20.02.2014 Views

Whole issue in PDF - Europhysics News

Whole issue in PDF - Europhysics News

Whole issue in PDF - Europhysics News

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FEATURES<br />

geneously and essentially <strong>in</strong>dependently,<br />

dur<strong>in</strong>g hydrogen absorption.<br />

These optically resolvable doma<strong>in</strong>s<br />

are def<strong>in</strong>ed by an extended self-organized<br />

ridge network, created dur<strong>in</strong>g<br />

the <strong>in</strong>itial hydrogen load<strong>in</strong>g. The<br />

ridges block lateral hydrogen diffusion<br />

and act as a microscopic<br />

lubricant for the sequentially expand<strong>in</strong>g<br />

and contract<strong>in</strong>g doma<strong>in</strong>s. This<br />

block-wise switch<strong>in</strong>g results <strong>in</strong> a<br />

'Manhattan skyl<strong>in</strong>e' <strong>in</strong> which optical<br />

and structural texture are <strong>in</strong>timately<br />

correlated. Their tunability is oftechnological<br />

relevance s<strong>in</strong>ce it opens the<br />

way to a pixel-by-pixel switchable<br />

pattern with a m<strong>in</strong>imal amount of<br />

<strong>in</strong>active surface area. The doma<strong>in</strong><br />

switch<strong>in</strong>g of epitaxial films is locally<br />

very different from the behavior of<br />

polycrystall<strong>in</strong>e films, which are optically<br />

homogeneous ona micrometer<br />

length scale. However, on a macroscopic<br />

scale, both polycrystall<strong>in</strong>e and<br />

epitaxial switchable mirrors exhibit<br />

the same properties.<br />

Conclusions<br />

The great richness ofnewphenomena<br />

<strong>in</strong> the electrical, optical and mechanical<br />

properties of switchable mirror<br />

materials, the possibility to f<strong>in</strong>e-tune<br />

their properties by alloy<strong>in</strong>g and the<br />

ease to change cont<strong>in</strong>uously their<br />

hydrogen content makes them especially<br />

attractive for fundamental<br />

condensed matter physics. Detailed<br />

studies of cont<strong>in</strong>uous metal-<strong>in</strong>sulator<br />

transitions, fast diffusion and electromigration<br />

are drastically simplified<br />

s<strong>in</strong>ce i) the concentration of the<br />

dopant (hydrogen) canbe modified at<br />

willbysimplychang<strong>in</strong>g the surround<strong>in</strong>g<br />

gas pressure or the voltage <strong>in</strong> an<br />

electrolytic cell, and ii) hydrogen<br />

migration can easily be monitored<br />

visually. Replacement of hydrogen by<br />

deuterium also offers unique opportunities<br />

to <strong>in</strong>vestigate isotope effects<br />

<strong>in</strong> manyphysical properties.<br />

Fig.4: Frames of a video taken<br />

dur<strong>in</strong>g hydrogen absorption by a<br />

GdMg switchable mirror. The<br />

<strong>in</strong>dicator lights up when gaseous H2<br />

is <strong>in</strong>troduced <strong>in</strong> the system.The<br />

mirror image of the experimenter<br />

fades out rapidly while the little toy<br />

bear beh<strong>in</strong>d the mirror appears.The<br />

time between the first and last<br />

frame is 280 ms. The characteristic<br />

switch<strong>in</strong>g time is approximately 40<br />

ms. (Courtesy P. Du<strong>in</strong>e, Philips<br />

Research Labs., E<strong>in</strong>dhoven).<br />

They offer also <strong>in</strong>terest<strong>in</strong>g possibilities for technological applications,<br />

such as smart w<strong>in</strong>dows to regulate the light and heat<br />

transfer <strong>in</strong> build<strong>in</strong>gs, antireflection coat<strong>in</strong>gs for TV screens and<br />

monitors, variable reflectance rear-view mirrors <strong>in</strong> cars, variable<br />

transmittance glasses and smart light bulbs with adaptive optics.<br />

Epitaxial switchable mirrors may offer additional possibilities<br />

through their self-organized, pixel-by-pixel switchable doma<strong>in</strong><br />

pattern. Recently, two groups at Lawrence Berkeley and at Philips<br />

Research Labs [10] have demonstrated the feasibility of all-solidstate<br />

devices based on metal-hydride switchable mirrors. In such<br />

devices, the mirrorlayer is separatedfrom a conduct<strong>in</strong>gtransparent<br />

layer of <strong>in</strong>dium-t<strong>in</strong> oxide by a solid electrolyte (e.g. ZrOz).<br />

