09.03.2014 Views

Measurements of the CO-to-H 2 Conversion Factor and Dust-to-Gas ...

Measurements of the CO-to-H 2 Conversion Factor and Dust-to-Gas ...

Measurements of the CO-to-H 2 Conversion Factor and Dust-to-Gas ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Measurements</strong> <strong>of</strong> <strong>the</strong><br />

<strong>CO</strong>-<strong>to</strong>-H2 <strong>Conversion</strong> Fac<strong>to</strong>r <strong>and</strong><br />

<strong>Dust</strong>-<strong>to</strong>-<strong>Gas</strong> Ratio in Nearby Galaxies<br />

Karin S<strong>and</strong>strom (MPIA)<br />

Collabora<strong>to</strong>rs: Adam Leroy, Fabian Walter,<br />

KINGFISH team, HERACLES team<br />

Galactic Scale Star Formation<br />

Heidelberg - August 1, 2012


Measuring <strong>the</strong> <strong>CO</strong>-<strong>to</strong>-H2 <strong>Conversion</strong> Fac<strong>to</strong>r.<br />

ΣH2 = α<strong>CO</strong> I<strong>CO</strong><br />

α<strong>CO</strong> = 4.35 M⊙ pc -2 (K km s -1 ) -1<br />

X<strong>CO</strong> = 2×10 20 cm -2 (K km s -1 ) -1<br />

note: α<strong>CO</strong> defined here for<br />

unresolved clouds, includes He<br />

To measure α<strong>CO</strong>:<br />

1. observe <strong>CO</strong><br />

2. use ano<strong>the</strong>r tracer <strong>to</strong> get<br />

<strong>to</strong>tal amount <strong>of</strong> molecular gas<br />

3. compare with observed <strong>CO</strong><br />

O<strong>the</strong>r ways <strong>to</strong> trace <strong>the</strong> <strong>to</strong>tal amount <strong>of</strong> molecular gas:<br />

Dynamics<br />

(i.e. virial masses)<br />

γ-rays<br />

Modeling Line<br />

Emission<br />

<strong>Dust</strong>


O<strong>the</strong>r ways <strong>to</strong> trace <strong>the</strong> <strong>to</strong>tal amount <strong>of</strong> molecular gas:<br />

Dynamics<br />

(i.e. virial masses)<br />

γ-rays<br />

Modeling Line<br />

Emission<br />

<strong>Dust</strong><br />

100.0<br />

Bolat<strong>to</strong> et al. 2008<br />

Necessary assumptions:<br />

molecular cloud is virialized,<br />

no <strong>CO</strong>-free layer <strong>of</strong> H2<br />

Need <strong>to</strong> resolve GMCs.<br />

Hard <strong>to</strong> do outside <strong>the</strong> Local Group.<br />

Mvir/M<strong>CO</strong><br />

10.0<br />

1.0<br />

Milky Way<br />

Previous results find little<br />

variation away from<br />

MW α<strong>CO</strong>~4.35<br />

7.8 8.0 8.2 8.4 8.6 8.8 9.0<br />

12 + log(O/H)<br />

GMCs in center <strong>of</strong> NGC 6946<br />

have α<strong>CO</strong> ~ α<strong>CO</strong>,MW/2<br />

(Donovan Meyer et al. 2012)


O<strong>the</strong>r ways <strong>to</strong> trace <strong>the</strong> <strong>to</strong>tal amount <strong>of</strong> molecular gas:<br />

Dynamics<br />

(i.e. virial masses)<br />

γ-rays<br />

Modeling Line<br />

Emission<br />

<strong>Dust</strong><br />

Letter <strong>to</strong> <strong>the</strong> Edi<strong>to</strong>r<br />

L48<br />

Necessary assumptions:<br />

distribution <strong>of</strong> cosmic rays<br />

Need <strong>to</strong> observe γ-rays.<br />

Hard <strong>to</strong> do outside <strong>the</strong> Local Group.<br />

Measure MW disk α<strong>CO</strong>~4.35,<br />

MW center α<strong>CO</strong> 5× lower.<br />

Fig. 1. CR source density as function <strong>of</strong> Galac<strong>to</strong>centric radius R.<br />

