1979); Elnady & Shah<strong>in</strong><br />

(2001), from Egypt; Arenillas et al.,(2000) Tunisia; present subzones are<br />

correlatable with P1a Subzones <strong>of</strong> Berggren & Miller, (1988); Samir, (2000) In<br />

Egypt; to the P1b <strong>of</strong> Keller, (1988) <strong>and</strong> Keller et al., (1995), <strong>in</strong> Tunisia; to the P.<br />

pseudobulloides <strong>of</strong> Obaidalla, (2005), Egypt; <strong>and</strong> also it is equivalent to the P1a<br />

<strong>of</strong> Berggren <strong>and</strong> Norris, (1997),Berggren et al.,(1995); Keller, (2002, 2004),<br />

Abramovich et al.,(2002); Olsson, (2000); Smit, (2005), SE Spa<strong>in</strong>.<br />

The age estimation <strong>of</strong> this <strong>in</strong>terval depend<strong>in</strong>g on Magnetic polarity <strong>and</strong><br />

recorded datum events by (Olsson et al., 2000), (Keller 2002, 2004) with the<br />

time span <strong>of</strong> (64.90Ma) from the end <strong>of</strong> Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a to<br />

(64.50Ma) first occurrence <strong>of</strong>, Subbot<strong>in</strong>a trilocul<strong>in</strong>oides, estimat<strong>in</strong>g absolute<br />

ages based on magnetochron ages. (400 Ky) with (10 Ky/m) high rate <strong>of</strong><br />

deposition <strong>in</strong> Qulka section. And with (11.5 Ky/m) high rate <strong>of</strong> deposition <strong>in</strong><br />

Sirwan section <strong>and</strong> (16 Ky/m) high rate <strong>of</strong> deposition <strong>in</strong> Gali section. (Fig. 3.13).<br />

The estimated age is Early Paleocene (Early Danian).<br />

3.2.2.4.2- (P1b). Subbot<strong>in</strong>a trilocul<strong>in</strong>oides- Globanomal<strong>in</strong>a compressa /<br />

Praemurica <strong>in</strong>constans Interval Subzone<br />

Def<strong>in</strong>ition: Biostratigraphic <strong>in</strong>terval between the FAD <strong>of</strong> Subbot<strong>in</strong>a trilocul<strong>in</strong>oides<br />

at the base <strong>and</strong> FAD <strong>of</strong> Globanomal<strong>in</strong>a compressa <strong>and</strong>/or Praemurica<br />

<strong>in</strong>constans at the top.<br />

Remarks: Berggren et al., (1995) <strong>in</strong>troduced this subzone to emend P1b<br />

79


Chapter Three Biostratigraphy<br />

(Subbot<strong>in</strong>a trilocul<strong>in</strong>oides) Subzone <strong>of</strong> Berggren & Miller, (1988). At studied<br />

sections only the lower part <strong>of</strong> this subzone is studied which atta<strong>in</strong>s a thickness<br />

<strong>of</strong> 15 meters <strong>in</strong> Sirwan section, 10 meter <strong>in</strong> Qulka <strong>and</strong> Gali sections. The<br />

associated planktonic assemblage <strong>of</strong> this subzone differs from the underly<strong>in</strong>g<br />

P1a Subzone by the presence <strong>of</strong> S. trilocul<strong>in</strong>oides (Plummer), <strong>in</strong> addition to the<br />

follow<strong>in</strong>g <strong>in</strong> Gali section like:<br />

Woodr<strong>in</strong>g<strong>in</strong>a hornerstownensis (Olsson), Chiloguembel<strong>in</strong>a midwayensis<br />

(Cushman), Globoconusa daubjergensis (Bronnimann), Parasubbot<strong>in</strong>a<br />

pseudobulloides (Plummer), Subbot<strong>in</strong>a trivalis (Subbot<strong>in</strong>a), Globanomal<strong>in</strong>a<br />

archeocompressa (blow), G. planocompressa (Shutskaya), Eoglobiger<strong>in</strong>a edita<br />

(Subbot<strong>in</strong>a), E. eobulloides Morozova, Praemurica taurica (Morozova),<br />

P.pseudo<strong>in</strong>constans (blow). In Qulka section slight different were existed <strong>in</strong><br />

planktonic assemblage as below: Chiloguembel<strong>in</strong>a morse (Kl<strong>in</strong>e), Ch.<br />

midwayensis (Cushman), Parasubbot<strong>in</strong>a pseudobulloides (Plummer), Subbot<strong>in</strong>a<br />

trivalis (Subbot<strong>in</strong>a), Globanomal<strong>in</strong>a archeocompressa (blow), G.<br />

planocompressa (Shutskaya), Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a), E. eobulloides<br />

Morozova, E. simplicissma Blow Praemurica taurica (Morozova),<br />

P.pseudo<strong>in</strong>constans (blow). In Sirwan section similar assemblages were<br />

observed like: Parvularugoglobiger<strong>in</strong>a alabam<strong>in</strong>sis (Liu & Olsson),<br />

Rectoguembel<strong>in</strong>a cretacea Cushman, Woodr<strong>in</strong>g<strong>in</strong>a clytonensis (Loeblich &<br />

Tappan), W. hornerstownensis (Olsson), Chiloguembel<strong>in</strong>a morsei (Kl<strong>in</strong>e), CH.<br />

midwayensis (Cushman), Parasubbot<strong>in</strong>a pseudobulloides (Plummer), Subbot<strong>in</strong>a<br />

trivalis (Subbot<strong>in</strong>a), S. trilocul<strong>in</strong>oides (Plummer), Globanomal<strong>in</strong>a<br />

archeocompressa (blow), G. planocompressa (Shutskaya), Eoglobiger<strong>in</strong>a edita<br />

(Subbot<strong>in</strong>a), E. eobulloides Morozova, Praemurica taurica (Morozova), P.<br />

pseudo<strong>in</strong>constans (blow),<br />

Based on faunal similarities, the comb<strong>in</strong>ed P1 b Subzones <strong>of</strong> studied<br />

section could be equivalent to the upper part <strong>of</strong> Morozovella pseudobulloides<br />

Zone <strong>of</strong> Bolli, (1966), <strong>and</strong> Blow, (1979). To Caron (1985); Elnady & Shah<strong>in</strong>,<br />

(2001), Samir, (2002) from Egypt; Arenillas et al.,(2000) Tunisia; to the P1c <strong>of</strong><br />

Keller, (1988), <strong>and</strong> Keller et al., (1995), <strong>in</strong> Tunisia; to the S. trilocul<strong>in</strong>oides by<br />

Obaidalla, (2005) <strong>in</strong> Egypt; <strong>and</strong> also it is equivalent to the P1b <strong>of</strong> Berggren <strong>and</strong><br />

80


Chapter Three Biostratigraphy<br />

Norris (1997),Berggren et al.,(1995); Keller, (2002, <strong>and</strong> 2004), Abramovich et<br />

al.,(2002), Olsson (2000); <strong>and</strong> Smit (2005) SE <strong>of</strong> Spa<strong>in</strong>.<br />

The age estimation <strong>of</strong> this <strong>in</strong>terval depend<strong>in</strong>g on Magnetic polarity <strong>and</strong><br />

recorded datum events by (Olsson et al., 2000), (Keller, 2002, 2004) with the<br />

time span <strong>of</strong> 64.50Ma from first occurrence <strong>of</strong>, Subbot<strong>in</strong>a trilocul<strong>in</strong>oides, to FAD<br />

<strong>of</strong> Globanomal<strong>in</strong>a compressa <strong>and</strong>/or Praemurica <strong>in</strong>constans at the top <strong>of</strong> 63.00<br />

Ma. Estimat<strong>in</strong>g absolute ages based on magnetochron ages (Figs. 3.13 -14).<br />

The estimated age is Early Paleocene (Early Danian).<br />

81


Chapter Three Biostratigraphy<br />

Fig (3. 12 ) Correlation chart show<strong>in</strong>g the planktonic foram<strong>in</strong>iferal biostratigraphic zones <strong>of</strong> Upper<br />

Cretaceous (Maastrichtian) <strong>of</strong> the studied sections with the planktonic foram<strong>in</strong>iferal zonation commonly<br />

used <strong>in</strong> low, middle <strong>and</strong> high latitudes, <strong>in</strong> the new zonal scheme, <strong>and</strong> <strong>in</strong>side the Iraq. The age <strong>of</strong><br />

planktonic foram<strong>in</strong>iferal datum events shown. (Modified from different authors)<br />

82


Chapter Three Biostratigraphy<br />

Fig ( 3. 13) Correlation chart show<strong>in</strong>g the planktonic foram<strong>in</strong>iferal biostratigraphic zones <strong>of</strong> Upper<br />

Maastrichtian/lower Danian <strong>of</strong> the studied sections with the planktonic foram<strong>in</strong>iferal zonation commonly<br />

used <strong>in</strong> low, middle <strong>and</strong> high latitudes, <strong>in</strong> the new zonal scheme. The age <strong>of</strong> planktonic foram<strong>in</strong>iferal datum<br />

events shown. (Modified from different authors)<br />

83


Chapter Three Biostratigraphy<br />

Fig (3.14). High resolution planktonic foram<strong>in</strong>iferal biozone for the Maastrichtian <strong>and</strong><br />

Early Danian (Cretaceous/Tertiary) <strong>boundary</strong> at Gali section (Smaquli area) for Early<br />

Maastrichtian <strong>and</strong> other studied localities. Note that this biozones significantly ref<strong>in</strong>es the<br />

resolution for the upper Maastrichtian, by replac<strong>in</strong>g the Abathomphalus mayaroensis zone<br />

by four biozones.<br />

84


Chapter Three Biostratigraphy<br />

Fig (3.15) Correlation <strong>of</strong> the previous Planktonic foram<strong>in</strong>iferal biostratigraphic zonation<br />

on Cretaceous/Tertiary <strong>boundary</strong> with the present study <strong>in</strong> the studied region <strong>and</strong><br />

different localities <strong>of</strong> Iraq.<br />

85


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

CHAPTER FOUR<br />

DEPOSITIONAL ENVIRONMENT AND PALEOECOLOGY<br />

4.1- Preface<br />

Paleoecology is def<strong>in</strong>ed as the study <strong>of</strong> the <strong>in</strong>teraction <strong>of</strong> organisms with one<br />

another <strong>and</strong> with the environment <strong>in</strong> the geological past, <strong>and</strong> the study <strong>of</strong> the<br />

causes <strong>of</strong> patterns <strong>of</strong> distribution <strong>and</strong> abundance <strong>of</strong> organisms. It is concerned<br />

with <strong>in</strong>teraction between <strong>in</strong>dividuals <strong>and</strong> their physical, chemical <strong>and</strong> biological<br />

parameters <strong>of</strong> the environment, consequently through high resolution studies <strong>of</strong><br />

these important parameters with lithologic characters <strong>of</strong> lith<strong>of</strong>acies, textures, <strong>and</strong><br />

sedimentary structures.<br />

The most important group <strong>of</strong> organisms used <strong>in</strong> this study is planktonic <strong>and</strong><br />

benthonic foram<strong>in</strong>ifera, which play an important role <strong>in</strong> <strong>in</strong>terpretation <strong>of</strong><br />

depositional environment <strong>and</strong> <strong>paleoecology</strong> <strong>of</strong> most <strong>of</strong> the sedimentary bas<strong>in</strong> <strong>of</strong><br />

Mesozoic <strong>and</strong> Cenozoic Era <strong>in</strong> the world.<br />

The paleontologists cont<strong>in</strong>uously faced the problem <strong>of</strong> how the fossil communities<br />

reveal the paleoenvironment <strong>in</strong> which they lived. The worthy approach to solve such<br />

problem has been answered through the quantitative evolution <strong>of</strong> the planktonic <strong>and</strong><br />

benthonic foram<strong>in</strong>iferal species <strong>and</strong> their abundance patterns. The variations <strong>in</strong> the<br />

relative abundance <strong>of</strong> these assemblages are used to document the rate <strong>and</strong> nature<br />

<strong>of</strong> the planktonic foram<strong>in</strong>iferal evolution <strong>and</strong> diversification through the Cretaceous/<br />

Tertiary boundaries.<br />

In the present studied area , the encountered parts <strong>of</strong> Maastrichtian, Early<br />

Paleocene planktonic as well as benthonic foram<strong>in</strong>iferal assemblages developed<br />

not only to construct the biostratigraphic zones but also their species communities<br />

could reflect the nature <strong>of</strong> the biotope controlled by abiotic sedimentary<br />

environments. Paleobathymetric <strong>and</strong> paleoecological factors are studied through<br />

the distribution patterns <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>ifera, where the total<br />

numbers <strong>of</strong> foram<strong>in</strong>iferal species, the diversity <strong>and</strong> statistical analysis <strong>of</strong> planktonic,<br />

86


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

benthonic forams, the Planktonic/Benthonic ratios <strong>and</strong> the<br />

Agglut<strong>in</strong>ated/Calcareous ratios are the most important parameters <strong>in</strong> this chapter.<br />

4.2- Planktonic species diversity or species richness<br />

Species diversity is the total number <strong>of</strong> species <strong>in</strong> an assemblage, whereas<br />

species richness reflects the actual number <strong>of</strong> species present at a given time<br />

<strong>and</strong> is therefore a measure <strong>of</strong> environmental variability (e.g., climate, seasonality,<br />

nutrient fluctuations), but may be <strong>in</strong>fluenced by fossil preservation (e.g.,<br />

dissolution, breakage <strong>of</strong> shells). Species richness may be significantly less than<br />

species diversity as a result <strong>of</strong> sample preservation, climate variations <strong>and</strong>/or<br />

local environmental conditions. (Keller 2004)<br />

Species richness at Smaquli, Dokan <strong>and</strong> Sirwan sections is unusually low<br />

dur<strong>in</strong>g the latest Maastrichtian which starts from the end <strong>of</strong> Pseudoguembel<strong>in</strong>a<br />

palpebra Zone (CF2) around 65.5 Ma <strong>and</strong> upward, it fluctuates about 30-20<br />

species <strong>in</strong> Plummerita hantken<strong>in</strong>oides Zone, except for the lower <strong>and</strong> middle<br />

part <strong>of</strong> the studied sections where 40-50 species are present <strong>and</strong> across the<br />

Cretaceous/Tertiary contact at Kolosh Formation where it drops down to 17-14<br />

species (Figs. 4. 3 - 4.7). Even lower species richness was observed at Kato<br />

<strong>and</strong> Qishlagh sections with 25-28 species <strong>in</strong> Pseudotextularia <strong>in</strong>termedia <strong>and</strong><br />

Racemiguembel<strong>in</strong>a fructicosa Zones CF5 -CF4. While the planktonic<br />

foram<strong>in</strong>iferal assemblages <strong>in</strong>terrupted their occurrences due to environmental<br />

changes <strong>in</strong> both Kato section from the lower part <strong>of</strong> Pseudoguembel<strong>in</strong>a<br />

hariaensis (CF3) <strong>and</strong> lower part <strong>of</strong> Racemiguembel<strong>in</strong>a fructicosa Zone <strong>in</strong><br />

Qishlagh section, <strong>and</strong> replaced by shallow benthonic larger foram<strong>in</strong>iferal<br />

assemblages <strong>of</strong> platform biotope communities. (Figs 4.3-4)<br />

There is the fact that <strong>in</strong>creas<strong>in</strong>g distances from the shorel<strong>in</strong>e, the turbidity<br />

decreases , enabl<strong>in</strong>g pr<strong>in</strong>cipal production to <strong>in</strong>crease. In addition, the complex<br />

pelagic ecosystem, with many nutrient cha<strong>in</strong>s, is only developed at a certa<strong>in</strong><br />

water depth around the total photic zone <strong>and</strong> has noted that planktonic<br />

87


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

foram<strong>in</strong>iferal diversity (species richness) <strong>in</strong>creases from shallower to deeper<br />

waters across shelf areas. (Van Der Zwaan et al., 1990)<br />

Sediment deposition at these localities occurred at outer neritic upper<br />

bathyal <strong>and</strong> middle-outer neritic depth, respectively. Comparable depth<br />

localities <strong>in</strong> Tunisia, Spa<strong>in</strong>, <strong>and</strong> Mexico average 45-55 species (Lopez <strong>and</strong><br />

Keller, 1996 <strong>in</strong> Keller, 2004; Pardo et al., 1996; Abramovich <strong>and</strong> Keller, 2002).<br />

Fossil preservation is excellent at Smaquli sections <strong>and</strong> relatively good <strong>in</strong> other<br />

studied localities <strong>and</strong> does not account for the low species richness, which<br />

appears to be regional throughout the studied area. To recognize these<br />

abnormally poor species assemblages exactly at the uppermost Maastrichtian<br />

Plummerita hantken<strong>in</strong>oides zone (CF1), it is available to study species richness<br />

patterns across the Cretaceous/Tertiary <strong>boundary</strong> with<strong>in</strong> high resolution<br />

biostratigraphic researches <strong>of</strong> all studied localities previously <strong>in</strong> Iraq <strong>and</strong><br />

neighbor<strong>in</strong>g countries.<br />

Species richness <strong>and</strong> diversity tend to be highest <strong>in</strong> outer shelf-upper slope<br />

environments (250-500m) <strong>and</strong> gradually decrease <strong>in</strong> shallower waters across<br />

the cont<strong>in</strong>ental shelf. (Keller, 2004), this can be confirmed <strong>in</strong> the present studied<br />

area.<br />

In the upper Maastrichtian zones (CF1 to CF3), species richness varies<br />

between 42-54 species at the outer shelf-upper slope section at El Kef (Keller,<br />

1988; Li <strong>and</strong> Keller, 1998c: Keller et al., 2002b <strong>in</strong> Keller, 2004). At the shallower<br />

middle neritic trends (Abramovich. <strong>and</strong> Keller, 2002), the lowest species<br />

richness is found at the <strong>in</strong>nermiddle neritic locality <strong>of</strong> Seldja <strong>in</strong> southern Tunisia<br />

where on average only (10-15) species are present. Species richness is directly<br />

related to niche availability, which is related to water depth <strong>and</strong> watermass<br />

stratification. In shallow <strong>in</strong>ner neritic environment, species richness is lowest<br />

because ecological niches are largely restricted to the surface mixed layer (50m)<br />

<strong>of</strong> the upper photic zone (Keller,2004) (Fig 4,1)<br />

88


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Fig (4.1) Planktonic foram<strong>in</strong>iferal species richness across the Tunisian cont<strong>in</strong>ental shelf-slope<br />

based on data from the <strong>in</strong>ner shelf Seldja section (Keller <strong>and</strong> other,1998) , middle shelf Elles<br />

section ( Abramovich <strong>and</strong> Keller,2002), <strong>and</strong> outer shelf to upper slope El Kef section (Li <strong>and</strong> Keller<br />

1998c,). Note: The species richness <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g depth across the shelf <strong>and</strong> is a<br />

function <strong>of</strong> available ecological niches <strong>and</strong> depth habitats (from Keller 2004)<br />

4.3- Signor- Lipps Effect<br />

Abundance: relative abundance refers to the proportion <strong>of</strong> species (or group<br />

<strong>of</strong> fauna) <strong>of</strong> the entire assemblages, e.g. percentage. While an absolute<br />

abundance refers to the number <strong>of</strong> <strong>in</strong>dividuals <strong>in</strong> a unit sample or assemblages.<br />

It is important to realize that relative <strong>and</strong> absolute abundance measurements<br />

give different <strong>in</strong>formation. Despite these difficulties the relative abundance is<br />

better for dead assemblages because <strong>of</strong> several effective parameters, which are<br />

known as Signor- Lipps Effect, Based on reasonable <strong>in</strong>teractions between<br />

method <strong>of</strong> sampl<strong>in</strong>g, sampl<strong>in</strong>g density, sample size, preparation methods,<br />

relative abundance, precision amount <strong>and</strong> omission <strong>in</strong> statistical measurements,<br />

occurrence pattern, fossil preservations, <strong>and</strong> observation about last appearance<br />

datum event LAD (or first appearance datum FAD) provide an accurate estimate<br />

<strong>of</strong> the true LAD or FAD (Signor <strong>and</strong> Lipps, 1982, <strong>in</strong> MacLeod 1996). It does<br />

89


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

enable much more sophisticated test<strong>in</strong>g <strong>of</strong> those observations <strong>in</strong> such<br />

biostratigraphic analysis nevertheless on high resolution results for favorites.<br />

Consequently to avoid <strong>and</strong> reduce the effect <strong>of</strong> such variability we tried to get rid<br />

<strong>of</strong> these sophisticated cases by organization <strong>and</strong> systematic work with relevant<br />

<strong>and</strong> accurate documentation <strong>of</strong> biostratigraphic evidences.<br />

4.4- Planktonic/Benthonic foram<strong>in</strong>iferal ratio <strong>and</strong> Benthic Foram<strong>in</strong>iferal<br />

Assemblage<br />

In the present study, among the most important paleoecological <strong>and</strong><br />

depositional environment factors, the abundance <strong>of</strong> planktic foram<strong>in</strong>ifera,<br />

planktonic species richness, Planktic/Benthic foram<strong>in</strong>iferal ratios, Benthic<br />

Foram<strong>in</strong>iferal assemblage, <strong>and</strong> Agglut<strong>in</strong>ated/Calcareous ratios are used as<br />

important parameters to <strong>in</strong>terpret<strong>in</strong>g paleoecological changes <strong>and</strong><br />

paleobathymetric determ<strong>in</strong>ation <strong>of</strong> Maastrichtian/Lower Paleocene<br />

succession <strong>in</strong> Sulaimani region (Figs 4.3 - 4.8)<br />

Nyong & Olsson, 1984 (<strong>in</strong> Samir, 2002) have noticed that the <strong>in</strong>ner shelf<br />

depth 10-50m is characterized by low planktonic percentage with low<br />

species diversity <strong>and</strong> high benthic foram<strong>in</strong>iferal assemblages, whereas<br />

higher 8-25% planktonic foram<strong>in</strong>ifera <strong>and</strong> diversity characterize the middle<br />

shelf depth 50-100m. In addition, the outer shelf depth 100-200m is<br />

characterized by 30-70% planktonic foram<strong>in</strong>ifera, while the middle slope<br />

depth 400-800m is characterized by 90% planktonics <strong>and</strong> a slight <strong>in</strong>crease<br />

<strong>in</strong> benthonic diversity.<br />

The ratios <strong>of</strong> Planktonic/Benthonic foram<strong>in</strong>iferal species are a valuable<br />

<strong>in</strong>dicator <strong>of</strong> paleobathymetry. The general conventional pattern for benthonic<br />

foram<strong>in</strong>iferal raises from the nearshore environment to the cont<strong>in</strong>ental edge,<br />

further downward decreases significantly towards bathyal depths (Van Der<br />

Zwaan et al., 1990).<br />

Accord<strong>in</strong>g to benthonic foram<strong>in</strong>iferal assemblages, many authors<br />

recognized two ma<strong>in</strong> cosmopolitan dist<strong>in</strong>ct, depth-controlled benthic<br />

90


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

foram<strong>in</strong>iferal assemblages that enjoyed a widespread geographic dispersal<br />

<strong>and</strong> equitable climatic conditions dur<strong>in</strong>g Maastrichtian <strong>and</strong> Paleocene. The<br />

cont<strong>in</strong>ental shelf fauna, termed as "Midway-type fauna" (MF), <strong>and</strong> a lower<br />

cont<strong>in</strong>ental slope <strong>and</strong> abyssal pla<strong>in</strong> fauna termed as "Velasco-type fauna"<br />

(VF). (Alegret <strong>and</strong> Thomas, 2001; Samir, 2002)<br />

The paleodepth <strong>in</strong>dicated by benthonic foram<strong>in</strong>iferal assemblages are<br />

clearly <strong>of</strong> great value for the <strong>in</strong>terpretation <strong>of</strong> the environment <strong>of</strong> deposition<br />

<strong>of</strong> the Cretaceous/Tertiary clastic unit (Alegret et al. 2003)<br />

The paleobathymetric estimation <strong>in</strong> this study also depends on the<br />

occurrence <strong>and</strong> abundancy <strong>of</strong> depth-dependent benthonic foram<strong>in</strong>iferal<br />

assemblages. The paleodepth can be derived from previous studies <strong>of</strong> other<br />

authors (Fig 4.2) which show the ma<strong>in</strong> patterns <strong>of</strong> occurrence <strong>of</strong> benthonic<br />

foram<strong>in</strong>ifera at different depths, as well as the distribution <strong>of</strong> Midway <strong>and</strong><br />

Velasco-type faunas.<br />

In the present study, the qualitative <strong>and</strong> quantitative foram<strong>in</strong>iferal<br />

count<strong>in</strong>g is carried out <strong>in</strong> detail for about 50gm <strong>of</strong> the residue <strong>of</strong> some<br />

selective sample <strong>in</strong> each biozones, the Agglut<strong>in</strong>ated / Calcareous ratios <strong>and</strong><br />

the quantity <strong>of</strong> both planktonic <strong>and</strong> benthic forams are calculated for each<br />

sample to determ<strong>in</strong>e the environmental conditions that prevailed dur<strong>in</strong>g the<br />

deposition <strong>of</strong> the Maastrichtian - Early Paleocene sequence <strong>in</strong> the studied<br />

area. In addition, their lithologic characters are significant <strong>in</strong>dicators for the<br />

paleodepth. Moreover, the pattern <strong>of</strong> sea-level oscillations is also <strong>in</strong>ferred by<br />

calculat<strong>in</strong>g the P/B ratio, the Aggl. /Calc. ratio, the planktonic diversity <strong>and</strong><br />

distribution <strong>of</strong> the planktonic groups as well as the benthonic associations.<br />

The foram<strong>in</strong>iferal distribution is a function <strong>of</strong> the water depth available over<br />

the shelf dur<strong>in</strong>g any particular <strong>in</strong>terval, (Canud et al, 1991); Elnady &<br />

Shah<strong>in</strong>, 2001; Samir, 2002; Maestas et al., 2003; Chacon <strong>and</strong> Mart<strong>in</strong>-<br />

Chivelet, 2005)<br />

91


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Fig (4.2) Upper depth limits <strong>and</strong> paleobathymetric distribution <strong>of</strong> Upper Cretaceous <strong>and</strong> Lower<br />

Paleogene benthonic foram<strong>in</strong>ifera (1): van Morkhoven et al. fold out (1986), p.8, fig,5; (2): Speijer<br />

(1994), p. 84,fig.6; (3):Tjalsma <strong>and</strong> Lohmann (1983); (4): Widmark (2000), p.376; (5):Berggren <strong>and</strong><br />

Aubert (1975); (6):R. Speijer, press. Comm., 2001; (7): Widmark <strong>and</strong> Speijer 1997a; (8): Kam<strong>in</strong>ski et<br />

al.1988 ;( 1c): modified after van Morkhoven et al.(1986),(from Alegret <strong>and</strong> Thomas 2001)<br />

92


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

4.4.1- Maastrichtian<br />

The Maastrichtian succession represented by upper most part <strong>of</strong><br />

Shiranish Formation (samples 1-5), Reddish to pale brown succession<br />

(Shiranish-Tanjero transition unit), (Samples, 6-40) <strong>and</strong> Tanjero Formation<br />

(samples, 41-113) <strong>in</strong> Smaquli area, while <strong>in</strong> the other localities, the studied<br />

part <strong>of</strong> Late Maastrichtian succession, represented by the upper part <strong>of</strong> the<br />

Tanjero Formation (<strong>in</strong> Dokan, Qala Cholan, Barz<strong>in</strong>ja <strong>and</strong> Sirwan valley) is<br />

characterized by the follow<strong>in</strong>g parameters:<br />

1- The most diverse assemblage <strong>of</strong> planktonic foram<strong>in</strong>iferal species<br />

richness ranged from 45 – 55, P/B ratios from 65-80% <strong>and</strong> Aggl/Calc<br />

percent from 15-25% (From CF8 – CF2) Zones, with decreas<strong>in</strong>g the species<br />

richness <strong>in</strong> (CF1) Zone which is be<strong>in</strong>g 34-27 <strong>and</strong> slightly <strong>in</strong>creas<strong>in</strong>g <strong>in</strong><br />

Agglut<strong>in</strong>ated/Calcareous percent to 35%, In Smaquli section (Fig. 4, 3).<br />

2- Planktonic foram<strong>in</strong>ifera species richness from 35 – 45, P/B ratios from<br />

50-70% <strong>and</strong> Aggl/Calc percent from 15-20% with decrease <strong>in</strong> species<br />

richness <strong>in</strong> (CF1) Zone from 24-20 <strong>and</strong> slight <strong>in</strong>crease <strong>of</strong><br />

Agglut<strong>in</strong>ated/Calcareous percent to 30%, In Qulka section (Fig. 4 ,4).<br />

3- Planktic foram<strong>in</strong>iferal species richness is ranged between 35 -45, P/B<br />

ratios between 55-70% <strong>and</strong> Aggl./Calc. percent from 18-30%, with decreas<strong>in</strong>g<br />

the species richness from (CF2 &CF1) Zones from 30-22 <strong>and</strong> slightly<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong> Aggl./Calcar. Percent 50% with<strong>in</strong> the upper most part <strong>of</strong> (CF1),<br />

In Sirwan section (Fig. 4, 5).<br />

4- Planktonic foram<strong>in</strong>iferal species richness is 25, P/B ratios are 45% <strong>and</strong><br />

Aggl./Calc. Percent ranged between 35-40% <strong>in</strong> the lower part <strong>of</strong> Qishlagh<br />

section (sample 1-11) with decreas<strong>in</strong>g <strong>in</strong> Agglu./Calc. percent 10–20 <strong>in</strong> the<br />

middle part (sample 12-33) <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g to 35-40% <strong>in</strong> (samples 35-46) (Fig.<br />

4 ,6).<br />

5- Planktonic foram<strong>in</strong>ifera species richness is 30, P/B ratios are 45% <strong>and</strong><br />

Aggl/Calc percent is 23% <strong>in</strong> the lower part <strong>of</strong> Kato section (samples, 1-19)<br />

93


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

with decreas<strong>in</strong>g <strong>in</strong> Agglu./Calc. Percent between 15 – 20 <strong>in</strong> the middle part<br />

(samples, 23-29)<br />

Fig (4.3): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the Late Cretaceous/Early Paleocene succession <strong>in</strong> Gali section<br />

(Smaquli area)<br />

The typical Tanjero <strong>and</strong> kolosh Formations characteristically are poor <strong>in</strong><br />

macr<strong>of</strong>auna's exactly at Smaquli, Sirwan <strong>and</strong> Dokan area, which is abundant <strong>in</strong><br />

94


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

neritic deposits as <strong>in</strong> upper part <strong>of</strong> Tanjero Formation <strong>in</strong> Qala Cholan <strong>and</strong><br />

Barz<strong>in</strong>ja area.<br />

The planktonic assemblages <strong>of</strong> the lower part <strong>in</strong> Smaquli area from Zone<br />

(CF8) to (CF1) <strong>and</strong> (CF5) to (CF2) Zones at Dokan <strong>and</strong> Sirwan valley are<br />

characterized by high values <strong>in</strong> the percentages <strong>of</strong> planktonic foram<strong>in</strong>ifera, P/B<br />

ratios, species richness, low Agglut<strong>in</strong>ated percentages <strong>and</strong> general benthonic<br />

morphotypes <strong>of</strong> Upper Cretaceous/Early Paleocene Paleodepth <strong>in</strong>dicators<br />

reveal deeper water bathymetry <strong>of</strong> upper bathyal around 300-600m depth. In<br />

Smaquli area <strong>and</strong> the outer neritic-upper bathyal around 200-400m depth <strong>in</strong><br />

Dokan <strong>and</strong> Sirwan area, (Depend<strong>in</strong>g on all the above mentioned references<br />

evaluation). The paleobathymetric curve shows regular trend <strong>in</strong> their values<br />

where they exhibit high to moderate percentages values, s<strong>in</strong>ce the<br />

preservation <strong>of</strong> foram<strong>in</strong>iferal species is generally good.<br />

The term<strong>in</strong>al decreases <strong>in</strong> species richness 34 starts from the base to the<br />

end <strong>of</strong> Zone CF1 (Gali section) <strong>and</strong> cont<strong>in</strong>ued upwards till the upper most part<br />

<strong>of</strong> Cretaceous biozone Zone CF1, where the species richness becomes<br />

27. This decl<strong>in</strong>e co<strong>in</strong>cides with the LA <strong>of</strong> Plummerita hantken<strong>in</strong>oides <strong>and</strong><br />

reaches to 20 <strong>in</strong> Qulka section <strong>and</strong> 22 <strong>in</strong> Sirwan section. The decl<strong>in</strong>e is also<br />

coupled with the trend <strong>of</strong> decrease <strong>in</strong> species richness, <strong>in</strong> the percentages<br />

<strong>of</strong> planktonic foram<strong>in</strong>ifera <strong>and</strong> p/b ratios. On the other h<strong>and</strong>, a slight<br />

