09.02.2014 Views

Long solitary internal waves in stable stratifications

Long solitary internal waves in stable stratifications

Long solitary internal waves in stable stratifications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

W. B. Zimmerman and J. M. Rees: <strong>Long</strong> <strong>solitary</strong> <strong>waves</strong> 171<br />

<strong>in</strong>homogeneous systems that arise are<br />

[ ] [<br />

]<br />

θ<br />

(1)<br />

−θ<br />

M k<br />

φ (1) =<br />

φ y − λ 1 (y − ν) φ<br />

[ ] [<br />

]<br />

θ<br />

(2)<br />

θ<br />

M k<br />

φ (2) =<br />

φ y − λ 2 (y − ν) φ<br />

[ ] [<br />

]<br />

θ<br />

(3) [<br />

θ y φ − θφ y<br />

M 2k<br />

φ (3) =<br />

φφ yy − φy]<br />

2 − λ 3 (y − ν) φ<br />

y<br />

[ ] [<br />

]<br />

θ<br />

(4)<br />

0<br />

M 2k<br />

φ (4) =<br />

−φφ y − λ 4 (y − ν) φ<br />

[ ] [<br />

]<br />

θ<br />

(5)<br />

0<br />

M 2k<br />

φ (5) =<br />

φφ y − λ 5 (y − ν) φ<br />

(28)<br />

the ϕ (i) are<br />

L k<br />

[ϕ (1)] = Riθ + φ y (y − ν) − λ 1 (y − ν) 2 φ<br />

L k<br />

[ϕ (2)] = φ (y − ν) − λ 2 (y − ν) 2 φ<br />

[<br />

L 2k ϕ (3)] = −Ri ( )<br />

θ y φ − θφ y<br />

+ (y − ν)<br />

[ ]<br />

φφ yy − φy<br />

2 − λ 3 (y − ν) 2 φ<br />

y<br />

L 2k<br />

[ϕ (4)] = φφ y (y − ν) − λ 4 (y − ν) 2 φ<br />

L 2k<br />

[ϕ (5)] = −φφ y (y − ν) − λ 5 (y − ν) 2 φ (31)<br />

Application of the Fredholm alternative theorem yields the<br />

follow<strong>in</strong>g expressions for the λ i :<br />

∫ 1<br />

(<br />

Riθ 2 + φ y θ ) (y − ν) dy<br />

The l<strong>in</strong>ear operator M is identified by rewrit<strong>in</strong>g Eq. (19) as a<br />

homogeneous boundary value problem. The Fredholm alternative<br />

theorem provides a criterion for the existence of<br />

solutions of the above five <strong>in</strong>homogeneous boundary value<br />

problems–the <strong>in</strong>ner product of the forc<strong>in</strong>g vector with any<br />

eigenfunctions of the adjo<strong>in</strong>t operator M ∗ must vanish. Due<br />

to the extended separation of variables (22) and (25), the<br />

Fredholm alternative theorem holds <strong>in</strong>dependently for all<br />

D (i) s<strong>in</strong>ce a l<strong>in</strong>ear system (28) results for each undeterm<strong>in</strong>ed<br />

function D (i) that is solvable only if the identifications (27)<br />

are made. Thus s<strong>in</strong>ce the quadratic order operators are all<br />

M 2k , the criteria is that the <strong>in</strong>homogeneous forc<strong>in</strong>g vector<br />

must be orthogonal <strong>in</strong> these cases to the eigenfunctions of<br />

this operator M 2k , not M k . This solvability condition only<br />

obta<strong>in</strong>s because the extended separation of variables (22)<br />

and (25) results <strong>in</strong> a hierarch<strong>in</strong>g of l<strong>in</strong>ear systems for which<br />

the superposition pr<strong>in</strong>ciple holds. This dist<strong>in</strong>ction must be<br />

made s<strong>in</strong>ce there is no general solvability condition for fully<br />

nonl<strong>in</strong>ear systems, for <strong>in</strong>stance Eq. (14). The purpose of<br />

our analysis is to use perturbation methods and a separation<br />

scheme so that the component l<strong>in</strong>ear systems (28) are solvable.<br />

In order to save on computations, it is desirable to work<br />

with a self-adjo<strong>in</strong>t system. Follow<strong>in</strong>g Weidman and Velarde<br />

(1992), it is observed that the boundary value problems for<br />

the modified vertical eigenfunctions<br />

φ(i)<br />

ϕ (i) =<br />

y − ν<br />

(29)<br />

are self-adjo<strong>in</strong>t. Namely, the l<strong>in</strong>ear operator, on elim<strong>in</strong>at<strong>in</strong>g<br />

the temperatures θ (i) is<br />

L k [ϕ] =<br />

[(y − ν) 2 ϕ y<br />

]y + (<br />

Ri − k 2 (y − ν) 2) ϕ (30)<br />

The five <strong>in</strong>homogeneous boundary value problems now for<br />

λ 1 =<br />

λ 2 =<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

λ 3 = − ⎝Ri<br />

λ 4 =<br />

∫ 1<br />

φ 2 (y − ν) dy<br />

φ 2 dy<br />

φ 2 (y − ν) dy<br />

⎛<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

+<br />

θ (2k) ( θ y φ − θφ y<br />

)<br />

dy<br />

∫ 1<br />

0<br />

⎛<br />

· ⎝<br />

∫ 1<br />

0<br />

θ (2k) φφ y (y − ν) dy<br />

θ(2k)φ (y − ν) 2 dy<br />

⎞<br />

[ ]<br />

θ (2k) (y − ν) φφ yy − φy<br />

2 dy ⎠<br />

y<br />

⎞<br />

θ (2k) φ (y − ν) 2 dy⎠<br />

λ 5 = −λ 4 (32)<br />

Figure 5 shows an example calculation of the phase velocity<br />

ν (k) for Ri = 10, and the eigenfunction ϕ (y) with<br />

k = 0.05. The two po<strong>in</strong>t boundary value problem (30) was<br />

solved numerically with homogeneous boundary conditions.<br />

As the boundary value problem is derived from an <strong>in</strong>viscid<br />

model, it does not suffer from the well known parasitic<br />

growth problem, thus standard numerical <strong>in</strong>tegration techniques<br />

(e.g. Runge-Kutta) are sufficient to ma<strong>in</strong>ta<strong>in</strong> accuracy.<br />

The <strong>in</strong>viscid modes were solved for previously by Davey and<br />

Reid (1977) us<strong>in</strong>g a long wave limit. The extension to f<strong>in</strong>ite<br />

wavenumber is straightforward here. The only particular difficulty,<br />

somewhat apparent from Fig. 5, is that the approach<br />

of the eigenfunction to y = 1 becomes steep as Ri → 1/4,<br />

−1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!