09.03.2014 Views

Molecular Gas at High Redshift

Molecular Gas at High Redshift

Molecular Gas at High Redshift

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Molecular</strong> <strong>Gas</strong> <strong>at</strong><br />

<strong>High</strong> <strong>Redshift</strong><br />

Fabian Walter (MPIA)<br />

w/<br />

Bertoldi, Carilli, Daddi, Da Cunha, Decarli,<br />

Hodge, Maiolino, Riechers, Sargent,<br />

Venemans, Wagg, Wang,Weiss


history of the universe<br />

theoretical framework<br />

big bang<br />

recombin<strong>at</strong>ion<br />

z~1000<br />

0.0003 Gyr<br />

Hydrodynamical simul<strong>at</strong>ions of cosmological structure form<strong>at</strong>ion<br />

‘dark ages’<br />

reioniz<strong>at</strong>ion<br />

quasar/galaxy<br />

build-up<br />

z~15-1000<br />

0.0003-0.3 Gyr<br />

z~8-15<br />

0.3-1 Gyr<br />

z1 Gyr<br />

z=100<br />

time<br />

z=10<br />

z=1<br />

e.g. GADGET, AREPO, Springel et al.<br />

today’s<br />

universe<br />

z~0<br />

14.3 Gyr<br />

Galaxy growth through gas accretion...<br />

...but this gas supply is currently largely unconstrained<br />

observ<strong>at</strong>ionally


Ω(SFR) [Msun yr -1 Mpc -3 ]<br />

Research in last decade - Cosmic Evolution of the cosmic star form<strong>at</strong>ion r<strong>at</strong>e density<br />

t(Gyr)<br />

Deep fields: 100s hours,


Ω(SFR) [Msun yr -1 Mpc -3 ]<br />

Research in last decade - Cosmic Evolution of the cosmic star form<strong>at</strong>ion r<strong>at</strong>e density<br />

t(Gyr)<br />

Deep fields: 100s hours,


A typical dusty high-redshift SED<br />

JWST<br />

SPICA<br />

ALMA+CCAT<br />

EVLA<br />

CNO fine structure lines<br />

CO ‘ladder’<br />

PAHs + SiO<br />

Thermal<br />

dust(young stars)!


frequency [GHz]<br />

practical issues<br />

CO transitions as function of redshift, f(T, ρ)<br />

redshift


frequency [GHz]<br />

practical issues<br />

CO transitions as function of redshift, f(T, ρ)<br />

PdBI/ALMA<br />

submm band<br />

PdBI/ALMA<br />

1mm band<br />

significant coverage in frequency space<br />

PdBI 2mm band<br />

PdBI/ALMA 3mm band<br />


frequency [GHz]<br />

practical issues<br />

CO transitions as function of redshift, f(T, ρ)<br />

PdBI/ALMA<br />

submm band<br />

PdBI/ALMA<br />

1mm band<br />

significant coverage in frequency space<br />

PdBI 2mm band<br />

PdBI/ALMA 3mm band<br />

<strong>at</strong> high redshift: can only detect high-J CO<br />

transitions<br />


frequency [GHz]<br />

practical issues<br />

CO transitions as function of redshift, f(T, ρ)<br />

PdBI/ALMA<br />

submm band<br />

PdBI/ALMA<br />

1mm band<br />

significant coverage in frequency space<br />

PdBI 2mm band<br />

PdBI/ALMA 3mm band<br />

<strong>at</strong> high redshift: can only detect high-J CO<br />

transitions<br />

Mgas (fuel for SF, evol. st<strong>at</strong>e, tdep)<br />

Excit<strong>at</strong>ion => ngas , Tkin (phys. conditions for SF)<br />

Imaging => Σgas ,Mdyn (sys. potential => Mtot)


high redshift gas supply<br />

- CO is best (but by no means perfect) tracer<br />

for molecular gas, H2<br />

so far: individual studies, mostly<br />

QSO: host galaxies of accreting Black Holes<br />

SMGs: highly SF galaxies } SFR ≥1000 Msun yr -1


Carilli & Walter, in prep.<br />

high redshift gas supply<br />

- CO is best (but by no means perfect) tracer<br />

for molecular gas, H2<br />

so far: individual studies, mostly<br />

QSO: host galaxies of accreting Black Holes<br />

SMGs: highly SF galaxies<br />

detection limit:<br />

~10 10-11 Msun


CO now ‘routinely’ detected in z=6 QSOs<br />

z=6: age of universe less than 1 Gyr.<br />

presence of CO(6-5) implies major enrichment in quasar host galaxies<br />

Wang et al 2010


integr<strong>at</strong>ed CO emission<br />

CO velocity field<br />

Fig. 6.— CO(2–1) 0th (top) and 1st (bottom) moment maps for<br />

GN20 <strong>at</strong> intermedi<strong>at</strong>e resolution (0.19 ′′ ). The 0th moment map<br />