<strong>in</strong>crease is recorded <strong>in</strong> the percentages <strong>of</strong> arenaceous morphotypes.<br />

These criteria <strong>in</strong>dicate shallow<strong>in</strong>g regressive phase <strong>in</strong> the end <strong>of</strong><br />

Maastrichtian bas<strong>in</strong> where the estimated water depth accord<strong>in</strong>g to Van Der<br />

Zwaan et al.,(1990) ranges from middle to outer shelf, around 50 to 150m<br />

depth.<br />

The present paleobathymetric <strong>in</strong>terpretation is further confirmed <strong>and</strong><br />

susta<strong>in</strong>ed by the components <strong>of</strong> the cosmopolitans associated benthonic<br />

assemblage, which resembles that recorded by Van Morkhoven et al.(1986);<br />

Speijer (1994; Tjalsma <strong>and</strong> Lohmann (1983); Widmark (2000; Berggren <strong>and</strong><br />

Aubert (1975); R. Speijer, press. Comm., 2001; Widmark <strong>and</strong> Speijer 1997a;<br />

95


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Kam<strong>in</strong>ski et al.1988; van Morkhoven et al.(1986), fold out; modified after Van<br />

Morkhoven et al.(1986),(from Alegret <strong>and</strong> Thomas 2001) (Fig 4. 2)<br />

Fig (4.4): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong> Qulka section<br />

(Dokan area)<br />

The planktonic assemblages <strong>of</strong> the lower part <strong>in</strong> Qishlagh section from (CF5)<br />

Zone to lower most part <strong>of</strong> (CF4) Zone (samples 1-10) (Fig 4. 6) are<br />

characterized by low to moderate values <strong>in</strong> planktonic foram<strong>in</strong>iferal<br />

percentage, p/b ratios are 45, species richness 25, low to moderate<br />

96


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Agglut<strong>in</strong>ated percentages 40-45 <strong>and</strong> general benthonic morphotypes <strong>of</strong> Upper<br />

Cretaceous/Early Paleocene Paleodepth <strong>in</strong>dicators reveal middle to outer<br />

shelf bathymetry around 100 to 200m. depth. The paleobathymetric curve<br />

shows the regular trend <strong>in</strong> its values where it exhibits low to moderate<br />

percentages values, s<strong>in</strong>ce the preservation <strong>of</strong> foram<strong>in</strong>iferal species is<br />

generally good.<br />

Fig (4.5): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong>Sirwan section<br />

(Sirwan valley)<br />

97


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

The rema<strong>in</strong><strong>in</strong>g <strong>in</strong>terval <strong>of</strong> this section is represented by thick succession<br />

115m. <strong>of</strong> Aqra limestone Formation ,characterized by common occurrence <strong>of</strong><br />

coral like rudists which constitute the orig<strong>in</strong>al part <strong>of</strong> the carbonates with other<br />

great number <strong>of</strong> bivalve pelecypods, <strong>in</strong> addition to the ech<strong>in</strong>oids, gastropods,<br />

brachiopods, coral <strong>and</strong> large foram<strong>in</strong>iferal assemblages with common smaller<br />

benthonic too. (Fig. 4.6) It is convenient to mention that the occurrence <strong>of</strong><br />

Planktonic foram<strong>in</strong>ifera not observed till the end <strong>of</strong> this section except for the<br />

lowermost few meters <strong>of</strong> this <strong>in</strong>terval. It is well known that rudist growth <strong>and</strong><br />

their nourished dur<strong>in</strong>g late Cretaceous shallow mar<strong>in</strong>e quiet environment with<br />

low agitation or dynamic action <strong>of</strong> watermass with<strong>in</strong> depositional environment,<br />

the bathymetry not exceeds than 30m depth. The Aqra <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g limestone<br />

represents submerged high reefal facies relatively represent a time span <strong>of</strong><br />

quite <strong>and</strong> shallow<strong>in</strong>g with<strong>in</strong> the mobile forel<strong>and</strong> bas<strong>in</strong> <strong>of</strong> Tanjero trough. (Al-<br />

Omari 1989, Al-Mutwali 1992, Lawa et al., 1998.)<br />

The Aqra Limestone Formation followed by 67m. <strong>of</strong> alternation <strong>of</strong> bluish<br />

white marl, marly limestone, siltstone, recrystallized fossiliferous limestone<br />

s<strong>and</strong>y limestone, with weathered friable s<strong>and</strong>stone, olive green s<strong>and</strong>stone,<br />

dark grey shale <strong>and</strong> calcareous shale. This <strong>in</strong>terval characterized by<br />

cont<strong>in</strong>uation <strong>of</strong> the same benthonic foram<strong>in</strong>iferal assemblages <strong>of</strong> Aqra<br />

Limestone without macr<strong>of</strong>ossils growth <strong>in</strong> situ ,it is characterized by <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong> agglut<strong>in</strong>ated percent from 20 to 45 <strong>in</strong> the middle <strong>and</strong> upper part <strong>of</strong> this<br />

<strong>in</strong>terval. The depositional environment <strong>and</strong> paleobathymetry <strong>of</strong> this unit may<br />

represent upper part <strong>of</strong> <strong>in</strong>ner neritic shoal from 10 to 30m. depth. This <strong>in</strong>terval<br />

characterized by no evidence <strong>of</strong> any porcelaneous foram<strong>in</strong>iferal assemblages<br />

which <strong>in</strong>dicate no restriction, high agitation <strong>of</strong> watermass, <strong>and</strong> high rate <strong>of</strong><br />

deposition which may cause the dilution <strong>of</strong> planktonic foram<strong>in</strong>iferal<br />

survivorship.<br />

The planktonic assemblages <strong>of</strong> the lower part <strong>in</strong> Kato section from (CF4)<br />

Zone to lower most part <strong>of</strong> (CF3) Zone (Fig. 4. 7) are characterized by low to<br />

moderate values <strong>in</strong> the percentages <strong>of</strong> planktonic foram<strong>in</strong>ifera, P/B ratios<br />

98


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Fig (4.6): The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong> Qishlagh<br />

section (Qala Cholan area)<br />

Between 42-45, species richness is between 25-30, low to moderate<br />

agglut<strong>in</strong>ated percentages 20-30 <strong>and</strong> general benthonic morphotypes <strong>of</strong> Upper<br />

Cretaceous/Early Paleocene paleodepth <strong>in</strong>dicators reveal middle to outer<br />

shelf bathymetry around 100 to 200m depth. But controversy to the above<br />

mentioned conception it is appropriate to emend this abstraction because the<br />

99


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

occurrence <strong>of</strong> these foram<strong>in</strong>iferal assemblages (all planktonic <strong>and</strong> most <strong>of</strong><br />

benthonic foram<strong>in</strong>ifera) are restricted to the th<strong>in</strong> beds <strong>of</strong> shale, marl <strong>and</strong> marly<br />

limestone <strong>in</strong>tercalation with<strong>in</strong> thick beds <strong>of</strong> <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g Aqra Limestone<br />

Formation which is famous by its components <strong>of</strong> macro <strong>and</strong> micr<strong>of</strong>ossils as<br />

mentioned <strong>in</strong> Qishlagh section. Consequently the reliable bathymetry <strong>of</strong> this<br />

unit is not greater than 30m. depth with cyclical deepen<strong>in</strong>g dur<strong>in</strong>g the<br />

deposition <strong>of</strong> shale or marly limestone <strong>in</strong>tercalations.<br />

The Aqra Limestone Formation followed by 35m. <strong>of</strong> alternation <strong>of</strong> bedded<br />

limestone grey shale, marl, friable s<strong>and</strong>stone, marly limestone, calcareous<br />

fossiliferous s<strong>and</strong>stone s<strong>and</strong>y limestone, with detrital fossiliferous limestone<br />

<strong>and</strong> claystone. This <strong>in</strong>terval characterized by little benthonic foram<strong>in</strong>iferal<br />

assemblages <strong>of</strong> larger size without macr<strong>of</strong>ossils growth <strong>in</strong> situ ,it is<br />

characterized by decreas<strong>in</strong>g <strong>in</strong> agglut<strong>in</strong>ated percent from 20 to 10 <strong>in</strong> the upper<br />

part <strong>of</strong> this <strong>in</strong>terval. The depositional environment <strong>and</strong> paleobathymetry <strong>of</strong> this<br />

unit may represent upper part <strong>of</strong> <strong>in</strong>ner neritic shoal from 10 to 30m depth. This<br />

<strong>in</strong>terval characterized by no evidence <strong>of</strong> any porcelaneous foram<strong>in</strong>iferal<br />

assemblages as Qishlagh section which <strong>in</strong>dicates no restriction, high agitation<br />

<strong>of</strong> watermass, <strong>and</strong> high rate <strong>of</strong> deposition which may cause the dilution <strong>of</strong><br />

planktonic foram<strong>in</strong>iferal survivorship.<br />

4.4.2- Paleocene<br />

A progressive shallow<strong>in</strong>g <strong>of</strong> depositional environment started from the<br />

Pseudoguembel<strong>in</strong>a palpebra Zone (CF2) <strong>in</strong> all studied sections especially at<br />

Gali, Qulka <strong>and</strong> Sirwan section from 65.5my upward <strong>and</strong> cont<strong>in</strong>ued to the lower<br />

Paleocene through Plummerita hantken<strong>in</strong>oides Zone (CF1),Guembelitria<br />

cretacea Zone (P0), Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a Zone (Pá),<br />

Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a-Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone (P1a) <strong>and</strong><br />

Subbot<strong>in</strong>a trilocul<strong>in</strong>oides-Praemurica <strong>in</strong>constans (P1b). This trend <strong>of</strong><br />

shallow<strong>in</strong>g <strong>in</strong>tegrated <strong>and</strong> contributed with stack<strong>in</strong>g pattern <strong>of</strong> high rate<br />

sedimentation which display extreme climax rate around Cretaceous/Tertiary<br />

<strong>boundary</strong> with the rate <strong>of</strong> deposition about 100m/my. (Figs 4. 11, 12 & 13)<br />

100


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Fig (4.7: The ma<strong>in</strong> Foram<strong>in</strong>iferal parameters derived from the quantitative analysis with the<br />

proposed paleodepth curve <strong>in</strong> the late Cretaceous/Early Paleocene succession <strong>in</strong> Kato section<br />

(Barz<strong>in</strong>ja area)<br />

In the studied area, the nature <strong>of</strong> Cretaceous-Tertiary contact characterized<br />

by vanish<strong>in</strong>g, obliteration <strong>and</strong> complete exterm<strong>in</strong>ation <strong>of</strong> planktonic foram<strong>in</strong>iferal<br />

assemblages, except <strong>of</strong> two species(Hedbergella monmothensis &<br />

Guembelitria cretacea) which they turnover the K/T <strong>boundary</strong> <strong>and</strong> form<strong>in</strong>g the<br />

new cha<strong>in</strong> <strong>of</strong> genetic radiation <strong>and</strong> phylogenetic reconstruction <strong>of</strong> the Early<br />

101


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Paleocene planktonic foram<strong>in</strong>ifera (Liu & Olsson 1992 <strong>and</strong> Olsson et al., 2000)<br />

consequently the biotic parameters or factors which play an important role on<br />

the environmental output based on quantitative analysis <strong>of</strong> planktonic<br />

foram<strong>in</strong>iferal assemblages is <strong>of</strong> little values when it is compared with qualitative<br />

<strong>in</strong>vestigation <strong>in</strong> the base <strong>of</strong> Paleocene age.<br />

1-The Early Paleocene episode characterized by low Planktonic<br />

foram<strong>in</strong>iferal species richness 18 <strong>in</strong> Pá decreased to 12 species <strong>in</strong> P1b, P/B<br />

ratios are 65 <strong>in</strong> Pá <strong>and</strong> 40 <strong>in</strong> P1b, Aggl./Calc. percent ranged between 40-25-<br />

<strong>in</strong> Gali section.<br />

2- In Qulka section species richness is 14 <strong>in</strong> P1a decreased to 11 species <strong>in</strong><br />

P1b, P/B ratios are 45 <strong>in</strong> P1a <strong>and</strong> 50 <strong>in</strong> P1b, Aggl. /Calc. percent ranged<br />

between 30-20- .<br />

3-Species richness is 17 <strong>in</strong> P1a decreased to 15 species <strong>in</strong> P1b, P/B ratios<br />

are 50 <strong>and</strong> Aggl. /Calc. percent is 35 <strong>in</strong> P1a <strong>and</strong> 25 <strong>in</strong> P1b <strong>in</strong> Sirwan section.<br />

The planktonic assemblages <strong>of</strong> the lower Danian <strong>in</strong> (P0) <strong>in</strong> Smaquli, <strong>and</strong> (P0<br />

& Pá) from Dokan <strong>and</strong> Sirwan valley are characterized by no record<strong>in</strong>g <strong>of</strong><br />

planktonic foram<strong>in</strong>iferal assemblage except for (Hedbergella monmothensis &<br />

Guembelitria cretacea), <strong>in</strong> the last 25cm <strong>of</strong> (P0) at Smaquli section. Little<br />

<strong>in</strong>crease <strong>in</strong> Agglut<strong>in</strong>ated percent at Smaquli <strong>and</strong> Sirwan valley refers to the<br />

shallow<strong>in</strong>g episode around 10-50m. (Olsson & Nyong, 1984 <strong>in</strong> Samir, 2002),<br />

(Keller, 1988; Li <strong>and</strong> Keller, 1998c: Keller <strong>and</strong> others, 2002b <strong>in</strong> Keller, 2004),<br />

(Abramovich. <strong>and</strong> Keller, 2002). Afterward the planktonic foram<strong>in</strong>iferal species<br />

richness was recognized from Smaquli, Sirwan <strong>and</strong> Dokan are 18, 17, <strong>and</strong> 14<br />

species respectively from (Pá, P1a), it decreased to 11, 15 <strong>and</strong> 12 <strong>in</strong> (P1b).<br />

P/B ratios shows normal percent varied between 40 to 50% dur<strong>in</strong>g the total<br />

<strong>in</strong>terval low Agglut<strong>in</strong>ated percentages around 20 to 25. These environmental<br />

parameters <strong>and</strong> general benthonic morphotypes <strong>of</strong> Upper Cretaceous/Early<br />

Paleocene Paleodepth <strong>in</strong>dicators reveal shallow water bathymetry <strong>of</strong> <strong>in</strong>nermiddle<br />

neritic around 50 - 70m depth. (Keller, 1988; Li <strong>and</strong> Keller, 1998c: Keller<br />

102


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

<strong>and</strong> others, 2002b <strong>in</strong> Keller, 2004), (Abramovich. <strong>and</strong> Keller, 2002). (Samir,<br />

2002),<br />

4.5- The Nature <strong>of</strong> Maastrichtian/Paleogene <strong>boundary</strong><br />

At Smaquli, Qulka <strong>and</strong> Sirwan valley extremely rich <strong>in</strong> micr<strong>of</strong>auna especially<br />

planktonic foram<strong>in</strong>ifera. High resolution biostratigraphic analysis <strong>of</strong> these<br />

sections <strong>in</strong>dicates a major biotic change <strong>in</strong> planktonic foram<strong>in</strong>iferal<br />

assemblages. Neither burrows (trace fossils) nor sedimentary structures,<br />

condensed sections, hard ground, m<strong>in</strong>eralization bed <strong>of</strong> glauconitic, Iron<br />

oxide, silicate, silica spheres, microtectites or any Phosphatic m<strong>in</strong>erals<br />

have been found at the K/T <strong>boundary</strong>. In addition, the great similarities <strong>in</strong><br />

the lithologic components below <strong>and</strong> above the contact l<strong>in</strong>e between<br />

Tanjero <strong>and</strong> Kolosh Formations, <strong>in</strong> which impossible to dist<strong>in</strong>guish or to<br />

differentiate between them lithologically <strong>in</strong> the field. The planktonic<br />

foram<strong>in</strong>iferal biozones recorded <strong>in</strong> the studied area reveals cont<strong>in</strong>uous<br />

sedimentation without evidence <strong>of</strong> any hiatus (Figs 3.1-3.8) <strong>in</strong> addition to the<br />

appearance <strong>of</strong> the new lower most Danian Planktonic forams which <strong>in</strong>dicate<br />

the gradual contact at Smaquli area. These data are similar to those<br />

identified from El Kef <strong>in</strong> Tunisia (Keller et al., 1995); Agost, Caravaca,<br />

Zumaya, <strong>in</strong> Spa<strong>in</strong> (Canudo et al., 1991: Pardo et al., 1996: Mol<strong>in</strong>a et al.,<br />

1996, 1998); A<strong>in</strong> Settara <strong>in</strong> Tunisia (Arenillas et al.. 2000); Caravaca SE Spa<strong>in</strong><br />

( Smit, 2005); Egypt (Shah<strong>in</strong>, 1992), (Samir, 2002), ((Keller, 2002),(Obaidalla,<br />

2005) <strong>and</strong> Israel (Keller ,2004).<br />

The ext<strong>in</strong>ction pattern <strong>of</strong> the Late Maastrichtian fauna has been a matter <strong>of</strong><br />

controversy. In this connection, Smit (2005) studied the planktonic foram<strong>in</strong>iferal<br />

pattern <strong>of</strong> ext<strong>in</strong>ction across the (K/P) <strong>boundary</strong> at Caravaca SE Spa<strong>in</strong>, <strong>and</strong><br />

believed that the bolide impact event caused the ext<strong>in</strong>ction <strong>of</strong> all Cretaceous<br />

fauna, except for one species (G. cretacea) which considered the<br />

occurrence <strong>of</strong> Cretaceous <strong>in</strong>dividuals above the K/P <strong>boundary</strong> as due to<br />

rework<strong>in</strong>g. Keller (1988) <strong>in</strong> Obaidalla, 2005 proposed that the 14 Cretaceous<br />

103


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

species became ext<strong>in</strong>ct below the (K/P) <strong>boundary</strong> while l0 species survived<br />

well <strong>in</strong>to the Danian sediments at El Kef (GSSP) <strong>in</strong> Tunisia, a phenomena<br />

which <strong>in</strong>dicate <strong>in</strong> their op<strong>in</strong>ion that the ext<strong>in</strong>ction is unrelated to an impact event.<br />

In the present study the available data show both gradual <strong>and</strong> sudden<br />

catastrophic ext<strong>in</strong>ction pattern for partially or halve number <strong>in</strong> planktonic<br />

foram<strong>in</strong>iferal species before the (K/T) <strong>boundary</strong> <strong>and</strong> complete species<br />

ext<strong>in</strong>ction at or near the (K/T) <strong>boundary</strong> which <strong>in</strong>dicate no Cretaceous<br />

planktonic foram<strong>in</strong>iferal survivorship <strong>in</strong>to the Danian except <strong>of</strong> (G. cretacea)<br />

<strong>and</strong> (H. monmothensis) <strong>in</strong> the lower most Danian.<br />

In contrast, benthonic foram<strong>in</strong>ifera were not affected by major global<br />

ext<strong>in</strong>ction at the Cretaceous/Tertiary <strong>boundary</strong>, <strong>and</strong> as fact that could not<br />

differentiate between the Danian <strong>and</strong> Maastrichtian <strong>in</strong> the po<strong>in</strong>t <strong>of</strong> benthonic<br />

foram<strong>in</strong>iferal assemblage po<strong>in</strong>t <strong>of</strong> view (Alegret et al., 2003). In the studied<br />

area, the same document was observed <strong>and</strong> recorded, <strong>in</strong> general benthonic<br />

foram<strong>in</strong>ifera were little affected dur<strong>in</strong>g the K/T mass ext<strong>in</strong>ction which was<br />

dist<strong>in</strong>guished by reduc<strong>in</strong>g the number <strong>of</strong> benthonic species at Smaquli from 12-<br />

11 species at Plummerita hantken<strong>in</strong>oides Zone (CF1) to 7 species <strong>in</strong><br />

Guembelitria cretacea zone (P0) , then <strong>in</strong>creased aga<strong>in</strong> upward to 11 species <strong>in</strong><br />

Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a zone (Pá) becomes 20 species <strong>in</strong> (P1a) <strong>and</strong><br />

lately 18 species <strong>in</strong> Subbot<strong>in</strong>a trilocul<strong>in</strong>oides – Praemurica <strong>in</strong>constans Zone<br />

(P1b) (Fig. 3.8)<br />

In Qulka section (Dokan area), the number <strong>of</strong> species rema<strong>in</strong>s stable 12<br />

species at the end <strong>of</strong> Plummerita hantken<strong>in</strong>oides Zone (CF1) through Late<br />

Maastrichtian to (P0 & Pá) Earliest Danian, then <strong>in</strong>creased upward to 18<br />

species <strong>in</strong> (P1a) Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a - Subbot<strong>in</strong>a trilocul<strong>in</strong>oides<br />

Zone. <strong>and</strong> decreased to 12 species <strong>in</strong> Subbot<strong>in</strong>a trilocul<strong>in</strong>oides- Praemurica<br />

<strong>in</strong>constans Zone (P1b) (Fig. 3.6)<br />

104


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

The number <strong>of</strong> benthonic species at Sirwan valley decreased from 12<br />

species at Plummerita hantken<strong>in</strong>oides Zone (CF1) to 7 species <strong>in</strong> (P0 & Pá),<br />

then <strong>in</strong>creased aga<strong>in</strong> upward to 20 species <strong>in</strong> both Parvularugoglobiger<strong>in</strong>a<br />

eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone (P1a) <strong>and</strong> Subbot<strong>in</strong>a trilocul<strong>in</strong>oides-<br />

Praemurica <strong>in</strong>constans Zone(P1b) (Fig. 3.2)<br />

The benthonic foram<strong>in</strong>iferal assemblage represented by calcareous tests<br />

about %80 <strong>in</strong> all studied sections, except for the lower <strong>and</strong> middle part <strong>of</strong> the<br />

Qishlagh section decreased to %60 while at the Cretaceous/Tertiary <strong>boundary</strong>,<br />

from the upper part <strong>of</strong> Pseudoguembel<strong>in</strong>a palpebra zone (CF2) to (P0 & Pá)<br />

lowest Danian, there was slightly <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> agglut<strong>in</strong>ated percent to about<br />

30-40 <strong>in</strong> all studied section (Gali, Qulka <strong>and</strong> Sirwan valley). (Figs. 4.3 - 4.5),<br />

4.6- Method <strong>of</strong> graphical correlation<br />

The American stratigrapher AB. Shaw devised a new technique <strong>of</strong> semiquantitative<br />

correlation <strong>of</strong> biostratigraphical sequences. Shaw's method utilizes<br />

a s<strong>in</strong>gle stratigraphical section which is taken as the st<strong>and</strong>ard likely present. In<br />

the study area, the Gali section is selected as st<strong>and</strong>ard because it represented<br />

the most simple cont<strong>in</strong>uous section <strong>and</strong> unaffected tectonically by structural<br />

complications. From this section, the limit <strong>boundary</strong> <strong>of</strong> (First appearance datum<br />

event FAD <strong>and</strong> last appearance datum event LAD) for st<strong>and</strong>ard zonal scheme<br />

<strong>of</strong> biostratigraphic zonation utilized <strong>and</strong> recorded <strong>and</strong> constructed <strong>in</strong> state <strong>of</strong><br />

total ranges <strong>of</strong> species, with particular importance be<strong>in</strong>g assigned to the first<br />

<strong>and</strong> last appearance <strong>of</strong> fossil species. A graph can be constructed us<strong>in</strong>g the<br />

data collected from all stratigraphical section. The first <strong>and</strong> last datum events <strong>of</strong><br />

the Biozones provide po<strong>in</strong>ts on the graph, then the best-fit l<strong>in</strong>e is constructed.<br />

Any Changes <strong>in</strong> the gradient or the graph (dog-legs) <strong>in</strong>dicate changes <strong>in</strong> the<br />

rate <strong>of</strong> sedimentation which is observed <strong>in</strong> graphical correlation between Gali<br />

section (Smaquli area) <strong>and</strong> both Dokan <strong>and</strong> Sirwan sections (Figs 4. 8, 4. 9)<br />

which refer to low sedimentation rate <strong>in</strong> <strong>in</strong>itial part on (R. fructicosa Zone) at<br />

Smaquli area, compared with highest sedimentation rate at both Qulka <strong>and</strong><br />

105


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Sirwan sections <strong>and</strong> later one from P.hariaensis Zone to S. trilocul<strong>in</strong>oides Zone<br />

(Upper Late Maastrichtian-Lower Danian), the graphical l<strong>in</strong>e shows best-fit l<strong>in</strong>e<br />

<strong>of</strong> 45 0 which <strong>in</strong>dicate similar rate <strong>of</strong> depositions. If a best-fit l<strong>in</strong>e can be<br />

constructed completely, the sections can be correlated, (Sirwan <strong>and</strong> Qulka) (Fig<br />

4.10) which show the same rate <strong>of</strong> deposition <strong>in</strong> the same geologic time from<br />

Late Maastrichtian- Early Danian. This technique provides a clear graphical<br />

method which aids <strong>in</strong> the correlation or sequences.<br />

Fig (4.8): Graphic correlation shows the depositional rate <strong>of</strong> sediment between Smaquli <strong>and</strong> Qulka<br />

sections, Note: Change <strong>in</strong> the gradient <strong>in</strong> the early stage (dog-Leg) <strong>in</strong>dicate highest rate <strong>of</strong><br />

deposition <strong>in</strong> Qulka section than Smaquli section<br />

106


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Fig (4.9): Graphic correlation shows the depositional rate <strong>of</strong> sediment between Smaquli <strong>and</strong><br />

Sirwan sections. Note: Change <strong>in</strong> the gradient <strong>in</strong> the early stage (dog-Leg) <strong>in</strong>dicate highest rate <strong>of</strong><br />

deposition <strong>in</strong> Sirwan section than Smaquli section<br />

Fig (4.10): Graphic correlation shows the depositional rate <strong>of</strong> sediment between Qulka <strong>and</strong> Sirwan<br />

sections. Note: NO Change <strong>in</strong> the gradient observed, a best-fit l<strong>in</strong>e constructed completely<br />

which <strong>in</strong>dicate similar rate <strong>of</strong> deposition <strong>in</strong> Qulka <strong>and</strong> Sirwan section.<br />

107


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

4.7- Sedimentation rate around Cretaceous/Tertiary <strong>boundary</strong><br />

Sediments pr<strong>in</strong>cipally consist <strong>of</strong> two different components: -Allochthonous<br />

clastic or detrital sediments which are derived from l<strong>and</strong> sources outside <strong>of</strong><br />

depositional area.-Autochthonous, sediment produced <strong>in</strong> the depositional area<br />

mostly biogenic or chemically precipitated sediments. The sedimentation rates<br />

<strong>of</strong> clastic sediments are controlled ma<strong>in</strong>ly by the size <strong>and</strong> characteristics <strong>of</strong> the<br />

source area. Furthermore, the distances <strong>of</strong> the depositional area from the site<br />

<strong>of</strong> sediment <strong>in</strong>put play a role. The sedimentation rates <strong>of</strong> sediments on<br />

siliciclastic shelf or forel<strong>and</strong> bas<strong>in</strong> were proposed by several authors from low<br />

rate <strong>of</strong> deposition by 10m/ma to high rate <strong>of</strong> deposition by 100m/ma, <strong>in</strong> (Ensele,<br />

2000, Fig, 10.3, page. 458)<br />

The magnetostratigraphy <strong>of</strong> Maastrichtian <strong>and</strong> lower Paleocene showed<br />

magnetochrons 32n to 28n (Figs 3. 12, 3.13). These paleomagnetic data are<br />

available to determ<strong>in</strong>e <strong>and</strong> calculate the sedimentation rates <strong>of</strong> the studied<br />

sections <strong>and</strong> establishment the chronostratigraphy <strong>of</strong> the Cretaceous/Tertiary<br />

<strong>boundary</strong> events as mentioned <strong>in</strong> previously discussed chapter three.<br />

To identify the presence <strong>of</strong> possible hiatuses, due to the non<br />

documentation <strong>of</strong> some zones <strong>and</strong> the overall poor recovery, high rate <strong>of</strong><br />

sediment accumulation <strong>in</strong> thick <strong>in</strong>terval <strong>of</strong> biozones, or th<strong>in</strong> <strong>in</strong>terval <strong>of</strong> slow rate,<br />

non deposition <strong>and</strong> condensed sections, the high resolution planktonic<br />

foram<strong>in</strong>iferal biostratigraphic zonation plays an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

such sedimentary rate with the aid <strong>of</strong> paleomagnetic Chron, the age <strong>and</strong><br />

duration <strong>of</strong> each faunal event <strong>and</strong> the age <strong>of</strong> datum events achieved by several<br />

authors <strong>in</strong> the study <strong>of</strong> high resolution biostratigraphic zonations around<br />

Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> different localities <strong>of</strong> the global Earth.( e.g:<br />

Berggren et al., 1995; Berggren & Norris, 1997; Li & Keller,1998a,b;<br />

Abramovich et al., 2002; Olsson et al., 2000); Keller, 2002, 2004; (Figs 3.12-13)<br />

The mean sedimentation rate or average sediment rate by biozone<br />

(m/myr) or years/meter was estimated previously. In this chapter just try to<br />

108


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

po<strong>in</strong>t out the general sedimentation rate <strong>of</strong> total studied stratigraphic<br />

successions from the upper part <strong>of</strong> Tanjero Formation <strong>and</strong> lower part <strong>of</strong> Kolosh<br />

Formation around K/T <strong>boundary</strong>. Based on the time scale as shown <strong>in</strong> (Figs<br />

4.11 - 4.13) the sedimentation rate varies from zone to zone. In particular, low<br />

rates <strong>of</strong> sediment accumulations <strong>in</strong> the Gali section were observed from the<br />

base <strong>of</strong> Maastrichtian at upper most part <strong>of</strong> Globotruncana aegyptiaca Zone<br />

(CF8) to the end <strong>of</strong> Pseudoguembel<strong>in</strong>a hariaensis Zone (CF3) (Fig4.11) Low<br />

to moderate rate <strong>of</strong> depositions recorded <strong>in</strong> both Qulka <strong>and</strong> Sirwan<br />

sections for Racemiguembel<strong>in</strong>a fructicosa zones CF 4.<strong>and</strong> Pseudoguembel<strong>in</strong>a<br />

hariaensis Zone (CF3) (Figs, 4.-12, 4.13)<br />

In the sequences above, the Pseudoguembel<strong>in</strong>a hariaensis Zone(CF3),<br />

<strong>and</strong> from the base <strong>of</strong> Pseudoguembel<strong>in</strong>a palpebra zone (CF2) <strong>in</strong> all three<br />

mentioned localities the sedimentation rate rapidly <strong>in</strong>creased <strong>and</strong> recorded high<br />

rate sedimentation just 0.5myr below the K/T <strong>boundary</strong> to the lower Paleocene<br />

age through out the Pseudoguembel<strong>in</strong>a palpebra zone (CF2, Plummerita<br />

hantken<strong>in</strong>oides zone (CF1),Guembelitria cretacea (p0), Parvularugoglobiger<strong>in</strong>a<br />

eugub<strong>in</strong>a (pá), Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a-Subbot<strong>in</strong>a trilocul<strong>in</strong>oides<br />

(P1a) <strong>and</strong> Subbot<strong>in</strong>a trilocul<strong>in</strong>oides – Praemurica <strong>in</strong>constans (P1b). It is worthy<br />

to mention that the sedimentation rates <strong>in</strong> all three mentioned studied sections<br />

from 65.5my to 64.5my were around 75 -100m/ma. 0.5my below <strong>and</strong> above the<br />

Cretaceous/Tertiary <strong>boundary</strong>, which reveal cont<strong>in</strong>uations <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g the<br />

sediment accumulation without <strong>in</strong>terruption or any gaps to be disclosed along<br />

the contact <strong>of</strong> K/T <strong>boundary</strong>.<br />

Note: The depositional rate <strong>of</strong> studied sequences <strong>in</strong> Qulka <strong>and</strong> Qishlagh<br />

sections was not <strong>in</strong>troduced due to <strong>in</strong>complete high resolution biostratigraphic<br />

zonation which was evidenced by <strong>in</strong>terruption <strong>of</strong> planktonic foram<strong>in</strong>iferal<br />

assemblages <strong>and</strong> change <strong>in</strong> the environmental <strong>and</strong> depositional system.<br />

109


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Fig (4.11): Sedimentation rate <strong>of</strong> the Upper Cretaceous/Lower Tertiary Succession from<br />

Gali section (Smaquli area) plotted vs. planktonic foram<strong>in</strong>iferal zonal scheme. The age (Time) <strong>of</strong><br />

foram<strong>in</strong>iferal datum events shown (<strong>in</strong> MY)<br />

Fig (4.12): Sedimentation rate <strong>of</strong> the Upper Cretaceous/Lower Tertiary Succession from<br />

Qulka section Dokan area plotted vs. planktonic foram<strong>in</strong>iferal zonal scheme. The age (Time) <strong>of</strong><br />

foram<strong>in</strong>iferal datum events shown (<strong>in</strong> MY)<br />

110


Chapter Four<br />

Depositional Environmenment <strong>and</strong> Paleoecology<br />

Fig (4.13): Sedimentation rate <strong>of</strong> the Upper Cretaceous/Lower Tertiary Succession from<br />

