02.03.2014 Views

R&D for an innovative acoustic positioning system for the KM3NeT ...

R&D for an innovative acoustic positioning system for the KM3NeT ...

R&D for an innovative acoustic positioning system for the KM3NeT ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

R&D <strong>for</strong> <strong>an</strong> <strong>innovative</strong> <strong>acoustic</strong> <strong>positioning</strong><br />

<strong>system</strong> <strong>for</strong> <strong>the</strong> <strong>KM3NeT</strong> neutrino telescope<br />

Giorgio Riccobene on behalf of <strong>KM3NeT</strong><br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The deep sea <strong>acoustic</strong> <strong>positioning</strong> <strong>system</strong><br />

The <strong>acoustic</strong> <strong>positioning</strong> is a m<strong>an</strong>datory sub<strong>system</strong> <strong>for</strong> <strong>the</strong> detector<br />

Requirements:<br />

• relative <strong>positioning</strong> accuracy:


Key elements of <strong>the</strong> deep sea <strong>acoustic</strong> <strong>positioning</strong> <strong>system</strong><br />

Key elements <strong>for</strong> <strong>the</strong> Acoustic Positioning System (APS)<br />

- Auto-calibrating Long Baseline of <strong>acoustic</strong> tr<strong>an</strong>sceivers <strong>an</strong>chored in known<br />

<strong>an</strong>d fixed positions.<br />

- Array of <strong>acoustic</strong> sensors (hydrophones) moving with <strong>the</strong> Detection Unit<br />

mech<strong>an</strong>ical structure<br />

- Data acquisition <strong>an</strong>d tr<strong>an</strong>smission <strong>system</strong><br />

- Data <strong>an</strong>alysis <strong>system</strong><br />

Detection<br />

Unit<br />

Measurement Technique:<br />

1) TDoA (Time Difference of Arrival)<br />

T Emit (Beacon) – T Receive (Hydro)<br />

Hydrophone<br />

2) Geometrical Tri<strong>an</strong>gulation<br />

LBL<br />

tr<strong>an</strong>sceivers<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Requirements <strong>for</strong> TDOA measurements<br />

- Common (<strong>an</strong>d absolute) timing <strong>for</strong> beacons <strong>an</strong>d hydrophones:<br />

phased <strong>an</strong>d shyncronised apparatus with


The NEMO Phase 1 experience<br />

In NEMO Phase 1 <strong>an</strong> <strong>acoustic</strong> <strong>positioning</strong> <strong>system</strong> based on commercial technology was<br />

used. We used <strong>an</strong> “<strong>acoustic</strong> poisitionig board” with DSP onboard connected to <strong>the</strong> FCM:<br />

<strong>acoustic</strong> signal <strong>an</strong>alysis underwater beacon signal detection time sent to shore to<br />

recover hydrophone position.<br />

GPS Time packet (1 Hz)<br />

15 m<br />

300 m<br />

Acoustic<br />

<strong>positioning</strong> board<br />

200 kHz digitization<br />

Detection time of<br />

Beacon Signal<br />

Independent<br />

Beacon<br />

Acoustic<br />

<strong>positioning</strong> PCs<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The NEMO Phase 1 experience<br />

Calculation of dist<strong>an</strong>ce beetween <strong>the</strong> two hydrophones installed on a Floor<br />

Measured dist<strong>an</strong>ce in laboratory = 14.25 m<br />

Me<strong>an</strong> value from <strong>acoustic</strong> data = 14.24 m<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The NEMO- OνDE experience: Oce<strong>an</strong> Noise Detection Experiment<br />

4 hydrophones (10 Hz-40 kHz b<strong>an</strong>dwidth) synchronized.<br />

Acoustic signal digitization (24bit@96 kHz) at 2000m depth.<br />

Data tr<strong>an</strong>smission on optical fibers over 28 km.<br />

On-line monitoring <strong>an</strong>d data recording on shore. Recording 5’ every hour.<br />