Apply<strong>in</strong>g a voltage one can control the hydrogen concentration <strong>in</strong><br />

the switchable mirror and <strong>in</strong>duce reversible switch<strong>in</strong>g. Although<br />

many materials problems still rema<strong>in</strong> to be solved, such all-solidstate<br />

devices are an importantstep towards large-scale application<br />

ofswitchable mirrors.<br />

Acknowledgements<br />

The author is most grateful to all members (the coauthors <strong>in</strong> the<br />

references and 1. A. M. E. Giebels,A. F. T. Hoekstra, J. Isidorsson,A.<br />

Remhof, and M. Huisman ) of the Condensed Matter Physics<br />

group at the Vrije Universiteit for their valuable contributions, to<br />

the members of the Switchable Mirror group at Philips Research<br />

and of the TMR Research Network 'Metal-hydride films with<br />

switchable physical properties' for a fruitful collaboration, and to<br />

R. Eder, G. Sawatzky, P. Kelly, P. van Gelderen, T. M. Rice, F. C.<br />

Zhang for enlighten<strong>in</strong>g discussions. This work is part of the<br />

research program ofthe Sticht<strong>in</strong>gvoor Fundamenteel Onderzoek<br />

der Materie (FOM), f<strong>in</strong>ancially supported by the Nederlandse<br />

Organisatie voor Wetenschappelijk Onderzoek (NWO) and<br />

Philips Research. F<strong>in</strong>ancial support by the European TMR Programme<br />

and the Dutch M<strong>in</strong>istry of Economic Affairs is also<br />

gratefully acknowledged.<br />

References<br />

[1] J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker,<br />

D.G. de Groot, and N.J. Koernan, Nature (London) 380,231 (1996)<br />

[2] P. Vajda: "Hydrogen <strong>in</strong> Rare~Earth Metals <strong>in</strong>clud<strong>in</strong>g RH 2+ x phases" <strong>in</strong><br />

Handbook on the Physics and Chemistry ofRare Earths 20, 207 (Elsevier<br />

Science 1995) and references there<strong>in</strong>.<br />

[3] EJA den Broeder, S.J. van der Molen, M. Kremers, J.N. Huiberts,<br />

D.G. Nagengast, A.T.M. van Gogb, W:H. Huisman, J.P. Dekker, N.J.<br />

Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen,<br />

R.M. Jungblut, P.A. Du<strong>in</strong>e, and R. Griessen, Nature (London) 394,<br />

656 (1998)<br />

[4] A.T.M. van GOgb, D.G. Nagengast, E.S. Kooij, N.J. Koeman, and R.<br />

Griessen Phys. Rev. Lett. 85, 2156 (2000)<br />

[5] P. van Gelderen, P.A. Bobbert, P. J. Kelly, G. Brocks, Phys. Rev. Lett.<br />

85,2989 (2000) and references there<strong>in</strong>.<br />

[6] R. Eder, H.E Pen, and G.A. Sawatzky, Phys. Rev. B56, 10115<br />

(1997);K.K. Ng, EC. Zhang, v.I.Anisimov, and T.M. Rice, Phys. Rev.<br />

Lett. 78, 1311 (1997) and Phys. Rev.B. 59, 5398 (1999)<br />

[7] S. J. van der Molen, M. S. Well<strong>in</strong>g and R. Griessen, Phys. Rev. Lett. 85,<br />

3882 (2000)<br />

[8] P. van der Sluis, M. Ouwerkerk, and P.A. Du<strong>in</strong>e, App LPhys. Lett. 70,<br />

3356 (1997)<br />

[9] J.w. J. Kerssernakers, S. J. van der Molen, N. J. Koernan, R. Gi<strong>in</strong>ther<br />

and R. Griessen, Nature 396, 489 (2000)<br />

[10] R. Griessen and P. van der Sluis, Schaltbare Spiegel, Physik <strong>in</strong> unserer<br />

Zeit (2), (2001) and references there<strong>in</strong>.<br />

44<br />

europhysics news MARCH!APRIL 2001

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!