(i.e. integr<strong>at</strong>ed intensity) shows contours starting <strong>at</strong> (and in steps<br />

of) 594 µJy km s −1 .The1stmomentmap(i.e.,intensity–weighted<br />

CO emission can be sp<strong>at</strong>ially resolved<br />

<strong>Molecular</strong> <strong>Gas</strong> in GN20 7<br />

ity, bottom), which shows a zoomed–in region of the 0th<br />

moment map. Although some noise is still present in the<br />

outskirts, a clear velocity gradient is apparent across the<br />

disk.<br />

Bright z=4 submillimeter galaxy GN20<br />

4.2.2. Dynamical Modeling<br />

1kpc resolution <strong>at</strong> z=4!<br />

For the dynamical modeling of GN20, we used the<br />

GALMOD task (part of the GIPSY package). We used<br />

an input d<strong>at</strong>a cube with a spectral resolution of 26 km<br />

s −1 ,andwetaperedthed<strong>at</strong><strong>at</strong>oanangularresolutionof<br />

0.77 ′′ as it was found th<strong>at</strong> higher resolutions resolved out<br />

too much flux to be usable for modeling. The GALMOD<br />

task requires a radial profile as input, which (guided by<br />

the 0th moment map) we set as an exponential radial<br />

profile with a slope of –0.4. We used a thin disk model<br />

and we found th<strong>at</strong> changes in the thickness of the disk<br />

(within a reasonable range, < few kpc) did not result in<br />

major changes to the model.<br />

While the 8 resolution of the d<strong>at</strong>a make it difficult to<br />

constrain the exact shape of the rot<strong>at</strong>ion curve, we find<br />

th<strong>at</strong> the velocity field is fully consistent with a rot<strong>at</strong>ing<br />

disk with a steeply–rising rot<strong>at</strong>ion curve th<strong>at</strong> quickly<br />

fl<strong>at</strong>tens. By comparing different models to the d<strong>at</strong>a, we<br />

found th<strong>at</strong> the best–fit model (Figure 7) was a rot<strong>at</strong>ing<br />

disk with an inclin<strong>at</strong>ion of i =30 ◦ ± 15 ◦ ,amaximum<br />

rot<strong>at</strong>ional velocity of v max =575± 100 km s −1 ,anda<br />

dispersion of δ =100± 30 km s −1 . Note th<strong>at</strong> deriving<br />

the dispersion from a sp<strong>at</strong>ially and spectrally convolved<br />

disk model, unlike other mean–weighted dispersion estim<strong>at</strong>ors,<br />

is unbiased by beam smearing(Daviesetal.<br />

2011).<br />

The rel<strong>at</strong>ively large value of v max is due to the fairly<br />

low value found for the inclin<strong>at</strong>ion; while v max ×sin(i)<br />

is well constrained, the two are difficult to disentangle<br />

<strong>at</strong> our angular resolution. The final inclin<strong>at</strong>ion value of<br />

30 ◦ was chosen to reproduce the resulting ellipticity in<br />

the 0th moment map, but we cannot definitively rule<br />

Fig. 7.— Major axis position–velocity diagram for CO(2–1) in<br />

out largerGN20, values taken of the <strong>at</strong> a inclin<strong>at</strong>ion position angle(within of 25 ◦ . The the velocities quoted on the<br />

error), andvertical therefore axis are lower rel<strong>at</strong>ive. values Greyscale of v max and thin . The countours uncertainty<br />

quoted for v max folds in the uncertainty in the<br />

show the<br />

observed d<strong>at</strong>a, and thick contours show the best fit model (see text<br />

for details).<br />

inclin<strong>at</strong>ion.<br />

The blanking on higher–J process transition allows us lines; to recover Daddi et more al. 2009b; of theCarilli<br />