Data taking from J<strong>an</strong>. 2005 to Nov. 2006 (NEMO Phase 1 deployed).<br />

hydrophones<br />

electronics<br />

housing<br />

Average noise 2005-2006<br />

Sea State 2<br />

Sea State 0<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The NEMO- OνDE experience: Oce<strong>an</strong> Noise Detection Experiment<br />

Sperm whale<br />

clicks<br />

Depth = 560 ± 5 m<br />

L = 3.41 ± 0.05 m<br />

Size = 9.72 - 10.50 m<br />

Young male or female<br />

OνDE sensitivity allowed cetace<strong>an</strong>s detection over >10 km r<strong>an</strong>ge.<br />

The results indicate presence of sperm whales more frequent th<strong>an</strong> previously<br />

observed.<br />

1 <strong>an</strong>imal<br />

Long term observation <strong>an</strong>d source<br />

2 <strong>an</strong>imals<br />

3 <strong>an</strong>imals<br />

tracking is used to determine marine<br />

>3 <strong>an</strong>imals<br />

mammals presence <strong>an</strong>d seasonal<br />

routes.<br />

INFN <strong>an</strong>d<br />

CIBRA<br />

Science, March 2, 2007<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The ANTARES experience<br />

Acoustic Positioning System based on commercial technology (Genisea/ECA).<br />

LBL tr<strong>an</strong>sceivers on <strong>the</strong> BSSs <strong>an</strong>d receivers on <strong>the</strong> line.<br />

Line reconstruction: <strong>acoustic</strong> data + environmental sensors + compasses+ mech<strong>an</strong>ical model<br />

Tr<strong>an</strong>sceiver<br />

Receivers<br />

Floor 1<br />

Floor 8<br />

Floor 14<br />

Floor 20<br />

Floor 25<br />

BSS<br />

ANTARES Line<br />

Tr<strong>an</strong>sceivers<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The ANTARES experience<br />

Absolute positions of LBL tr<strong>an</strong>ceivers:<br />

• Determined from surface (ship GPS)<br />

• Accuracy improved via LBL tri<strong>an</strong>gulation<br />

(tens cm)<br />

Detector <strong>an</strong>gular uncertainty<br />

σ (horizontal) = 0.13°<br />

σ (vertical) = 0.06°<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


R&D <strong>for</strong> <strong>an</strong> integrated Acosutic Positioning System<br />

Major innovations compared to <strong>the</strong> ANTARES <strong>an</strong>d NEMO Phase 1 experience<br />

• Fully time phased <strong>an</strong>d synchronised array of tr<strong>an</strong>smitters <strong>an</strong>d receivers<br />

• “All data to shore” philosophy<br />

Hydrophone data is rate fully sustainable<br />

Better/faster data <strong>an</strong>alysis tools on shore<br />

Large room <strong>for</strong> associated science et al.<br />

• Use of audio professional electronics components / data tr<strong>an</strong>smission protocols<br />

Reduce costs<br />

Improve reliability<br />

Integrate APS in <strong>the</strong> detector DAQ <strong>an</strong>d data tr<strong>an</strong>smission electronics<br />

Improve data exch<strong>an</strong>ge with associated science<br />

• Auto-calibrating <strong>an</strong>d multi-frequency LBL integrated with <strong>the</strong> DAQ chain<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Proposed Acoustic Positioning System <strong>for</strong> <strong>the</strong> <strong>KM3NeT</strong><br />

Acoustic Positioning <strong>system</strong> :<br />

Minimal autocalibrating LBL (autonomous or cabled)<br />

Definitive autocalibrating LBL (connected to KM3 shore clock)<br />

tr<strong>an</strong>sceivers on junction boxes<br />

hydrophones on <strong>the</strong> tower floors<br />

PJB with LBL tr<strong>an</strong>sceiver<br />

Autonomous LBL<br />

SJB with LBL tr<strong>an</strong>sceiver<br />

Detection Unit<br />

MEOC<br />

Cable PJB-SJB<br />

Cable SJB-Tower<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The hydrophone data acquition chain<br />