Sirwan section plotted vs. planktonic foram<strong>in</strong>iferal zonal scheme. The age (Time) <strong>of</strong><br />

foram<strong>in</strong>iferal datum events shown (<strong>in</strong> MY)<br />

111


Chapter Five<br />

CHAPTER FIVE<br />

Conclusion<br />

CONCLUSIONS<br />

In the biostratigraphic <strong>and</strong> paleoecologic study <strong>of</strong> the Cretaceous-Tertiary<br />

succession <strong>in</strong> the studied sections at (Gali, Qulka. Qishlagh, Kato <strong>and</strong> Sirwan<br />

valley) <strong>in</strong> Sulaimani area, Kurdistan region, northeast <strong>of</strong> Iraq, the consecutive<br />

preference deductions manifested as the end result <strong>of</strong> this effort to apprize the<br />

summit trail which imply the follow<strong>in</strong>g po<strong>in</strong>ts:<br />

1- Choos<strong>in</strong>g the optimum method for preparation <strong>and</strong> separation<br />

foram<strong>in</strong>iferal test from the rock type <strong>of</strong> s<strong>of</strong>t, friable, porous, <strong>and</strong> permeable rock<br />

<strong>and</strong> used for different lithologic type, e.g (claystone, shale, marl, marly<br />

limestone <strong>and</strong> limestone.<br />

2- A detailed study <strong>in</strong>cludes the well description <strong>and</strong> high resolution lithologic<br />

constitution <strong>and</strong> field work <strong>in</strong>vestigation carried on the well exposed <strong>of</strong> the most<br />

upper part <strong>of</strong> the Upper Cretaceous/Lower Tertiary successions <strong>in</strong>corporated<br />

the upper part <strong>of</strong> Tanjero Formation <strong>in</strong> Sirwan valley, Kato, Qishlagh <strong>and</strong> Dokan<br />

section <strong>in</strong>cluded with the lower most part <strong>of</strong> Kolosh Formation <strong>and</strong> Red Bed<br />

Series <strong>of</strong> the Early Tertiary, while <strong>in</strong> the Gali section (Smaquli area) the studied<br />

stratigraphic units <strong>in</strong>clude the Upper part <strong>of</strong> Shiranish Formation, Shiranish-<br />

Tanjero transition unit (Reddish to pale brown succession), Tanjero Formation<br />

<strong>and</strong> Kolosh Formation <strong>and</strong> the fieldwork at different sett<strong>in</strong>gs is presented<br />

towards a reasonable <strong>and</strong> mean<strong>in</strong>gful subdivision <strong>of</strong> the studied sections. In<br />

addition to that, the studied sections <strong>in</strong>cluded the <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g <strong>of</strong> Aqra<br />

Limestone unit, occurred with<strong>in</strong> the upper part <strong>of</strong> Tanjero Formation <strong>in</strong><br />

Qishlagh, Kato <strong>and</strong> Qulka sections.<br />

3- Due to the great similarities <strong>in</strong> the lithologic characters between the two<br />

formal units <strong>of</strong> Tanjero <strong>and</strong> Kolosh Formations <strong>in</strong> the field, it is quit difficult for<br />

112


Chapter Five<br />

Conclusion<br />

any geologist to observe the contact l<strong>in</strong>e or differentiated between them exactly<br />

at Smaquli, Dokan <strong>and</strong> Sirwan valley. Consequently, it is reliable to conclude<br />

that the two formations were shar<strong>in</strong>g the same cont<strong>in</strong>uous depositional bas<strong>in</strong><br />

around Upper Maastrichtian/Lower Paleocene Epochs.<br />

4- The lateral <strong>and</strong> vertical relation <strong>of</strong> reddish to pale brown succession is<br />

quite conformable with both underly<strong>in</strong>g Shiranish <strong>and</strong> overly<strong>in</strong>g Tanjero<br />

Formations.<br />

5-The well exposed reddish to pale brown succession has its own special<br />

monotonous, conventional lithologic character differ from both underly<strong>in</strong>g<br />

Shiranish Formation <strong>and</strong> overly<strong>in</strong>g Tanjero Formation, geographically extended<br />

for more than 75Km <strong>and</strong> it has mapable thickness which reaches 72m.<strong>in</strong> Smaquli<br />

Gali Gorge, with relevant feasible geologic age <strong>of</strong> Lower Maastrichtian about<br />

2My duration. Consequently I propose the name <strong>of</strong> Smaquli Formation as a new<br />

formal lithologic unit to display an <strong>in</strong>cipient effort <strong>of</strong> formation rank accord<strong>in</strong>g to<br />

<strong>in</strong>ternational stratigraphic nomenclature cod.<br />

6- The planktonic foram<strong>in</strong>ifera occurs cont<strong>in</strong>uously with<strong>in</strong> the Upper<br />

Cretaceous sequences <strong>in</strong> the sedimentary succession <strong>of</strong> the studied section at<br />

Smaquli, Dokan <strong>and</strong> Sirwan valley, generally shows <strong>in</strong>cessant <strong>in</strong> sedimentary<br />

sequence without any <strong>in</strong>terruptions.<br />

7- The upper most part <strong>of</strong> Kolosh Formation <strong>in</strong> Smaquli area is characterized<br />

by the attendance <strong>of</strong> five red claystone beds at the last 10 meters which start<br />

from 30cm. to 2m. respectively, <strong>and</strong> overly by Gercus Formation, the contact is<br />

seemed to be conformable by lithologic evidence <strong>of</strong> graditional change from dark<br />

grey organic rich sediments <strong>of</strong> Kolosh Formation to red, purple mudstone,<br />

s<strong>and</strong>stone, gritty marl, pebbly s<strong>and</strong>stone <strong>and</strong> conglomerates. The contact is<br />

placed on the l<strong>in</strong>e where the sediment colour ma<strong>in</strong>ly began with red lithology.<br />

113


Chapter Five<br />

Conclusion<br />

Paleontologically there were no significant evidences <strong>of</strong> fossils record <strong>in</strong> this<br />

<strong>in</strong>terval <strong>of</strong> lower most part <strong>of</strong> Gercus Formation <strong>in</strong> which six samples were<br />

studied for both foram<strong>in</strong>iferal <strong>and</strong> palenomorphs. Consequently it is convenient to<br />

mention that the geologic age <strong>of</strong> the Gercus Formation <strong>in</strong> Smaquli area, <strong>in</strong>ferred<br />

conformable gradditional nature, <strong>and</strong> may began from the Danian (Lower<br />

Paleocene) <strong>in</strong>stead <strong>of</strong> Middle Eocene age.<br />

8- The Tanjero Formation was completely studied <strong>in</strong> Smaquli area which<br />

represented by 72m. And subdivided lithologically <strong>in</strong>to three dist<strong>in</strong>ct units based<br />

on field observation <strong>and</strong> lithologic characters. Chronostratigraphically represents<br />

Late Maastrichtian Epoch.<br />

9- The total number <strong>of</strong> planktonic <strong>and</strong> benthonic foram<strong>in</strong>iferal species was<br />

identified from all studied sections as follow:<br />

A - Gali section 82 planktonic species were belong<strong>in</strong>g to 23 Genus <strong>in</strong> Shiranish-<br />

Tanjero transition unit but <strong>in</strong> Tanjero Formation 21 planktonic species were<br />

belong<strong>in</strong>g to 14 Genus <strong>in</strong> Kolosh Formation, while 66 benthonic species were<br />

belong<strong>in</strong>g to 38 Genus <strong>in</strong> Shiranish-Tanjero transition unit <strong>and</strong> Tanjero<br />

Formation, 50 benthonic species are belong<strong>in</strong>g to 30 Genus <strong>in</strong> Kolosh<br />

Formation.<br />

B- Qulka section 53 planktonic species were belong<strong>in</strong>g to 18 Genus <strong>in</strong> Tanjero<br />

Formation <strong>and</strong> 16 planktonic species are belong<strong>in</strong>g to 9 Genus <strong>in</strong> Kolosh<br />

Formation, but 52 benthonic species were belong<strong>in</strong>g to 36 Genus <strong>in</strong> Tanjero<br />

Formation <strong>and</strong> 43 benthonic species are belong<strong>in</strong>g to 31 Genus <strong>in</strong> Kolosh<br />

Formation.<br />

C - Sirwan section 62 planktonic species were belong<strong>in</strong>g to 20 Genus <strong>in</strong><br />

Tanjero Formation <strong>and</strong> 18 planktonic species are belong<strong>in</strong>g to 11 Genus <strong>in</strong><br />

Kolosh Formation, but 58 benthonic species was belong<strong>in</strong>g to 36 Genus Tanjero<br />

Formation <strong>and</strong> 52 benthonic species are belong<strong>in</strong>g to 32 Genus <strong>in</strong> Kolosh<br />

Formation.<br />

114


Chapter Five<br />

Conclusion<br />

D - Qishlagh section 26 planktonic species were belong<strong>in</strong>g to 13 Genus <strong>in</strong><br />

Tanjero Formation, while 42 benthonic species were belong<strong>in</strong>g to 28 Genus <strong>in</strong><br />

Tanjero Formation.<br />

E - Kato section 30 planktonic species were belong<strong>in</strong>g to 14 Genus <strong>in</strong> Tanjero<br />

Formation, while 38 benthonic species were belong<strong>in</strong>g to 25 Genus <strong>in</strong> Tanjero<br />

Formation.<br />

10- Based on the geologic range <strong>and</strong> relative abundance <strong>of</strong> Planktonic<br />

foram<strong>in</strong>iferal species, the studied sections along (K/T) <strong>boundary</strong> are precisely<br />

divided <strong>in</strong>to the numbers <strong>of</strong> biostratigraphic zones, depend<strong>in</strong>g on the new<br />

zonal scheme as high resolution biostratigraphic studies, which are quietly<br />

adequate <strong>and</strong> commonly used <strong>in</strong> low <strong>and</strong> middle latitudes. In addition to that,<br />

these biostratigraphic zones were correlated to their equivalents <strong>in</strong> <strong>and</strong> outside<br />

<strong>of</strong> the region <strong>and</strong> with world wide st<strong>and</strong>ard biostratigraphic zones with the aid<br />

<strong>of</strong> datum events which show the age <strong>of</strong> planktonic foram<strong>in</strong>iferal zones. The<br />

dist<strong>in</strong>guished biostratigraphic zones <strong>in</strong> the studied sections are the follow<strong>in</strong>g<br />

from the base upward.<br />

A - Gali section (Smaquli area)<br />

a1 - upper part <strong>of</strong> Globotruncana aegyptiaca Interval Zone (CF8), (Upper part<br />

<strong>of</strong> Shiranish Formation <strong>and</strong> Lower most part <strong>of</strong> Reddish to pale brown<br />

succession) (Early Maastrichtian)<br />

a2- Gansser<strong>in</strong>a gansseri Interval Zone (CF7), (Reddish to pale brown<br />

succession) (Early Maastrichtian)<br />

a3 - Contusotruncana contusa Interval Zone (CF6), (Reddish to pale brown<br />

succession), (Early Maastrichtian)<br />

a4 - Pseudotextularia <strong>in</strong>termedia Interval Zone (CF5) (Reddish to pale brown<br />

succession), (Early Maastrichtian)<br />

a5 -Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4), (upper most part <strong>of</strong><br />

Reddish to pale brown succession <strong>and</strong> lower part <strong>of</strong> Tanjero Formation)<br />

(Late Maastrichtian)<br />

a6 - Pseudoguembel<strong>in</strong>a hariaensis Interval Zone (CF3), (Tanjero Formation),<br />

115


Chapter Five<br />

Conclusion<br />

(Late Maastrichtian)<br />

a7 - Pseudoguembel<strong>in</strong>a palpebra Interval Zone (CF2), (Tanjero Formation),<br />

(Late Maastrichtian)<br />

a8 – Plummerita hantken<strong>in</strong>oides total range Zone (CF1), (Tanjero Formation),<br />

(Late Maastrichtian)<br />

a9 - Guembelitria cretacea Interval Zone (p0), (Kolosh Formation), Earliest<br />

Paleocene (Danian).<br />

a10 - Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a total range Zone (pá), (Kolosh Formation),<br />

Earliest Paleocene (Danian).<br />

a11 - Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a - Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Interval Zone<br />

(P1a), (Kolosh Formation), Early Paleocene (Early Danian)<br />

a12 - Subbot<strong>in</strong>a trilocul<strong>in</strong>oides – Praemurica <strong>in</strong>constans Interval Zone (P1b),<br />

(Kolosh Formation), Early Paleocene (Danian)<br />

B - Qulka section (Dokan area)<br />

b1 – Upper part <strong>of</strong> Pseudotextularia <strong>in</strong>termedia Interval Zone (CF5) (Tanjero<br />

Formation), (Late Early Maastrichtian)<br />

b2 - Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4), (Tanjero Formation<br />

<strong>and</strong><br />

Interf<strong>in</strong>ger<strong>in</strong>g Aqra Limestone) (Late Maastrichtian)<br />

b3 - Pseudoguembel<strong>in</strong>a hariaensis Interval Zone (CF3), (Interf<strong>in</strong>ger<strong>in</strong>g Aqra<br />

Limestone <strong>and</strong> Tanjero Formation), (Late Maastrichtian)<br />

b4 - Pseudoguembel<strong>in</strong>a palpebra Interval Zone (CF2), (Tanjero Formation),<br />

(Late Maastrichtian)<br />

b5 – Plummerita hantken<strong>in</strong>oides total range Zone (CF1), (Tanjero Formation),<br />

(Late Maastrichtian)<br />

b6 - Guembelitria cretacea- Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a Interval Zone (p0<br />

& pá), (Kolosh Formation), Earliest Paleocene (Danian).<br />

b7 - Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a - Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Interval Zone<br />

116


Chapter Five<br />

Conclusion<br />

(P1a), (Kolosh Formation), Early Paleocene (Early Danian)<br />

b8 - Subbot<strong>in</strong>a trilocul<strong>in</strong>oides – Praemurica <strong>in</strong>constans Interval Zone (P1b),<br />

(Kolosh Formation), Early Paleocene (Danian)<br />

C - Sirwan section (Sirwan valley)<br />

c1 - Pseudotextularia <strong>in</strong>termedia Interval Zone (CF5) (Tanjero Formation), (Late<br />

early Maastrichtian)<br />

c2 -Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4), (Tanjero Formation),<br />

(Late Maastrichtian)<br />

c3 - Pseudoguembel<strong>in</strong>a hariaensis Zone (CF3), (Tanjero Formation), (Late<br />

Maastrichtian)<br />

c4 - Pseudoguembel<strong>in</strong>a palpebra Interval Zone (CF2), (Tanjero Formation),<br />

(Late Maastrichtian)<br />

c5 – Plummerita hantken<strong>in</strong>oides total range Zone (CF1), (Tanjero Formation),<br />

(Late Maastrichtian)<br />

c6 - Guembelitria cretacea <strong>and</strong> Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a Interval Zone<br />

(p0 & pá), (Kolosh Formation), Earliest Paleocene (Danian).<br />

c7 - Parvularugoglobiger<strong>in</strong>a eugub<strong>in</strong>a - Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Interval Zone<br />

(P1a), (Kolosh Formation), Early Paleocene (Early Danian)<br />

c8 - Subbot<strong>in</strong>a trilocul<strong>in</strong>oides – Praemurica <strong>in</strong>constans Interval Zone (P1b),<br />

(Kolosh Formation), Early Paleocene (Danian)<br />

D- Qishlagh section (Qala Cholan area)<br />

d1 - Pseudotextularia <strong>in</strong>termedia Interval Zone (CF5) (Tanjero Formation), (Late<br />

early Maastrichtian)<br />

d2 – Initial <strong>in</strong>terval <strong>of</strong> Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4), (at<br />

lower most part <strong>of</strong> Interf<strong>in</strong>ger<strong>in</strong>g Aqra Limestone), (Late Maastrichtian)<br />

117


Chapter Five<br />

Conclusion<br />

E- Kato section (Barz<strong>in</strong>ja area)<br />

e1 – Upper part <strong>of</strong> Racemiguembel<strong>in</strong>a fructicosa Interval Zone (CF4),<br />

(Interf<strong>in</strong>ger<strong>in</strong>g Aqra Limestone), (Late Maastrichtian)<br />

e2 - Pseudoguembel<strong>in</strong>a hariaensis Interval Zone (CF3), (Interf<strong>in</strong>ger<strong>in</strong>g Aqra<br />

Limestone), (Late Maastrichtian)<br />

11– Gali, Dokan <strong>and</strong> Sirwan sections <strong>in</strong> the studied area represent the most<br />

cont<strong>in</strong>uous sedimentary sequences across the K/P mass ext<strong>in</strong>ction <strong>boundary</strong>.<br />

The planktonic foram<strong>in</strong>iferal assemblages are very rich to moderate diversified<br />

<strong>and</strong> an excellent to good state <strong>of</strong> preservation respectively. These<br />

assemblages are similar to those <strong>of</strong> EL Kef, Tunisia <strong>and</strong> other cont<strong>in</strong>uous K/P<br />

<strong>boundary</strong> sections.<br />

12- It is relevant to declare that one <strong>of</strong> the results with<strong>in</strong> these accessible<br />

conclusions <strong>of</strong> this dissertation will susta<strong>in</strong> the <strong>in</strong>ferred assumption by Al-<br />

Barz<strong>in</strong>jy 2005, which proved that the Red Bed Series <strong>and</strong> Kolosh Formation<br />

shar<strong>in</strong>g the same depositional bas<strong>in</strong> <strong>and</strong> hav<strong>in</strong>g the same tectonic sett<strong>in</strong>g.<br />

Moreover, both are represent<strong>in</strong>g lateral facies change <strong>of</strong> each other, <strong>in</strong> addition<br />

to that the forel<strong>and</strong> bas<strong>in</strong> <strong>of</strong> Tanjero Formation dur<strong>in</strong>g the Cretaceous/Tertiary<br />

<strong>boundary</strong> extended laterally <strong>and</strong> transversally <strong>in</strong> northeast <strong>and</strong> occupied the<br />

area from Sirwan, Halabja, Barz<strong>in</strong>ja, Qala Cholan <strong>and</strong> Sura Qalat represent<strong>in</strong>g<br />

proximal area which gradually changed to the Red Bed Series (Kato <strong>and</strong><br />

Qishlagh section) as conformable <strong>boundary</strong> <strong>in</strong> a rapid subsid<strong>in</strong>g costal area.<br />

While <strong>in</strong> the southwest distal area <strong>of</strong> this bas<strong>in</strong> the Tanjero Formation gradually<br />

changed to the Kolosh bas<strong>in</strong> <strong>in</strong> Dokan <strong>and</strong> Smaquli area, the deeper part <strong>of</strong><br />

depositional environment.<br />

13- Quantitative high-resolution biostratigraphic analysis <strong>of</strong> planktonic<br />

foram<strong>in</strong>ifera at studied sections <strong>in</strong>dicates that the ext<strong>in</strong>ction occurred over a<br />

short period <strong>of</strong> time. At Smaquli area 22 species <strong>of</strong> the Cretaceous planktonic<br />

118


Chapter Five<br />

Conclusion<br />

foram became ext<strong>in</strong>ct below the K/T <strong>boundary</strong> at lower part or before the P.<br />

hantken<strong>in</strong>oides zone), where as the rema<strong>in</strong><strong>in</strong>g 28 species became ext<strong>in</strong>ct at or<br />

near the K/T <strong>boundary</strong> <strong>and</strong> (G. cretacea) with (H. monmothensis) crossed the<br />

<strong>boundary</strong> <strong>and</strong> survived <strong>in</strong>to the lower most part <strong>of</strong> Danian sediments. (The<br />

occasion was applied on both Qulkqa <strong>and</strong> Sirwan sections also). This sudden<br />

ext<strong>in</strong>ction is a catastrophic event may conta<strong>in</strong> an evidence <strong>of</strong> asteroid impact.<br />

The ext<strong>in</strong>ct species are from both <strong>of</strong> the large, complex <strong>and</strong> small tropicalsubtropical<br />

forms. While the survivor species are <strong>of</strong> the small, cosmopolitan<br />

<strong>and</strong> simple forms.<br />

Consequently the data on stratigraphic range chart strongly imply that the<br />

planktonic foram<strong>in</strong>iferal record across the K/T <strong>boundary</strong> transition can be expla<strong>in</strong>ed<br />

by earth derived environmental changes <strong>and</strong> that if an extraterrestrial bolide impact<br />

occurred, its effect on mar<strong>in</strong>e plankton foram<strong>in</strong>ifera was <strong>of</strong> the catastrophic<br />

character that is usually assumed, which hesitated <strong>and</strong> term<strong>in</strong>ated the Cretaceous<br />

planktonic fauna <strong>in</strong> the studied area.<br />

14- In general, benthonic foram<strong>in</strong>ifera were little affected dur<strong>in</strong>g the K/T<br />

mass ext<strong>in</strong>ction which was dist<strong>in</strong>guished by reduc<strong>in</strong>g the number <strong>of</strong> benthonic<br />

species at all studied sections, at Plummerita hantken<strong>in</strong>oides zone (CF1) <strong>and</strong><br />

<strong>in</strong>creased aga<strong>in</strong> upward <strong>in</strong> (P1a) <strong>and</strong> (P1b)<br />

15- The planktonic assemblages <strong>of</strong> the lower part from (CF8) to (CF1) <strong>in</strong><br />

Smaquli area <strong>and</strong> (CF5) to (CF2) at Dokan <strong>and</strong> Sirwan valley are characterized<br />

by high values <strong>in</strong> the percentages <strong>of</strong> planktonic foram<strong>in</strong>ifera, p/b ratios, species<br />

richness, low Agglut<strong>in</strong>ated percentages <strong>and</strong> general benthonic morphotypes <strong>of</strong><br />

Upper Cretaceous/Early Paleocene Paleodepth <strong>in</strong>dicators reveal deeper water<br />

bathymetry <strong>of</strong> upper bathyal around 300-600m. depth In Smaquli area, the<br />

outer neritic-upper bathyal depth around 200-400m. depth <strong>in</strong> Dokan <strong>and</strong> Sirwan<br />

area. Middle to outer neritic depth around 100-200m. lower part <strong>of</strong> Qishlagh <strong>and</strong><br />

<strong>in</strong>ner to middle neritic depth 50-100m. <strong>in</strong> lower part <strong>of</strong> Kato section.<br />

119


Chapter Five<br />

Conclusion<br />

16- The term<strong>in</strong>al decrease <strong>in</strong> species richness began from the base to<br />

the end <strong>of</strong> Zone CF1 (Gali section) <strong>and</strong> cont<strong>in</strong>ued upwards till the upper most<br />

part <strong>of</strong> Cretaceous biozone Zone CF1, the same th<strong>in</strong>g <strong>in</strong> Qulka <strong>and</strong> Sirwan<br />

sections. The decl<strong>in</strong>e is also coupled with the trend <strong>of</strong> decrease <strong>in</strong> p/b<br />

ratios. On the other h<strong>and</strong>, a slight <strong>in</strong>crease is recorded <strong>in</strong> the percentages<br />

<strong>of</strong> arenaceous morphotypes. These criteria <strong>in</strong>dicate shallow<strong>in</strong>g regressive<br />

phase <strong>in</strong> the end <strong>of</strong> Maastrichtian bas<strong>in</strong> where the estimated water depth<br />

ranges from middle to outer shelf, around 50 to 150m. depth.<br />

17- The planktonic assemblages <strong>of</strong> the lower Danian <strong>in</strong> (P0) <strong>in</strong><br />

Smaquli area, <strong>and</strong> (P0&Pá) from Dokan <strong>and</strong> Sirwan valley are<br />

characterized by no record<strong>in</strong>g <strong>of</strong> planktic foram<strong>in</strong>iferal assemblage<br />

except for (Hedbergella monmothensis & Guembelitria cretacea), <strong>in</strong> the<br />

last 25cm <strong>of</strong> (P0) at Smaquli section. Little <strong>in</strong>crease <strong>in</strong> Agglut<strong>in</strong>ated<br />

percent at Smaquli <strong>and</strong> Sirwan valley refers to the shallow<strong>in</strong>g episode<br />

around 10-50m. Afterward planktic foram<strong>in</strong>iferal assemblage, p/b ratios,<br />

Agglut<strong>in</strong>ated percentages <strong>and</strong> species richness from Smaquli, Sirwan<br />

valley <strong>and</strong> Dokan <strong>in</strong> (Pá, P1a &p1b) (Early Paleocene), <strong>in</strong>dicate shallow<br />

water bathymetry <strong>of</strong> <strong>in</strong>ner to middle neritic around 50 - 70m. depth.<br />

18- A graphical method <strong>of</strong> correlation constructed by us<strong>in</strong>g the data<br />

collected from all stratigraphical section. As <strong>in</strong>dicated, low sedimentation rate <strong>in</strong><br />

<strong>in</strong>itial part on (R. fructicosa Zone) at Smaquli area compared with highest<br />

sedimentation rate at both Qulka <strong>and</strong> Sirwan sections. Later one from<br />

P.hariaensis Zone to S. trilocul<strong>in</strong>oides Zone (Upper Late Maastrichtian-Lower<br />

Danian), the graphical l<strong>in</strong>e shows best-fit l<strong>in</strong>e <strong>of</strong> 45 0 which <strong>in</strong>dicate similar rate<br />

<strong>of</strong> depositions.<br />

19- The mean sedimentation rate or average sediment rate by biozone<br />

(m/myr) or years/meter was estimated <strong>in</strong> all studied stratigraphic successions<br />

120


Chapter Five<br />

Conclusion<br />

from the upper part <strong>of</strong> Tanjero Formation <strong>and</strong> lower part <strong>of</strong> Kolosh Formation<br />

around K/T <strong>boundary</strong>. Based on the time scale, the sedimentation rate varies<br />

from zone to zone. In particular, low rates <strong>of</strong> sediment accumulations <strong>in</strong> the Gali<br />

section were observed from the base <strong>of</strong> Maastrichtian at upper most part <strong>of</strong><br />

(CF8) to the end <strong>of</strong> (CF3).Low to moderate rate <strong>of</strong> depositions were<br />

recorded <strong>in</strong> both Qulka <strong>and</strong> Sirwan sections for CF4 .<strong>and</strong> (CF3).<br />

In the sequences above the (CF3), <strong>and</strong> from the base <strong>of</strong> (CF2) <strong>in</strong> all<br />

three mentioned localities, the sedimentation rate rapidly <strong>in</strong>creased <strong>and</strong><br />

recorded high rate sedimentation just 0.5myr below the K/T <strong>boundary</strong> to the<br />

lower Paleocene age through out the (CF2, (CF1), (p0), (pá), (P1a) <strong>and</strong><br />

(P1b). It is worthy to mention that the sedimentation rates <strong>in</strong> all three mentioned<br />

studied sections from 65.5my to 64.5my were around 75 -100m/ma. 0.5my<br />

below <strong>and</strong> above the Cretaceous/Tertiary <strong>boundary</strong>, which reveal cont<strong>in</strong>uations<br />

<strong>and</strong> <strong>in</strong>creas<strong>in</strong>g the sediment accumulation without <strong>in</strong>terruption or any gaps to<br />

be disclosed along the contact <strong>of</strong> K/T <strong>boundary</strong>.<br />

121


REFERENCES<br />

Abawi, T. S. Abdel-Kireem, M. R. <strong>and</strong> Yousef G. M., 1982. Planktonic<br />

foram<strong>in</strong>iferal stratigraphy <strong>of</strong> the Shiranish Formation, Sulaimaniah- Dokan<br />

region Northeastern Iraq. Revista Espanola de Micropaleontologia, 14(1),<br />

pp.153--164.<br />

Abdel-Kireem, M. R., 1983. A study <strong>of</strong> the <strong>paleoecology</strong> <strong>and</strong> bathymetry <strong>of</strong><br />

the foram<strong>in</strong>iferal assemblages <strong>of</strong> the Shiranish Formation (Upper Cretaceous).<br />

Northeastern Iraq. Paleogeography, Paleoclimatology, <strong>paleoecology</strong>. Vol. 43,<br />

pp. 169-180, 2 figs.<br />

Abdel-Kireem, M. R., 1986a. Planktonic foram<strong>in</strong>ifera <strong>and</strong> stratigraphy <strong>of</strong> the<br />

Tanjero Formation (Maastrichtian), northeastern Iraq. Micropaleontology,vol.<br />

32, no.3, pp.215-231.<br />

Abdel-Kireem, M. R., 1986b. Contribution to the stratigraphy <strong>of</strong> the Upper<br />

Cretaceous <strong>and</strong> Lower Tertiary <strong>of</strong> the Sulaimaniya – Dokan region,<br />

Northeastern Iraq. N. Jb. Geol. Paleont. Abh.172 (1) pp.121-139.<br />

Abdel-Kireem, M. R., 1986c. Micr<strong>of</strong>aunistic parameters <strong>of</strong> the chalk<br />

Formations (Upper Cretaceous), Bahariya Oasis, Egypt. Revista Espanola De<br />

Micropaleontologia, Vol. XVIII, num.1, pp. 27-46.<br />

Abdel-Kireem, M. R. & Samir, A. M., 1995., Biostratigraphic implications <strong>of</strong><br />

Maastrichtian-Lower Eocene sequence at the north gunna section, Farafra<br />

Oasis, Western Desert, Egypt. Mar<strong>in</strong>e Micropaleontology.vol. 26, pp.329-340.<br />

Abramovich, S. Keller, G. Adatte, T. St<strong>in</strong>nesbek, W. Hott<strong>in</strong>ger, L.<br />

Stueben, D. Berner, Z. Ramanivosa, B. <strong>and</strong> R<strong>and</strong>riamanantenasoa, A.,<br />

2002. Age <strong>and</strong> paleoenvironment <strong>of</strong> Maastrichtian to Paleocene <strong>of</strong> the<br />

mahajanga Bas<strong>in</strong>, Madagascar: a multidiscipl<strong>in</strong>ary approach. Mar<strong>in</strong>e<br />

Micropaleontology.vol. 47, pp.17-70.<br />

Abramovich, S. <strong>and</strong> Keller, G., 2003. Planktonic foram<strong>in</strong>iferal response to<br />

the Latest Maastrichtian abrupt warm event: a case study from South Atlantic<br />

DSDP Site 525A. Mar<strong>in</strong>e Micropaleontology. vol. 48, pp.225-249.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

122<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Al-Ameri, T. K., Al-Rawi, I. K. <strong>and</strong> Khoshaba, B.N., 1990. Palynology <strong>of</strong><br />

Unit one <strong>of</strong> Suwais Red Beds, Chwarta, Northeast Iraq.<br />

Science. Vol.31, No.1.<br />

Iraqi Journal <strong>of</strong><br />

Al-Barz<strong>in</strong>jy, S. T. M., 2005. Stratigraphy <strong>and</strong> bas<strong>in</strong> analysis <strong>of</strong> Red Bed<br />

Series at Northeast Iraq. Kurdistan region. Unpublised Ph.D. thesis, University<br />

<strong>of</strong> Sulaimani University, 159p.<br />

Alegret, L. <strong>and</strong> Thomas, E., 2001. Upper Cretaceous <strong>and</strong> Lower Paleogene<br />

benthonic foram<strong>in</strong>ifera from northeastern Mexico.Micropaleontology, vol.47,<br />

no. 4, pp. 269-316, text-figures 1-3, plates 1-10, table 1.<br />

Alegret, L. Mol<strong>in</strong>a, E. <strong>and</strong> Thomas, E., 2003. Benthonic foram<strong>in</strong>iferal<br />

turnover across the Cretaceous /Paleogene <strong>boundary</strong> at Agost (southeastern<br />

Spa<strong>in</strong>): Paleoenvironmental <strong>in</strong>ferences. Mar<strong>in</strong>e Micropaleontology, Vol. 48, pp.<br />

251-279.<br />

Al-Hashimi, H. A. J. <strong>and</strong> Amer, R. M., 1985. Tertiary micr<strong>of</strong>acies <strong>of</strong> Iraq. D.<br />

G. Geol. Surv. M<strong>in</strong>. Invest. puli., Baghdad, 56 pp, 17 fig., 159 pls. (S. O. M)<br />

Al-Mehaidi, H. M., 1975. Tertiary Nappe <strong>in</strong> Mawat Range, N.E Iraq, Jour.<br />

Geol. Soc. Iraq, vol. 8, pp. 31-44. .<br />

Al-Mutwali, M. M., 1983. Biostratigraphy <strong>of</strong> Kolosh Formation <strong>and</strong> the nature<br />

<strong>of</strong> its contact with upper Cretaceous rocks <strong>in</strong> Shaqlawq area. M.Sc. Thesis.<br />

University <strong>of</strong> Mosul, 154p<br />

Al-Mutwali, M. M., 1992. Foram<strong>in</strong>ifera, Stratigraphy <strong>and</strong> Sedimentology <strong>of</strong> the<br />