Dotted: as used in Strong et al. (2000), solid line: based on pulsars<br />

(Lorimer 2004) as used in this work, vertical bars: SNR data points<br />

from Case & Bhattacharya (1998). Distributions are normalized at<br />

R = 8.5kpc.<br />

A. W. Strong et al.: Distribution <strong>of</strong> cosmic ray sources in <strong>the</strong> Galaxy<br />

X<strong>CO</strong> (cm -2 /(K km s -1 ))<br />

10.0<br />

1.0<br />

MW X<strong>CO</strong> radial gradient from γ-rays<br />

Strong et al. 2004<br />

0.1<br />

0 5 10 15<br />

Radius (kpc)<br />

Fig. 2. X <strong>CO</strong> as function <strong>of</strong> R. Dottedhorizontalline,black:asusedin<br />

Strong & Mat<strong>to</strong>x (1996); Strong et al. (2000); solid line, black: as used<br />

for γ-rays in this work; dashed, dark blue: from Sodroski et al. (1995);<br />

dash-dot, red: using metallicity gradient as described in <strong>the</strong> text, X <strong>CO</strong> ∝<br />

Z −2.5 (Israel 2000), two lines for [O/H] = 0.04 <strong>and</strong> 0.07 dex/kpc; dashdot-dot,light<br />

blue: using X <strong>CO</strong> ∝ Z −1.0 (Boselli et al. 2002) <strong>and</strong> [O/H] =


O<strong>the</strong>r ways <strong>to</strong> trace <strong>the</strong> <strong>to</strong>tal amount <strong>of</strong> molecular gas:<br />

Dynamics<br />

(i.e. virial masses)<br />

γ-rays<br />

Modeling Line<br />

Emission<br />

<strong>Dust</strong><br />

Necessary assumptions:<br />

number <strong>of</strong> different gas<br />

components, velocity/density<br />

structure <strong>of</strong> cloud, etc.<br />

Need <strong>to</strong> observe multiple<br />

molecular gas lines.<br />

Measure galaxy center<br />

α<strong>CO</strong> 5-10× lower than MW.<br />

(e.g. Israel 2009a,b)


O<strong>the</strong>r ways <strong>to</strong> trace <strong>the</strong> <strong>to</strong>tal amount <strong>of</strong> molecular gas:<br />

Dynamics<br />

(i.e. virial masses)<br />

γ-rays<br />

Modeling Line<br />

Emission<br />

<strong>Dust</strong><br />

The Astrophysical Journal, 737:12(13pp),2011August10<br />

Leroy et al.<br />

α<strong>CO</strong><br />

Leroy et al 2011<br />

Necessary assumptions:<br />

dust & gas are well mixed,<br />

DGR & emissivity don’t change<br />

with a<strong>to</strong>mic/molecular phase<br />

Need <strong>to</strong> observe dust mass<br />

tracer (typically far-IR + SED<br />

modeling).<br />

12 + log(O/H)<br />

Widely applied with various<br />

techniques...<br />

Figure 6. Left: α <strong>CO</strong> as a function <strong>of</strong> metallicity. The gray region shows <strong>the</strong> range <strong>of</strong> commonly used α <strong>CO</strong> for <strong>the</strong> Milky Way <strong>and</strong> <strong>the</strong> dashed line indicates <strong>the</strong> value<br />

argued for by Draine et al. (2007) studyingintegratedpho<strong>to</strong>metry<strong>of</strong>SINGSgalaxies.Right:<strong>the</strong>gas-<strong>to</strong>-dustratioδ GDR as a function <strong>of</strong> <strong>the</strong> same metallicities. The<br />

dashed line indicates a linear scaling.


Measuring <strong>the</strong> <strong>Conversion</strong> Fac<strong>to</strong>r with <strong>Dust</strong>.<br />

DGR = ΣD/(ΣHI +α<strong>CO</strong>I<strong>CO</strong>)<br />

unknown<br />

observable<br />

• Fix DGR based on some model or expected DGR.<br />

• Fix DGR based on nearby HI-only line-<strong>of</strong>-sight.<br />

• Solve for both DGR & α <strong>CO</strong> using spatially resolved<br />

measurements.


Measuring <strong>the</strong> <strong>Conversion</strong> Fac<strong>to</strong>r with <strong>Dust</strong>.<br />

DGR = ΣD/(ΣHI +α<strong>CO</strong>I<strong>CO</strong>)<br />

unknown<br />

observable<br />

• Fix DGR based on some model or expected DGR.<br />

• Fix DGR based on nearby HI-only line-<strong>of</strong>-sight.<br />

• Solve for both DGR & α <strong>CO</strong> using spatially resolved<br />

measurements.<br />

Assumption: DGR constant on kpc scales.