“All data to shore” philosophy payload: 2 Hydros = 12Mb/s, fully sustainable<br />

Hydros +<br />

preamps<br />

Acoustic Data Server<br />

ADS<br />

ADC<br />

Storey Control Module<br />

Adds GPS Time<br />

Sends Acou-data to shore<br />

TCP/IP<br />

Associated science<br />

OMs<br />

optical<br />

fiber link<br />

On-Shore<br />

Storey Conrtol Module<br />

Data Parsing<br />

Acoustic<br />

Positioning<br />

Storey scheme scheme<br />

Hydrophone frequency r<strong>an</strong>ge:<br />

Hydrophone (+ preamp) sensitivity<br />

ADC dynamic r<strong>an</strong>ge<br />

ADC sampling frequency<br />

1 kHz < f < 70 kHz<br />

∼ -170 dB re V/µPa<br />

∼ 120 dB (24 bits / 18÷20 bits effective)<br />

192 kHz (96 kHz optional)<br />

GPS time added offshore by <strong>the</strong> Storey Control Module<br />

Acoustic data tr<strong>an</strong>smission rate 32 bits @ 192 kHz 6.2 Mb/s (1 hydro)<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


The hydrophone data acquition chain<br />

“All data to shore” philosophy payload: 2 Hydros = 12Mb/s, fully sustainable<br />

Hydros +<br />

preamps<br />

Acoustic Data Server<br />

ADS<br />

ADC<br />

Storey Control Module<br />

Adds GPS Time<br />

Sends Acou-data to shore<br />

TCP/IP<br />

Associated science<br />

OMs<br />

optical<br />

fiber link<br />

On-Shore<br />

Storey Control Module<br />

Data Parsing<br />

Acoustic<br />

Positioning<br />

Storey scheme scheme<br />

Full data <strong>an</strong>alysis on shore with dedicated hardware <strong>an</strong>d/or software<br />

Data acquisition onshore:<br />

• The Storey Control Module onshore parses <strong>the</strong> Acoustic data from <strong>the</strong> data Stream<br />

• Acoustic Data are reconstructed <strong>an</strong>d distributed to clients by <strong>the</strong> ADS using<br />

professional Audio Borads (<strong>for</strong> tests) or custom FPGA-based boards.<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


R&D: Hydrophones <strong>an</strong>d Preamps<br />

Commercial hydrophones are typically factory calibrated:<br />

piston test at 250 Hz, water pool test above 5 kHz (due to reflections)<br />

directionality pattern<br />

But <strong>for</strong> m<strong>an</strong>y hydrophones sensitivity ch<strong>an</strong>ges as a function of pressure (∼ -3 dB/1000 m)<br />

INFN <strong>an</strong>d <strong>an</strong> itali<strong>an</strong> comp<strong>an</strong>y (SMID) have developed low cost hydrophones <strong>for</strong> 4000 m<br />

depth, with no ch<strong>an</strong>ge of sensitivity as a function of depth.<br />

NATO has developed <strong>for</strong>/with NEMO a st<strong>an</strong>dard procedure <strong>for</strong> calibration under pressure<br />

Hydrophone<br />

Preamplifier<br />

NATO/NURC (La Spezia) Calibration t<strong>an</strong>k dimensions: 4.6m long, 3.6m wide, 2.7m deep<br />

Instruments:<br />

PC with National Instrument PXI 6115 DAQ card & GPIB<br />

HP 33120a signal generator interfaced through GPIB bus<br />

St<strong>an</strong><strong>for</strong>d Research Systems DG 535 delay generator<br />

St<strong>an</strong><strong>for</strong>d Research Systems SRS 560 pre-amplifier<br />

Instruments Inc L2 power amplifier<br />

A new hydrophone with digital read-out interface has been recently developed by SMID<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