diffuse emission et al. 2010). from GN20, We will and usethis, thisin estim<strong>at</strong>e turn, leads to setto limits a on<br />

larger disk. From the 0th moment map, we estim<strong>at</strong>e a ra-<br />

Reveals clumpy rot<strong>at</strong>ing molecular gas<br />

disk: evidence for cold mode accretion?<br />

but: expensive.... ~100 hours with JVLA<br />

ignored the contribution from d<br />

make up only a tiny fraction of<br />

M ⊙ ;Magdisetal.2011).Weha<br />

tribution from dark m<strong>at</strong>ter, wh<br />

even further. Including 15% da<br />

observ<strong>at</strong>ion th<strong>at</strong> the dark m<strong>at</strong>ter<br />

ies is 10–20% (Genzel et al. 2008<br />

upper limit on the conversion f<br />

M ⊙ (K km s −1 pc 2 ) −1 . A conv<br />

M ⊙ (K km s −1 pc 2 ) −1 as seen<br />

(Daddi et al. 2010; Tacconi et a<br />

likely as well. Our constraints o<br />

the limit α < 1.0 derived using t<br />

metallicity rel<strong>at</strong>ion (Magdis et a<br />

Note th<strong>at</strong> the l<strong>at</strong>ter case resul<br />

m<strong>at</strong>e of 2.3 × 10 11 M ⊙ .Thisalso<br />

derived by Daddi et al. (2009b)<br />

the ACS through IRAC photome<br />

ing a Chabrier (2003) IMF. Thi<br />

uncertainties associ<strong>at</strong>ed with st<br />

SMGs, but the agreement is inte<br />

look <strong>at</strong> this multiwavelength da<br />

for GN20, in the next section.<br />

Hodge et al. 2012<br />

4.3. Multiwavelength


Other tracers: Atomic Carbon (CI)<br />

CI(2-1)[809GHz] and CI(1-0)[492GHz]<br />

independent constraints on Tex needed for LVG<br />

modeling<br />

SMG<br />

QSO<br />

SMG<br />

QSO<br />

Walter et al. 2012<br />

L CI(1-0) /L CO(3-2)<br />

L CI(2-1) /L CI(1-0)<br />

L CI(1-0) /L FIR<br />

L FIR


Other tracers <strong>at</strong> high density<br />

HCN 1-0<br />

HCO + 1-0<br />

CN 3-2 CS 3-2<br />

z=2.6<br />

VLA<br />

• n cr > 1e5 cm -3 - 100x denser than CO, ~ GMC cores<br />

• Dense gas lines 10-30x less luminous than CO<br />

• line r<strong>at</strong>ios similar to local ULIRGs, e.g., Arp 220<br />

⇒ No significant ‘chemical evolution’ of mol. ISM?<br />

z=4<br />

HCN&HCO + 6-5 HNC 6-5<br />

Solomon ea. 2003<br />

Riechers ea., 2007a, 2009<br />

Garcia-Burillo ea 2008


CO ladder -- tedious observ<strong>at</strong>ions...<br />

IRAM 30m CO SED survey<br />

(1, 2, 3mm bands)<br />

Weiss et al. 2013


Lensing helps<br />

The Eyelash<br />

CO(1-0) CO(3-2) CO(4-3) CO(5-4)<br />

CO(6-5) CO(7-6) CO(8-7) CO(9-8) CO(10-9)<br />

CI(1-0) CI(2-1) HCN(3-2)<br />

Swinbank et al. 2011, Danielson et al. 2011


Low-J observ<strong>at</strong>ions in the cm regime: need large collecting are<br />

APM08279 (z=3.9)<br />

PSS J2322 (z=4.1)<br />

GBT<br />

Effelsberg<br />

+<br />

Riechers et al. 2006


Low-J observ<strong>at</strong>ions: JVLA -- merger sequence in SMGs?<br />

Submillimeter Galaxies<br />

Early stage<br />

~30kpc & 750km/s<br />

separ<strong>at</strong>ion<br />

Intermedi<strong>at</strong>e stage<br />

~20kpc & 2-4 SMGs show complex, extended, low-excit<strong>at</strong>ion gas reservoirs<br />

typically 10kpc, with FIR continuum sizes of 2-4kpc (starburst regions)<br />

Riechers et al. 2011, Ivison et al. 2011


CO excit<strong>at</strong>ion: putting it all together:<br />

Cloverleaf F10214 APM0827<br />

J11148<br />

BR1202<br />

PSS1409 MG0751 RXJ0911<br />

SMM14011<br />

SMM16359B<br />

HR10<br />

SMM04431<br />

SMM123549 SMM163650 SMM163658<br />

Weiss et al. 2013


CO excit<strong>at</strong>ion: <strong>High</strong> <strong>Redshift</strong><br />