Upper Cretaceous – Lower Tertiary <strong>in</strong> selected boreholes around Khleisia<br />

Anah- ramadi area. Unpublished PhD. thesis, University <strong>of</strong> Mosul, Moysl-<br />

Iraq.300p.<br />

Al-Mutwali, M. M., 1996. Planktonic foram<strong>in</strong>iferal <strong>biostratigraphy</strong> <strong>of</strong> the<br />

Shiranish Formation. Khashab well no. 1, Hemren area. Northeastern<br />

Iraq.Jour. Geol. Sci.Iraq, 7(1) pp. 129-136.<br />

Al-Mutwali, M. M. <strong>and</strong> Abawi T. S., 2005. Stratigraphy <strong>of</strong> the Tayarat<br />

Formation (Upper Cretaceous) <strong>in</strong> selected wells, western Iraq. Rafida<strong>in</strong> Journal<br />

<strong>of</strong> Science, Vol. 16, No. 1, Geology, Special Issue. Pp 17-32. (In Arabic)<br />

Al-Mutwali, M. M. <strong>and</strong> Al-Jubouri, F. N., 2005.Litho <strong>and</strong> Biostratigraphy <strong>of</strong><br />

Shiranish Formation (Late Campanian-Late Maastrichtian) In S<strong>in</strong>jar area,<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

123<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Northwestern Iraq. Rafida<strong>in</strong> Journal <strong>of</strong> Science, Vol. 16, No. 1, Geology,<br />

Special Issue. Pp 152-176.<br />

Al-Omari, F. S., 1970. Upper Cretaceous <strong>and</strong> lower Cenozoic foram<strong>in</strong>ifera <strong>of</strong><br />

the three Oil wells <strong>in</strong> northwestern Iraq. Pd.D. Thesis, university <strong>of</strong> Missouri at<br />

Rolla, 208p.<br />

Al-Omari, F. S. Al-Radwani, M. A. <strong>and</strong> Al-Mutwali, M. M., 1988. (issued<br />

1993) Biostratigraphy <strong>of</strong> Kolosh formation at Shaqlawa area, northeastern<br />

Iraq. Journ. Geol. Soc. Iraq. Vol. 21, No.2, pp. 91-104.<br />

Al-Omari, F. S. Al-Radwani, M. A. <strong>and</strong> Lawa, F. A., 1989. Biostratigraphy <strong>of</strong><br />

Aqra Limestone formation (Upper Cretaceous), northern Iraq. Journ. Geol.<br />

Soc. Iraq. Vol. 22, No.2, pp. 44-55.<br />

Al-Omari, F. S., 1995. (Issued <strong>in</strong> 1997).Biostratigraphy <strong>of</strong> Upper<br />

Cretaceous/Lower Tertiary <strong>in</strong> Butmah Well no.9 North West Iraq. Iraqi<br />

Geological Journal, Vol.28, no.2, pp.112-119<br />

Al-Qayim, B. A., 1992. (issued 1993) Bioturbated rhythmite <strong>of</strong> the Shiranish<br />

Formation, type-locality,NW Iraq. Iraqi Geological Journal, Vol.25, no. I,<br />

pp.185-194<br />

Al-Qayim, B. A., 1994. Evolution <strong>of</strong> flysch bas<strong>in</strong> along the northestern marg<strong>in</strong><br />

<strong>of</strong> the Arabian plate. 5th Jordan geological conference & 3 rd conference on the<br />

geology <strong>of</strong> the Middle East (Geocome III), pp 347-373.<br />

Al-Qayim, B. A., 2000. Sedimentation <strong>and</strong> tectonic environment <strong>of</strong> the Suwais<br />

Red Beds, NE-Marg<strong>in</strong> <strong>of</strong> the Arabian plate-5 th <strong>in</strong>ternational on the geology <strong>of</strong><br />

the Arab world, Egypt. Abstract book, p.112.<br />

Al-Qayim, B. A. <strong>and</strong> Al-Shaibahi, S. K., 1989. Stratigraphic anlysis <strong>of</strong><br />

Cretaceous-Tertiary contact, Northwest Iraq.Journ. Geol. Soc. Iraq. Vol. 22,<br />

No.1, pp. 41-52.<br />

Al-Qayim, B. A. <strong>and</strong> Al-Shaibahi, S. K., 1993. Stratigraphic evolution <strong>of</strong><br />

Paleogen sequence. Haibat-Sultan, Northeastern Iraq. Journ. Geol. Soc. Iraq.<br />

Vol. 21, No.2, pp. 51-65.<br />

Al- Rawi, I. K., 1981. Sedimentology <strong>and</strong> Petrography <strong>of</strong> Tanjero Clastic<br />

Formation From north <strong>and</strong> NE, Iraq. Unpub. Ph.D. Thesis, University <strong>of</strong><br />

Baghdad, 295p.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

124<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Al- Rawi, D. <strong>and</strong> Al-hamadani, T. A., 1985. Micr<strong>of</strong>acies study <strong>of</strong> Aqra<br />

limestone <strong>in</strong> the type section <strong>and</strong> Gali Z<strong>in</strong>ta section <strong>and</strong> reconstruction <strong>of</strong> the<br />

paleoclimate. Journ. Geol. Soc. Iraq. Vol. 18, No.1, pp. 115-161.<br />

Al- Rawi, Y. T. <strong>and</strong> Al-Rawi, I. K., 2002. Tanjero Formation from northeast<br />

<strong>and</strong><br />

north Iraq.A turbidite example <strong>of</strong> flysch type. Proceed<strong>in</strong>g <strong>of</strong> 15 th Iraqi<br />

Geological Conference, 15-18Dec.2002, Baghdad.<br />

Al- Shaibahi, S. K., 1973. Micr<strong>of</strong>ossils from Shiranish Formation <strong>in</strong><br />

northeastern Iraq, Sulaimania, Asmar region. Journal <strong>of</strong> Geological Society <strong>of</strong><br />

Iraq, vol.VI, p p 49-65.<br />

Al-Shaibahi, S. K. Al-Qayim, B. A. <strong>and</strong> Salman, L., 1986. Stratigraphic<br />

analysis <strong>of</strong> Tertiary Cetaceous contact, Dokan area, North Iraq, Journal <strong>of</strong><br />

Geological Society <strong>of</strong> Iraq, vol.19, no.2.(7 th IGC) p.26.<br />

Al-Shaibani, S. K., Al- Hashimi, H. A., <strong>and</strong> Ghafor, I. M., 1993.<br />

Biostratigraphy <strong>of</strong> the Cretaceous-Tertiary <strong>boundary</strong> <strong>in</strong> well Tel-Hajer No-1,<br />

S<strong>in</strong>jar area, northwest Iraq. Iraqi Geological Journal, Vol.26, no.2, pp.77-97.<br />

Arenillas, I. Arz, J. A. Mol<strong>in</strong>a, E. <strong>and</strong> Dupis, C., 2000a. An <strong>in</strong>dependent test<br />

<strong>of</strong> planktonic foram<strong>in</strong>iferal turnover across the Cretaceouc/Paleocene (K/P)<br />

<strong>boundary</strong> at at EL Kef, Tunisia: Catastrophic mass ext<strong>in</strong>ction <strong>and</strong> possible<br />

survivorship .Micropalentology, vol.46, no.1, pp. 31-49.<br />

Arenillas, I. Arz, J. A.Mol<strong>in</strong>a, E. <strong>and</strong> Dupis, C., 2000b.The<br />

Cretaceous/Paleocene (K/P) <strong>boundary</strong> at A<strong>in</strong> Settara, Tunisia: sudden<br />

catastrophic mass ext<strong>in</strong>ction <strong>in</strong> planktonic foram<strong>in</strong>ifera. journal <strong>of</strong> foram<strong>in</strong>iferal<br />

research, v.30,no.3, pp. 202- 218.<br />

Bak, K. Bak, M. Geroch, S. <strong>and</strong> Manecki, M., 1997. Biostratigraphy <strong>and</strong><br />

paleoenvironmental analysis <strong>of</strong> benthonic foram<strong>in</strong>fera <strong>and</strong> radiolarians <strong>in</strong><br />

Paleocene variegated shales <strong>in</strong> the Skole unit, Polish flysch Carpathians.<br />

Annales Societatis Geologorum Poloniae, vol. 67. pp 135-154.<br />

Bakkal, K. K. Ghafor, I. M. <strong>and</strong> Kassab, I. I. M., 1993. Biostratigraphy <strong>of</strong><br />

Shiranish Formation <strong>in</strong> Hijran area Northeastern Iraq. journal <strong>of</strong> Science <strong>and</strong><br />

Nature,(University <strong>of</strong> Salahadd<strong>in</strong>) Vol. 2, No. 2, pp. 34-39.<br />

B<strong>and</strong>y, O. L., 1964. Cenozoic planktonic foram<strong>in</strong>iferal zonation .Micropaleo.<br />

Vol. 10, no. 1, pp.1-17, tex.figs. 1-6.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

125<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


B<strong>and</strong>y, O. L., 1967. Cretaceous planktonic foram<strong>in</strong>iferal zonation<br />

.Micropaleo. Vol. 13, no. 1, pp.1-31, tex.figs. 1-13.<br />

Barrera, E. <strong>and</strong> Sav<strong>in</strong>, S. M., 1999. Evolution <strong>of</strong> the Late Campanian –<br />

Maastrichtian mar<strong>in</strong>e climates <strong>and</strong> oceans. <strong>in</strong> Barrera, E. <strong>and</strong> Joohnson, C. C.<br />

eds., Evolution <strong>of</strong> the Cretaceous Ocean- climate system: Boulder, Colorado,<br />

Geological Society <strong>of</strong> America Special paper , 332, pp.245-282.<br />

Bellen, R. C. Van, Dunn<strong>in</strong>gton, H. V., Wetzel, R. <strong>and</strong> Morton, D., 1959.<br />

Lexique Stratigraphique, Interntional. Asie, Iraq, vol. 3c. 10a, 333 p.<br />

Berggren, W. A. <strong>and</strong> Miller, K. G., 1988. Paleogene tropical planktonic<br />

foram<strong>in</strong>iferal <strong>biostratigraphy</strong> <strong>and</strong> magnetobiochronology. Micropaleontology.<br />

Vol. 34, No. 4, pp. 362-380.<br />

Berggren, W. A., Kent, D. V., Swisher, III, C. C. <strong>and</strong> Aubry, M.-P., 1995. A<br />

revised Cenozoic geochronology <strong>and</strong> chronostratigraphy <strong>in</strong> Berggren, W. A.<br />

<strong>and</strong> Norris, R. D. 1997. Biostratigraphy, phylogeny <strong>and</strong> systematics <strong>of</strong><br />

Paleocene trochospiral planktonic foram<strong>in</strong>ifera. Micropaleontology, vol.43,<br />

supplements. 1, pp. 1-116, text figures 1-17, plates 1-16, tables 1-5, <strong>and</strong><br />

appendix 1.<br />

Berggren, W. A. <strong>and</strong> Norris, R. D., 1997. Biostratigraphy, phylogeny <strong>and</strong><br />

systematics <strong>of</strong> Paleocene trochospiral planktonic foram<strong>in</strong>ifera.<br />

Micropaleontology, vol.43, supplements. 1, pp. 1-116, text figures 1-17, plates<br />

1-16, tables 1-5, <strong>and</strong> appendix 1.<br />

Blow, W, H., 1979. The Cenozoic Globiger<strong>in</strong>idae, Vol. 1-3, Leiden, E. J.,Brill,<br />

1413p., 264pls.<br />

Boersma, A., 1984a. Cretaceous-Tertiary planktonic forams from the south<br />

Atlantic.Walvis Ridge area, deep Sea Drill<strong>in</strong>g Project leg 74.Init. Rep.DSDP<br />

74, 501-523.<br />

Bolli, H. M., 1966. Zonation <strong>of</strong> Cretaceous to Pliocene mar<strong>in</strong>e sediments<br />

based on planktonic foram<strong>in</strong>ifera. Bol. Inform. Asoc. Vonezolana Geol. M<strong>in</strong>.<br />

Ret .En., vol. 9, no.1, pp. 3-32, 4 tables.<br />

Bolton, C. M. G., 1958. The geology <strong>of</strong> Ranya area. Site Inv Co. Unpubl.<br />

Report, SOM. Library. Baghdad.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

126<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Boltovskoy, E. Watanabe, S. Totah, V. I. <strong>and</strong> Ocampo, J. V., 1992.<br />

Cenozoic benthonic foram<strong>in</strong>ifers <strong>of</strong> DSDP Site 548 (North<br />

Atlantic).Micropaleontology, vol. 38, no. 2, pp. 183-207, plates 1-4, text figs 1-<br />

5, tables 1-4, appendix 1.<br />

Boltovskoy, E. Watanabe, S., 1993. Cenozoic monothalamous foram<strong>in</strong>ifers<br />

from DSDP Site 525 (southern Atlantic) Micropaleontology vol. 37, no.1, pp. 1-<br />

27, plates 1-7, text figures 1-4, tables 1-4.<br />

BouDagher-Fadel. M. K, Banner. F. T, <strong>and</strong> Whittaker. J. E., 1997. The Early<br />

evolutionary history <strong>of</strong> planktonic foram<strong>in</strong>ifera. Chapman <strong>and</strong> Hall. London.<br />

289 p., 15 Figs., 52 plates.<br />

Brohi, i. A., 1994. Late Cretaecous <strong>and</strong> Early Tertiary benthonic foram<strong>in</strong>iferal<br />

Biostratigraphy <strong>in</strong> Khuzdar District, Balochistan, Pakistan, with Special<br />

reference to the Influence <strong>of</strong> the Tethyan Sea Closure. Joun. Sci. Hiroshima.<br />

Univ., Ser. Vol.10, No.1, pp.25-81.<br />

Buday, T., 1980. Regional Geology <strong>of</strong> Iraq: Vol. 1, Stratigraphy, I.I.M Kassab<br />

<strong>and</strong><br />

S.Z. Jassim (Eds) D. G. Geol. Surv. M<strong>in</strong>. Invest. Publ. 445p.<br />

Buday, T. <strong>and</strong> Jassim, S. Z., 1987. The Regional geology <strong>of</strong> Iraq: Tectonism,<br />

Magmatism <strong>and</strong> Metamorphism. I. I. Kassab <strong>and</strong> M.J. Abbas (Eds), Baghdad,<br />

445 p.<br />

Canudo, J. I. Keller, G. <strong>and</strong> Mol<strong>in</strong>o, E., 1991. Cretaceous/Tertiry <strong>boundary</strong><br />

ext<strong>in</strong>ction pattern <strong>and</strong> faunal turnover at Agost <strong>and</strong> Caravaca, S.E.Spa<strong>in</strong>.<br />

Mar<strong>in</strong>e Micropaleontology .vol, 17. pp, 319-341.<br />

Caron, M., 1985. Cretaceous planktic foram<strong>in</strong>ifera. In BOLLI, H.M.,<br />

SAUNDERS<br />

, J.B. <strong>and</strong> PERCH-NIELSEN, K.,(Eds) Planktonic<br />

Stratigraphy, pp 17-87., 37 figs. Cambridge Univ. Press.<br />

Chacon. B. <strong>and</strong> Mart<strong>in</strong>-Chivelet. J., 2005. Major Paleoenvironmental<br />

changes <strong>in</strong> the Campanian to Paleocene sequence <strong>of</strong> Caravaca (Subbetic<br />

Zone, Spa<strong>in</strong>) journal <strong>of</strong> Iberian Geology 31 (2) pp 299-310.<br />

Chungkham, P. <strong>and</strong> Jafar, S. A., 1998. Late Cretaceous (Santonian-<br />

Maastrichtian) <strong>in</strong>tegrated Cocolith- Globotruncanid Biostratigraphy <strong>of</strong> pelagic<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

127<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


limestone from the accretionary prism <strong>of</strong> Manipur, northeastern India.<br />

Micropaleontology, vol. 44, no. 1, pp. 69-83.<br />

Ditmar, V.<br />

<strong>and</strong> Iraqi Soviet team., 1971. Geological conditions <strong>and</strong><br />

hydrocarbon prospects <strong>of</strong> the republic <strong>of</strong> Iraq, northern <strong>and</strong> central part.-<br />

Technoexport report. INOC Library, Baghdad.<br />

D , Hont, S. <strong>and</strong> Keller, G., 1991. Some patterns <strong>of</strong> planktonic foram<strong>in</strong>iferal<br />

assemblage turnover at the Cretaceous/Tertiary <strong>boundary</strong>. Mar<strong>in</strong>e<br />

Micropaleontology .vol, 17. pp, 77-118.<br />

Dunn<strong>in</strong>gton, H. V., 1955. The Tertiary – Cretaceous <strong>boundary</strong> problem <strong>in</strong> N.<br />

Iraq. No IR/ HVD/ 611. Baghdad. INOC Library, Un published report. Pp.1-66,<br />

figs1-3.<br />

Dunn<strong>in</strong>gton, H. V., 1957. The Paleocene –Cretaceous unconformity at Aqra.<br />

Un published report.ivo. IR/ MUD /691. INOC Library.Baghdad,<br />

E<strong>in</strong>sele, G., 2000. Sedimentary bas<strong>in</strong>s, Evolution, Facies <strong>and</strong> Sediment<br />

Budget. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, Heidelberg, New York with 354 figures.<br />

El-Dawy, M. H., 2001. Paleocene benthonic foram<strong>in</strong>iferal Biostratigraphy <strong>and</strong><br />

paleobathymetry <strong>in</strong> the sections between El Sheikh Fadl <strong>and</strong> Ras Gharib,<br />

Eastern Desert, Egypt. Micropaleontology, vol. 47, no.1, pp. 23 - 46, textfigures1-8,<br />

plates 1-3,<br />

Elnady H. <strong>and</strong> Shah<strong>in</strong> A., 2001. Planktonic Foram<strong>in</strong>iferal biostratigraphiy <strong>and</strong><br />

paleobathymetry <strong>of</strong> the Late Cretaceous – Early Tertiary succession at<br />

northeast S<strong>in</strong>ai, Egypt. Egypt. Jour. Paleontol., Vol. 1, pp. 193-227.<br />

El-Naggar, Z, R., <strong>and</strong> Ashour, M. M., 1983. Microbiostratigraphic analysis <strong>of</strong><br />

the Late Cretaceous - Early Paleocene successions <strong>in</strong> Egypt (typified by the<br />

Dakhala, Nile vally <strong>and</strong> Red sea coast sections) Proceed. Lst. Jord. Geol.<br />

Conf. (1982, Amman) pp.112-180, pls. 1-17, figs. 1-3.<br />

El-Nakhal, H. A., 1983. The occurance <strong>of</strong> the foram<strong>in</strong>iferal Genus<br />

Rugoglobiger<strong>in</strong>a <strong>in</strong> the Late Cretaceous succession <strong>of</strong> Kuwait. Journ. Of Geol.<br />

Soc.Iraq. Vol. 16-17. pp. 149-183.<br />

El-Nakhal, H. A., 1984. Kassabella, anew Late Cretaceous planktonic<br />

foram<strong>in</strong>iferal Genus with meridional rogosity.Journal <strong>of</strong> foram<strong>in</strong>iferal research,<br />

Vol. 14, no.2, pp.140-141.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

128<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Faris, M., 1984. Biostratigraphy <strong>of</strong> the Upper Cretaceous-Lower Tertiary<br />

succession <strong>of</strong> Duwi Range, Quseir district, Egypt.Revue De<br />

Micropaleontolocie, Vol. 27, No. 2, pp. 107-112.<br />

Faris, M., 1985. Stratigraphy <strong>of</strong> the Late Cretaceous-Early Tertiary sediments<br />

<strong>in</strong> the Ghanima <strong>and</strong> Amur sections, Kharga area, Egypt.Newsl. stratigr.vol.14,<br />

no.1, pp. 36-47.<br />

Fluegeman, Jr., R. H. Berggren, W. A. <strong>and</strong> Brisk<strong>in</strong>, M., 1990.Paleocene<br />

benthonic foram<strong>in</strong>iferal biostratigraphiy <strong>of</strong> the eastern Gulf Coastal Pla<strong>in</strong>.<br />

Micropaleontoloy, Vol. 36, No. 1, pp. 56-64.<br />

Ganssen, G. M. <strong>and</strong> Kroon, D., 2000. The isotopic signature <strong>of</strong> planktonic<br />

foram<strong>in</strong>ifera from NE Atlantic surface sediment: implication for the<br />

reconstruction <strong>of</strong> past oceanic conditions.Journal <strong>of</strong> Geological Society,<br />

London, Vol.157, pp. 693-699.<br />

Georgescu, M. D., 1996. Santonian –Masstrichtian planktonic foram<strong>in</strong>ifers<br />

(Globiger<strong>in</strong>elloididae, Hedbergellidae, Globotrucanidae <strong>and</strong><br />

Rugoglobiger<strong>in</strong>idae) <strong>in</strong> the Romanian black Sea <strong>of</strong>fshore.<br />

Micropaleontology.vol. 42, no.4, pp 305- 333, text-figures 1-7, plates 1-12.<br />

Georgescu, M. D., 2002. An Interactive Guide to Planktonic Foram<strong>in</strong>ifera; A.<br />

Cretaceous taxa. Published from Web. www.http://Services.chronos/guide<br />

plankforam/<strong>in</strong>dex.htm. , An HTmL -based illustrated guide to the taxonomy <strong>and</strong><br />

descriptive morphology <strong>of</strong> Cretaceous planktonic foram<strong>in</strong>ifera.<br />

Ghafor, I. M., 1988. Planktonic foram<strong>in</strong>ifera <strong>and</strong> Biostratigraphy <strong>of</strong> the Aaliji<br />

Formation <strong>and</strong> the nature <strong>of</strong> its contact with the Shiranish Formation <strong>in</strong> Well<br />

Tel- Hajar No.1, S<strong>in</strong>jar area , Northwestern Iraq. Unpublised MSc. thesis,<br />

University <strong>of</strong> Salahadd<strong>in</strong>-Iraq. 206 p.<br />

Ghafor, I. M. <strong>and</strong> Kareem, K. H., 1999. Biostratigraphy <strong>of</strong> Upper part <strong>of</strong> the<br />

Kolosh Formation from Sartaq-Bamo Northeastern Iraq.JDU (Sci)-Special<br />

issue: The first Scientific Conference <strong>of</strong> Dohuk University, Vol. 2, No. 4. pp,<br />

493-510.<br />

Ghlis, M. <strong>and</strong> Bellier, et Jean-Pierre., 1989. Comparative distribution <strong>of</strong><br />

planktonic foram<strong>in</strong>ifera <strong>and</strong> calcareous nan<strong>of</strong>ossils <strong>in</strong> the Upper most<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

129<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Cretaceous <strong>of</strong> the south Constant<strong>in</strong>e area: a framework for Algeria. Revue de<br />

Micropaleontologie Vol. 32, no, 4. pp. 261-276.<br />

Gov<strong>in</strong>dan, A. Rav<strong>in</strong>dran, C. N. <strong>and</strong> Rangaraju, M. K., 1996. Cretaceous<br />

stratigraphy <strong>and</strong> planktonic foram<strong>in</strong>ifera Zonation <strong>of</strong> Cauvery Bas<strong>in</strong>, Soyth<br />

India. Memoir Geological Society <strong>of</strong> India. No.37, pp. 155-187. L Roma Rao<br />

Volume, Cretaceous stratigraphy <strong>and</strong> Paleoenvironment. Ashok Sahni Editor.<br />

Gradste<strong>in</strong>, F. M, Kam<strong>in</strong>ski, M. A. <strong>and</strong> Berggren, W. A., 1988. Cenozoic<br />

foram<strong>in</strong>iferal Biostratigraphy <strong>of</strong> the central North Sea. Abh. Geol. B.-A. B<strong>and</strong>.<br />

41, pp 97-108, with 2 figures <strong>and</strong> 2 ntables.<br />

Gradste<strong>in</strong>, F. M, Kristiansen, I. K. Loemo, L. <strong>and</strong> Kamniski, M. A., 1992.<br />

Cenozoic foram<strong>in</strong>iferal <strong>and</strong> d<strong>in</strong><strong>of</strong>lagellate cyst Biostratigraphy <strong>of</strong> central North<br />

Sea. Micropaleontology vol.38, no.2, pp. 101-137.<br />

Gradste<strong>in</strong>, F. M, Kamniski, M. A. Berggren, W. A. Kristiansen, I. L. <strong>and</strong> D ,<br />

Iorio, M. A., 1994. Cenozoic <strong>biostratigraphy</strong> <strong>of</strong> the North Sea <strong>and</strong> Labrador<br />

Shelf. Micropaleontology , vol.40, supplement for 1994, pp. 1-152, plates 1-22,<br />

text figures 1-40, tables 1-17, & A1-A5, appendices 1-4.<br />

Gradste<strong>in</strong>, F. M. <strong>and</strong> Backstrom, S., 1996. Ca<strong>in</strong>ozoic Biostratigraphy <strong>and</strong><br />

Paleobathymetry, northern North Sea <strong>and</strong> Haltenbanken. Norsk Geologisk<br />

Tidsskrift, Vol. 76, pp. 3-32. Oslo.<br />

Gradste<strong>in</strong>, F. M <strong>and</strong> Kamniski, M. A., 1997. New species <strong>of</strong> Paleogene<br />

deep-water agglut<strong>in</strong>ated foram<strong>in</strong>ifera from the North Sea <strong>and</strong> Norwegian Sea.<br />

Annales Societatis Geologorum polonoae. Vol.67: pp. 217-229.<br />

Gradste<strong>in</strong>, F. M. Ogg. J. G. Smith, A. G. Bleeker, W. And Lourens, L. J.,<br />

(2004). Anew Geologic Time Scale, with special reference to Precambrian<br />

<strong>and</strong> Neogene. Episodes, Vol. 27, No. 2, pp. 83-100.<br />

Grafe, K. U., 2005. Late Cretaceous benthonic foram<strong>in</strong>ifera from the Basque-<br />

Cantabrian Bas<strong>in</strong>, Northern Spa<strong>in</strong>. Journal <strong>of</strong> Iberian Geology, vol. 31, no. 2,<br />

pp. 277-298.<br />

Hammoudi, R, A., 2000. Planktonic foram<strong>in</strong>iferal <strong>biostratigraphy</strong> <strong>of</strong> the<br />

Shiranish Formation (Upper Cretaceous) <strong>in</strong> Jambur well no.13 Northern<br />

Iraq.Raf.Jour.Sci. vol.11, No. 4, pp. 50-58<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

130<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Houston, R. M. Huber, B. T. <strong>and</strong> Spero, H. J., 1999. Size related isotopic<br />

trend <strong>in</strong> some Maastrichtian planktonic foram<strong>in</strong>ifera: methodological<br />

comparisons, <strong>in</strong>traspecific variability, <strong>and</strong> evidence for photosymbiosis. Mar<strong>in</strong>e<br />

Micropaleontology, 36, pp.169-188.<br />

Hradecka, L. Lobitzer, F. O. Savabenicka, L. <strong>and</strong> Svobodova, M., 1999.<br />

Biostratigraphy <strong>and</strong> Facies <strong>of</strong> selected Exposures <strong>in</strong> the Grunbach-Neue Welt<br />

Gosau-Group (Coal bear<strong>in</strong>g Series, Inoceramus-Marl <strong>and</strong> Zweiersdorf-<br />

Formation, Late Cretaceous <strong>and</strong> Paleocene, Lower Austria): Abh<strong>and</strong>lungen<br />

der Geologischen Bundesanstalt, B<strong>and</strong> 56/2, pp.519- 551.<br />

Huber. B. T., 1990. Masstrichtian planktonic foram<strong>in</strong>ifer <strong>biostratigraphy</strong> <strong>of</strong> the<br />

Maud Rise (WeddellSea, Antarctica): ODP Leg 113 Hole 689B <strong>and</strong> 689 C.<br />

proc. ODP, <strong>and</strong> Sci. Results 113,489-514.<br />

Huber. B. T., 1992. Paleobiogeography <strong>of</strong> Campanian – Maastrichtian<br />

foram<strong>in</strong>ifera <strong>in</strong> the southern high latitudes. Paleogeogr., Paleoclimat.,<br />

Paleoecol. 92,325-360.<br />

Huber. B. T. <strong>and</strong> Boersma, A., 1994. Cretaceous orig<strong>in</strong>ation <strong>of</strong> Zeauviger<strong>in</strong>a<br />

<strong>and</strong> its relationship to Paleocene biserial planktonic foram<strong>in</strong>ifera. Journal <strong>of</strong><br />

Foram<strong>in</strong>iferal research, vol. 24, no. 4, pp. 268-287.<br />

Hudson, J. D., 1998. Duscution on the Cretaceous –Tertiary biotic transition.<br />

Journal <strong>of</strong> geological sosity, London, vol. 155, pp. 413-419.<br />

Hulsbos, R. E. Kroom, D. Jansen, H. S. M. <strong>and</strong> van H<strong>in</strong>te, J. E., 1989.<br />

Lower Eocene benthonic foram<strong>in</strong>ifera <strong>and</strong> Paleoenvironment <strong>of</strong> the outer<br />

Vor<strong>in</strong>g Plateau, Norwegian Sea (DSDP Site 338) Micropaleontology, Vol. 35,<br />

no.3, pp. 256-273, pls 1-3,<br />

Hunter, R. S. T. Arnold, A. J. <strong>and</strong> Parker, W. C., 1988. Evolution <strong>and</strong><br />

homeomorphy <strong>in</strong> the development <strong>of</strong> the Paleocene planorotalites<br />

pseudomenardii <strong>and</strong> the Miocene Globorotalia (Globorotalia) margaritae<br />

l<strong>in</strong>eages. Micropaleontology, vol.34, no.2, pp. 181-192.<br />

Jacob, V. S., 1978 Ms. Biostratigraphy <strong>and</strong> age determ<strong>in</strong>ation <strong>of</strong> upper<br />

Cretaceous rocks (section 2) Dohuk area, North Iraq. S.O.M. (D.G.Geol. Surv.<br />

M<strong>in</strong>. Invest.) Library Baghdad.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

131<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


James, G. A. <strong>and</strong> Wynd, J. G., 1965. Stratigraphic nomenclature <strong>of</strong> Iranian<br />

Oil Consurtium agreement area.AAPG Bull., Vol. 49, No. 12, pp.2182-2245,<br />

Figs. 98, Table.1. Tulso, Oklahoma<br />

Jassim, S. Z <strong>and</strong> G<strong>of</strong>f, J, C., 2006. Geology <strong>of</strong> Iraq. Published by Dol<strong>in</strong>,<br />

Brague Moravian Museum, Berno. 345p.<br />

Jaza, I. M., 1992. Sedimentary facies analysis <strong>of</strong> the Tanjero Formation <strong>in</strong><br />

Sulaimaniya District, NE-Iraq. Unpubl. M. Sc. Thesis, Salahadd<strong>in</strong> University,<br />

121p.<br />

Jenk<strong>in</strong>s, D. G. <strong>and</strong> Murray, J. W., 1981. Stratigraphic atlas <strong>of</strong> fossil<br />

foram<strong>in</strong>ifera. Ellis Horwood limited publ. 310 p., 48 Figs., 66pls.<br />

Jones, G. D., 1988. A paleoecological model <strong>of</strong> Late Paleocene flysch-type<br />

agglut<strong>in</strong>ated foram<strong>in</strong>ifera us<strong>in</strong>g the paleoslope transect approach, Vik<strong>in</strong>g<br />

Graben, North Sea. Abh. Geol. B.-A. B<strong>and</strong> 41, pp. 143-153. With 5 figures <strong>and</strong><br />

2 plates.<br />

Kaddouri, N., 1989. Stratigraphy <strong>of</strong> the Mesozoic <strong>and</strong> Cenozoic sediments <strong>in</strong><br />

S<strong>in</strong>jar depression. . Journ. Geol. Soc. Iraq. Vol. 22, No.2, pp. 35-43.<br />

Kam<strong>in</strong>ski, M. A. Gradste<strong>in</strong>, F. M. Berggren, W. A. Geroch, S. <strong>and</strong><br />

Beckmann J. P., 1988. Flysch type agglut<strong>in</strong>ated foram<strong>in</strong>iferal assemblages<br />

from Tr<strong>in</strong>idad: Taxonomy, stratigraphy <strong>and</strong> Paleobathymetry. Abh. Geol. B. -<br />

A. B<strong>and</strong>. 41, pp. 155-227, with 8 figures, 10 plates <strong>and</strong> 4 tables.<br />

Kam<strong>in</strong>ski, M. A. <strong>and</strong> Crespo de Cabrera, S., 1999. Anew species <strong>of</strong> primitive<br />

Reticulophragmium (foram<strong>in</strong>ifera) from the Paleocene Vidono Formation <strong>of</strong><br />

northeastern Venezuela. Annales Societatis Geologorum Poloniae, vol. 69, pp.<br />

189-193.<br />

Karim, K. H., 2004. Bas<strong>in</strong> analysis <strong>of</strong> Tanjero Formation <strong>in</strong> Sulaimaniya area,<br />

