09.02.2014 Views

Ch3.3: Fast Fourier Transform

Ch3.3: Fast Fourier Transform

Ch3.3: Fast Fourier Transform

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ch3.3</strong>: <strong>Fast</strong> <strong>Fourier</strong> <strong>Transform</strong><br />

Information source<br />

and input transducer<br />

Source Coding<br />

Channel Coding<br />

Modulator<br />

<strong>Ch3.3</strong>: FFT<br />

• Questions to be answered:<br />

– <strong>Fast</strong>-<strong>Fourier</strong> <strong>Transform</strong>: How<br />

can we efficiently compute DFT.<br />

Channel<br />

Information sink<br />

and output transducer<br />

Source Decoding<br />

Channel Decoding<br />

Demodulator<br />

(Matched Filter)<br />

Elec3100 Chapter 3.3 1


FFT Applications<br />

‣ OFDM<br />

‣ DAB<br />

‣ HDTV<br />

‣ Wireless LAN Networks<br />

‣ 1 HIPERLAN/2<br />

‣ 2 IEEE 802.11a<br />

‣ 3 IEEE 802.11g<br />

‣ IEEE 802.16 Broadband Wireless Access Systems<br />

Elec3100 Chapter 3.3<br />

2


Computation Complexity of DFT<br />

Elec3100 Chapter 3.3<br />

3


Computation Complexity of DFT<br />

Elec3100 Chapter 3.3<br />

4


Efficient Computation of DFT<br />

Elec3100 Chapter 3.3<br />

5


Efficient Computation of DFT<br />

Elec3100 Chapter 3.3<br />

6


Decimation-in-Time FFT Algorithm<br />

Elec3100 Chapter 3.3<br />

7


Decimation-in-Time FFT Algorithm<br />

Elec3100 Chapter 3.3<br />

8


Decimation-in-Time FFT Algorithm<br />

• The N/2-point DFTs of the even- and odd-numbered sequences, G[k]<br />

and H[k], are calculated for the range k = 0…(N/2-1)<br />

• However, the values of the N/2-point DFT vary periodically with period<br />

N/2<br />

– G[k] = G[k + N/2] and H[k] = H[k + N/2]<br />

• Therefore, we can compute all points of the N-point DFT using two N/2-<br />

point DFTs as follows<br />

k<br />

N<br />

X[ k]<br />

= G[<br />

k]<br />

+ WN<br />

H[<br />

k]<br />

0 ≤ k ≤ −1<br />

2<br />

X<br />

k + N / 2<br />

[ k + N / 2] = G[ k] + W H[ k]<br />

= G k<br />

N<br />

N<br />

2<br />

k<br />

[ ] −W<br />

H[ k] 0 ≤ k ≤ −1<br />

N<br />

W<br />

N/ 2<br />

N<br />

=<br />

=<br />

e<br />

e<br />

-j( 2π/N)(N/<br />

2 )<br />

− jπ<br />

= -1<br />

Elec3100 Chapter 3.3<br />

9


Decimation-in-Time FFT Algorithm<br />

Fig. 1 Flow Graph Representation of N-Point DFT Computation Using Two N/2-Point DFTs<br />

Elec3100 Chapter 3.3<br />

10


Decimation-in-Time FFT Algorithm - Example<br />

Elec3100 Chapter 3.3<br />

11


Decimation-in-Time FFT Algorithm<br />

For large N, the computational load of the DIT-FFT is<br />

approximately halved !<br />

Elec3100 Chapter 3.3<br />

12


Decimation-in-Time FFT Algorithm - Example<br />

Construct each of the 4-point DFTs using a combination of 2-point DFTs<br />

Elec3100 Chapter 3.3<br />

13


Decimation-in-Time FFT Algorithm - Example<br />

Construct each of the 4-point DFTs using a combination of 2-point DFTs<br />

Elec3100 Chapter 3.3<br />

14


Decimation-in-Time FFT Algorithm - Example<br />

Construct each of the 2-point DFTs using an elementary butterfly<br />

Elec3100 Chapter 3.3<br />

15


Decimation-in-Time FFT Algorithm - Example<br />

Elec3100 Chapter 3.3<br />

16


Decimation-in-Time FFT Algorithm - Example<br />

Elec3100 Chapter 3.3<br />

2-Point DFTs<br />

Combination of<br />

2-Point DFTs<br />

Combination of<br />

4-Point DFTs<br />

17


Decimation-in-Time FFT Algorithm<br />

Elec3100 Chapter 3.3<br />

18


Decimation-in-Time FFT Algorithm<br />

Elec3100 Chapter 3.3<br />

19


Decimation-in-Time FFT Algorithm<br />

FFT can give orders of magnitude complexity savings<br />

compared with direct evaluation of DFT !!<br />

Elec3100 Chapter 3.3<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!