11.02.2014 Views

PDF File (979 KB) - PIER

PDF File (979 KB) - PIER

PDF File (979 KB) - PIER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

114 Angermann and Yatsyk<br />

= δ n1<br />

i(nκ) 2<br />

2Γ nκ<br />

+ δ n3<br />

i(nκ) 2<br />

×α(ξ)<br />

∫ 2πδ<br />

−2πδ<br />

∫ 2πδ<br />

exp(iΓ nκ |z − ξ|)α(ξ)U 2 (2κ; ξ)Ū(3κ; ξ)dξ<br />

exp(iΓ nκ |z − ξ|)<br />

2Γ nκ −2πδ<br />

{ }<br />

1<br />

3 U 3 (κ; ξ) + U 2 (2κ; ξ)Ū(κ; ξ) dξ<br />

+ U inc (nκ; z), |z| ≤ 2πδ, n = 1, 2, 3. (11)<br />

Here U inc (nκ; z) = a inc<br />

nκ exp [−iΓ nκ (z − 2πδ)] . The following result can<br />

be proved.<br />

Theorem 1 Assume that ε (L) , α are piecewise continuous, bounded<br />

and that all the data κ, δ, ϕ, {a inc<br />

nκ } 3 n=1 , α, and ε(L) satisfy<br />

3∑<br />

492γ max<br />

|z|≤2πδ |1−ε(L) (z)| ≤ 35, max |α(z)| (a inc<br />

mκ) 2 ≤ 1721−2√ 10<br />

|z|≤2πδ 551368γ<br />

with γ := πδκ/ cos ϕ. Then the iteration<br />

∫ 2πδ<br />

m=1<br />

U s+1 (nκ; z) + i(nκ)2 exp(iΓ nκ |z − ξ|)<br />

2Γ nκ −2πδ<br />

×[1 − ε nκ (ξ, α(ξ), U s (κ; ξ), U s (2κ; ξ), U s (3κ; ξ))]U s+1 (nκ; ξ)dξ<br />

= δ n1<br />

i(nκ) 2<br />

2Γ nκ<br />

+ δ n3<br />

i(nκ) 2<br />

2Γ nκ<br />

∫ 2πδ<br />

−2πδ<br />

∫ 2πδ<br />

exp(iΓ nκ |z − ξ|)α(ξ)U 2 s (2κ; ξ)Ūs(3κ; ξ)dξ<br />

exp(iΓ nκ |z − ξ|)<br />

−2πδ<br />

{ }<br />

1<br />

×α(ξ)<br />

3 U s 3 (κ; ξ) + Us 2 (2κ; ξ)Ūs(κ; ξ) dξ<br />

+ U inc (nκ; z), |z| ≤ 2πδ, n = 1, 2, 3, s = 0, 1, 2, . . . ,<br />

converges for sufficiently small initial values {U 0 (nκ; ·)} 3 n=1 such that<br />

3∑<br />

max |U 0 (mκ; z)| 2 ≤ 1/(82γ max |α(z)|) to the unique solution<br />

|z|≤2πδ m=1<br />

|z|≤2πδ<br />

of the system (11).<br />

3. NUMERICAL INVESTIGATION OF THE<br />

NONLINEAR INTEGRAL EQUATIONS AND<br />

SPECTRAL PROBLEMS<br />

The application of suitable quadrature rules to the system of nonlinear<br />

integral Equation (11) as described in [4–6] leads to a system of

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!