NE-Iraq. Unpublised Ph.D. thesis, University <strong>of</strong> Sulaimani University, 135p.<br />

Karim, K .H., 2006.Environment <strong>of</strong> Tanjero Formation as <strong>in</strong>ferred from<br />

sedimentary structures, Sulaimanyia area, NE-Iraq. JAK, Vol.4, No.1.pp. 1-18.<br />

Karim, K.H <strong>and</strong> Surdashy, A. M., 2005a. Paleocurrent analysis <strong>of</strong> Upper<br />

Cretaceous Forel<strong>and</strong> bas<strong>in</strong>: a case study for Tanjero Formation <strong>in</strong> Sulaimanyia<br />

area, NE-Iraq, , Journal <strong>of</strong> Iraqi Science, Vol. 5, No.1, pp.30-44.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

132<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Karim, K. H. <strong>and</strong> Surdashy, A. M., 2005b. Tectonic <strong>and</strong> depositional history<br />

<strong>of</strong> Upper Cretaceous Tanjero Formation <strong>in</strong> Sulaimaniya area NE-Iraq. JZS,<br />

Vol.8, No.1. pp. 47-62.<br />

Karim, K.H. <strong>and</strong> Surdashy, A. M., 2006. Sequence stratigraphy <strong>of</strong> Upper<br />

Cretaceous Tanjero Formation <strong>in</strong> Sulaimaniya area, NE-Iraq. KAJ, Vol.4.<br />

No.1.pp. 19-43.<br />

Karim, K.H. Sharbazheri, K. M. <strong>and</strong> Am<strong>in</strong>, B. M., 2007. Stratigraphic study<br />

<strong>of</strong> the contact between Kometan <strong>and</strong> Shiranish formation (Upper Cretaceous)<br />

Sulaimaniya Governorate, Kurdistan Region, NE- Iraq. Journal <strong>of</strong> geological<br />

society <strong>of</strong> Iraq Vol.39, No.1 (<strong>in</strong> press)<br />

Karim, S. A., 1975. Biostratigraphy <strong>of</strong> the Red Bed Series, Chwarta, NE-Iraq.<br />

Jour. Geol. Soc. Iraq, special issue, pp.147-156.<br />

Karim, S. A. <strong>and</strong> Jassim. S. Z., 1988. (issued <strong>in</strong> 1993) Biostratigraphy <strong>and</strong><br />

environmental reconstruction <strong>of</strong> the Paleocene Phosphatic sequence, Western<br />

Desert, Iraq. Journ. Geol. Soc. Iraq. Vol. 21, No.2, pp. 129-151.<br />

Kassab, A, S. <strong>and</strong> Keheila, E. A., 1994. Paleocene Biostratigraphy <strong>and</strong> sea<br />

level change <strong>of</strong> the Northern Eastern Desert <strong>of</strong> Egypt. Newsl. Stratigr. 31 (2),<br />

pp.85-100.Berl<strong>in</strong>. Stuttgart.<br />

Kassab, I. I. M., 1972. Ms. Micropaleontology <strong>of</strong> Upper Cretaceous –Lower<br />

Tertiary <strong>of</strong> north Iraq . Univ. london, Phd. Thesis, 310 p, 29pls, 18text-figes.,<br />

14 charts.<br />

Kassab, I. I. M., 1974a. The genus Heterohelix (Foram<strong>in</strong>iferida) from<br />

Northern. Iraq. Journal <strong>of</strong> Geological Society <strong>of</strong> Iraq, vol.VII, pp. 75-94<br />

Kassab, I. I. M., 1974b., Biostratigraphy <strong>of</strong> Upper Cretaceous – Lower Tertiary<br />

<strong>of</strong> North Iraq, v.1, Colloque Africaia de micropaleontology- Tunis.pp 277-325.<br />

Kassab, I. I. M., 1975a. Globotruncana falsocalcarata Kerdany <strong>and</strong><br />

Abdelsalam from northern Iraq. Micropaleontology, vol.21, no.3, pp. 346-351,2<br />

pls,2 figs.<br />

Kassab, I. I. M., 1975b. Biostratigraphic study <strong>of</strong> the subsurface Upper<br />

Cretaceous – Lower Tertiary <strong>of</strong> Well Injana No. 5, Northestern Iraq. Journal <strong>of</strong><br />

Geological Society <strong>of</strong> Iraq, Special issue, pp.181-199,2 pls, 5 figs.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

133<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Kassab, I. I. M., 1975c. Planktonic foram<strong>in</strong>ifera range <strong>in</strong> the type Tanjero<br />

Formation (Upper Campanian-Maastrichtian) <strong>of</strong> N. Iraq. Journal <strong>of</strong> Geological<br />

Society <strong>of</strong> Iraq, vol.8, pp.73-86, 2figs.<br />

Kassab, I. I. M., 1975d. The genus Globiger<strong>in</strong>elloides from Northern. Iraq.<br />

Journal <strong>of</strong> Geological Society <strong>of</strong> Iraq, vol.8 , pp. 8-105.<br />

Kassab, I. I. M., 1976a. Planktonic foram<strong>in</strong>iferal ranges <strong>in</strong> the type Kolosh<br />

Formation (Middle-Upper Paleocene) <strong>of</strong> NE Iraq. Journal <strong>of</strong> Geological Society<br />

<strong>of</strong> Iraq, vol.IX, pp. 54-99. 30 text- figs., 4 pls.<br />

Kassab, I. I. M., 1976b. Some Upper Cretaceous planktonic foram<strong>in</strong>iferal<br />

genera from northern Iraq. Micropaleontology, Vol .22, no.2, pp.215-238, pls.1-<br />

4.<br />

Kassab, I. I. M., 1978b. Planktonic foram<strong>in</strong>iferal <strong>of</strong> the subsurface Lower<br />

Tertiary <strong>of</strong> northern Iraq. Journal <strong>of</strong> Geological Society <strong>of</strong> Iraq, vol.11, pp. 119-<br />

159. 7 pls, 5 figs.<br />

Kassab, I. I. M. Al-Omari, F. S. <strong>and</strong> Al- Safawee, N. M., 1986. The<br />

Cretaceous – Tertiary <strong>boundary</strong> <strong>in</strong> Iraq (represented by the subsurface section<br />

<strong>of</strong> Sasan well No.1, N.W. Iraq) Journal <strong>of</strong> Geological Society, Iraq, vol.19,<br />

No.2, pp.129-167.<br />

Keller, G., 1988. Ext<strong>in</strong>ction survivorship <strong>and</strong> evolution <strong>of</strong> planktonic<br />

foram<strong>in</strong>ifera across the Cretaceous/Tertiary <strong>boundary</strong> at El Kef, Tunisia:<br />

Mar<strong>in</strong>e Micropaleontology. vol. 13, pp. 239-263.<br />

Keller, G., 1996. The Cretaceous – Tertiary Mass Ext<strong>in</strong>ction <strong>in</strong> planktonic<br />

foram<strong>in</strong>ifera: Biotic Constra<strong>in</strong>ts for catastrophe Theories. Cretaceous –<br />

Tertiary Mass Ext<strong>in</strong>ction: Biotic <strong>and</strong> Environmental Changes.by Norman<br />

MacLeod <strong>and</strong> Gerta Keller, W.W Norton Company, New York- London, pp. 49-<br />

84.<br />

Keller, G., 2001. The end-Cretaceous mass ext<strong>in</strong>ction <strong>in</strong> the mar<strong>in</strong>e realm:<br />

year 2000 assessment: Planetary <strong>and</strong> Space Science, V. 49, pp. 817-830.<br />

Keller, G., 2002. Guembelitria-dom<strong>in</strong>ated Late Maastrichtian planktonic<br />

foram<strong>in</strong>iferal assemblage mimics early Danian <strong>in</strong> central Egypt. Mar<strong>in</strong>e<br />

Micropaleontology.vol. 47, pp.129-167.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

134<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Keller, G., (2004). Low diversity, Late Maastrichtian <strong>and</strong> Early Danian<br />

planctonic foram<strong>in</strong>iferal assemblages <strong>of</strong> the eastern Tethys. Journal <strong>of</strong><br />

Foram<strong>in</strong>iferal Research, vol.34, no, 1, p.49-73.<br />

Keller, G. Li, L. <strong>and</strong> Maclleod, N., 1995. The Cretaceous/ Tertiary <strong>boundary</strong><br />

stratotype section at El Kef, Tunisia: how catastrophic was the mass<br />

ext<strong>in</strong>iction? Paleogeography. Paleoclimatology. Paleoecology. 199, pp 221-<br />

254.<br />

Khalil H. <strong>and</strong> Mashaly S., 2004. Stratigraphy <strong>and</strong> stage boundaries <strong>of</strong> the<br />

Upper Cretaceous <strong>and</strong> Lower Paleogene<br />

succession <strong>in</strong> Gabal Musaba<br />

salama area ,Southwestern S<strong>in</strong>ai Egypt. Egypt. Jour. Paleont. Vol.4, pp.1-38.<br />

Kuhnt, W. <strong>and</strong> Moullade, M., 1991. Quantitative analysis <strong>of</strong> Upper<br />

Cretaceous abyssal agglut<strong>in</strong>ated foram<strong>in</strong>iferal distribution <strong>in</strong> the north Atlantic<br />

–paleoceanographic implications. Revue De Micropaleontologie, Vol. 34, no.4,<br />

pp. 313- 349.<br />

Kuhnt, W., 1990. Agglut<strong>in</strong>ated foram<strong>in</strong>ifera <strong>of</strong> western Mediterranean Upper<br />

Cretaceous pelagic limestones (Umbrian Spenn<strong>in</strong>es, Italy, <strong>and</strong> Betic<br />

Cordillera, Southern Spa<strong>in</strong>). Micropaleontology. vol. 36, no. 4, pp. 297-330, 6<br />

pls.<br />

Kuhnt, W. <strong>and</strong> Kam<strong>in</strong>ski, M. A., 1997.Cenomanian to Lower Eocene Deep-<br />

Water agglut<strong>in</strong>ated foram<strong>in</strong>ifera from the Zumaya section, Northern<br />

Spa<strong>in</strong>.Annales Societatis Geologorum Poloniae, vol. 67, pp. 257-270.<br />

Lawa, F.A. Al-Karadakhi, A. I, Ismail, K. M., 1998. An <strong>in</strong>terf<strong>in</strong>ger<strong>in</strong>g <strong>of</strong> the<br />

Upper Cretaceous rocks from Chwarta-Mawat Region (NE-Iraq). Iraqi Geol.<br />

Journal, vol.31, no.2.<br />

Li, L. <strong>and</strong> Keller, G., 1998a. Maastrichtian climate, productivity <strong>and</strong> faunal<br />

turnover <strong>in</strong> planctonic foram<strong>in</strong>ifera <strong>in</strong> South Atlantic DSDP sites 525A <strong>and</strong> 21.<br />

Mar<strong>in</strong>e Micropaleontology. vol.33, pp.55-86.<br />

Li, L. <strong>and</strong> Keller, G., 1998b. Diversification <strong>and</strong> ext<strong>in</strong>ction <strong>in</strong> Campanian<br />

Maastrichtian planktonic foram<strong>in</strong>ifera <strong>of</strong> northwest Tunisia. Ecol. Geol.<br />

Helv.,91:pp 75-107.<br />

Lirer F., 2000 . A new technique for retriev<strong>in</strong>g calcareous micr<strong>of</strong>ossils from<br />

lithified lime deposits. Micropaleontology , Vol. 46, no. 4, pp.365-369.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

135<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Liu, C. <strong>and</strong> Olsson, R. K., 1992. Evolutionary radiation <strong>of</strong> microperforate<br />

planktonic foram<strong>in</strong>ifera follow<strong>in</strong>g the K/T mass ext<strong>in</strong>ction event. Journal <strong>of</strong><br />

foram<strong>in</strong>iferal research, vol.22, no. 4, pp 328-346.<br />

Liu, C. <strong>and</strong> Olsson, R. K., 1994. On the orig<strong>in</strong> <strong>of</strong> Danian normal perforate<br />

planktonic foram<strong>in</strong>ifera from Hedbergella. Journal <strong>of</strong> foram<strong>in</strong>iferal research,<br />

vol.24, no. 2, pp 61-74.<br />

Liu, C. Brown<strong>in</strong>g, J. V. Miller, K, G. <strong>and</strong> Olsson, R. K., 1997. Upper<br />

Cretaceous to Miocene planktonic foram<strong>in</strong>iferal Biostratigraphy: Results <strong>of</strong> leg<br />

150x, The NewJersey costal pla<strong>in</strong> drill<strong>in</strong>g project. Miller, K, G. <strong>and</strong> Snyder, S,<br />

W, (Eds) Proceed<strong>in</strong>g <strong>of</strong> the Ocean drill<strong>in</strong>g program, Scientific Resylts,<br />

Vol.150X, pp. 111-127.<br />

Loeblich, A. R. <strong>and</strong> Tappan, H., 1988. Foram<strong>in</strong>iferal genera <strong>and</strong> their<br />

Classification.Van Norstr<strong>and</strong> Re<strong>in</strong>hold Co., New York, 970 p. with 847 plates.<br />

Longoria,J. F., 1984. Cretaceous biochronology from the Gulf <strong>of</strong> Mexico<br />

region based on planktonic micr<strong>of</strong>ossils.Micropaleontology, vol. 30, no.3,<br />

pp.225-242.<br />

Longoria, J. F. <strong>and</strong> VonFeldt, A. E., 1991. Taxonomy, phylogenetics <strong>and</strong><br />

biochronology <strong>of</strong> s<strong>in</strong>gle-keeled globotruncanids (Genus Globotruncanita<br />

Reiss). Micropaleontology, vol. 37, no.2, pp197-243.<br />

Luger, P., 1988. Campanian to Paleocene agglut<strong>in</strong>ated foram<strong>in</strong>ifera from<br />

fresh water <strong>in</strong>fluenced marg<strong>in</strong>al mar<strong>in</strong>e (Deltaic) sediments <strong>of</strong> southern Egypt.<br />

Abh. Geol. B.-A. B<strong>and</strong> 41, pp. 255-263. With 3 figures <strong>and</strong> 2 plates.<br />

Lun<strong>in</strong>g, S. Kuss, J. Bachmann, M. Marzouk, A. M. <strong>and</strong> Morsi, A. M., 1998.<br />

Sedimentary response to bas<strong>in</strong> <strong>in</strong>version: Mid Cretaceous- Early Tertiary Preto<br />

syndeformational deposition at the Areif El Naqa anticl<strong>in</strong>e (S<strong>in</strong>ai, Egypt)<br />

Institut fur palaontologie der Universitat Erlangen-Nurnberg. Facies. 38,<br />

pp.103- 136, pl. 35-37, 12 figs.<br />

Ly, A. <strong>and</strong> Kuhnt, W., 1994. Late Cretaceous benthonic foram<strong>in</strong>iferal<br />

assemblages <strong>of</strong> the Casamance shelf (Senegal, NW Africa) <strong>in</strong>dication <strong>of</strong> the<br />

Late Cretaceous oxygen m<strong>in</strong>imum zone.Revue De Micropaleontologie, vol. 37,<br />

no. 2, pp. 49-74.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

136<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


MacLeod, N., 1996. Nature <strong>of</strong> the Cretaceous-Tertiary Planktonic<br />

Foram<strong>in</strong>iferal record: Stratigraphic Confidence Intervals, Signor-Lipps Effect,<br />

<strong>and</strong> Patterns <strong>of</strong> Survivorship. Cretaceous – Tertiary Mass Ext<strong>in</strong>ction: Biotic<br />

<strong>and</strong> Environmental Changes.by Norman MacLeod <strong>and</strong> Gerta Keller, W.W<br />

Norton Company, New York- London, pp. 85-138.<br />

Maestas, y. Macleod, K. G. Douglas, R. Self-Trail J. <strong>and</strong> Ward, P. D., 2003.<br />

Late Cretaceous Foram<strong>in</strong>ifera, Paleoenvironments, <strong>and</strong> Paleoceanography <strong>of</strong><br />

the Rosario Formation, San Antonio Del Mar, Baja California, Mexico. Journal<br />

<strong>of</strong> Foram<strong>in</strong>iferal Research, V.33, No. 3, pp. 179-191,<br />

Manc<strong>in</strong>i, E. A., 1984. Biostratigraphy <strong>of</strong> Paleocene strta <strong>in</strong> southwestern<br />

Alabama. Micropaleontology, Vol. 30, No. 3, pp. 268-291.<br />

Mart<strong>in</strong>es, R. J. I., 1989. Foram<strong>in</strong>iferal <strong>biostratigraphy</strong> <strong>and</strong> paleoenvironments<br />

<strong>of</strong> the Maastrichtian Colon mudstone <strong>of</strong> northern South America.<br />

Micropaleontology. vol. 35, no. 2 pp.97-113. Pl. 1.<br />

Masters, B., 1977. Oceanic Micropaleontology. Mesozoic planktonic<br />

foram<strong>in</strong>ifera. A. T. S. Ramsay (Edit) Academic press. London. Vol.1, pp 301-<br />

731., 7 Tables. 146 Figs., 58 pls<br />

Miller, K. Gradste<strong>in</strong>, F. M. <strong>and</strong> Berggren, W. A., 1982. Late Cretaceous<br />

Early Tertiary agglut<strong>in</strong>ated benthonic foram<strong>in</strong>ifera <strong>in</strong> the Labrdor Sea.<br />

Micropaleontology, vol. 28, no.1, pp 1-30, pls. 1-3.<br />

M<strong>in</strong>as, H. A. A., 1997. Sequence stratigraphic analysis <strong>of</strong> the Upper<br />

Cretaceous succession <strong>of</strong> Central <strong>and</strong> Northern Iraq. Unpubl. Ph. D. Thesis,<br />

Univ. Baghdad.188p.<br />

Mola<strong>in</strong>, E. Algret, L. Arnellas, I. <strong>and</strong> Arz, J.A., 2005. The Cretaceous /<br />

Paleocene <strong>boundary</strong> at the Agost section revisted: Paleoenvironmental<br />

reconstruction <strong>and</strong> mass ext<strong>in</strong>ction pattern. Journal <strong>of</strong> Iberian Geology .vol.<br />

31(1).2005.pp, 135-148.<br />

Mol<strong>in</strong>a, E. Arenillas, I. <strong>and</strong> Arz, J. A., 1996. The Cretaceous / Tertiary<br />

<strong>boundary</strong> mass ext<strong>in</strong>ction <strong>in</strong> planktonic foram<strong>in</strong>ifera at Agost, Spa<strong>in</strong>. Revue de<br />

Micropaleontologie, vol.39, pp. 225-243.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

137<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Mol<strong>in</strong>a, E. Arenillas, I. <strong>and</strong> Arz, J. A., 1998. Mass ext<strong>in</strong>ction <strong>in</strong> planktonic<br />

foram<strong>in</strong>ifera at the Cretaceous / Tertiary <strong>boundary</strong> <strong>in</strong> subtropical <strong>and</strong><br />

temperate latitudes:Bullet<strong>in</strong> Societe geologique de France, vol.169, no. 3, pp.<br />

351-363.<br />

Morlotti, E., 1988. Late Cretaceous flysch-type agglut<strong>in</strong>ated foram<strong>in</strong>ifera from<br />

the northern Italian Apenn<strong>in</strong>es. Abh. Geol. B.-A. B<strong>and</strong> 41, pp. 265-285.<br />

Munim, A. A., 1976 MS. Upper Cretaceous <strong>and</strong> Lower Tertiary planktonic<br />

foram<strong>in</strong>ifera <strong>of</strong> North Iraq, Dohuk area, Ustredni Ustav Geol .Praha. S.O.M.<br />

Unpubl. Report. Baghdad, 57 pp, 15 pls, 2 figs.<br />

Munim, A. A., <strong>and</strong> Said V. K., 1979. Micropaleontology <strong>and</strong> larger forams <strong>of</strong><br />

the Upper Cretaceous <strong>and</strong> Tertiary sediments <strong>of</strong> Arbil-Shaqlawa-Kois<strong>in</strong>jaq,<br />

Kaidr area, North Iraq, Direct. General. Geology. Surv. & M<strong>in</strong>es.<br />

Invest.Paleont. Dept. Baghdad. Unpublished.Rep.pp.1-109.<br />

Neagu, TH., 1987. White chalk foram<strong>in</strong>iferal fauna <strong>in</strong> southern Dobrogea<br />

(Romania). Revista Espanola De Micropaleontologia, Vol. XIX, Num. 2, pp.<br />

281-314.<br />

Nederbragt, A. J., 1991. Late Cretaceous <strong>biostratigraphy</strong> <strong>and</strong> development <strong>of</strong><br />

Heterohelicidae (planktonic foram<strong>in</strong>ifera).Micropaleontology. Vol. 37, No.4, pp.<br />

329-372.<br />

Nomura, R., 1995. Paleogene to Neogene deep-sea paleoceanography <strong>in</strong> the<br />

eastern Indian Ocean: Benthonic Foram<strong>in</strong>ifera from ODP Site 747,757<br />

<strong>and</strong>758.Micropaleontology, vol. 41, no.3, pp. 251-290, text-figures 1-17, plates<br />

1-4, tables 1-2, appendices 1-4.<br />

Norris, R. D., 1992. Umbilical structures <strong>in</strong> Late Cretaceous Planktonic<br />

foram<strong>in</strong>ifera. Micropaleontology, vol.38, no.2, pp 165-181.<br />

Obaidalla, N. A., 2005. Complete Cretaceous/Paleogene (K/P) <strong>boundary</strong><br />

section at Wadi Nukhul, southwestern S<strong>in</strong>ai, Egypt: <strong>in</strong>ference from planktonic<br />

foram<strong>in</strong>iferal <strong>biostratigraphy</strong>. Revue de Paleobiologic, Geneve (2005) Vol. 24.<br />

(1):pp 201-224.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

138<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Olsson, R. K. Hemleben, C. Berggren, W. A. Huber, B. <strong>and</strong> Members <strong>of</strong><br />

Paleogene planktonic foram<strong>in</strong>ifera work<strong>in</strong>g group., 2000. Atlas <strong>of</strong><br />

Paleocene Planktonic Foram<strong>in</strong>ifera.<br />

http://services.chronos.org/foramatlas/pages/home.htm. 281p, with 66 plates,<br />

2 charts.<strong>and</strong> 29 paleogeographic mapes.<br />

Olsson, R. K. Hemleben, C. Berggren, W. A. <strong>and</strong> Liu, C., 1992. Wall texture<br />

classification <strong>of</strong> planktonic foram<strong>in</strong>ifera Genera <strong>in</strong> the Lower Danian. Journal <strong>of</strong><br />

foram<strong>in</strong>iferal research, vol, 22. no.3, pp, 195-213.<br />

Olsson, R. K. Wright, J. D. <strong>and</strong> Miller, K. G., 2001.Paleobiogeography <strong>of</strong><br />

Pseudotextularia elegans dur<strong>in</strong>g the latest Maastrichtian global warm<strong>in</strong>g event.<br />

Jour.<strong>of</strong> foram. Research, vol, 31. no.3, pp, 275-282.<br />

Oszczypko, N. Malata, E. Bak, K. Kedzierski, M. <strong>and</strong> Oszczypko-Clowes,<br />

M., 2005. Lithostratigraphy <strong>and</strong> Biostratigraphy <strong>of</strong> the Upper Albian –<br />

Lower/Middle Eocene flysch deposits <strong>in</strong> the bystrica <strong>and</strong> Raca subunits <strong>of</strong> the<br />

Magura Nappe; Western flysch Carpathians (Beskid Wyspowy <strong>and</strong> Gorce<br />

Ranges, Pol<strong>and</strong>). Annales societatis Geologorum Poloniae, vol.75, pp. 27-<br />

69.with 28 figs.<br />

Pardo, A. Ortiz, N. <strong>and</strong> Keller, G., 1996. Latest Maastrichtian <strong>and</strong> Cretaceous<br />

–Tertiary Boundary Foram<strong>in</strong>iferal Turmover <strong>and</strong> Environmental Changes at<br />

Agost, Spa<strong>in</strong>. Cretaceous – Tertiary Mass Ext<strong>in</strong>ction: Biotic <strong>and</strong> Environmental<br />

Changes.<br />

by Norman MacLeod <strong>and</strong> Gerta Keller, W.W Norton Company, New York-<br />

London, pp. 139-171.<br />

Pearson, P. N., 1998. Evolutionary Concepts <strong>in</strong> Biostratigraphy. Unlock<strong>in</strong>g the<br />

stratigraphical record: Advanced <strong>in</strong> Modern Stratigraphy .Edited by P. Doyle<br />

<strong>and</strong> M. R. Bennett, John Wiley & Sons Ltd.<br />

Petrizzo, M. R., 2002. Paloceanographic <strong>and</strong> paleoclimatic <strong>in</strong>ferences from<br />

Late Cretaceous planktonic foram<strong>in</strong>iferal assemblages from the Exmouth<br />

Plateau (ODP Site 762 <strong>and</strong> 763, eastern Indian Ocean) Mar<strong>in</strong>e<br />

Micropaleontology, vol. 45, pp. 117-150.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

139<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Petters, S. W. EL-Nakhal, H. A. <strong>and</strong> Cifelli, R., 1983. Costellager<strong>in</strong>a, A new<br />

Late Cretaceous Globiger<strong>in</strong>a Foram<strong>in</strong>iferal Genus. Journal <strong>of</strong> Foram<strong>in</strong>iferal<br />

Research, vol.13, no.4, pp. 247-251.<br />

Poag, C. W. <strong>and</strong> Commeau, J. A., 1995. Paleocene to Middle Miocene<br />

planktonic foram<strong>in</strong>ifera <strong>of</strong> the southwestern Salisbury embayment, Virgenia<br />

<strong>and</strong> Maryl<strong>and</strong>: Biostratigraphy, allostratigraphy, <strong>and</strong> sequence stragraphy.<br />

Journal <strong>of</strong> Foram<strong>in</strong>iferal Research, vol.25, no.2, pp.134-155.<br />

Postuma. J, A., 1971. Manual <strong>of</strong> planktonic foram<strong>in</strong>ifera. 5: Mesozoic<br />

Planktonic Foram<strong>in</strong>ifera. A world-wide review <strong>and</strong> anlysis. Elsevier Publ. Co.,<br />

Amsterdam. 420p, 24 Figs., 162pls.<br />

Premoli Silva, I, <strong>and</strong> Sliter, W, V., 1981. Cretaceous planktonic foram<strong>in</strong>ifera<br />

from the<br />

Nauru Bas<strong>in</strong> Leg 61 site 469, Western equatorial Pasific Initial<br />

reports <strong>of</strong> the DSDP, LXI, Wash<strong>in</strong>gton, pp 423-437.<br />

Premoli Silva, I. <strong>and</strong> Sliter,W. V., 1995. Cretaceous planktonic foram<strong>in</strong>iferal<br />

<strong>biostratigraphy</strong> <strong>and</strong> evolutionary trends from the Bottaccione section. Gubbio,<br />

Italy: Paleontographia Italica.v. 82. pp 1-89.<br />

Premoli Silva, I. <strong>and</strong> Sliter, W. V., 1999. Cretaceous Paloceanography:<br />

Evidence from planktonic foram<strong>in</strong>iferal evolution, <strong>in</strong> Barrera, geological society<br />

<strong>of</strong> America Special Paper 332, pp 301-328.<br />

Premoli Silva, I. Spezzaferi. S. <strong>and</strong> D Angelantonio A., 1998. Cretaceous<br />

foram<strong>in</strong>iferal bio-isotope stratigraphy <strong>of</strong> Hole 967E <strong>and</strong> Paleogene planktonic<br />

foram<strong>in</strong>iferal <strong>biostratigraphy</strong> <strong>of</strong> Hole 966E, Eastern Mediterranean. Robertson,<br />

A, H, F., Emeis, K.C., Richter, C., <strong>and</strong> Camerlenghi, A. (Eds) Proceed<strong>in</strong>gs <strong>of</strong><br />

Ocean Drill<strong>in</strong>g program, Scientific Result, Vol. 160, pp 377-394.<br />

Quilty, P. G. Shafik, S. Jenk<strong>in</strong>s, C. J. <strong>and</strong> Keene, J. B., 1997. An Early<br />

Cenozoic (Paleocene) foram<strong>in</strong>iferal fauna with Fabiania from <strong>of</strong>fshore eastern<br />

Australia. Alcher<strong>in</strong>ga, an Australian Journal <strong>of</strong> Paleontology, Vol.21, no. 3-4,<br />

pp. 299-315.<br />

Radoicic, R., 1995. A contribution to the Cretaceous Biostratigraphy <strong>of</strong> Kaolos<br />

area, NE Iraq. Ann, Geol, Pen<strong>in</strong>s. Balk. 59. 1, pp. 27-52.<br />

Raffo, S. S. D., 1989. Planktonic foram<strong>in</strong>ifera <strong>and</strong> <strong>biostratigraphy</strong> <strong>of</strong> Aaliji<br />

Formation <strong>and</strong> nature <strong>of</strong> the contact with Shiranish Formation <strong>in</strong> Mushorah<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

140<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


well No 1, Northwest Iraq. Unpublished MSc. thesis, University <strong>of</strong> Mosul,<br />

Moysl-Iraq.140p.(<strong>in</strong> Arabic)<br />

Robaszynski, F., Caron, M., Gonzalez, D. J. M. <strong>and</strong> Wonders, A. A. H.,<br />

1983-1984. Atlas <strong>of</strong> Late Cretaceous Globotruncanids Revue de Microp., 26,<br />

3-4, pp145-305.<br />

Rodriguez, G. F. Bustamente, S. B. <strong>and</strong> Fluegeman, Jr. R. H., 1999.<br />

Paleocene –Eocene planktonic foram<strong>in</strong>iferal Biostratigraphy <strong>of</strong> western Cuba.<br />

Micropaleontology, Vol.45, supplement 2, pp. 27-42.<br />

Sa<strong>in</strong>ta-Marc, P. <strong>and</strong> Berggren, W. A., 1988.<br />

Aquantitative analysis <strong>of</strong><br />

Paleocene benthonic foram<strong>in</strong>iferal assemblages <strong>in</strong> central Tunisia. Journal <strong>of</strong><br />

foram<strong>in</strong>iferal Research, vol.18, no.2, pp. 97-113, pl. 1-4.<br />

Salaj, J., <strong>and</strong> Solakius, N., 1984. The genus Kassabiana Salaj, 1983 from the<br />

uppermost Maastrichtian <strong>of</strong> Tunssia. Con, J, Earth, Sci, Vol. 21, pp.1114-1204.<br />

Salsj, J.. 1986. The Cretaceous <strong>and</strong> Paleocene sections <strong>of</strong> Tunisia proposed<br />

as the hypostratotypes <strong>and</strong> their correlation with planktonic zones <strong>of</strong> Libya.<br />

Journal <strong>of</strong> Geological Socity <strong>of</strong> Iraq, Vol. 18, No. 1mpp. 38 -54.<br />

Samir, A. M., 2002. Biostratigraphy <strong>and</strong> paleoenvironmental changes <strong>in</strong> the<br />

upper Cretaceous-Early Paleogene deposits <strong>of</strong> Gabal Samara section,<br />

Southwestern S<strong>in</strong>ai, Egypt. Egypt. Jour. Paleontol., Vol. 2, pp. 1-40.<br />

Shaaban, M. N. A., 1997. Stable isotop stratigraphy across the K/T <strong>boundary</strong><br />

<strong>and</strong> isotopic <strong>in</strong>vestigations <strong>of</strong> an Ignored Worm Bed, Eastern Desert,<br />

Egypt.Facies, vol. 37, pp. 137-146.<br />

Shah<strong>in</strong>, A., 1992. Contribution to the Foram<strong>in</strong>iferal <strong>biostratigraphy</strong> <strong>and</strong><br />

paleobathymetry <strong>of</strong> the Late Cretaceous <strong>and</strong> Early Tertiary <strong>in</strong> the western<br />

central S<strong>in</strong>ai, Egypt .Revue de micropaleontology. Vol.35, No.2, pp 157-175.<br />

Sharbazheri, K. M., 2007a. Ag<strong>in</strong>g <strong>of</strong> Unconformity with<strong>in</strong> Tanjero Formation <strong>in</strong><br />

Chwarta Area<br />

Science , Vol. 7, No.1, pp. 37-54.<br />

Northeast <strong>of</strong> Iraq (Kurdistan Region). Rafida<strong>in</strong> Journal <strong>of</strong><br />

Sharbazheri, K. M., 2007b. Planktonic foram<strong>in</strong>iferal <strong>biostratigraphy</strong> <strong>of</strong> the<br />

Upper Cretaceous Reddish to Pale brown succession from Smaquli Area,<br />

Northeast Iraq (Kurdistan Region) Iraqi Bullet<strong>in</strong> <strong>of</strong> Geology <strong>and</strong> M<strong>in</strong><strong>in</strong>g. State<br />

company <strong>of</strong> geological survey <strong>and</strong> m<strong>in</strong><strong>in</strong>g. In press.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