T kin ~ 200 K (T dust ~ 200 K)<br />

n(H 2 ) ~ 10 4.2 cm -3<br />

Strongly lensed (m=80-100) central ~200pc<br />

surrounding the QSO. AGN he<strong>at</strong>ing!<br />

T kin ~40 – 60 K (T dust ~ 50 K)<br />

n(H 2 ) ~ 10 3.6-4.3 cm -3<br />

T kin ~ 30-50 K (T dust ~ 30-50 K)<br />

n(H 2 ) ~ 10 2.7-3.5 cm -3<br />

Weiss et al. 2013


CO excit<strong>at</strong>ion: Low <strong>Redshift</strong><br />

T kin ~ 200 K (T dust ~ 200 K)<br />

n(H 2 ) ~ 10 4.2 cm -3<br />

Strongly lensed (m=80-100) central ~200pc<br />

surrounding the QSO. AGN he<strong>at</strong>ing!<br />

T kin ~40 – 60 K (T dust ~ 50 K)<br />

n(H 2 ) ~ 10 3.6-4.3 cm -3<br />

T kin ~ 30-50 K (T dust ~ 30-50 K)<br />

n(H 2 ) ~ 10 2.7-3.5 cm -3<br />

Weiss et al. 2013


Evolutionary Sequence?<br />

L FIR , SFR, n(H 2 )<br />

M51 Antennae Arp220 Mrk 231<br />

r CO ~ 4kpc r CO ~ 1.5kpc r CO ~ 500 pc r CO ~200 pc


FIR vs. CO luminosity<br />

N=1.4<br />

FIR luminosity (~SFR)<br />

CO Luminosity (~gas mass)<br />

Riechers et al.


FIR vs. CO luminosity<br />

N=1.4<br />

Kennicutt’s<br />

98 d<strong>at</strong>a<br />

FIR luminosity (~SFR)<br />

high-z Quasars/<br />

submillimeter galaxies<br />

CO Luminosity (~gas mass)<br />

Riechers et al.


2008-2010: Detection of ‘normal’ star forming galaxies<br />

optical/NIR selected galaxies (BzK), SFR few 100<br />

Msun yr -1 are very rich in molecular gas<br />

<strong>Molecular</strong> conversion factor: Galactic<br />

gas fractions: f gas =0.5-0.7<br />

BzK-21000<br />

Milky Way<br />

Daddi et al 2008/2010, Tacconi 2010<br />

Dannerbauer et al. 2009


Loc<strong>at</strong>ion of BzK galxies in ‘SF law’ plot<br />

note: this plot: observables only<br />

- BzKs have significantly less L IR for given L CO<br />

Daddi et al. 2010


Loc<strong>at</strong>ion of BzK galxies in ‘SF law’ plot<br />

note: this plot: observables only<br />

- BzKs have significantly less L IR for given L CO<br />

Daddi et al. 2010


Going from luminosities to masses<br />

FIR luminosity (~SFR)<br />

two sequences:<br />

disks & starbursts<br />

N=1.3<br />

gas mass<br />

Daddi et al. 2010<br />

Genzel et al. 2010


Star Form<strong>at</strong>ion Efficiencies a.k.a. Depletion Times<br />

gas good<br />

<strong>at</strong> forming<br />

stars<br />

immedi<strong>at</strong>e<br />

implic<strong>at</strong>ion:<br />

gas depletion times<br />

long for BzKs<br />

(sim. to spirals)<br />

gas bad<br />

<strong>at</strong> forming<br />

stars<br />

Daddi et al. 2010


log (SFR surface density)<br />

high redshift gas supply<br />

rel<strong>at</strong>ion between gas and star form<strong>at</strong>ion is complex<br />

high-z galaxies<br />

local galaxies<br />

Daddi, et al., 2010, Genzel et al. 2010<br />

log (molecular gas surface density)


log (SFR surface density)<br />

high redshift gas supply<br />

rel<strong>at</strong>ion between gas and star form<strong>at</strong>ion is complex<br />