Our Technique:<br />

Minimizing Scatter in DGR on kpc scales<br />

car<strong>to</strong>on <strong>of</strong> what happens <strong>to</strong> DGR<br />

when α<strong>CO</strong> is adjusted<br />

DGR =<br />

Σdust<br />

ΣHI +α<strong>CO</strong>I<strong>CO</strong><br />

assume DGR & Xco<br />

constant in this region<br />

I<strong>CO</strong>/ΣHI<br />

• both <strong>CO</strong> <strong>and</strong> H I are detected<br />

Need good S/N maps <strong>of</strong> <strong>CO</strong> & HI.<br />

• a range <strong>of</strong> I<strong>CO</strong>/ΣHI values are present<br />

Need many resolution elements.<br />

• region is small, ok <strong>to</strong> assume DGR & Xco ~ constant<br />

Must select small chunk <strong>of</strong> galaxy, so need high resolution.


Our Technique:<br />

Minimizing Scatter in DGR on kpc scales<br />

car<strong>to</strong>on <strong>of</strong> what happens <strong>to</strong> DGR<br />

when α<strong>CO</strong> is adjusted<br />

DGR =<br />

Σdust<br />

ΣHI +α<strong>CO</strong>I<strong>CO</strong><br />

assume DGR & Xco<br />

constant in this region<br />

I<strong>CO</strong>/ΣHI<br />

• both <strong>CO</strong> <strong>and</strong> H I are detected<br />

Need good S/N maps <strong>of</strong> <strong>CO</strong> & HI.<br />

• a range <strong>of</strong> I<strong>CO</strong>/ΣHI values are present<br />

Need many resolution elements.<br />

• region is small, ok <strong>to</strong> assume DGR & Xco ~ constant<br />

Must select small chunk <strong>of</strong> galaxy, so need high resolution.


Our Technique:<br />

Minimizing Scatter in DGR on kpc scales<br />

car<strong>to</strong>on <strong>of</strong> what happens <strong>to</strong> DGR<br />

when α<strong>CO</strong> is adjusted<br />

DGR =<br />

Σdust<br />

ΣHI +α<strong>CO</strong>I<strong>CO</strong><br />

assume DGR & Xco<br />

constant in this region<br />

I<strong>CO</strong>/ΣHI<br />

• both <strong>CO</strong> <strong>and</strong> H I are detected<br />

Need good S/N maps <strong>of</strong> <strong>CO</strong> & HI.<br />

• a range <strong>of</strong> I<strong>CO</strong>/ΣHI values are present<br />

Need many resolution elements.<br />

• region is small, ok <strong>to</strong> assume DGR & Xco ~ constant<br />

Must select small chunk <strong>of</strong> galaxy, so need high resolution.


Example <strong>of</strong> <strong>the</strong> Technique


Example <strong>of</strong> <strong>the</strong> Technique


1. Measure <strong>CO</strong>, HI & dust<br />

at each point in region.<br />

2. Measure scatter in<br />

DGR at various α<strong>CO</strong>.<br />

3. Find minimum<br />

in scatter.<br />

4. Minimum scatter<br />

=<br />

most “uniform”<br />

DGR in region<br />

=<br />

best-fit α<strong>CO</strong> & DGR


The Observations<br />

DGR = ΣD/(ΣHI +α<strong>CO</strong>I<strong>CO</strong>)<br />

KINGFISH<br />

Key Insights in<strong>to</strong> Nearby Galaxies:<br />

A Far-IR Survey with Herschel<br />

70-500 µm imaging & spectroscopy <strong>of</strong> 62<br />

nearby galaxies with Herschel<br />

Kennicutt et al. 2011<br />

3.6 - 24 µm from SINGS <strong>and</strong> LVL.<br />

(Kennicutt et al. 2003, Dale et al. 2009)<br />

To get ΣD: SED modeling from 3.6 - 350 µm (Aniano+ 2012)<br />

(preserves SPIRE 350 µm’s 25” resolution while<br />

still covering <strong>the</strong> peak <strong>of</strong> <strong>the</strong> dust SED)


The Observations<br />

DGR = ΣD/(ΣHI +α<strong>CO</strong>I<strong>CO</strong>)<br />

THINGS<br />

The HI Nearby Galaxies Survey<br />

HI survey <strong>of</strong> 34 nearby galaxies with <strong>the</strong> VLA<br />

Walter et al. (2008)<br />

Resolution <strong>of</strong> ~12”<br />

HI column density determined<br />

directly from 21cm line.