141<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Sissakian, V. K., 2000. Geological map <strong>of</strong> Iraq. Sheets No.1, Scale<br />

1:1000000, State establishment <strong>of</strong> geological survey <strong>and</strong> m<strong>in</strong><strong>in</strong>g. GEOSURV,<br />

Baghdad, Iraq.<br />

Sliter, W. V., 1999. Cretaceous foram<strong>in</strong>iferal Biostratigraphy <strong>of</strong> the Calera<br />

Limestone, Northern California, USA. . Journal <strong>of</strong> Foram<strong>in</strong>iferal Research,<br />

vol.29, no.4, pp.318-339.<br />

Smit, J., 2005. The section <strong>of</strong> Barranco del Gredero (Caravaca, SE Spa<strong>in</strong>):<br />

acrucial section for the Cretaceous/Tertiary <strong>boundary</strong> impact ext<strong>in</strong>ction<br />

hypothesis. Journal <strong>of</strong> Iberian Geology, vol. 31, pp. 179-191.<br />

Solakius, N. <strong>and</strong> Salaj, J., 1986. Anew Kassabiana species from the upper<br />

most Maastrichtian <strong>of</strong> northeastern Tunsia. Revista Espanola de<br />

Micropaleontologia, Vol.XVIII, Num.1, pp.71-77.<br />

Speijer, R. P. Schmitz, B. <strong>and</strong> Luger, P., 2000. Stratigraphy <strong>of</strong> Late<br />

Paleocene events <strong>in</strong> the Middle East: implication for low-to middle-latitude<br />

successions <strong>and</strong> correlations. Journal <strong>of</strong> Geological Society, London, Vol. 157,<br />

pp. 37-47.<br />

Speijer, R. P., 2003. Systematic <strong>and</strong> <strong>paleoecology</strong> <strong>of</strong> the foram<strong>in</strong>ifer<br />

Neoeponides duwi (Nakkady) from the Paleocene <strong>of</strong> Egypt.<br />

Micropaleontology. Vol. 49, No.2, pp 146-150, text-figures 1, plates. 1.<br />

St<strong>in</strong>nesbeck, W. Keller, G. Adatte, T. Hart<strong>in</strong>g, M. Stuben, D. Istrate, G. <strong>and</strong><br />

Kramar, U., 2004: Yaxcopoil-1 <strong>and</strong> the Chicxulub impact .International Jour.<strong>of</strong><br />

Sciences, GR Geologische Rundschau.10.1007/s00531-004-431-6<br />

http://www.geo.vu.nl/users.smit/forums, html/fulltext,html.<br />

Sultan, M. A. <strong>and</strong> Mohammad, H. M., 1997.The topographic development <strong>of</strong><br />

the Paleocene –Eocene Depositional bas<strong>in</strong> <strong>in</strong> the Northern <strong>and</strong> Central part <strong>of</strong><br />

Iraq. Iraqi Geological Journal, Vol.30, no.2, pp.1- 7. ( In Arabic)<br />

Thomas, F. C., 1988.Taxonomy <strong>and</strong> stratigraphy <strong>of</strong> selected Cenozoic<br />

benthonic foram<strong>in</strong>ifera , Canadian Atlantic marg<strong>in</strong>. Micropaleontology, vol.34,<br />

no. 1, pp. 67-82.pls.1-2.<br />

Tibert, N. E. <strong>and</strong> Leckie, R. M., 2004. High-resolution estuar<strong>in</strong>e sea level<br />

cycles from the Late Cretaceous: Amplitude constra<strong>in</strong>ts us<strong>in</strong>g agglut<strong>in</strong>ated<br />

foram<strong>in</strong>ifera. Journal <strong>of</strong> foram<strong>in</strong>iferal research, vol.32, no. 2, pp.130-143.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

142<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


Uchman, A. Bubik, M. <strong>and</strong> Mikulas, R., 2005. The ichnological record across<br />

the Cretaceous/Tertiary <strong>boundary</strong> <strong>in</strong> turbiditic sediments at Uzgrun (Moravia<br />

Czech Republic). Geologica Carpathica, vol.56, pp. 57-65.<br />

Van Der Zwaan, g. Jorissen, F., <strong>and</strong> Stigter, H., 1990. The depth<br />

dependency <strong>of</strong> planktonic/Benthonic foram<strong>in</strong>iferal ratios: Constra<strong>in</strong>s <strong>and</strong><br />

application. Mar<strong>in</strong>e Micropaleontology, Vol. 95, pp. 1-16.<br />

Vergara, L. Rodriguez G. <strong>and</strong> Mart<strong>in</strong>ez, I., 1997. Agglut<strong>in</strong>ated foram<strong>in</strong>ifera<br />

<strong>and</strong> sequence stratigraphy from the CHipaque Formation (Upper Cretaceous)<br />

<strong>of</strong> El Crucero section, Colombia, South America. Micropaleontology. Vol.43,<br />

No.2, pp 185-201, text-figures 1-6, plates. 1-2<br />

Volat, J-L. Hugo, B. <strong>and</strong> Bignoumba - Ilogue, J., 1996. Arenaceous<br />

foram<strong>in</strong>ifera from the Late Cretaceous <strong>of</strong> Gabon. Bullet<strong>in</strong>, Centres,<br />

Derecherches. Exploration, Production, Elf Aquita<strong>in</strong>e. Vol.20, no.1, pp. 230-<br />

275.<br />

Widmark, J. G. V. <strong>and</strong> Malmgren, B., 1992. Benthonic foram<strong>in</strong>iferal changes<br />

across the Cretaceous-Tertiary <strong>boundary</strong> <strong>in</strong> the deep sea; DSDP Sites 525,<br />

527, <strong>and</strong> 465. Journal <strong>of</strong> foram<strong>in</strong>iferal research, vol. 22, no. 2, pp. 81-103.<br />

pdfMach<strong>in</strong>e<br />

A pdf writer that produces quality PDF files with ease!<br />

143<br />

Produce quality PDF files <strong>in</strong> seconds <strong>and</strong> preserve the <strong>in</strong>tegrity <strong>of</strong> your orig<strong>in</strong>al documents. Compatible across<br />

nearly all W<strong>in</strong>dows platforms, simply open the document you want to convert, click “pr<strong>in</strong>t”, select the<br />

“Broadgun pdfMach<strong>in</strong>e pr<strong>in</strong>ter” <strong>and</strong> that’s it! Get yours now!


EXPLANATION OF THE PLATES<br />

PLATE -1<br />

Scale bar represents magnification on the specimens<br />

Figs 1- 3 Globotruncanita stuartiformis. (Dalbiez). 1- spiral view, 2- umbilical view,<br />

3- side view, Reddish to pale brown succession, Early Maastrichtian, Smaquli,<br />

Specimen from G, gansseri Zone<br />

Figs 4-5 Globotruncanita conica. (White). 4- spiral view, 5- umbilical view,<br />

Reddish to pal brown succession, Early Maastrichtian, Smaquli,<br />

Specimen from C. contuza Zone<br />

Figs 6-8 Contusotrancana contusa. (Cushman). 6- spiral view, 7- side view,<br />

8- umbilical view, reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from C. contuza Zone<br />

Fig 9 Racemiguembel<strong>in</strong>a fructicusa. (Egger) .Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Fig 10 Racemiguembel<strong>in</strong>a powelli. Smith&Pessango, reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Fig 11 Gubler<strong>in</strong>a cuvillieri. Kiko<strong>in</strong>e, Reddish to pal brown succession, Early<br />

Maastrichtian, Smaquli, Specimen from Contusotruncana contusa Zone<br />

Fig 12 Pseudotextularia elegans. (Rzehak). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone


PLATE -2<br />

Scale bar represents magnification on the specimens<br />

Figs. 1-3 Gansser<strong>in</strong>a gansseri (Bolli). 1- spiral view, 2- side view,<br />

3- umbilical view, Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from G., gansseri Zone<br />

Figs. 4-6 Gansser<strong>in</strong>a wiedenmayeri (G<strong>and</strong>olfi). 4- side view , 5- spiral view,<br />

6- umbilical view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from G. gansseri Zone<br />

Figs. 7-8 Contusotrancana plicata (White). 7- umdilical view, 8 spiral view.<br />

Reddish to pal brown succession, Early Maastrichtian, Smaquli,<br />

Specimen from G. gansseri Zone<br />

Fig. 9 Pseudotextularia <strong>in</strong>termedia De Klasz . Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Sample from P. <strong>in</strong>termedia Zone<br />

Figs. 10-12 Globotruncana aegyptiaca Nakkady.10- spiral view, 11- umbilical view,<br />

12- side view, Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone


PLATE -3<br />

Scale bar represents magnification on the specimens<br />

Figs. 1-3 Contusotruncana fornicata. (Plumer). 1-umdilical view, 2- spiral view,<br />

3- side view, Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from G. gansseri Zone<br />

Figs. 4-6 Globotruncanita stuarti. (De Lapparent). 4- side view, 5- spiral view,<br />

6- umdilical view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone<br />

Figs. 7-9 Globotruncana orientalis. El-Naggar. 7- spiral view, 8- side view,<br />

9- umbilical view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from P. hariaensis Zone<br />

Figs. 10-12 Globotruncanita pettersi. (G<strong>and</strong>olfi). 10- umbilical view , 11-side view,<br />

12- spiral view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from G. gansseri Zone


PLATE -4<br />

Scale bar represents magnification on the specimens<br />

Figs. 1-3 Globotruncana ventricosa. White. 1- spiral view, 2- umbilical view,<br />

3- side view. Reddish to pal brown succession, Early Maastrichtian, Smaquli,<br />

Specimen from G. gansseri Zone<br />

Figs. 4-5 Globotruncana arca. (Cushman). 4- side view, 5- spiral view,<br />

Reddish to pal brown succession, Early Maastrichtian, Smaquli,<br />

Specimen from R. fructicusa Zone<br />

Fig. 6 Guembelitria dammula. (Volosh<strong>in</strong>a). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Sample from P. hariaensis Zone<br />

Figs. 7-9 Globotruncana bulloides. Vohgler . 7- spiral view, 8- umbilical view,<br />

9- side view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from Gtr. aegyptiaca Zone<br />

Figs.10-12 Globotruncanita angulata. Tilev. 10- umbilical view, 11 spiral view,<br />

12- side view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from G. gansseri Zone


PLATE -5<br />

Scale bar represents magnification on the specimens<br />

Figs.1-2 Globotruncana dupeublei. Caron, Gonzalez, Donoso, Robaszynski &<br />

wonders.1- side view, 2- spiral view,. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G.gansseri Zone<br />

Fig. 3 Globotruncana rosetta. (Carsey). umbilical view, Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from P. <strong>in</strong>termedia Zone<br />

Fig. 4 Abathomphalus <strong>in</strong>termedius. (Bolli) , umbilical view, reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from C. contusa Zone<br />

Fig. 5 Globotruncana falsostuarti. Sigal, side view, Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Fig. 6 Globotruncana <strong>in</strong>signis. G<strong>and</strong>olfi, umbilical view, Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig.7 Globotruncana mariei. Banner&Blow, umbilical view, Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Figs. 8-9 Globiger<strong>in</strong>elloides volutes. (White), 8- umbilical view, 9- peripheral view.<br />

Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen<br />

from G. gansseri Zone<br />

Figs. 10-12 Rugoglobiger<strong>in</strong>a rugosa. (Plummer), 10- umbilical view, 11- side view,<br />

12- spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli<br />

, Specimen from R. fructicusa Zone


PLATE -6<br />

Scale bar represents magnification on the specimens<br />

Figs. 1-3 Rugoglobiger<strong>in</strong>a milamensis. Smith & Pessagno.1- umbilical view,<br />

2- side view, 3- spiral view. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Figs. 4-6 Rugoglobiger<strong>in</strong>a hexacamerata. Bronnimann. 4- umbilical view,<br />

5- spiral view, 6- side view, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Figs.7-9 Rugoglobiger<strong>in</strong>a macrocephala. Bronnimann. 7- umbilical view,<br />

8- spiral view, 9-. side view, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Figs. 10-11 Rugoglobiger<strong>in</strong>a rotundata. Bronnimann. 10- umbilical view,<br />

11- spiral view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone<br />

Fig. 12 Planoglobul<strong>in</strong>a acervul<strong>in</strong>oides. (Egger). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone


PLATE -7<br />

Scale bar represents magnification on the specimens<br />

Fig. 1 Heterohelix globulosa.(Ehrenberg). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 2 Heterohelix striata. (Ehrenberg). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 3 Heterohelix nauttalli. (Voorwijk). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 4 Heterohelix globulosa. (Ehrenberg) reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 5 Heterohelix punctulata. (Cushman), Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 6 Heterohelix reussi . (Cushman). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Figs. 7-8 Globotruncanella havanensis. (Voorwijk), 7- spiral view,<br />

8- umbilical view , Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone<br />

Fig. 9 Globotruncanella pschadae. (Keller), spiral view. Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Figs.10-12 Globotruncanella petaloidia. (G<strong>and</strong>olfi), 10- side view,<br />

11- umbilical view, 12- spiral view. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone


PLATE -8<br />

Scale bar represents magnification on the specimens<br />

Fig. 1 Pseudotextularia deformis. (Kiko<strong>in</strong>e). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 2 Pseudogumbel<strong>in</strong>a costulata. (Cushman). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from P. <strong>in</strong>trmidia Zone<br />

Fig. 3 Pseudotextularia elegans. (Rzehak). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Figs. 4-6 Rugoglobiger<strong>in</strong>a pennyi. Bronnimann, 4- spiral view, 5- umbilical view,<br />

6- side view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone<br />

Figs.7-9 Rugotruncana subcircumnodifer. (G<strong>and</strong>olfi), 7- umbilical view,<br />

8- spiral view, 9- side view. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Figs. 10-11 Rugotruncana circumnodifer. F<strong>in</strong>lay, 10- spiral view,<br />

11- umbilical view. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone<br />

Fig. 12 Globotruncanita Sp. Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli, Specimen R. fructicusa Zone


PLATE -9<br />

Scale bar represents magnification on the specimens<br />

Fig. 1 Hedbergella monmuthensis (Olsson). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 2 Globiger<strong>in</strong>elloides prairiehillensis Pessango. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from P. <strong>in</strong>termedia Zone<br />

Fig. 3 Globiger<strong>in</strong>elloides multisp<strong>in</strong>ata (Lalicker), Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from C.contusa Zone<br />

Fig. 4-6 Kugler<strong>in</strong>a rotundata (Bronnimann). 4- umbilical view, 5- side view,<br />

6- spiral view. Tanjero Formation, Late Maastrichtian, Smaquli,<br />

Specimen from P. hariaensis Zone<br />

Fig. 7 Archaeoglobiger<strong>in</strong>a carteri (Kassab). Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from P. <strong>in</strong>termedia Zone<br />

Fig. 8-9 Costellager<strong>in</strong>a cf. bulbosa Belford, 8- spiral view, 9- umbilical view ,<br />

Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from<br />

P. hariaensis Zone<br />

Fig. 10-12 Hedbergella monmuthensis (Olsson), 10- umbilical view, 11- Side view,<br />

12- spiral view, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen<br />

from P.hariaensis Zone<br />

.


PLATE -10<br />

Scale bar represents magnification on the specimens<br />

Fig. 1 Lenticul<strong>in</strong>a gunderbookaensis. Cresp<strong>in</strong>. Shiranish Formation, Late Campanian-<br />

Early Maastrichtian, Smaquli. Specimen from Glt.aegyptiaca Zone.<br />

Fig. 2 Lenticul<strong>in</strong>a navicula. ( d Orbigny). Shiranish Formation, Late Campanian-<br />

Early Maastrichtian, Smaquli. Specimen from Glt.aegyptiaca Zone .<br />

Fig. 3 Gavel<strong>in</strong>ella micra. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Figs. 4 Ool<strong>in</strong>a apiculata. Reuss, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

.<br />

Figs. 5 Coryphostomata midwayensis. (Cushman) Shiranish Formation, Late Campanian-<br />

Early Maastrichtian, Smaquli. Specimen from Glt.aegyptiaca Zone .<br />

Figs. 6 Dental<strong>in</strong>oides sp., Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Figs. 7, 8 Ammodiscus preuvianus. Berry, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 9 Spiroplectam<strong>in</strong>a laevis. (Roemer), Shiranish Formation, Late Campanian-<br />

Early Maastrichtian, Smaquli Specimen from Glt.aegyptiaca Zone .<br />

Fig.10,11 Boliv<strong>in</strong>a <strong>in</strong>crassata. Reuss, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 12 Cibicidoides excavata. Brotzen, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone


PLATE -11<br />

Scale bar represents magnification on the specimens<br />

Fig. 1,2 Gyroid<strong>in</strong>a girardana. (Reuss), Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 3 Dorothia sp. Shiranish Formation, Late Campanian- Early Maastrichtian,<br />

Smaquli. Specimen from Glt.aegyptiaca Zone.<br />

Fig. 4 Pullenia qu<strong>in</strong>queloba ( Reuss). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Sample from G. gansseri Zone<br />

Figs. 5 Lenticul<strong>in</strong>a navicula. (d Orbigny). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Figs. 6,7 Cibicides subcar<strong>in</strong>atus Cushman&Deaderi. Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Figs. 8,9 Paralabam<strong>in</strong>a hillebr<strong>and</strong>ti. (Fisher) Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Fig. 10 Clavul<strong>in</strong>oides globulifera. Ten Dam & Sigal, Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig, 11 Boliv<strong>in</strong>oides draco. ( Marson). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 12 Boliv<strong>in</strong>oides miliaris . Hilterman & Koch, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone


PLATE -12<br />

Scale bar represents magnification on the specimens<br />

Fig. 1 Nodosaria m<strong>in</strong>or. Hantken, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Fig. 2 Dorothia retusa. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Fig. 3 Globorotalites sp. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Figs. 4 Lagena hispida Reuss. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Figs. 5 Dorothia smokynensis Wall. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Figs. 6 Lenticul<strong>in</strong>a sp. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Fig. 7 Dorothia roseta, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone<br />

Fig, 8 Palliolatella sp. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from C.contusa Zone<br />

Fig. 9 Lagena sp, Reddish to pal brown succession, Early Maastrichtian,<br />

Smaquli. Specimen from C.contusa Zone<br />

Fig. 10 ,11 Cibicidoides dayi (White) Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from P.<strong>in</strong>termedia Zone<br />

Fig. 12 Saracenaria navicula (d Orbigny) Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from P.<strong>in</strong>termedia Zone


PLATE -13<br />

Scale bar represents magnification on the specimens<br />

Fig. 1, 2 Praebulim<strong>in</strong>a laevis. (Beissel) , Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from P.<strong>in</strong>termedia Zone<br />

Fig. 3 Ool<strong>in</strong>a globosa.(Montagu) Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from P.<strong>in</strong>termedia Zone<br />

Fig. 4 Gyroid<strong>in</strong>oides subangulatus. (Plummer) Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from P.<strong>in</strong>termedia Zone<br />

Figs. 5 Nodosaria cf. limbata d , Orbigny. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from P.<strong>in</strong>termedia Zone<br />

Figs. 6 Marsonella oxycona (Reuss). Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from P.<strong>in</strong>termedia Zone<br />

Figs. 7 Ammodiscus cretaceus (Reuss). Tanjero Formation, Late Maastrichtian,<br />

Smaquli. Specimen from R. fructicusa Zone<br />

Fig. 8 Dental<strong>in</strong>oides canul<strong>in</strong>a. Marie, Tanjero Formation, Late Maastrichtian,<br />

Smaquli. Specimen from R. fructicusa Zone<br />

Fig, 9 Ool<strong>in</strong>a apiculata. Reuss, Tanjero Formation, Late Maastrichtian,<br />

Smaquli. Specimen from R. fructicusa Zone<br />

Fig. 10 Dental<strong>in</strong>a <strong>in</strong>ornata. (d , Orbigny), Tanjero Formation, Late Maastrichtian,<br />

Smaquli. Specimen from R. fructicusa Zone<br />

FIG. 11 Gyroid<strong>in</strong>oides globosus. (Hagenow) Tanjero Formation, Late Maastrichtian,<br />

Smaquli. Specimen from R. fructicusa Zone<br />

Fig. 12 Praebulim<strong>in</strong>a carseyae (Plummer) Tanjero Formation, Late Maastrichtian,<br />

Smaquli. Specimen from P.hariaensis Zone


PLATE -14<br />

Scale bar represents magnification on the specimens<br />

Fig. 1, 2 Noneonella <strong>in</strong>secta. (Schwager), Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone<br />

Fig. 3 Gyroid<strong>in</strong>oides globosus. (Hagenow) ,Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from P.hariaensis Zone<br />

Fig. 4,5 Gaudryna pyramidata. Cushman, Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from R. fructicusa Zone<br />

Figs. 6 Gaudryna pyramidata. Cushman,., Shiranish/Tanjero<br />

Smaquli, Specimen from C.contusa Zone<br />

transition unit,<br />

Figs. 7 Pullenia jarvisi. Cushman, Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from P.hariaensis Zone<br />

Figs. 8 Dental<strong>in</strong>a elegans. d Orbigny, Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from P.hariaensis Zone<br />

Fig. 9 Textularia astutia. Lalicker ., Tanjero Formation. Smaquli,<br />

Specimen from P.hariaensis Zone<br />

Fig, 10 Pleurostomella subnodosa. (Reuss), Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from C.contusa Zone<br />

Fig. 11 Boliv<strong>in</strong>oides sp. Tanjero Formation, Late Maastrichtian,<br />

Smaquli,. Specimen from P.hariaensis Zone<br />

Fig. 12 Ellipsodimorph<strong>in</strong>a sp. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone


PLATE -15<br />

Scale bar represents magnification on the specimens<br />

Fig 1 Lenticul<strong>in</strong>a muennsteri. Tanjero Formation, Late Maastrichtian, Kato,<br />

Specimen from R. fructicusa Zone<br />

Fig 2 Ammosphaeroid<strong>in</strong>a pseudopauciloculata (Mjatliuk) Tanjero Formation, Late<br />

Maastrichtian, Qishlagh, Specimen from P. hariaensis Zone<br />

Fig 3 Omphalocyclus macroporus (Lamarck), Tanjero Formation , Late Maastrichtian,<br />

Kato, Specimen from R. fructicusa Zone<br />

Fig 4 Orbitoides medius (d archaic), Tanjero Formation , Late Maastrichtian, Kato ,<br />

Specimen from R. fructicusa Zone<br />

Figs. 5,6 Cibicides subcar<strong>in</strong>atus Cushman & deaderi. Tanjero Formation, Late<br />

Maastrichtian, Kato, Specimen from R. fructicusa Zone<br />

Figs. 7, 8 Osangularia navarrana (Cushman). Tanjero Formation, Late Maastrichtian<br />

Kato, Specimen from R. fructicusa Zone<br />

Fig. 9 Ne<strong>of</strong>labell<strong>in</strong>a rugosa. (d Orbigny). Tanjero Formation, Late Maastrichtian,<br />

Dokan, Specimen from R. fructicusa Zone<br />

Figs. 10 pullenia jarvici Cushman. Tanjero Formation, Late Maastrichtian, Kato,<br />

Specimen from P. hariaensis Zone<br />

Fig. 11 Praebulim<strong>in</strong>a quadrata. Tanjero Formation, Late Maastrichtian, Kato,<br />

Specimen from P. hariaensis Zone<br />

Fig. 12 Ammodiscus cretaceus (Reuss). Tanjero Formation Late Maastrichtian, Kato<br />

, Specimen from R. fructicusa Zone<br />

Fig. 13 Spiroplectam<strong>in</strong>a sp. Tanjero Formation, Early Maastrichtian, Kato, Specimen from<br />

G. gansseri Zone<br />

Fig. 14 Dorothia crassa, Tanjero Formation, Late Maastrichtian, Kato, Specimen<br />

from R. fructicusa zone<br />

Figs. 15, 16 Globotruncanan gagneb<strong>in</strong>i Tilev. Late Maastrichtian, Kato, Specimen<br />

From P. hariaensis Zone


PLATE -16<br />

Scale bar represents magnification on the specimens<br />

Figs 1-3 Abathomphalus mayaroensis (Bolli) . 1, 2 spiral view, 3 umbilical view,<br />

Tanjero Formation, Late Maastrichtian. Dokan, Specimen from<br />

R. fructicosa Zone<br />

Figs 4, 5 Pseudoguembel<strong>in</strong>a costulata (Cushman), Tanjero Formation, Late Maastrichtian,<br />

Sirwan, Specimen from P. hariaensis Zone<br />

Fig 6 Pseudoguembel<strong>in</strong>a hariaensis. Nederbragt. Tanjero Formation, Late Maastrichtian.<br />

Dokan, Specimen from P. hariaensis Zone<br />

Figs 7, 8 Pseudoguembel<strong>in</strong>a palpebra. Bronnimann & Brown. . Tanjero Formation, Dokan,<br />

Specimen from P. palpebra Zone<br />

Fig 9 Laeviheterohelix glabrans (Cushman) Tanjero Formation, Late Maastrichtian.<br />

Sirwan, Specimen from P. hariaensis Zone<br />

Figs 10, 11 Pseudoguembel<strong>in</strong>a excolata (Cushman) Tanjero Formation, Late Maastrichtian.<br />

Sirwan, Specimen from P. hantken<strong>in</strong>oides Zone<br />

Fig 12 Plummerita hantken<strong>in</strong>oides (Bronnimann). Tanjero Formation Late Maastrichtian<br />

Dokan, Specimen from P. hantken<strong>in</strong>oides Zone


PLATE -17<br />

Figs 1- 3 Globotruncana aegyptiaca Nakkady, 100X, 1- Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone, 2&3 Tanjero<br />

Formation, Late Maastrichtian, Dokan, Specimen from R. fructicusa Zone<br />

Figs 4-5 Globotruncana l<strong>in</strong>neiana (d Orbigny), 100X,Shiranish Formation, Late Campanian-<br />

Early Maastrichtian, Smaquli, Specimen from Globotruncana aegyptiaca Zone.<br />

Fig 6 Globotruncana ventricosa White. 100X. Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Figs 7-9 Globotruncana arca. (Cushman). 100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Fig 10-12 Globotruncana bulloides , Vohgler,100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Fig 13-15 Globotruncana orientalis. El-Naggar, 100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.


PLATE -18<br />

Figs 1-2 Globotruncana falsostuarti. Sigal, 100X, 1- Tanjero Formation, Late<br />

Maasrtichtian, Dokan, Specimen from R. fructicusa Zone, 2- Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Fig 3 Globotruncana lapparenti. Brotzen.100X, Shiranish Formation, Late Campanian-<br />

Early Maastrichtian, Smaquli, Specimen from Globotruncana aegyptiaca Zone.<br />

Figs. 4-6 Globotruncana dupeublei. Caron, Gonzalez, Donoso, Robaszynski & wonders,<br />

100X, Tanjero Formation, Late Maastrichtian, 4&5- Smaquli, Specimen from<br />

R. fructicusa Zone, 6-Sirwan. Specimen from P. hariaensis Zone.<br />

Figs. 7-8 Globotruncana rosetta (Carsey).100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from P. <strong>in</strong>termedia Zone .<br />

Fig. 9-11 Contusotrancana falsocalcarata. Kerdany & Abdelsalam, 100X, Tanjero<br />

Formation. Late Maastrichtian, 9-Smaquli, 10-Dokan, 11-Serwan, Specimen from<br />

Plummerita hantken<strong>in</strong>oides Zone.<br />

Figs. 12-14 Gansser<strong>in</strong>a gansseri (Bolli), 100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone .<br />

Fig 15 Gansser<strong>in</strong>a wiedenmayeri (G<strong>and</strong>olfi),100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.


PLATE -19<br />

Figs. 1 Gansser<strong>in</strong>a wiedenmayeri (G<strong>and</strong>olfi), 100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa Zone.<br />

Figs. 2-5 Globotruncanita stuarti. (De Lapparent).100X, 2&3- Shiranish Formation, Late<br />

Campanian- Early Maastrichtian, Smaquli, Specimen from Globotruncana aegyptiaca<br />

Zone, 4&5- Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen<br />

from G. gansseri Zone.<br />

Figs. 6-8 Globotruncanita stuartiformis. (Dalbiez).100X, 6-Tanjero Formation, Late<br />

Maastrichtian, Kato, Specimen from R. fructicusaZone. 7- Tanjero Formation, Late<br />

Maastrichtian, Dokan, Specimen from R. fructicusaZone. 8- Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from R. fructicusaZone.<br />

Figs 9-13 Globotruncanita conica White, 100X, 9&10 -Tanjero Formation, Late<br />

Maastrichtian, Dokan, Specimen from R. fructicusaZone.11- Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from R. fructicusaZone. 12&13- Tanjero Formation,<br />

Late Maastrichtian, Qishlagh, Specimen from R. fructicusaZone<br />

Fig 14 Globotruncanita pettersi, G<strong>and</strong>ulfi.100X, Tanjero Formation, Late Maastrichtian,<br />

Sirwan, Specimen from R. fructicusaZone.<br />

Fig 15 Globotruncanita angulata, Tilev. Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from R. fructicusaZone.


PLATE -20<br />

Figs 1-3 Contusotruncana fornicata (Plumer).100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa Zone.<br />

Figs 4-5 Contusotrancana patelliformis (Gondolfi), 100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa Zone.<br />

Figs 6-9 Contusotrancana contusa (Cushman), 100X, 6&7- Tanjero Formation, Late<br />

Maastrichtian, Sirwan, Specimen from P. hariaensis Zone. 8- Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa<br />

Zone. 9-Tanjero Formation, Late Maastrichtian, Dokan, Specimen from P. hariaensis<br />

Zone.<br />

Figs 11-12 Contusotrancana walfischensis. Todd, 100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from P. hariaensis Zone.<br />

Figs 10, 13, 14 Contusotrancana sp. 100X, Tanjero Formation, Late Maastrichtian, Smaquli,<br />

Specimen from P. hariaensis Zone.<br />

Figs 15 Contusotrancana plicata White.100X, Tanjero Formation, Late Maastrichtian,<br />

Smaquli, Specimen from P. hariaensis Zone.


PLATE -21<br />

Figs 1-2 Abathomphalus mayaroensis (Bolli), 100X, 1- Tanjero Formation, late<br />

Maastrichtian, Smaquli, Specimen from R. fructicusa Zone.2- Tanjero Formation, late<br />

Maastrichtian, Sirwan, Specimen from P. hariaensis Zone.<br />

Figs 3-5 Abathomphalus <strong>in</strong>termedius. (Bolli), 100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli Specimen, from R. fructicosa Zone<br />

Fig 6 Globotruncanella pschadae, (Keller), 100X, Tanjero Formation, Late<br />

Maastrichtian, Sirwan, Specimen from P. hariaensis zones,<br />

Figs 7-8 Globotruncanella petaloidea (G<strong>and</strong>olfi).100X, Tanjero Formation, Late<br />

Maastrichtian,7- Smaquli, 8- Sirwan, Specimen from P. hariaensis Zone.<br />

Fig 9 Globotruncanella havanensis (Voorwijk), 100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from R. fructicosa zones,<br />

Figs10-12 Plummerita hantken<strong>in</strong>oides (Bronnimann), 100X, Tanjero Formation, Late<br />

Maastrichtian, 10-Sirwan,11- Dokan, 12- Smaquli, Specimen from Plummerita<br />

hantken<strong>in</strong>oides Zone.,<br />

Figs 13-14 Archaeoglobiger<strong>in</strong>a cretacea. (d Orbigny)100X, , Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Fig 15 Archaeoglobiger<strong>in</strong>a blowi. Pessango,100X, Reddish to pal brown succession, Early<br />

Maastrichtian, Smaquli, Specimen from G. gansseri Zone.


PLATE -22<br />

Fig 1 Archaeoglobiger<strong>in</strong>a blowi. Pessango, 100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Figs 2-5 Rugoglobiger<strong>in</strong>a rugosa. (Plummer), 100X, Tanjero Formation, late<br />

Maastrichtian, 2&3-Dokan, 4&5-Sirwan, Specimen from P.haiaensis Zone.,<br />

Figs. 6 Rugoglobiger<strong>in</strong>a macrocephala. Bronnimann.100X, Tanjero Formation, Late<br />

Maastrichtian, Sirwan, Specimen from P. hariaensis Zone.<br />

Figs. 7 Rugoglobiger<strong>in</strong>a pennyi Bronnimann, 100X, Tanjero Formation, late Maastrichtian,<br />

Dokan, Specimen from P.hariaensis Zone<br />

Fig 8 Rugoglobiger<strong>in</strong>a reicheli .Bronnimann.100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from P. hariaensis Zone.<br />

Figs. 9-11 Rugoglobiger<strong>in</strong>a hexacamerata. Bronnimann. 100X, Tanjero Formation, Late<br />

Maastrichtian, 9- Dokan, 10-Qishlagh,11-Smaquli, Specimen from R. fructicusa Zone<br />

Fig 12 Rugoglobiger<strong>in</strong>a rotundata Bronnimann.100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from P. hariaensis Zone.<br />

Fig 13 Rugotruncana subcircumnodifer ( G<strong>and</strong>olfi), 100X, Reddish to pal brown<br />

succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Fig. 14-15 Hedbergella monmuthensis (Olsson), 100X, Tanjero Formation, Late<br />

Maastrichtian, 14- Sirwan, 15-Dokan, Specimen from Plummerita hantken<strong>in</strong>oides<br />

Zone.