Ω(SFR) [Msun yr -1 Mpc -3 ]<br />

?<br />

high-z galaxies<br />

+ =<br />

local galaxies ?<br />

Ω(Mmol) [Msun Mpc -3 ]<br />

10 8<br />

10 7<br />

Ω(mol) [Msun Mpc -3 ]<br />

0 1 2 3<br />

redshift<br />

log (molecular gas surface density)<br />

→ not trivial to predict Ω(Mmol) from Ω(SFR)<br />

[talk by Mark Sargent]<br />

solution: unbiased census of molecular gas, the fuel for star form<strong>at</strong>ion<br />

i.e. a molecular deep field (<strong>at</strong> the same time: continuum deep field)


frequency [GHz]<br />

molecular deep field: approach<br />

CO transitions as function of redshift, f(T, ρ)<br />

PdBI/ALMA<br />

submm band<br />

PdBI/ALMA<br />

1mm band<br />

PdBI 2mm band<br />

PdBI/ALMA 3mm band<br />

this is now possible given wide bandwidths<br />

of current and upcoming facilities<br />


BzK selection<br />

ALMA deep field: predicted properties of UDF galaxies<br />

continuum: observed UV/optical SEDs → SED models (Da Cunha) → dust<br />

luminosity (from <strong>at</strong>tenu<strong>at</strong>ion in UV) → FIR luminosity → ALMA flux densities<br />

lines: LFIR → LCO (Daddi et al., Genzel et al.), assuming range of CO excit<strong>at</strong>ions MW⟷M82)<br />

Band 6<br />

Band 7<br />

Band 3<br />

Whole sample (13,099 galaxies)<br />

0.0 ≤ z < 1.5 (5,660 galaxies)<br />

1.5 ≤ z < 2.5 (4,286 galaxies)<br />

2.5 ≤ z < 5.0 (3,153 galaxies)