The Observations<br />

DGR = ΣD/(ΣHI +α<strong>CO</strong>I<strong>CO</strong>)<br />

HERACLES<br />

HERA <strong>CO</strong>-Line Emission Survey<br />

<strong>CO</strong> J=(2-1) survey <strong>of</strong> 48 nearby galaxies with<br />

HERA on <strong>the</strong> IRAM 30m.<br />

Leroy et al. (2009)<br />

Resolution <strong>of</strong> ~13”<br />

Assume (2-1)/(1-0) = 0.7 average for HERACLES sample<br />

(Rosolowsky et al., in prep)


NGC0628 Results


NGC0628 Results


NGC0628 Results


NGC3938 Results


NGC3938 Results


NGC3938 Results


NGC6946 Results


NGC6946 Results


NGC6946 Results


Variations we see in α<strong>CO</strong><br />

• MW α <strong>CO</strong>, no trend with radius.<br />

• Flat MW α <strong>CO</strong> pr<strong>of</strong>ile + central unresolved<br />

dip.<br />

• Overall gradient in α <strong>CO</strong> with radius.<br />

• Low α <strong>CO</strong> everywhere, no clear radial trend.<br />

illustrated with a few examples <strong>of</strong><br />

~face-on, highly resolved galaxies


NGC 4254<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


NGC 0628<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


NGC 3184<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


Variations we see in α<strong>CO</strong><br />

• MW α <strong>CO</strong>, no trend with radius.<br />

• Flat MW α <strong>CO</strong> pr<strong>of</strong>ile + central unresolved<br />

dip.<br />

• Overall gradient in α <strong>CO</strong> with radius.<br />

• Low α <strong>CO</strong> everywhere, no clear radial trend.<br />

illustrated with a few examples <strong>of</strong><br />

~face-on, highly resolved galaxies


NGC 4321<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011<br />

(d)


NGC 4321<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011<br />

(d)


NGC 3351<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


NGC 3351<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


Variations we see in α<strong>CO</strong><br />

• MW α <strong>CO</strong>, no trend with radius.<br />

• Flat MW α <strong>CO</strong> pr<strong>of</strong>ile + central unresolved<br />

dip.<br />

• Overall gradient in α <strong>CO</strong> with radius.<br />

• Low α <strong>CO</strong> everywhere, no clear radial trend.<br />

illustrated with a few examples <strong>of</strong><br />

~face-on, highly resolved galaxies


NGC 6946<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


NGC 6946<br />

0.2 dex<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


Variations we see in α<strong>CO</strong><br />

• MW α <strong>CO</strong>, no trend with radius.<br />

• Flat MW α <strong>CO</strong> pr<strong>of</strong>ile + central unresolved<br />

dip.<br />

• Overall gradient in α <strong>CO</strong> with radius.<br />

• Low α <strong>CO</strong> everywhere, no clear radial trend.<br />

illustrated with a few examples <strong>of</strong><br />

~face-on, highly resolved galaxies


NGC 3627<br />

0.2 dex<br />

al Journal, 142:37(25pp),2011August<br />

radial pr<strong>of</strong>iles from Schruba+ 2011


What drives variations in α<strong>CO</strong>?<br />

NGC 0628<br />

Metallicity?<br />

Large metallicity<br />

gradient.<br />

NGC 6946<br />

Small metallicity<br />

gradient.<br />

~ an order-<strong>of</strong>-magnitude lower than MW disk!


α<strong>CO</strong> & Metallicity<br />

uniform metallicity selection<br />

from Moustakas et al. 2010<br />

strong-line metallicities with<br />

Pilyugin & Thuan 2005 calibration<br />

measurements from HII region spectra<br />

galaxies r<strong>and</strong>omly<br />

assigned <strong>to</strong> panels<br />

NGC 6946<br />

General trend for higher<br />

α<strong>CO</strong> at low Z.<br />

but...<br />

significant scatter in α<strong>CO</strong><br />

at given Z.


<strong>Dust</strong>-<strong>to</strong>-<strong>Gas</strong> Ratio<br />

Linear trend with Z.<br />

Less than a fac<strong>to</strong>r<br />

<strong>of</strong> 2 scatter.<br />

fac<strong>to</strong>r<br />

<strong>of</strong> 2<br />

Constant fraction <strong>of</strong><br />

metals locked up in<br />

dust.