PLATE -23<br />

Fig. 1 Globiger<strong>in</strong>elloides multisp<strong>in</strong>a .(Lalicker), 100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.<br />

Fig 2 Globiger<strong>in</strong>elloides subcar<strong>in</strong>ata.(Bronnimann, 100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from P. hariaensis Zone.<br />

Fig. 3 Globiger<strong>in</strong>elloides ultramicra.(Subbot<strong>in</strong>a),100X, Reddish to pal brown succession,<br />

Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone<br />

Fig. 4 Pseudotextularia <strong>in</strong>termedia (De Klasz). 100X, Tanjero Formation, Late<br />

Maastrichtian, Sirwan, Specimen from P. hariaensis Zone.<br />

Figs 5-6 Pseudotextularia elegans. (Rzehak),100X, Tanjero Formation, Late<br />

Maastrichtian, Dokan, Specimen from P .hariaensis Zone.<br />

Figs 7-8 Racemiguembel<strong>in</strong>a fructicosa (Egger) , 100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from R. fructicusa Zone<br />

Fig. 9 Planoglobul<strong>in</strong>a acervul<strong>in</strong>oides (Egger). 100X, Tanjero Formation, Late<br />

Maastrichtian, Dokan, Specimen from P. hariaensis Zone.<br />

Fig. 10 Heterohelix nauttalli (Voorwijk), 100X, Reddish to pal brown succession, Early<br />

Maastrichtian, Smaquli, Specimen from G gansseri Zone<br />

Fig. 11 Heterohelix globulosa (Ehrenberg),100X, Tanjero Formation, Late<br />

Maastrichtian, Dokan, Specimen from P .hariaensis Zone.<br />

Fig. 12 Heterohelix punctulatus (Cushman),100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from R. fructicusa Zone.<br />

Fig 13 Tr<strong>in</strong>itella scotti. Bronnimann, 100X, Tanjero Formation, late<br />

Maastrichtian, Smaquli, Specimen from Plummerita hantken<strong>in</strong>oides Zone.<br />

Fig. 14 Kugler<strong>in</strong>a rotondata (Bronnimann). 100X, Tanjero Formation, Late<br />

Maastrichtian, Smaquli, Specimen from Plummerita hantken<strong>in</strong>oides Zone<br />

Fig 15 Globotruncanella sp.100X, Tanjero Formation, Late Maastrichtian, Smaquli,<br />

Specimen from Plummerita hantken<strong>in</strong>oides Zone


PLATE -24<br />

Scale bar represents magnification on the specimens<br />

Figs 1-4 Subbot<strong>in</strong>a trilocul<strong>in</strong>oides (Plummer), 1: side view. 2, 4: spiral view. 3: umbilical<br />

view, Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1b) Subbot<strong>in</strong>a<br />

trilocul<strong>in</strong>oides-Globanomal<strong>in</strong>a compressa/Praemurica <strong>in</strong>constans Zone<br />

Figs 5-8 Subbot<strong>in</strong>a trivals (Subbot<strong>in</strong>a), 5: umbilical view. 6: side view. 7, 8: spiral view,<br />

Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá)<br />

Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 9-14 Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a (Luterbacher & Premoli Silva). 9, 10 : spiral<br />

view, 11, 14 : side view, 12,13 : umbblical view. Early Paleocene, Kolosh Formation,<br />

Smaquli, Specimen from (Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 15-17 Woodr<strong>in</strong>g<strong>in</strong>a claytonensis Loeblich & Tappan, Early Paleocene, Kolosh<br />

Formation, Smaquli, Specimen from (Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 18, 19 Chilogumbel<strong>in</strong>a morsei (Kl<strong>in</strong>e) Early Paleocene, Kolosh Formation, Smaquli,<br />

Specimen from (P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides<br />

Zone<br />

Fig 20 Chilogumbel<strong>in</strong>a midwayensis (Cushman), Early Paleocene, Kolosh Formation,<br />

Smaquli, Specimen from (P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a<br />

trilocul<strong>in</strong>oides Zone


PLATE -25<br />

Scale bar represents magnification on the specimens<br />

Figs 1-6 Parasubbot<strong>in</strong>a aff pseudobulloides (Olsson et al). 1, 4, 5: spiral view, 2: side<br />

view, 3,6 :umbilical view, Early Paleocene, Kolosh Formation, Smaquli, Specimen<br />

from (Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 7-10 Parasubbot<strong>in</strong>a pseudobulloides (Plummer), 7: side view, 8, 10: umbilical view<br />

9: spiral view, Early Paleocene, Kolosh Formation, Dokan, Specimen from<br />

(P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone<br />

Figs 11-16 Praemurica taurica (Morozova), 11: spiral view. 12, 16: side view. 13-15<br />

umblical view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from<br />

(Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 17-18 Parvularugoglobigir<strong>in</strong>a extensa (Blow), 17: umbilical view. 18: spiral view,<br />

Early Paleocene, Kolosh Formation, Smaquli, Specimen from(Pá)<br />

Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 19-20 Globoconusa daubjergensis (Bronnimann), spiral view, Early Paleocene,<br />

Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigir<strong>in</strong>a<br />

eugub<strong>in</strong>a Zone


PLATE -26<br />

Scale bar represents magnification on the specimens<br />

Figs 1-5, 19-20 Eoglobiger<strong>in</strong>a simplicissima Blow, 1, 4, 19: spiral view. 2: side view.<br />

3, 5, 20: umbilical view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from<br />

(Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 6-10 Eoglobiger<strong>in</strong>a eobulloides Morozova, 6, 8: side view. 7, 9: umbilical view.<br />

10: spiral view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from<br />

(Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 11-15 Eoglobiger<strong>in</strong>a edita (Subbot<strong>in</strong>a), 11: spiral view. 12, 13:umbilical view.<br />

14-15: side view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from<br />

(Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Fig 16 Parvularugoglobigir<strong>in</strong>a extensa (Blow), spiral view, Early Paleocene, Kolosh<br />

Formation, Smaquli, Specimen from (Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 17-18 Guembelitria cretacea Cushman, Early Paleocene, Kolosh Formation,<br />

Smaquli, Specimen from (Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone


PLATE -27<br />

Scale bar represents magnification on the specimens<br />

Figs 1-5 Globanomal<strong>in</strong>a archaeocompressa (Blow), 1, 3: spiral view.2, 4: umbilical<br />

view. 5: side view, Early Paleocene, Kolosh Formation, Dokan, Specimen from<br />

(P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone<br />

Figs 6-11 Globoconusa daubjergensis (Bronnimann), 6, 9: umbilical view. 7, 10 <strong>and</strong> 11:<br />

spiral view. 8: side view, Early Paleocene Kolosh Formation, Smaquli, Specimen from,<br />

(Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Figs 12-13 Hedbergella monmouthensis (Olsson), 12: spiral view. 13: umbilical view,<br />

Early Paleocene Kolosh Formation, Smaquli, Specimen from,<br />

(Pá) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a Zone<br />

Fig 14 Rectoguembel<strong>in</strong>a cretacea Cushman, Early Paleocene, Kolosh Formation, Dokan,<br />

Specimen from(P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone<br />

Fig 15 Ellipsonodosaria plumerae (Cushman). Early Paleocene, Kolosh Formation, Dokan,<br />

Specimen from(P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides<br />

Zone<br />

Fig 16 Ne<strong>of</strong>labell<strong>in</strong>a delicatissima (Plummer), Early Paleocene, Kolosh Formation, Dokan,<br />

Specimen from (P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides<br />

Zone<br />

Fig 17 spiroplectam<strong>in</strong>a dentata (Alth), Early Paleocene, Kolosh Formation, Dokan,<br />

Specimen from (P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone<br />

Fig 18 Pseudonodosaria appressa Loeblich & Tappan, Early Paleocene, Kolosh Formation,<br />

Dokan, Specimen from (P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a<br />

trilocul<strong>in</strong>oides Zone<br />

Fig 19 Boliv<strong>in</strong>oides delicates Cushman, Early Paleocene, Kolosh Formation, Dokan,<br />

Specimen from (P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone<br />

Fig 20 Boliv<strong>in</strong>oides sp. Early Paleocene, Kolosh Formation, Dokan, Specimen from<br />

(P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone<br />

Fig 21 pseudonodosaria sp. Early Paleocene, Kolosh Formation, Dokan, Specimen from<br />

(P1a) Parvularugoglobigir<strong>in</strong>a eugub<strong>in</strong>a- Subbot<strong>in</strong>a trilocul<strong>in</strong>oides Zone