Full ALMA<br />

total ~300 hours<br />

FOV = 26 arcsec<br />

6.2 hours/pointing<br />

rms = 5.1 microJy<br />

>600 detections<br />

predicted properties of UDF galaxies: example: band 6 continuum<br />

actual observ<strong>at</strong>ions can be<br />

immedi<strong>at</strong>ely compared to<br />

these expect<strong>at</strong>ions!<br />

ALMA detected<br />

x 10


full ALMA, full UDF<br />

full ALMA, full UDF<br />

Full ALMA<br />

total ~300 hours<br />

FOV = 26 arcsec<br />

6.2 hours/pointing<br />

rms = 5.1 microJy<br />

>600 detections<br />

predicted properties of UDF galaxies: example: band 6 continuum<br />

actual observ<strong>at</strong>ions can be<br />

immedi<strong>at</strong>ely compared to<br />

these expect<strong>at</strong>ions!<br />

ALMA detected<br />

x 10<br />

e.g. comparison<br />

to Obreschkow et al.<br />

Lagos et al., Sargent<br />

et al.<br />

observed CO luminosities: comparisons to models<br />

talk by Mark Sargent<br />

z=0 z=1<br />

z=2<br />

Sargent et al. 2012


predictions by numerical simul<strong>at</strong>ions<br />

z~1<br />

AREPO (Springel et al., Vogelsberger et al.):<br />

distribution of molecular gas <strong>at</strong> z~1, 2 and 3<br />

z~2<br />

z~3<br />

size: 1’x1’ ~ ALMA band 3 primary beam size<br />

can immedi<strong>at</strong>ely compare observ<strong>at</strong>ions to<br />

simul<strong>at</strong>ions


frequency [GHz]<br />

first molecular deep field with PdBI: HDF<br />

covered full 3mm band in 10 frequency settings (2011-2012)<br />

3mm band: low-J coverage, highest fractional BW, largest PB<br />

CO redshift coverage<br />

PdBI 3mm band<br />

PdBI<br />

primary<br />

beam<br />

redshift<br />

almost complete redshift coverage


frequency [GHz]<br />

first molecular deep field with PdBI: HDF<br />

covered full 3mm band in 10 frequency settings (2011-2012)<br />

3mm band: low-J coverage, highest fractional BW, largest PB<br />

CO redshift coverage<br />

PdBI 3mm band<br />

PdBI<br />

primary<br />

beam<br />

redshift<br />

almost complete redshift coverage<br />

this field included HDF850.1<br />

Hughes et al. 1998


spectrum <strong>at</strong> position of HDF850.1<br />

The Case of HDF850.1


spectrum <strong>at</strong> position of HDF850.1<br />

The Case of HDF850.1


The Case of HDF850.1<br />

spectrum <strong>at</strong> position of HDF850.1<br />

This nails the redshift to z=5.183!<br />

Walter et al. 2012


The Case of HDF850.1<br />

spectrum <strong>at</strong> position of HDF850.1<br />

This nails the redshift to z=5.183!<br />

Walter et al. 2012


The Case of HDF850.1<br />

spectrum <strong>at</strong> position of HDF850.1<br />

precise loc<strong>at</strong>ion and redshift: no counterpart<br />

identifiable in deepest HST observ<strong>at</strong>ions<br />

HDF850.1<br />

[CII] contours on I−band<br />

red/blue−shifted [CII]<br />

on J−band<br />

This nails the redshift to z=5.183!<br />

Walter et al. 2012


The Case of HDF850.1<br />

spectrum <strong>at</strong> position of HDF850.1<br />

precise loc<strong>at</strong>ion and redshift: no counterpart<br />

identifiable in deepest HST observ<strong>at</strong>ions<br />

HDF850.1<br />

[CII] contours on I−band<br />

red/blue−shifted [CII]<br />

on J−band<br />

however source is loc<strong>at</strong>ed in galaxy overdensity<br />

<strong>at</strong> z=5.2, including one quasar!<br />

This nails the redshift to z=5.183!<br />

Walter et al. 2012


lind detection of other sources:<br />

example:<br />

2nd CO line confirms z=1.76


lind detection of other sources:<br />

example:<br />

2nd CO line confirms z=1.76<br />

volume probed for CO(2-1)<br />

line from z=1.0-1.8 (=1.4)<br />

first blind constraints on Ω(Mmol)<br />

Sargent et al. (2012)<br />

Obreschkow et al. (2009a,b)<br />

=1.4<br />

Ω(Mmol) [Msun Mpc -3 ]<br />

10 8<br />

Sargent et al. (2012)<br />

Obreschkow et al. (2009a,b)<br />

α = 4.4<br />

PdBI deep field<br />

α = 0.8<br />

10 7 redshift<br />

0<br />

1 2<br />

3


going to the highest redshifts, z>>5<br />

will we loose CO as our main tracer?<br />

problem I: conversion factor <strong>at</strong> low metallicities?<br />

problem II: the CMB is not our friend<br />

Tex = 18 K<br />

LOBSERVED / LINTRINSIC<br />

0 2 4 6 8 10<br />

redshift<br />

da Cunha et al. 2012


going to the highest redshifts, z>>5<br />

will we loose CO as our main tracer?<br />

problem I: conversion factor <strong>at</strong> low metallicities?<br />

problem II: the CMB is not our friend<br />

Tex = 18 K<br />

Tex = 40 K<br />

LOBSERVED / LINTRINSIC<br />

LOBSERVED / LINTRINSIC<br />

0 2 4 6 8 10<br />

redshift<br />

0 2 4 6 8 10<br />

redshift<br />

da Cunha et al. 2012


CO line redshift coverage for ALMA and JVLA


CO line redshift coverage for ALMA and JVLA<br />

QSO


CO line redshift coverage for ALMA and JVLA<br />

SMG QSO


CO line redshift coverage for ALMA and JVLA<br />

BzK SMG QSO<br />

CO NOT EXCITED


going to the highest redshifts<br />

BzK SMG QSO<br />

CO NOT EXCITED<br />

[CII]


[CII] to the rescue?<br />

LMC<br />

may be easier to detect<br />

fainter, low metallicity<br />

sources?<br />

1+ order of mag<br />

z>4<br />

• [CII] is bright<br />

• [CII] is not easily interpretable,<br />

traces ionized and neutral gas<br />

Maiolino et al. 2009 [upd<strong>at</strong>ed]


Local [CII] calibr<strong>at</strong>ions ongoing...<br />

[CII] [NII] [OI] [OIII]<br />

e.g., KINGFISH project<br />

(Smith et al., Bol<strong>at</strong>to et al.)