R&D: Hydrophones <strong>an</strong>d Preamps<br />

Calibration of 40 hydrophones using <strong>the</strong> NATO water t<strong>an</strong>k (1 bar)<br />

Hydrophone + preamp (+ 38 dB gain)<br />

Radiation lobe<br />

30 kHz<br />

50 kHz<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


R&D: Hydrophones <strong>an</strong>d Preamps<br />

Pressure calibration of 40 Hydrophones using <strong>the</strong> NATO pressure t<strong>an</strong>k<br />

Set-up <strong>for</strong> high pressure tests:<br />

measurement of relative sensitivity losses<br />

Relative Hydrophone sensitivity<br />

variation with hydrostatic<br />

pressure at 20 kHz<br />

• Hydrophone placed in pressure vessel filled<br />

with oil <strong>an</strong>d immersed in a calibration t<strong>an</strong>k<br />

• A projector (ITC1042) is placed at<br />

approximately 1 m from <strong>the</strong> pressure vessel<br />

300 Bar 400 Bar<br />

• Pressure is increased to 400 bar <strong>an</strong>d<br />

allowed to settle <strong>for</strong> 30 minutes.<br />

• Hydrophone signal is acquired at<br />

400, 300 <strong>an</strong>d 50 bar.<br />

Measured variations ≤ ±1 dB<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Tests with <strong>KM3NeT</strong> “backup solution” data tr<strong>an</strong>smission electronics<br />

The Acoustic Board design is based on commercial audio professional components:<br />

ADC Stereo 24 bit/192 kHz Max input 2 V RMS<br />

AES3 compli<strong>an</strong>t DIT (Data Interface Tr<strong>an</strong>smitter)<br />

power 160 mA @ 5.3VDC<br />

Devices are piloted by 24.576 MHz Clock from <strong>the</strong> FCM (<strong>for</strong> 192 kHz sampling rate)<br />

Power to<br />

preamps<br />

FCM off-shore<br />

adds GPS time to <strong>the</strong><br />

audio data stream<br />

11 cm<br />

Acoustic Board<br />

Digital audio<br />

data (out)<br />

clock, reset<br />

(in)<br />

FCM on-shore<br />

distributes <strong>the</strong> GPS<br />

time to <strong>the</strong>off-shore<br />

electronics<br />

Optical link shore-sea<br />

Analog signal inputs from preamps<br />

Digital Audio signal ouput<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Time synchronization measurements<br />

Measurement of offshore electronics latency = 170 ± 1 µs <strong>for</strong> all boards<br />

Time of Trigger known<br />

(accuracy < ns )<br />

FCM off-shore<br />

Inserts time in<br />

<strong>acoustic</strong> data<br />

Optical link<br />

FCM<br />

on-shore<br />

Acoustic<br />

Data<br />

Server<br />

Trigger<br />

Signal<br />

Signal<br />

generator<br />

Acou<br />

Board<br />

Test set-up<br />

Received signal. Trigger Signal sent at T=0<br />

Sinusoidal<br />

wave<br />

preamp<br />

preamp<br />

∼100 ns delay with<br />

respect to trigger signal<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Tests with autonomous beacon<br />

Response of <strong>the</strong> APS to <strong>an</strong> autonomous beacon (32 kHz, 180 dB re 1 µPa @ 1 m)<br />

Baecon Signal 5 ms<br />

In collaboration with ACSA, Mereuyle (F)<br />

32 kHz, -68 dB re<br />

V RMS / √Hz<br />

32000 pts FFT<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Amplitude response <strong>an</strong>d electronics noise of <strong>the</strong> <strong>system</strong><br />

Assuming a Beacon pulse of 32 kHz<br />

180 dB re 1 µPa @ 1m<br />

Electronics Noise<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Tests of <strong>acoustic</strong> tr<strong>an</strong>sceivers <strong>for</strong> <strong>the</strong> LBL<br />

Commercially available Free Flooded Rings (FFR) – SENSOR X-30<br />

tested by CCPM - IN2P3 <strong>an</strong>d UPV - G<strong>an</strong>dia @ Ifremer Brest<br />