Ħçĥōì<br />

ħŎ¹<br />

ħºĥō±ħĤѵĪ¼ĤÊìģŎ¯<br />

ħĤÊīŇĤ¼ĤÊì<br />

»êĪīĥð<br />

ħÎ<br />

ħō<br />

ħ¹Ė<br />

ħôëŇÔĪ¼ðËÕōëµ»ĪīÕõō<br />

ħĜ»ê<br />

ħ¯ĪËĤ<br />

¼Ĥ˵<br />

ħĨ¼ĤËġŇĝð<br />

ħĨ±łļ»êīµËÎĢËÕðæêīµ¼ġņê<br />

ĒÊëŇĈ¼Ôŋ<br />

<br />

<br />

ħĠËĤ<br />

ħō<br />

ħµ<br />

<br />

ħµóŇª<br />

ĦĪÊëµò<br />

ħÎ<br />

ħÈ<br />

ħĠīÝĤ<br />

ĦĪ¼ĤËġŇĝð»ŃĤÊìÓñĤÊ컲ŇĜѵ¼Ĥ<br />

Ė<br />

ħÎ<br />

ħÔ¼ęŇô<br />

ħµĪÊĪ<br />

ħĜê<br />

ħŎÕñōĪÊçŇª<br />

ħμĤ˵<br />

Ħæ<br />

ħĝª¼ĤËĥŇĨÓð<br />

<br />

ħĐ»<br />

ħñĜ<br />

ħĐ<br />

<br />

ħĜÊêŃÕµæ<br />

Êæ¼ÜŃĜŃŎÜ»êÊīÎ<br />

<br />

ħĜ<br />

ħōĸ<br />

Ģ<br />

<br />

»Ľņ±ËÎêËôěŎĈËġðÊæīġáĠçĜËä<br />

<br />

ħÕðËĠ<br />

ħĜê<br />

ĿøīĠ»ŃĤÊìÊæ¼ÜŃĜŃŎܼÕñĤÊì<br />

<br />

<br />

ħĜ<br />

ħðëņ±<br />

ħªê<br />

¼Õôê<br />

<br />

êīđČæīġáĠæËġĈæ¼ġŎĉĥĜÊçġáĠçġàÊĢËāáĔæ<br />

ĦçōêËō»êŃñŎĐłĽª<br />

Ħæ<br />

ĦçōêËō»êŃñŎĐłĽªê<br />

Ħæ<br />

ê<br />

<br />

<br />

<br />

ħÎ<br />

¼ĥōÊìĞĦ ĪĪæ¼ĤīĤ˵»æêīµ¼ŀËðêËÏĤÊëĐ


ħÕäīª<br />

ħÎĪêĪĦ æ Ī¼ĤËġŇĝð¼Ĥ˵ħ¯ĪËĤħĜ<br />

ħλê<br />

ħÏōËÔ<br />

ħȼÔ<br />

ħ¹ĽÎĪ<br />

µ<br />

ħĤËōë§ħ<br />

ħµ»<br />

ħĜ<br />

<br />

ħð<br />

Ħì»ĪĪļê<br />

Ħæ»Ī<br />

ħµê<br />

ħĥō²ņīÔĪĢĪīÔĪ<br />

ĦĪ<br />

ħµ<br />

ħĜĢËō<br />

ħð<br />

ħÈê<br />

ĦæĦĪÊêæĞËÝĤ<br />

ħµ<br />

ħĤĪ<br />

<br />

ħĥŇÕõª<br />

ħ¯»<br />

ĦĪËĠ<br />

ħÎËŎ¯»<br />

Ħìê<br />

ħ¯ĪËĤ¼Ĥ˵<br />

ħĥŇÕõªĪ¼ŀĪīĔËġðĪĢ˵Īæ»<br />

ħλ<br />

¼ōÊê<br />

ĦëŎÝĤì<br />

ħÎËŎ¯<br />

ħō<br />

ĦĪī¯Êçµ<br />

ħÎĪĢ˵<br />

ħð<br />

ħōê<br />

ĦĪÊìäÊçµ<br />

ħ¯ĪËĤ¼Ĥ˵<br />

ħĔ¼Ĥ˵<br />

ĪĢĸŃ¯ŋ<br />

ħÎ<br />

ħÝĤìê<br />

ĦĪĢÊĪëŎð¼ŀłæĪ<br />

ħÈ<br />

ħĤ˯ĪËĤĞ<br />

Ħæ²ņêæ<br />

ħĥÎ<br />

ĦĪ<br />

ĦæĪ<br />

ħÎģŇõµ<br />

ħÕðÊļËÈ<br />

»<br />

ħð<br />

ħĨ±łļ»ĪêÊīäŃÎÊĪËȱłļ»ĪĪê<br />

ħÎÒŋ<br />

ħÎ<br />

ħŎōÊê<br />

ħÔ¼µ<br />

ħÔĪ´ōìĤĪ¸Ĥ<br />

ħÎÍōê<br />

¼ŁŇĨ<br />

ħĨ»êĪīĥð<br />

ĒÊëŇĈĪĢÊëŇȼÔŋĪĪĪæê<br />

ħÈ<br />

ħĥō²ņīÔĞ<br />

ĦĪ<br />

ħō<br />

ħÏōËÔ<br />

ħġÔ<br />

ħŎōçĤ<br />

ĦæêĪĪ¼µ<br />

Ħæ»ê˵<br />

ħÕņë¹<br />

ħĜ»Ńä<br />

ħð<br />

ħµê<br />

Ħë§<br />

<br />

ĦĪīÕõŎĤ<br />

ħĤÊīŇĤ¼Ĥ˵<br />

ħλêĪīĥð¼ŁŇĨ<br />

ħō<br />

ħ¹³<br />

ħĥŎ¯¼ĥÕõō<br />

ħµ<br />

ħōë§<br />

ħĨ¼Ĥ˵<br />

Īæê<br />

ħð<br />

Ħæê<br />

ħôëŇÔĪ¼ðËÕōëµ¼ĤËĠ<br />

ħµ»ê<br />

Ħæ<br />

ħ¹<br />

ħÕņļ<br />

ħÔŃÎĦĪ<br />

ħĠ<br />

ħĤ<br />

ĦĪêÊīä¼Ĥ˵<br />

ħð<br />

ê<br />

ħĤÊīŇĤ<br />

ħÔ¼ŁŇĨ<br />

ħĠ<br />

ħô¼Ĥ<br />

ħŀËðĢŃŎĝĠÛĥŇªĪÓð<br />

Ħì»Ń¹»ĪĪ²ŇĠ»<br />

ħµ»Ī<br />

ÊçōËŎÔ<br />

ħ¹»êËĤÊļŃ¹<br />

ĦêĪ<br />

ħÎ<br />

ħð<br />

Ħì»Ń¹»ĪĪļê<br />

ħĜÒËĨÊçōĪ<br />

ħĜ»ĪĪļ<br />

¼ĤÊĽÎÊĪæĪĢĪī¯ĪËĤ<br />

ħÎêĪĪì<br />

ħĠѵ¼Ĥī°ŇÔĪĢÊêÊçĤËŎ¹»<br />

ħŀ<br />

ħºĥō±<br />

ħŎō<br />

ħȼĤ˵<br />

ħÎËðĪ<br />

ħÈ»ŃĨ<br />

ħōêËĤÊļŃ¹Ī<br />

<br />

ħ¹<br />

ĦêĪ<br />

ħō<br />

ħµ»<br />

ħÎ<br />

ħð<br />

ħµê<br />

ħĨĪò<br />

Ħì»ÊĪ<br />

ÒËĨÊæ»Ī<br />

ħÈ<br />

ħōĪ<br />

ħµ<br />

ħµ<br />

ħōë§<br />

ħĤÊĪīÕõŎĤ<br />

ħµ»<br />

ħĥō²ņīÔ<br />

ĦĪ<br />

ħµ<br />

ħĜĢËō<br />

ħð<br />

ħÈê<br />

ĦĪÊêæĞËÝĤ<br />

ħÎ<br />

<br />

ħĜģņæėŇª¼Õõ¹<br />

ħĥŎ¯<br />

ħÕõŎĤ<br />

ħŎĤ<br />

ħÎ<br />

ħōÊĪĪæ<br />

ĦĪīÔËĨ˵<br />

ħµFlyschóŇĝĐ»êŃܼĤ˵<br />

<br />

ħĜ<br />

ħÎ<br />

Ħæê<br />

ħåōì<br />

ħŎŀ<br />

ĦĪĢĪīÎÓðĪêæ¼ŎĤËŎĠ»êŃܼĤ˵<br />

ħĥŎ¯³<br />

ħµ<br />

ħōë§<br />

¼Ĥ˵<br />

ħÝĤËÔ<br />

łê<br />

ħĜòŃŀѵĪ<br />

ħĤ˪<br />

ħ¹ĽÎ<br />

ħ¹¼Ĥ˵<br />

ħŀīĔĪ¼Ĝ<br />

ħÔËĩŇªĢËōĢÊĪëŎð¼ŀłæĪ<br />

ħμĤ˵<br />

Ħæê<br />

<br />

ħµFlysch - MolasseîŋŃĠŃÎóŇĝĐ¼åōì<br />

ħÈ<br />

ĦæóŎĠ<br />

ħ¹<br />

ħÕņļ<br />

ĦĪ<br />

ħĥŎ¯ŃÎ<br />

<br />

ħµ<br />

ħōë§<br />

ħÝĤËÔ¼Ĥ˵<br />

ħµŃÎłê<br />

Ħë§<br />

ĦëŎÝĤì¼Ĥ˵<br />

ħĥŎ¯<br />

ĦêĪīð<br />

ĢËōRed Bed¼Ĥ˵<br />

ħĠѵ<br />

ħŀ<br />

īð»<br />

ħĜïņ<br />

ħĤ˪<br />

ħ¹ĽÎ<br />

ħ¯ĪËĤ»<br />

ħµ»<br />

ĦĪĪīÔ<br />

ĊŌõĔ<br />

ħĜ<br />

Ħ±łĽªĞ<br />

ħĥō²ņīÔ<br />

ĦĪ<br />

ħō<br />

ħÎÊê漺Ĥë¹Êæ<br />

ħĥŎŀŃŇĜ<br />

ĦĪ<br />

ħÕŎôĪ<br />

ħōĸ¼Ĥæ뵾<br />

ħĤ<br />

<br />

ĦêËōæËĤ<br />

ħȼĤ˵<br />

ħµĪ<br />

Ħë§<br />

ħĤÊĪīÕõŎĤ<br />

ħµ<br />

ħĜ<br />

ĦĪ<br />

ħĤóŇª<br />

ĦĪÊëµ<br />

ħÎæīäËō<br />

Ī<br />

ħŎōêËōæêĪĪ<br />

<br />

ħÈ<br />

ħĤĞËÝĤ<br />

ĦĪÊêæ<br />

ħĜ<br />

ħµ»ĪĪļ<br />

ħĥōë§<br />

ĦçĥōìLithostratigraphy¼ĤÊìģŎ¯<br />

ģŎ¯<br />

ĦĪBiostratigraphy¼ĤÊì<br />

ħĤæëµĢĪĪļ<br />

ĦĪ<br />

ħĥÕõŎĤ¼ÕôĪĪëð»êËλ<br />

ģō±<br />

ħ¹<br />

ħŎō<br />

<br />

ħō<br />

ħĤѵ<br />

ĦĪPaleoenvironmental depositionĢ˵<br />

ħºĥō±¼ÕôĪëð<br />

ħĤѵ<br />

Ģ˵<br />

ĦĪPaleoenvironment<br />

ħÎContact¼ŁŇĨħĤÊīŇĤ<br />

ħō<br />

ħ¹Ė<br />

ħµ¼ĥÕõō<br />

Ħë§<br />

¼Ĥ˵<br />

ħð<br />

Ħæê<br />

ħôëŇÔĪ¼ðËÕōëµ¼Ġ<br />

ħĜ»ê<br />

ħÔËĩŇª»ĪĪļ<br />

ħµ»<br />

ħĤĪīλêŃÜĪ»ë§<br />

ĦĪ<br />

Ħê<br />

<br />

ħÎ<br />

ħÎ<br />

ĦĪīÎæê<br />

ĦĪĢ˵<br />

ħÔ¼Ĥæëµ»êËōæ<br />

ħĠ<br />

ħȼÜŃĜŃŎܼĤ<br />

ħµĪ<br />

摤<br />

ħĤ<br />

ħÈĪ<br />

ħÎĪĢÊçĠËÝĤ<br />

<br />

ħĜ»ĪĪļ¼ĤĪī¯ÊæÊĪæ<br />

ħō<br />

ħÔÊĪ»ìÊĪËŎÜĪĢĪī°µ<br />

ħÎ<br />

ħĜĢæëµæêĪÊê<br />

ħð<br />

¼ÕðËÈê


ħ¯ĪËĤ<br />

ħȼĤËĩŎÜĪ¼ō<br />

ħĠ<br />

ĦĪò<br />

ĦĪĖ<br />

ħĤÊçĠŋ<br />

ĦĪ<br />

ħō<br />

ħÈŃÎĖ<br />

ħĤËĤĪī¯ŃÎĪêËŎðëªĪ<br />

ħµ»<br />

<br />

Ħæ<br />

ħµ<br />

ħĤĪ<br />

ħō˵<br />

ħõҵ»<br />

ħĥŎŀŃŇĜĪ<br />

ĦĪ<br />

ħðĪ<br />

ħĜæêĪĪ¼ÝĤê<br />

ħÈ<br />

ħȼĠËÝĤ<br />

ħĤËĥō²ņīÔĪ<br />

ĦĪ<br />

<br />

ħµ<br />

ħÈ<br />

ĦĪÊêæĞËÝĤ<br />

ħĨĢËōĪ<br />

ħĨòËÕñŇÈËÔ<br />

ħÎê<br />

Ħæê<br />

ħĠÊĪ<br />

ħĜĪ<br />

ĦëÎ<br />

ħōÊæĪ<br />

ħĜ<br />

ħōĸ<br />

ħĠѵĢ<br />

ėŇŀ<br />

ħĜ<br />

Ħ²ņīÔ<br />

Ħê<br />

ĦĪ<br />

ħµĪ<br />

ħμĤËð<br />

ħĜËĤÊīÔ<br />

ĦĪĪļĞ<br />

ĦĪ<br />

ħĜ<br />

ħð<br />

ħ¯ĪËĤ¼ÕðËÈê<br />

ħµ<br />

ĦæĪ<br />

Ħê<br />

ĦĪ<br />

»<br />

ħĥŎŀŃŇĜóŎĔÊëŇĈ<br />

ĦĪ<br />

ħō<br />

ħÈÌËōËĤĪæêĪĪ¼µ<br />

ĦĪÊêæĞËÝĤ<br />

ħĜ<br />

ħð<br />

ħµê<br />

Ħë§<br />

ħĜ¼ĤÊìĥŎ¯<br />

Ī<br />

ħµ<br />

ħĤÊë§<br />

ħµ»<br />

Ħæ<br />

ħµê<br />

ħĜĢĪīÔĪ<br />

ħð<br />

Ħì»ĪĪļê<br />

ħÎŃλĪ<br />

ħōÊĪæ<br />

ĦĪīÔËĨ˵<br />

ħð¼Ĥ˵<br />

Ħê<br />

ĦĪ<br />

»<br />

ħμðËÕōëµ<br />

ħð¼ô<br />

ĦĪĦ ê<br />

ħÔËĩŇª»<br />

ħÝĤËÔ»<br />

ħĜłê<br />

ħĤ˪<br />

ħ¹ĽÎ<br />

ħŀīĔ¼Ĥ˵<br />

ĪĊŌõĔĪ<br />

ħµ<br />

ĦĪĢÊĪëŎð¼ŀłæĪīÔ<br />

ħĨ<br />

ĦĪê<br />

ħÎËĨ<br />

ħōÊĪæ<br />

ĦĪīÔËĨ˵<br />

ĦêÊīä¼Ĥ˵<br />

ĦĪ<br />

ħôëŇÔ»<br />

ħλê<br />

¼ô<br />

ĦêÊīä<br />

ĦĪ<br />

ħÔËĩŇª»<br />

ĦëŎÝĤìĪòŃŀѵ»<br />

ħĥŎ¯<br />

ĦêĪīð<br />

ïņīð¼Ĥ˵<br />

ĦĪ<br />

ħÈ<br />

ħōĪ<br />

ħµ<br />

ħµ<br />

ħĤËōë§<br />

ħµ»<br />

ħŎŀŃŇĜ<br />

ĦĪ<br />

ħĜĢËō<br />

ħð<br />

ħÈê<br />

ħĜĦĪÊêæĞËÝĤ<br />

ħĤ˪<br />

ħ¹ĽÎ<br />

»<br />

ħ¹<br />

ħ¯ĪËĤ¼Ĝ<br />

ħĜģŎÕōëμŀĪīĔËġð»<br />

ħÎ<br />

ħð¼ô<br />

Ħê<br />

ĦĪ<br />

ħÔËĩŇª»<br />

ħōóĤÊëŎô»<br />

ħµ<br />

»<br />

Ħìņī¹<br />

Ħê<br />

ĦĪ<br />

ħĤÊīŇĤ»<br />

ħÎ<br />

ħÝĤËÔŃÎóĤÊëŎô»çĤ<br />

Shiranish Tanjero transition unitłê<br />

ħÔËĩŇª<br />

ħÝĤËÔ»<br />

ĦĪłê<br />

ħÎ<br />

ĦêÊīä¼ô<br />

ĦĪ<br />

ħÔËĩŇª»<br />

ħĜòŃŀѵ»<br />

ħĥō²ņīÔĞ<br />

ōĦ Ī<br />

ÈÊæħ<br />

ħ<br />

Ğ<br />

ħō<br />

ħµ<br />

ħµ<br />

ħĤËōë§<br />

ħµ<br />

ħĤīÔĪ<br />

ħÔ<br />

ħðëņ±<br />

ħÕŎôĪæêĪĪ¼ÝĤê<br />

ħĤæ뵾<br />

ĦĪ<br />

¼ÕôĪĪëð»êËλ<br />

ħºŁŇµ<br />

ħλêŃÜĪ¼ō<br />

ħōÊĪæ<br />

ħªĪĢËŎĥÔËĨ˵<br />

Ħīō<br />

ħōçĤ<br />

ħÔĪ¼ĐÊë¹īÜ<br />

ħĠ<br />

ħŎĤ<br />

ħĜĢËŎĤ˵<br />

<br />

ħ¹<br />

ħōľ<br />

ĦĪÊçōëÕµ<br />

ħÎÊæ<br />

ħĤæëµò<br />

ĦĪ<br />

ħōŃÎĢËō<br />

ħµ<br />

ĦĪËĤ<br />

ħōçĤ<br />

ħµĪī°Î<br />

ĦêËÎĪĪæĪĢ˵<br />

ģŎŀŃª<br />

ħĤæëµ<br />

ĦĪ<br />

ħĜĢËō<br />

ħð<br />

ħĤÊëō±ĪëÔæêĪĪ¼ÕðËÈê<br />

ħª<br />

ħäĪĢæëõä<br />

ÛĤËĠËȼĤçĤŌĠ<br />

ħÎĪ<br />

Ħæ<br />

ħÕð<br />

ĦĪ<br />

ħȼĤÊæ<br />

ħĠËÝĤ<br />

ħĨŃÎĢ˵<br />

ħ¹ĽÎħĤ˪ê<br />

ħō<br />

ħĥō²ņīÔħµĖ<br />

ĦĪ<br />

ħĜ»<br />

ħð<br />

ħÈê<br />

ĞËÝĤ<br />

ĦĪÊêæ<br />

<br />

ħĜ<br />

ħÈ<br />

ħȼĠËÝĤ<br />

ħĥō²ņīÔĞ<br />

ĦĪ<br />

ħō<br />

ħĨÊæ<br />

ħĥŇÕõªÓô<br />

Ħçĥōì<br />

ħª¼¹<br />

Ħīō<br />

Óð<br />

ħÎ<br />

ħĠѵ<br />

ħŀ<br />

<br />

Ħçĥōì<br />

ħō¼¹<br />

ħÎ<br />

ħÎ<br />

ĦĪīÎæê<br />

ħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵<br />

ħĜÊëµ»êËōæ»ĪËÈê<br />

ħÔËĩŇª<br />

ħµ<br />

ħōë§<br />

ħμĤ˵<br />

ħð¼ô<br />

Ħê<br />

ĦĪ<br />

ħÔËĩŇª»<br />

ħōĪóĤÊëŎô»<br />

ħµ<br />

ħĤÊīŇĤ»<br />

ħÎ<br />

Ħìņī¹»çĤ<br />

Ħê<br />

ĦĪ<br />

»<br />

ħÔËĩŇª<br />

ħÝĤËÔŃÎóĤÊëŎô¼Ĥ˵<br />

ĦĪłê<br />

ħÔËŇª<br />

ħÝĤËÔ»<br />

ħĜłê<br />

ħĤ˪<br />

ħ¹ĽÎ<br />

ħ¹»<br />

¼Ĝ<br />

ħ¯ĪËĤ<br />

ĦĪ¼ŀĪīĔËġð»<br />

ħÎ<br />

ħð¼ô<br />

Ħê<br />

ĦĪ<br />

ħÔËĩŇª»<br />

ħÝĤËÔ»<br />

ħĜłê<br />

ħ¹ĽÎÓõ¹<br />

<br />

ĦĪÊê²ņīÔ<br />

ħ¯ĪËĤ¼Ĥ˵<br />

ħĥŎŀŃŇĜ¼Ĥ˵<br />

ĦĪ<br />

ĦĪħµ<br />

ħĨ<br />

ĦĪê<br />

ħĥŇÕõªêÊī¯¼Ĥæëµ»êËōæËĨ<br />

Ħçĥōì<br />

¼¹<br />

ħÎ<br />

ħÎ<br />

ĦĪīÎæê<br />

ħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵<br />

ħĥŎ¯ŃλĪËÈê<br />

ħÎ<br />

ħōÊĪæ<br />

ĦĪīÔËĨ˵<br />

¼Ĥ˵<br />

ĦêÊīä<br />

ĦĪ<br />

ħôëŇÔ»<br />

ħλê<br />

ĦêÊīä¼ô<br />

ĦĪ<br />

ħÔËĩŇª»<br />

ĦêÊīäòŃŀѵ»<br />

ĦĪ<br />

ħĜģŎðŃŎĜ˪»<br />

<br />

ħ¯ĪËĤ<br />

Ģ˵łæĪ¼ŀĪīĔËġðĪĢÊĪëŎð¼ŀłæ¼Ĥ˵<br />

ħĜ<br />

ħÏōËÔ»êÊĪīÎ<br />

ħÎÒ<br />

ħÎ<br />

ħĜĢæëµæêĪÊê<br />

ħĜ»ĪĪļ<br />

ħō<br />

ħĠѵĢÊīŇĤ»ìÊĪËŎÜĪĢĪī°µ<br />

ħĜ<br />

<br />

Ħçĥōì<br />

ħŎ¹<br />

Ĥ˵<br />

ĦĪħ<br />

ħĜ<br />

ħð<br />

ħĥŇÕõªê<br />

Ħçĥōì<br />

ĦĪÊëµ»êËōæħŎ¹<br />

ħĜĢ˵<br />

ħĨ<br />

ħ¯ĪËĤĪīĠ<br />

¼Ĥ˵<br />

ĦĪÊê²ņīÔ<br />

ħµ<br />

ħĤ˪<br />

ħ¹ĽÎ<br />

ĦĪÊëµ»êËōæŅĜ»<br />

ħÈ<br />

ĦĪÊêæĞËÝĤ<br />

ħōĸ<br />

ħĤ<br />

ħĜ»ĪĪļ¼Ĥ˵<br />

ħō<br />

ĢĪī°µ<br />

Ħ±ËĠËÈ»ìÊĪËŎÜĪ<br />

ħĜÊêçŇª<br />

ħĨ<br />

ħ¹ĽÎê<br />

ħō<br />

ħµ<br />

ĦĪ<br />

ħ¹ĽÎŃÎ<br />

ħō<br />

ħĜëÔ¼µ<br />

ħ¯ĪËĤ<br />

ĦĪÊê²ņīÔ¼Ĥ˵<br />

<br />

ħÎ<br />

ħÏōËÔ<br />

ħȼÔ<br />

ħĥŎ¯Ī<br />

ħµ<br />

Ħë§<br />

ħÎ<br />

ħōÊĪĪæ<br />

ħĤÊĪīÔËĨ˵<br />

ħµ»<br />

Ħæ<br />

ħµ<br />

ħðħĤĪ<br />

ħĤÊīŇĤê<br />

»ĪĪļ


ħĤÊīŇĤ<br />

ħμŁŇĨ<br />

ħō<br />

ħ¹Ė<br />

ħĨ¼ĥÕõō<br />

ħðĪĪæê<br />

Ħæê<br />

ħôëŇÔĪ¼ðËÕōëµ¼ĤËĠ<br />

Ńλê<br />

ħ¹ĽÎ<br />

ħ¯ĪËĤ¼Ĥ˵<br />

ĦĪÊê²ņīÔ»<br />

ĦĪ<br />

ħĨ<br />

ĦĪê<br />

ħĜËĨ<br />

ħð<br />

ĦĪËĤ¼ÕðËÈê<br />

ĦæĪ¼µ<br />

Ħê<br />

ĪĒÊëŇĈŃμµ<br />

Ħæ<br />

ħÎĪêĪ<br />

óŎĤËĩŎÜĦ Ī»ê<br />

ħĜ<br />

ħÈ<br />

ħĥō²ņīÔ¼ĠËÝĤ<br />

ĦĪ<br />

ħµ<br />

ħĜĢËĠ<br />

ħð<br />

Ħçĥōìê<br />

ħŎ¹<br />

ħð»ÊëŇđŎĥĠÊêŃĐ¼ĤÊìģŎ¯<br />

ŃλĪËÈê<br />

ħµħĥŎ¯<br />

ĦëĐ<br />

ħð¼Ĥ˵<br />

Ħê<br />

ĦĪ<br />

ħŎðËÕōëµ»<br />

Ħļ<br />

ĦĪËĔ¸Ĥ<br />

ħĠħŎō<br />

ħĝō<br />

ĦêĪīðĪ<br />

ħĜĢ˵<br />

ħ¹ĽÎ<br />

Ħêĸ»<br />

ĦĪËȼäËô»Īī¯łļ<br />

ħ¯ĪËĤAwagird mounta<strong>in</strong> plunge toeæë¹<br />

¼ŀĪīĔËġð»<br />

ħō»êËŎĥõŇª<br />

ħµ<br />

ħō<br />

ĦìËÔ¼µ<br />

ħĜ<br />

ħĥŎ¯<br />

ħµ<br />

Ħë§<br />

ħĜÊëµĢ˵<br />

ħ¯ĪËĤ<br />

ĦæĪ¼ŀĪīĔËġð»<br />

ħÎĪêĪ<br />

Ȑ<br />

ħĜ<br />

ħð<br />

ħÈê<br />

ħĤʱËĠËÈĪ<br />

ħĜ»<br />

ħÈ<br />

ħĥō²ņīÔ¼ĠËÝĤ<br />

ĦĪ<br />

ħµ<br />

ħ¹¼Ňª<br />

ħĜģŎÕõō<br />

ħºŁŇµ»ê˵»êÊĪīÎ<br />

¼ō<br />

ħª»êŃÜĪ<br />

Ħīō<br />

ħȼĤĪīÕðĪ¼ōŃðËÈ»çĤ<br />

ħōĞ<br />

ħµ<br />

ĦìËÔ<br />

ħō<br />

ħĜ<br />

ħ¹<br />

ħōľ<br />

ħµ<br />

ħµ<br />

ħōë§<br />

¼Ĥ˵<br />

ħðĪŅðĪËĨ<br />

ĦĪĪê<br />

ħĜ»ŃäêÊĪīä<br />

ħÈÊçŇÔ˵<br />

ħōĞ<br />

ħµ<br />

ħµ<br />

ħōë§<br />

ĦìËÔ<br />

ħō<br />

ĦæÊæ<br />

ħÎńëĤ<br />

<br />

ħĤÊīŇĤ<br />

ħÎ<br />

ħµ»çĤ<br />

ħÔËĩŇªŃλë§<br />

ħÝĤËÔŃÎóĤÊëô¼Ĥ˵<br />

ĦĪłê<br />

ħôÊëĤÊīÔ<br />

ħĥŇÕõªò<br />

<br />

Ħçĥōì<br />

ħÏōËÔ¼¹<br />

ħÎÒ<br />

ħōĞ<br />

ħµ<br />

ħō<br />

ħÎŃÎ<br />

ħÎ<br />

ĦĪīÎæê<br />

ħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵<br />

»êËōæ»ĪËÈê<br />

ĦĪńëÎ<br />

ĦæėņĪËĤ»ìËŎĥõŇª<br />

ħµ<br />

ħÈŃÎĞ<br />

ħōĞ<br />

ħµ<br />

ħµ<br />

ħōë§<br />

ĦìËÔ<br />

ħō<br />

ħµ<br />

ħÈ<br />

ħō»ĪËĤóōĪ<br />

ħµ<br />

»<br />

ħō¼ŀĪīĔËġð<br />

ħÎSmaquli Formation<br />

ħŎōËġĥņļ¼Ňª<br />

ĦëºĤѵ¼Ĥ˵<br />

ħĤīŇĤ»<br />

ħÔ<br />

ĦĪ<br />

¼ō<br />

ħō¼ĤËĤĪËĤŃÎ<br />

ħµ<br />

ħō<br />

ħĜńīĤ¼µ<br />

Êæ¼ĤÊìĥŎ¯»êÊĪīÎ<br />

ħĥÕõŎĤÊëĤÊīÔ<br />

ħºĥō±<br />

ħÔËĩŇª¼Ĥѵ»<br />

ħÎ<br />

ħōÊĪæ<br />

ĦĪīÔËĨ˵<br />

ħĤÊīŇĤ¼Ĥ˵<br />

ħð¼ŁŇĨ<br />

Ħæê<br />

¼Ġ<br />

ħôëŇÔĪ¼ðËÕōëµ<br />

ħĜńëλêËōæ»ê<br />

ħ¯ĪËĤ<br />

ħĨ±łļ»êīµËμĤËġŇĝð¼Ĥ˵<br />

ĒÊëŇĈ¼Ôŋ<br />

ħÎ<br />

ħÎ<br />

ħμĤËĥŇĨê˵<br />

ħÎ<br />

ĦĪīÎæê<br />

ħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵<br />

ħÔŃλĪËÈģÎĪ»ĪËÈê<br />

ħĠ<br />

ħĤ<br />

¼Ĥ˵<br />

ħð<br />

Ħæê<br />

Ħêæ¼ĤËŎÕåōëÕðËĠ¼Ġ<br />

ĦĪ¸Ĥ<br />

Late Maastrichtian – Early ĢËŎĤÊæ»ĪĪêÊĪīä<br />

ħĜDanian<br />

ħÔËĩŇª<br />

ħÝĤËÔ¼Ĥ˵<br />

ħĜòŃŀѵĪłê<br />

ħ¯ĪËĤ<br />

ĦĪÊê²ņīÔ»<br />

ħÔËĩŇªĢËōÊæ<br />

»<br />

ÝĤËÔ<br />

ħĜłêħ<br />

ħ¹<br />

ĦëŎÝĤìľ<br />

ħĥŎ¯<br />

ĦêĪīð<br />

ħÔRed Bed Series¼Ĥ˵<br />

ħĠ<br />

ħĤ<br />

ĦêÊīä¼Ĥ˵<br />

ĦĪ<br />

»<br />

ħð<br />

Ħæê<br />

ħôëŇÔ¼Ġ<br />

Ȑ<br />

ĦĪ<br />

ħĨ<br />

ĦĪê<br />

ħÈËĨ<br />

ħĥō²ņīÔĞ<br />

ĦĪ<br />

ħō<br />

ħĤѵ¼Ĥæëµ»êËōæ<br />

Paleoenvironmentħºĥō±<br />

Ī<br />

ħĤѵ<br />

ħĜæëµ»êËōæ¼ðĪīĤËŎĔŃÈPaleobathymetry»īŇ«ŀĪīĔ<br />

ħºņļ<br />

ħŎĤŃ¯»<br />

¼Ô<br />

ħÎÊæ<br />

ħμĤĪīÎò<br />

ħÎ<br />

ĦĪīÎæê<br />

ħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵<br />

ħλĪËÈģÎĪ»ĪËÈê<br />

ħÈ<br />

ĪĢæëµêËĠ±<br />

ħĤÊīŇª<br />

ħ¯Ī¼ÕŇĤŃ¯»êËλ<br />

ħĨ¼ÕņçĤ<br />

ĦêŃÜĪīĠ<br />

ħÈÊëŎđŎĥĠÊêŃĐ¼Ĥ˵<br />

ħÎóōĪ<br />

ħÈ<br />

êËĠ±<br />

ħĨŃλêËĠËȼĤæëµ<br />

ħð»ÊëŇđŎĥĠÊêŃĐĪīĠ<br />

ĦĪ»ĪËÈģÎĪ»ĪËÈê<br />

Ħ²ņļ<br />

»ÊëŇđŎĥĠÊêŃĐ»<br />

ħð<br />

ĦĪ»ĪËÈģÎŃλĪËÈê<br />

Ħ²ņļ<br />

ħŎñĝµĊĪËĔêÊīōæ»ÊëŇđŎĥĠÊêŃĐ»<br />

êÊīōæŃÎĢ˵<br />

ĦĪÊëµŃµ<br />

ħŎō<br />

Ģ˵<br />

Ħæ<br />

ħÈê<br />

ħĥō²ņĪīÔ¼ĠËÝĤ<br />

ĦĪ<br />

ħµ<br />

ħĜ<br />

ħð<br />

Ħçĥōìê<br />

ħŎŎ¹<br />

ħμĤÊìĥŎ¯<br />

ħÎ<br />

ĦĪīÎæê<br />

¼Ĥ˵<br />

ħð»ÊëŇđŎĥĠÊêŃĐ<br />

ħĜ»ĪËÈê<br />

¯ĪËĤ<br />

¼Ĥ˵ħ<br />

ĦĪÊê²ņīÔ»<br />

ĦæÊæ<br />

ħµê<br />

ħµÒĪ<br />

¼ĥÕõŎĤ»êÊæëµ<br />

ħĥŎ¯<br />

ħµ<br />

ħŎōë§<br />

ħÎĢ˵<br />

ĦīŇô<br />

ħλ<br />

Ħæê<br />

ĦĪīÎĞÊĪ<br />

ħĥŎ¯ŃÎ<br />

ħµ<br />

ħōë§<br />

ħÎ<br />

ħōÊĪæ<br />

ĦĪīÔËĨ˵<br />

¼Ĥ˵


ħð<br />

ĦĪĪĪê<br />

ħĤÊīŇĤêÊīä<br />

ħôëŇÔĪ¼ðËÕōëµ¼ŁŇĨ<br />

ħλê<br />

ħÈŅÎ<br />

ĦĪ<br />

ĦçĥōËġĤ®ŎŎĨ»<br />

ħō<br />

¼µ<br />

ħµĢÊĽ°ª<br />

ħĤĢËōģŇĜ<br />

ħĨģÕõŎĤ<br />

ÓŇÎ<br />

ĦĪ<br />

ħĜëÔËōì<br />

ħĤËĠ<br />

ħÈ<br />

ĦĪ<br />

ħō<br />

ħµ<br />

ħĥōìłæĪĢæëµ»êËōæ<br />

ĦĪ<br />

ħð»ÊëŇđŎĥĠÊêŃĐ»êŃÜ»<br />

ê<br />

ħÔŃλĪËÈ<br />

ħĠ<br />

ħð¼Ĥ<br />

Ħê<br />

ĦêÊīäĪËÔ<br />

ĦĪ<br />

ħÈĢËŎĤÊæ»<br />

ĦĪ<br />

ĦæĢĪĪļ<br />

ħÔ˵<br />

ĦĪ<br />

ħµ<br />

ģÕõŎĤ»êÊæëµ<br />

ħÎ<br />

Ħæê<br />

ĦĪīÎĞÊĪ<br />

ĦĪ<br />

Ħ²ņļ<br />

ħÎóŎĥÕõŎĤ»<br />

Ħæê<br />

ħĜĪĞÊĪ<br />

ĦĪīÎĢĪīÎæËōì<br />

ħĤ<br />

ħµĖ<br />

ħÔËÎĞ<br />

ĦĪ<br />

<br />

ħÎ<br />

ħÏōËÔ<br />

ħĜ¼Ô<br />

ħ¯ĪËĤ<br />

ĦĪÊê²ņīÔ¼Ĥ˵<br />

¼ŀĪīĔËġðĪĢ˵ĪæĪĢÊĪëŎð¼ŀłæ»<br />

ħÎËÎ<br />

ħÈ»ëÔ¼ºĤë¹¼ŇÔ<br />

ħĥō²ņīÔĞ<br />

ĦĪ<br />

ħÈħō<br />

ĦĪ<br />

ħō<br />

ħµ<br />

Ħ²ņļÊëĤÊīÔ<br />

ģÕõŎĤ¼Õõ¹»<br />

ħĨŃÎńëλêËōæ<br />

ĦçĥōìĪīĠ<br />

ħō¼¹<br />

ħĥŎ¯<br />

ħµ¼Ĥ˵<br />

ħĤĪÊëðËĤ<br />

ĦĪ<br />

ĦĪ<br />

ħÎ<br />

ħÎ<br />

¼ĤËĥŇĨê˵<br />

ħºņļ<br />

ĦĪËĤÊëĤÊīÔGraphic method¼ÔËÏōËÔ»<br />

Ħ²ņļ»çĤ<br />

ħµ¼ĥÕõŎĤ»<br />

ĦëĐ<br />

»êËōæĢ˵<br />

ħĥŎ¯ŃÎńëÎ<br />

ħµ<br />

ħÎħōë§<br />

ħōÊĪæ<br />

ĦĪīÔËĨ˵<br />

ħÎĢ˵Ħ ĪÊê²ņīÔħ¯ĪËĤ¼Ĥ˵<br />

ħÏōËÔ<br />

ħμÔ<br />

¼ô<br />

ħð<br />

Ħê<br />

ĦĪ<br />

ÔËĩŇª»<br />

ħÝĤËÔ»ħ<br />

ħÎĪłê<br />

ĦêÊīä¼ô<br />

ĦĪ<br />

ħÔËĩŇª»<br />

ħĜòŃŀѵ»<br />

ħð<br />

ħĤÊīŇĤê<br />

<br />

ħÔĢÊīŇĤ¼ŁŇĨ<br />

ħĠ<br />

ħôëŇÔĪ¼ðËÕōëµ¼Ĥ<br />

ħµ»ê<br />

ħÈ<br />

ħĠ<br />

ħĤËñōæò<br />

ĦĪ<br />

ħÈ<br />

ĦĪ<br />

ħµÊæĢËõŎĤ»<br />

<br />

ħÎģÕõŎĤ»êÊæëµ<br />

Ħê<br />

ĦĪīÎĢĪīÎæËōìĪ<br />

ħĤ<br />

ħµĖ<br />

ħÔËÎĞ<br />

ĦĪ<br />

ħµ<br />

ħĜ»Ńä<br />

ĦļÊçōŃä<br />

»ËĨ<br />

ħμĥÕõŎĤ<br />

Ħæê<br />

ĦæĢËõŎªĞÊĪ<br />

ħĤÒÊæ<br />

ħµĢÊĽ°ªĖ<br />

ħĤĢËōģŇĜ<br />

ħĜģÕõŎĤ<br />

ħð<br />

ħĤÊīŇĤê<br />

¼ŁŇĨ<br />

ħôëŇÔĪ¼ðËÕōëµ<br />

Ȑ


ϦϴΑϞλΎϔϟΪΤϠϟΔϤϳΪϘϟΔΌϴΒϟϭΔϴΗΎϴΤϟΔϴϗΎΒτϟ<br />

ϥΎΘγΩέϮ̯ˬΔϴϧΎϤϴϠδϟΔϘτϨϣˬ̶ΛϼΜϟ̶γΎΘϳή̰ϟ<br />

ϕήόϟϕήηϝΎϤη<br />

<br />

<br />

ΔϟΎγέ<br />

ΔϴϧΎϤϴϠδϟΔόϣΎΟϡϮϠόϟΔϴϠ̯ΓΩΎϤϋ̶ϟΔϣΪϘϣ<br />

ΔϔδϠϓϩέϮΘ̯ΩΔΟέΩϞϴϧΕΎΒϠτΘϣϦϣ˯ΰΠ̯<br />

̶ϓ<br />

νέϻϢϠϋ<br />

<br />

<br />

ϞΒϗϦϣ<br />

<br />

̵ήϳ̫ΎΑέΎηϞϴϋΎϤγΩϮϤΤϣΪϟΎΧ<br />

˺̂́˼ϞλϮϣΔόϣΎΟνέϻϢϠϋ̶ϓήϴΘδΟΎϣ<br />

<br />

<br />

ϑήηΖΤΗ<br />

<br />

έϮϔϏΩϮϤΤϣΩΎϤϋΩ̶ϤϴόϨϟΪϤΤϣΪϤΣϥΎτΤϗΩ<br />

ΪϋΎδϣΫΎΘγΪϋΎδϣΫΎΘγ<br />

<br />

<br />

<br />

˻˹˹̶́ϧΎΜϟϥϮϧΎ̯˺˽˻́ΔΠΤϟϭ<br />

<br />

Ϋ


κϠΨΘδϤϟ<br />

<br />

ϕΎѧτϧ̶ѧϓϊѧϘΗΔѧγέΪϟϖσΎѧϨϣ̶ѧϓΔϔθѧ̰ϨϤϟϭ̶ѧΛϼΜϟϭ̵ήϴѧηΎΒτϟ̵ήμѧϋϦϴѧΑαΎѧϤΘϟΕΪѧΣϭϥ<br />

ϥϻϮ̩ΔόϠϗϖσΎϨϣϒΣΰϟϕΎτϧ̶ϓΎϴΰΟϭΐ̯ήΘϟϕΎτϧϭ̶ϟϮϗΎϤδϟϭϥΎ̯ϭΩ̶ΘϘτϨϣΔϴϟΎόϟΕΎϴτϟ<br />

̵ίϮѧϣϭΐѧϳήϗϖϴѧοςѧΨ̯ϕήѧηΏϮѧϨΟΏήѧϏϝΎϤѧηϩΎѧΠΗΎΑΪѧΘϤΗ̶Θϟϭˬϥϭήϴγ̵ΩϭϭΔΠϧίήΑϭ<br />

FlyschζϴѧϠϔϟωϮѧϧϦѧϣΕΎѧόΑΎΘΗϦѧϣ̶δѧϴέϞ̰θѧΑϒϟΎѧΘΗΕΪΣϮϟϩάϫϥϭΔϴϧήϳϻΔϴϗήόϟΩϭΪΤϠϟ<br />

ϭΔ̰ϟϮϗϭ̶Ϡ̳ϊσΎϘϣ̶ϓεϮϟϮ̯ϭϭήΠϧΎΗ̶ϨϳϮ̰ΘϟΔϴΗΎΘϔϟέϮΨμϟϦϣΔ̰ϴϤγΕΎϘΒσϦϣϥϮ̰ΘϤϟϭ<br />

ΔϠδѧϠγϭϭήΠϧΎѧΗϦϳϮѧ̰ΘϟΓΪѧΎόϟFlysch- MolasseαϻϮѧϤϟ̶ѧϟζϴѧϠϓωϮѧϧϦѧϣϥϮ̰ΘΗϭϥϭήϴγ<br />

ύϼ<br />

θϗϭϮΗΎ̶̯ότϘϣ̶ϓβϳϮδϟΔϋϮϤΠϣ˯ήϤΤϟΕΎϘΒτϟ<br />

ϭˬΔϳέΎΨμѧϟΔѧϴϗΎΒτϟϞΜϣϦϳϭΎ̰ΘϟϩΪϬϟΔϨϴόϤϟήϴϏΕΎϤδϟϞ̯ϞϴϠΤΗ̶ϠϋΔγέΪϟϩάϫΕΰ̯ήΗϭ<br />

̵ήμѧϋϦϳϭΎѧ̰ΗϦϴѧΑαΎѧϤΘϟΔѧόϴΒσϭˬΔѧϤϳΪϘϟΔѧΌϴΒϟϭΔϤϳΪϘϟΔϴΒϴγήΘϟΔΌϴΒϟ˯ΎϨΑϭΔϴΗΎϴΤϟΔϴϗΎΒτϟ<br />

˯ήѧѧѧΟϭˬΕΪѧѧѧΣϮϟήѧѧѧϤϋΪѧѧѧϳΪΤΗϭˬ̶ΗΎѧѧѧϴΤϟϭ̵έΎΨμѧѧѧϟ̵ϮѧѧѧΘΤϤϟΚѧѧѧϴΣϦѧѧѧϣ̶ѧѧѧΛϼΜϟϭ̵ήϴѧѧѧηΎΒτϟ<br />

ϭΙϮѧΤΒϟϝϼѧΧϦѧϣΡήτΗΖϟίΎϣ̶ΘϟϭΔΣϭήτϤϟΔϠΌγϻϦϣήϴΜ̶̯ϠϋΔΑΎΟϼϟΔϴϤϴϠϗϻΕΎϫΎπϤϟ<br />

ϪΟέΎΧϭϕήόϟϞΧΩϦϣϦϴΜΣΎΑϞΒϗϦϣϦϴϨδϟΕήθϋάϨϣΓΪϳΪόϟΕΎγέΪϟ<br />

̶ѧѧϠϋϻ̵ήϴѧѧηΎΒτϟΕΎѧѧόΑΎΘΘϟ̵ϮѧѧϠόϟϒθѧѧ̰ϨϤϟ˯ΰѧѧΠϟ̶ѧѧϠϋΔϴϠϴμѧѧϔΗΔѧѧϴϗΎΒσΔϳέΎΨѧѧλΔѧѧγέΩΖѧѧϳήΟ<br />

ΎπϳΖϠϤηϭˬϥϭήϴγ̵ΩϭϭϮΗΎ̯ϭύϼθϗϭΔ̰ϟϮϗϊσΎϘϣ̶ϓϭήΠϧΎΗϦϳϮ̰ΗϦϣ̵ϮϠόϟ˯ΰΠϟ<br />

ΕΪѧΣϮϟΖϨϤπѧΗΎѧϤϨϴΑˬ̶ѧΛϼΜϟήѧϤόϟΕΫ˯ήѧϤΤϟΕΎѧϘΒτϟΔϠδϠγϭεϮϟϮ̯ϦϳϮ̰ΗϦϣ̶Ϡϔδϟ˯ΰΠϟ<br />

ΔѧϴϟΎϘΘϧϻΕΪѧΣϮϟϭζϧήѧηϦϳϮѧ̰Θϟ̵ϮϠόϟ˯ΰΠϟ̶ϟϮϗΎϤδϟΔϘτϨϣ̶Ϡ̳ϊτϘϣ̶ϓΔγϭέΪϤϟΔϴϗΎΒτϟ<br />

ΔѧγέΩ̶ѧϟϦϳϭΎѧ̰Θϟ ϩάѧϫΖόπѧΧΚѧϴΣˬεϮѧϟϮ̯ϭϭήΠϧΎѧΗ̶ϨϳϮѧ̰ΗϭϭήΠϧΎѧΗϭζϧήѧη̶ϨϳϮ̰ΗϦϴΑ<br />

ΔγϭέΪϤϟϊσΎϘϤϟ̶ϓϑΩΎϬϟϭϝϮϘόϤϟ̵ϮϧΎΜϟϢϴδϘΘϟϩΎΠΗΎΑΔϔϠΘΨϣϊϗϮϤϟΔϠϣΎηΔϴϠϘΣ<br />

ϦϳϮѧ̰ΗϦѧϣ̵ϮѧϠόϟ˯ΰѧΠϟϦѧϣΔϴϓΎτϟήϴϔϨϣέϮϔϟΕΎόϤΠΗΰϴϤΗαΎγ̶ϠϋΔϴΗΎϴΣΔϘτϧΔϴϧΎϤΛΖϠΠγ<br />

ΔѧϘτϨϣ̶ѧϠ̳ϊѧτϘϣ̶ѧϓϭήΠϧΎѧΗϦϳϮѧ̰ΗϭϭήΠϧΎѧΗϭζϧήѧη̶ϨϳϮѧ̰ΗϦϴѧΑΔѧϴϟΎϘΘϧϻΕΪѧΣϮϟϭζϧήη<br />

ΔѧϘτϧΔѧόΑέΰѧϴϤΗϢѧΗϚϟάѧ̯ϭΔѧγϭέΪϤϟϊσΎѧϘϤϟΔϓΎ̶̯ϓϭήΠϧΎΗϦϳϮ̰ΗϦϣ̵ϮϠόϟ˯ΰΠϟϭ̶ϟϮϗΎϤδϟ<br />

̶ϟϮϗΎϤδϟϭϥΎ̯ϭΩϭˬϥϭήϴγϖσΎϨϣ̶ϓϞϔγϻϦϴγϮϴϟΎΒϟεϮϟϮ̯ϦϳϮ̰Θϟ̶Ϡϔδϟ˯ΰΠϟϦϣΔϴΗΎϴΣ<br />

ΕΫΎѧϬϟΔΌϓΎ̰ϤϟΔϘτϧϻϊϣΔγέΪϟϩάϫ̶ϓΕΰϴϣ̶ΘϟΔϴΗΎϴΤϟΔϘτϧϻϦϴΑΔϧέΎϘϣΓΎϫΎπϣΖϳήΟ<br />

ϕήόϟΝέΎΧϭϞΧΩ̶ϓ̶ΛϼΜϟϭ̵ήϴηΎΒτϟϦϴΑαΎϤΘϟΩϭΪΣϝϮΣϊΎθϟϝΎϤόΘγϻ


̶ѧϟήѧϤΣϻϥϮѧϠϟΕΫ̶ѧϠϋϻ̵ήϴѧηΎΒτϟΕΎѧόΑΎΘΗ̶ѧϠϋΔϴϓΎτϟήϴϔϨϣέϮϔϠϟΔϴΗΎϴΤϟΔϴϗΎΒτϟΔγέΪϟϥ<br />

ΓΪѧϳΪΟΔѧγϮϤϠϣΔѧϴϗΎΒσΓΪѧΣϭΖѧΣήΘϗ̶ϟϮϗΎϤδѧϟΔѧϘτϨϣΩήѧ̳ϭϞΒΟβσΎϏϊτϘϣ̶ϓΐΣΎθϟ̶ϮϬϘϟ<br />

ϦϳϭΎѧѧ̰ΘϟϊѧѧϣΓΪѧѧΣϮϟϩάѧѧϬϟΔϴϠϴμѧѧϔΘϟΔѧѧϴϗΎΒτϟΕΎѧϗϼόϟϭΔѧѧϴϠϘΤϟΕΎѧѧψΣϼϤϟΐѧѧΟϮϤΑΔѧѧϘτϨϤϟϩάѧѧϫ̶ѧϓ<br />

ΔΘѧγΰѧϴϤΗϢΗϭˬϭήΠϧΎΗϦϳϮ̰ΗϭζϧήηϦϳϮ̰ΗϦϴΑ̶ϟΎϘΘϧ̶ϨΤγήϴϐΗΓΪΣϮϟϩάϫϞΜϤΗΚϴΣΓέϭΎΠϤϟ<br />

ΔϳήΨμϟΓΪΣϮϟϩάϫϞΧΩΔϴϓΎτϟήϴϔϨϣέϮϔϟϦϣΔϴΗΎϴΣΔϘτϧ<br />

ΔѧϘτϨϣ̶ϓ̶ΛϼΜϟϭ̵ήϴηΎΒτϟ̵ήμϋϦϴΑαΎϤΘϟϦϳϭΎ̰ΗΕΎόΑΎΘΘϟΔϤϳΪϘϟΔϴΒϴγήΘϟΔΌϴΒϟΪϳΪΤΗϢΗ<br />

̶ѧϟήΧΎѧΘϤϟϥΎϴΘΨϳήΘѧγΎϤϟΓήѧΘϔϟΔѧϴϋΎϘϟϭΔѧϴϓΎτϟήϴϔϨϣέϮѧϔϟϡΪΨΘѧγΎΑϕήόϟϕήηϝΎϤηΔϴϧΎϤϴϠδϟ<br />

ϭϭήΠϧΎѧΗ̶ϨϳϮѧ̰ΘΑΎϳέΎΨѧλΔѧϠΜϤΘϤϟLate Maastrichtian-Early Danianή̰ΒϤϟϥΎϴϧΪϟΓήΘϓ<br />

ΔγέΪϟΔϘτϨϣ̶ϓ˯ήϤΤϟΕΎϘΒτϟΔϠδϠγϭϭήΠϧΎΗϦϳϮ̰ΗϭΎϴϤϴϠϗεϮϟϮ̯<br />

ϭΔѧϴϓΎτϟήϴϔϨϣέϮѧϔϟϊѧϳίϮΗρΎѧϤϧϝϼѧΧϦѧϣΔѧϤϳΪϘϟϕΎѧϤϋϻϭΔѧΌϴΒϟΪѧϳΪΤΗϞѧϣϮϋΔѧγέΩΖѧϤΗ<br />

̶ΎμѧΣϻϭ̵έΎθѧΘϧϻϞѧϴϠΤΘϟϭήϴϔϨϣέϮѧϔϟωϮѧϧϻ̶ѧϠ̰ϟΩΪѧόϟϞѧϣϮόϟϩάѧϫΖϨϤπѧΗΚѧϴΣˬΔѧϴϋΎϘϟ<br />

έΪѧΠϟΕΫήϴϔϨϣέϮѧϔϟΔΒδѧϧϭˬΔѧϴϋΎϘϟ̶ѧϟΔѧϴϓΎτϟήϴϔϨϣέϮѧϔϟΔΒδѧϧϭΔѧϴϋΎϘϟϭΔѧϴϓΎτϟήϴϔϨϣέϮϔϠϟ<br />

̶ΎϘΘϧϻέΪΠϟΕΫ̶ϟ̶δϠ̰ϟ<br />

ΐϴѧѧγήΘϟΩϮѧΟϭΔѧѧγέΪϟΔѧϘτϨϣ̶ѧϓΔϓϮѧѧλϮϤϟΔѧϴϓΎτϟήϴϔϨϣέϮѧϔϠϟΔѧѧϴΗΎϴΤϟΔѧϘτϧϻΖδѧ̰ϋϭ<br />

ϥΎϓϚϟΫ̶ϟΔϓΎοϻΎΑˬωΎτϘϧϻϞϻΩΩϮΟϭϥϭΪΑϭ̶ΛϼΜϟϭ̵ήϴηΎΒτϟϦϴΑαΎϤΘϟΪΣ̶ϠϋήϤΘδϤϟ<br />

̶ΠϳέΪѧΗΐϴѧγήΗΩϮѧΟϭ̶ѧϠϋΖѧϟΩDanianϥΎѧϴϧΩήѧϤϋΕΫΔѧϴϓΎτϟήϴϔϨϣέϮѧϔϟϦѧϣωϮѧϧΰѧϴϤΗ<br />

̶ϟϮ ϗΎϤδϟϭϥΎ̯ϭΩϭϥϭήϴγϖσΎϨϣ̶ϓήϤΘδϣ<br />

ΓΩΎѧѧΘόϤϟΔѧѧϘϳήτϟΖϣΪΨΘѧѧγϭˬΔϓϮѧѧλϮϤϟΔѧѧϴΗΎϴΤϟΔѧѧϘτϧϻΔѧѧϓΎ̰ϟΐϴѧѧγήΘϟϝΪѧѧόϣΩΎѧѧΠϳϢѧѧΗϭ<br />

Graphic‏‏ΪѧѧόϣςѧѧγϮΘϣϡΪΨΘѧѧγΎΑϚѧѧϟΫϭΔѧѧγέΪϟϩάѧѧϫ̶ѧѧϓ‏‎ΔѧѧϴΗΎϴΤϟΔѧѧϘτϧϻϭΐϴѧѧγήΘϟ method<br />

ΪΣϝϮΣεϮϟϮ̯ϦϳϮ̰ΗϦϣ̶Ϡϔδϟ˯ΰΠϟϭϭήΠϧΎΗϦϳϮ̰ΗϦϣ̵ϮϠόϟ˯ΰΠϠϟΔϴϗΎΒτϟΕΎόΑΎΘΘϠϟΔϓϮλϮϤϟ<br />

ΪѧΤϟϝϮѧσ̶ѧϠϋΐϴѧγήΘϟ̶ѧϓΓΩΎѧϳΰϟϭήϤΘδϤϟΐϴγήΘϟΖδ̰ϋ̶Θϟϭ̶ΛϼΜϟϭ̵ήϴηΎΒτϟϦϴΑαΎϤΘϟ<br />

ΐϴγήΘϟ̶ϓωΎτϘϧ̵ΩϮΟϭϥϭΪΑϭ̶ΛϼΜϟϭ̵ήϴηΎΒτϟ̵ήμϋϦϴΑϞλΎϔϟ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!