09.02.2014 Views

Long solitary internal waves in stable stratifications

Long solitary internal waves in stable stratifications

Long solitary internal waves in stable stratifications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

W. B. Zimmerman and J. M. Rees: <strong>Long</strong> <strong>solitary</strong> <strong>waves</strong> 173<br />

λ 1<br />

0.1 0.2 0.3 0.4 k<br />

9.81<br />

9.79<br />

9.78<br />

9.77<br />

9.76<br />

9.75<br />

9.74<br />

0.1 0.2 0.3 0.4 k<br />

-0.9715<br />

-0.972<br />

-0.9725<br />

-0.973<br />

λ 2<br />

-0.9735<br />

-0.9745<br />

λ 4<br />

λ<br />

-16.55<br />

0.181<br />

-16.575<br />

0.15 0.2 k<br />

-16.6<br />

0.179<br />

-16.625<br />

0.178<br />

-16.65<br />

0.177<br />

-16.675<br />

0.176<br />

0.05 0.1 0.15 0.2 k 0.175<br />

Fig. 6. Coefficients λ 1 , λ 2 , λ 3 , λ 4 vs. wavenumber k at Ri = 10.<br />

Table 1. Representative values of the coefficients <strong>in</strong> Eq. (33) for various Ri.<br />

Ri c 0<br />

∂ 2 ν<br />

∂k 2 | k=0 λ 1<br />

∂ 2 λ 1<br />

∂k 2 | k=0 λ 2<br />

∂ 2 λ 2<br />

∂k 2 | k=0 λ 3<br />

∂ 2 λ 3<br />

∂k 2 | k=0 λ 4<br />

∂ 2 λ 4<br />

∂k 2 | k=0<br />

2. 1.103 -0.01199 8.960 1.012 -1.963 -0.09875 −95.10 −52.69 1.777 1.805<br />

5. 1.310 -0.02787 9.469 1.004 -1.334 -0.06638 −31.73 −11.32 0.4493 0.4358<br />

10. 1.576 -0.04444 9.662 1.000 -0.9675 -0.04846 −16.54 −4.547 0.1751 0.1648<br />

20. 1.973 -0.06665 9.764 1.000 -0.6932 -0.03487 −9.445 −2.148 0.07270 0.06678<br />

50. 2.782 -0.1091 9.827 1.000 -0.4419 -0.02230 −4.942 −0.9530 0.02445 0.02201<br />

100. 3.705 -0.1561 9.848 1.000 -0.3133 -0.01583 −3.175 −0.5670 0.01117 0.00995<br />

500. 7.628 -0.3523 9.865 1.000 -0.1404 -0.00710 −1.248 −0.2030 0.00197 0.00173<br />

1000. 10.57 -0.4987 9.867 1. -0.09932 -0.005022 −0.8560 −0.1352 0.00096 0.00084<br />

localised sech 2 soliton solutions and periodic conoidal wave<br />

solutions. Equation (33) has the same form as the <strong>in</strong>viscid<br />

limit of a wave evolution equation found by a center manifold<br />

approach by Zimmerman and Velarde (1996) which approximates<br />

the vertical modal structure of temperature by a<br />

s<strong>in</strong>e function and absorbs the error <strong>in</strong>to the coefficients of the<br />

horizontal wave equation upon depth averag<strong>in</strong>g.<br />

In addition to the steady wave sech 2 soliton solutions for<br />

Eq. (33), as the underly<strong>in</strong>g dynamical system is dissipationfree<br />

and nonl<strong>in</strong>ear, one must enterta<strong>in</strong> the possibility of multiple<br />

steady wave homocl<strong>in</strong>ic solutions whose phase velocity<br />

depends on amplitude. It is logical to seek solutions <strong>in</strong> the<br />

form of Eq. (2):<br />

( ) ξ − Ct<br />

A = sech 2 <br />

Further, it is convenient to return to the orig<strong>in</strong>al time scale:<br />

(34)<br />

k 2 A ξ + A ξξξ + λ 1 A t + λ 2 A ξξt + ελ 3 AA ξ = 0 (35)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!