- 440 Bar pressure tests<br />

- Multi frequency (25 to 40 kHz usable)<br />

tested at LNS-INFN with <strong>the</strong> whole DAQ chain<br />

SMID<br />

Hydrophone<br />

SENSOR X-30<br />

FFR<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


LBL tr<strong>an</strong>sceivers electronics (under design)<br />

Time of trigger known<br />

(accuracy < ns )<br />

FMC off-shore<br />

Optical link<br />

FMC<br />

on-shore<br />

Acoustic<br />

Data<br />

Server<br />

Trigger<br />

Signal<br />

Signal<br />

Generator<br />

Board<br />

Acou<br />

Board<br />

Digitized<br />

Data<br />

FCM on-shore<br />

Tr<strong>an</strong>smits GPS time<br />

Sends user trigger<br />

Sends user comm<strong>an</strong>ds <strong>an</strong>d settings<br />

Signal to<br />

tr<strong>an</strong>smitters<br />

preamp<br />

preamp<br />

FCM off-shore<br />

Inserts time in <strong>acoustic</strong>s data<br />

Interfaces comm<strong>an</strong>ds <strong>an</strong>d trigger to SGB<br />

FFR<br />

Signal Generator Board<br />

Pulse amplitude set<br />

Pulse frequency set<br />

Pulse repetition rate set<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Adv<strong>an</strong>tages of <strong>the</strong> proposed design:<br />

Summary <strong>an</strong>d Outlook<br />

- Large cost reduction compared to commercial equivalent <strong>system</strong>s<br />

- Improved measurement accuracy<br />

- Compatibility with <strong>KM3NeT</strong> electronics <strong>an</strong>d data acquisition <strong>system</strong><br />

- Improved <strong>system</strong> reliability<br />

- Improved data h<strong>an</strong>dling / porting<br />

Definition of <strong>the</strong> <strong>acoustic</strong> <strong>positioning</strong> <strong>system</strong> architecture:<br />

Evaluate <strong>the</strong> minimum number of required hydrophones per Detection Unit<br />

“NEMO Phase 1 –like” set-up<br />

2 hydros per DU storey<br />

“ANTARES –like” set up :<br />

Mech<strong>an</strong>ical DU simulation<br />

Compasses / Slow control data<br />

1 hydro per DU storey<br />

2 hydros every 2 or 4 DU stories<br />

...<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Fur<strong>the</strong>r perspectives<br />

Search <strong>for</strong> biological<br />

sounds<br />

Preliminary studies on <strong>acoustic</strong> neutrino detection<br />

Hydrophone b<strong>an</strong>d matches<br />

<strong>the</strong> b<strong>an</strong>d required <strong>for</strong> <strong>acoustic</strong><br />

neutrino detection.<br />

All data c<strong>an</strong> be <strong>an</strong>alysed in<br />

parallel by o<strong>the</strong>r end-users.<br />

neutrino<br />

weak interaction<br />

hadronic shower<br />

ν e<br />

e.m.shower<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009


Fur<strong>the</strong>r perspectives<br />

ANTARES (Marseilles, Erl<strong>an</strong>gen)<br />

ACORNE<br />

1100 hydros in 1 km 3<br />

Acoustics<br />

.. with cuts<br />

- No cuts<br />

1 year, threshold 35 mPa, 95% CL<br />

(r<strong>an</strong>dom geometry)<br />

1500 km 3 , 200 hydros per km 3<br />

5 years<br />

threshold 5 mPa<br />

km 3 regular geometries<br />

5 years, 15 mPa, 95% CL<br />

10 years, threshold 5 mPa, 90% CL<br />

(r<strong>an</strong>dom geometry)<br />

A “complementary” km 3 -scale detector ?<br />

Giorgio Riccobene, LNS-INFN VLVnT 2009, A<strong>the</strong>ns October 13 –15 ,2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!