Maximum Starburst <strong>at</strong> z=6.4 - resolved [CII] emission<br />

Walter ea. 2009<br />

1”<br />

PdBI – 0.25” res<br />

FIR continuum<br />

[CII]<br />

• [CII] size ~ 1.5 kpc => SFR/area ~ 1000 M o yr -1 kpc -2<br />

• Maximal starburst: (Thompson et al. 2005)<br />

Ø Self-gravit<strong>at</strong>ing gas disk, Vertical support: radi<strong>at</strong>ion pressure


quick poll!<br />

SFRSD=1000 M sun yr -1 kpc -2 !!??<br />

Comparison to star form<strong>at</strong>ion r<strong>at</strong>e<br />

surface density in Orion?!<br />

SFRSD J1148 =1000 M sun yr -1 kpc -2<br />

A) SFRSD Orion = 10 -6 x SFRSD J1148<br />

B) = 10 -3 x SFRSD J1148<br />

C) = 1 x SFRSD J1148


quick poll!<br />

SFRSD=1000 M sun yr -1 kpc -2 !!??<br />

Comparison to star form<strong>at</strong>ion r<strong>at</strong>e<br />

surface density in Orion??<br />

SFRSD J1148 =1000 M sun yr -1 kpc -2<br />

✖<br />

✖<br />

✔<br />

A) SFRSD Orion = 10 -6 x SFRSD J1148<br />

B) = 10 -3 x SFRSD J1148<br />

C) = 1 x SFRSD J1148


quick poll!<br />

SFRSD=1000 M sun yr -1 kpc -2 !!??<br />

Comparison to star form<strong>at</strong>ion r<strong>at</strong>e<br />

surface density in Orion??<br />

SFRSD J1148 =1000 M sun yr -1 kpc -2<br />

✖<br />

✖<br />

✔<br />

A) SFRSD Orion = 10 -6 x SFRSD J1148<br />

B) = 10 -3 x SFRSD J1148<br />

C) = 1 x SFRSD J1148


Walter et al. 2012<br />

Search for [CII] in z>6.5 Lyman Alpha Emitters (and one z~8 GRB host)<br />

Small survey <strong>at</strong> PdBI to detect [CII] <strong>at</strong> z>6.5: unsuccessful


[CII] now detected out to z=7.1(!)<br />

Only one quasar known <strong>at</strong> z>7 (Mortlock et al. 2011)<br />

Bright detection in [CII] -- source visible from ALMA<br />

Venemans et al. 2012


ALMA: An SMG-Quasar pair <strong>at</strong> z=4.7<br />

BRI 1202: [CII]<br />

dram<strong>at</strong>ic S/N in 0.5 hours w/ 16<br />

antennae Wagg et al. 2012<br />

Carilli et al. 2012


First serendipitous ALMA [CII] detections<br />

ALMA always covers 8GHz of bandwidth -- we looked <strong>at</strong> ~100 SMGs in ECDFS<br />

Two show evidence for line<br />

emission - most likely [CII]<br />

<strong>at</strong> z~4.4<br />

Swinbank et al. 2013


[NII] as a tracer of ionized medium <strong>at</strong> high redshift<br />

[NII] in strongly lensed source <strong>at</strong> z=4 (MM18423) (Lestrade et al. 2010)<br />

FIR continuum<br />

[NII] line<br />

resolved star form<strong>at</strong>ion law<br />

<strong>at</strong> high redshift!<br />

[NII] red/blue-shifted<br />

Jansky Array CO<br />

Decarli, FW et al. 2012


Summary / Conclusions<br />

- the future is now<br />

- CO remains best direct tracer of<br />

molecular gas mass <strong>at</strong> intermedi<strong>at</strong>e z<br />

Hubble UDF<br />

ALMA simul<strong>at</strong>ions<br />

- excit<strong>at</strong>ion critical to derive masses etc.<br />

- may loose CO <strong>at</strong> highest redshifts (CMB)...<br />

→ fine structure lines<br />

ALMA<br />

ALMA<br />

- so far: all detections in systems w/ SFR > 100 Msun yr -1<br />

- soon: unbiased blind deep fields with ALMA<br />

- ultim<strong>at</strong>e goal: constraints on ΩCO(z) and thus ~Ωmol(z)


THE END

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!