Metallicity isn’t everything...<br />

Is this what we expect?<br />

- dust shielding controls C+/C/<strong>CO</strong> transition<br />

- in MW only 30-50% <strong>of</strong> gas H2 not in <strong>CO</strong> layer<br />

(Fermi Collab. 2010, Planck Collab. 2011)<br />

HI, C+ H 2<br />

<strong>CO</strong><br />

<strong>CO</strong>-free envelope<br />

Z ⊙◉☉⨀<br />

decreasing metallicity DGR<br />

e.g. Maloney & Black 1988, Bolat<strong>to</strong> et al. 1999,<br />

Wolfire et al. 2010, Glover & Mac Low 2011


Metallicity isn’t everything...<br />

Is this what we expect?<br />

- dust shielding controls C+/C/<strong>CO</strong> transition<br />

- in MW only 30-50% <strong>of</strong> gas H2 not in <strong>CO</strong> layer<br />

(Fermi Collab. 2010, Planck Collab. 2011)<br />

HI, C+ H 2<br />

<strong>CO</strong><br />

<strong>CO</strong>-free envelope<br />

Z > Z ⊙◉☉⨀<br />

potential 30%<br />

change in α<strong>CO</strong><br />

Z ⊙◉☉⨀<br />

decreasing metallicity DGR<br />

e.g. Maloney & Black 1988, Bolat<strong>to</strong> et al. 1999,<br />

Wolfire et al. 2010, Glover & Mac Low 2011


What drives variations in α<strong>CO</strong>?


What drives variations in α<strong>CO</strong>?<br />

α<strong>CO</strong> ∝ Σ✳ -0.5


Azimuthal Variations in NGC 6946<br />

Lower α<strong>CO</strong> along <strong>the</strong> spiral arms.


Azimuthal Variations in NGC 6946<br />

Lower α<strong>CO</strong> along <strong>the</strong> spiral arms.


Disagreement with Virial Mass α<strong>CO</strong><br />

<strong>Measurements</strong> in <strong>the</strong> centers<br />

4 Galaxies with virial<br />

mass based α<strong>CO</strong><br />

Virial masses give ~MW or<br />

higher α<strong>CO</strong> in centers <strong>of</strong><br />

2976, 4736 <strong>and</strong> 6946.


Disagreement with Virial Mass α<strong>CO</strong><br />

<strong>Measurements</strong> in <strong>the</strong> centers<br />

4 Galaxies with virial<br />

mass based α<strong>CO</strong><br />

Virial masses give ~MW or<br />

higher α<strong>CO</strong> in centers <strong>of</strong><br />

2976, 4736 <strong>and</strong> 6946.<br />

Several galaxies with<br />

muti-line modeling α<strong>CO</strong><br />

Modeling suggests low α<strong>CO</strong> in<br />

some galaxy centers<br />

NGC 6946 5-10 times lower<br />

than MW - Israel & Baas 2001, Walsh<br />

et al. 2002, Meier & Turner 2004


Our conversion fac<strong>to</strong>rs makes some galaxy centers<br />

have high star-formation efficiency.<br />

Depletion Time:<br />

τDEP = 1/SFE = ΣH2/ΣSFR<br />

Log(τDEP/)<br />

Log(ΣH2)<br />

AGN<br />

SF<br />

higher SFE<br />

compared <strong>to</strong><br />

average<br />

Leroy et al. 2012b, submitted


Our conversion fac<strong>to</strong>rs makes some galaxy centers<br />

have high star-formation efficiency.<br />

Depletion Time:<br />

τDEP = 1/SFE = ΣH2/ΣSFR<br />

Log(τDEP/)<br />

Log(ΣH2)<br />

AGN<br />

SF<br />

higher SFE<br />

compared <strong>to</strong><br />

average<br />

Leroy et al. 2012b, submitted


Summary<br />

• α <strong>CO</strong> can vary by fac<strong>to</strong>r <strong>of</strong> 10 in nearby galaxies -<br />

especially low in <strong>the</strong>ir centers.<br />

• Metallicity not a key driver <strong>of</strong> α <strong>CO</strong> at Z~Z ⊙◉☉⨀ <strong>and</strong> above.<br />

Expected if main effect is <strong>to</strong> change dust shielding <strong>and</strong><br />

alter “<strong>CO</strong>-dark” gas layer.<br />

• Low measured α <strong>CO</strong> enhances SFE in some galaxy centers<br />

over predictions with fixed converison fac<strong>to</strong>r.<br />

• Temperature & velocity dispersion <strong>of</strong> molecular gas are<br />

probably crucial drivers <strong>of</strong> α<strong>CO</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!