11.03.2014 Views

integration of cfd and low-order models for combustion ... - IWR

integration of cfd and low-order models for combustion ... - IWR

integration of cfd and low-order models for combustion ... - IWR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

©<br />

©<br />

©<br />

¡<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

<br />

<br />

© ¢<br />

©<br />

©<br />

¢<br />

¢<br />

©<br />

©<br />

©<br />

¢<br />

¢<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

<br />

©<br />

©<br />

©<br />

¢<br />

©<br />

©<br />

©<br />

©<br />

©<br />

<br />

©<br />

¢<br />

©<br />

©<br />

©<br />

©<br />

©<br />

<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

(<br />

©<br />

©<br />

©<br />

©<br />

¢<br />

<br />

¢<br />

©<br />

©<br />

©<br />

©<br />

¡<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

¦<br />

shown in Fig. 4. It is interested to see that J¯<br />

1<br />

is less than unity in<br />

the upstream section because here the higher temperature region<br />

is located in the recirculation zone where the velocity is stagnated<br />

or very small. Downstream <strong>of</strong> the <strong>combustion</strong> zone the<br />

hot <strong>low</strong> density gas is differentially accelerated by the pressure<br />

gradient <strong>and</strong> J¯<br />

1<br />

increases to values greater than unity. As a consequence,<br />

we can see that J¯<br />

1<br />

is continuously increased in Fig. 4.<br />

The small steps in Figs. 3-5 correspond to the effects <strong>of</strong> the primary<br />

<strong>and</strong> secondary air injections. The explanation <strong>for</strong> the shape<br />

factor J 2<br />

, which is shown in Fig. 5, is similar to that <strong>for</strong> Fig. 3.<br />

The difference is that J¯<br />

2<br />

is much larger at the two boundaries due<br />

to the third power <strong>of</strong> velocity in Eq. (12) <strong>for</strong> the kinetic energy<br />

transport.<br />

state, the relationships <strong>for</strong> f<strong>low</strong> variables can be written as [4]<br />

u¤ ¯<br />

p¤ ¯<br />

ρ¤ ¯<br />

T ¤ ¯<br />

γJ¯<br />

¯<br />

1<br />

f <br />

2γFJ¯<br />

1<br />

1£ γ J ¯ ¯<br />

2<br />

m <br />

γ 2 ¯<br />

J 2 1<br />

¯ f<br />

2 ¡<br />

2<br />

¢<br />

J¯<br />

2<br />

γ 2<br />

1£ 2 ¯F J¯<br />

1<br />

γ γ <br />

¢ <br />

2γ ¯F J¯<br />

1<br />

1£ γ J ¯ ¯<br />

2<br />

m<br />

¯<br />

¯ © m 1£<br />

1<br />

¯ 2 E<br />

(20)<br />

m u ¦ ¯F£¨<br />

£!¦ u m¨<br />

ρ p"¨ £§<br />

¯f ¯ H (21)<br />

¯ H ¯<br />

(22)<br />

¯ R ¯<br />

(23)<br />

3 LINEAR STABILITY ANALYSIS<br />

To consider linear perturbations <strong>of</strong> one-dimensional f<strong>low</strong>s,<br />

it is convenient to write the governing equations in terms <strong>of</strong> flux<br />

quantities. Here the mass, momentum, <strong>and</strong> energy fluxes are defined<br />

as<br />

m ¢ x¦ t£¥¤<br />

f ¢ x¦ t£¤<br />

E ¢ x¦ t£¥¤<br />

r<br />

rρu dr ¤ H © ρ<br />

r<br />

r<br />

r p ρu 2 dr ¤ H ¢© ¡ ©<br />

p ρ<br />

£ ¡ ¢<br />

r<br />

r<br />

rρu c p T u 2¨ 2£ dr ¤<br />

¡ ¢<br />

r<br />

u¦ (13)<br />

ρ<br />

u<br />

u 2 F£¦ (14)<br />

e H ¦ (15)<br />

respectively.<br />

As the linear perturbation theory is considered here, it is sufficient<br />

to investigate perturbation to the mean f<strong>low</strong> with time dependence<br />

e iωt . The sign <strong>of</strong> imaginary part <strong>of</strong> ω determines the<br />

stability, while Re(ω) gives the frequency <strong>of</strong> the mode. Now time<br />

mean values will be denoted by the overbar <strong>and</strong> f<strong>low</strong> quantities<br />

can be expressed as<br />

φ ¢ x¦ t£¤ ¯φ ¢ x£<br />

φ ¢ x¦ t£¦ (16)<br />

where the fluctuating component x¦ t£¤ φ Re ˆφ ¢ x£ e iωt £ Compared<br />

with Eqs. (5)-(7), the conservation equations <strong>for</strong> steady<br />

f<strong>low</strong> can be written as<br />

¢ ¢<br />

d<br />

dx ¯ m¥¤<br />

d<br />

dx ¯ ¤ f<br />

d<br />

dx ¯<br />

¯ S m ¦ (17)<br />

p ¯<br />

dH<br />

dx<br />

E¥¤ H ¯ © q ©<br />

¯ ¡<br />

S f<br />

(18)<br />

¦<br />

¯ ¡<br />

S e (19)<br />

§<br />

With the definition <strong>of</strong> Eqs. (13)-(15) <strong>and</strong> the equation <strong>of</strong><br />

where γ is the ratio <strong>of</strong> specific heat capacities.<br />

For unsteady parts <strong>of</strong> the mass flux, momentum flux <strong>and</strong> energy<br />

flux, we have<br />

¢<br />

¤ f H <br />

ρ ¯<br />

2 ¯ ρ ©<br />

¤ ¢ © ρ m u H ¯<br />

© ©<br />

H E m ¤ <br />

1<br />

2 ¯ ¡ 2 ¢<br />

u J2<br />

¯ © ¡<br />

ρ<br />

u u ¯<br />

£¦ u<br />

¡ ©<br />

ρ £ ¡ u<br />

(24)<br />

¯<br />

¯F<br />

u ¯<br />

2 ¡ © F #¦ (25)<br />

p<br />

c p<br />

T ¯ J¯<br />

¡ 1<br />

1<br />

2 ¯ u<br />

ρ ¯<br />

u £ ¯<br />

2 J¯<br />

2<br />

£<br />

©<br />

c p T<br />

J¯<br />

¡<br />

1<br />

c p<br />

T¯<br />

¡<br />

J 1<br />

u ¯<br />

u<br />

¯ J 2<br />

£$§ (26)<br />

With the state equation, the perturbation <strong>of</strong> f<strong>low</strong> variables can be<br />

written as<br />

u<br />

ρ ¤<br />

0§ 5 γ 1£ ¯ ¡<br />

J 2 ¢ <br />

¤&%<br />

1£ γ<br />

2HR c p<br />

γ 1£ ¯ J 2<br />

m<br />

H ¯ u<br />

¤ p<br />

¤ T ¯<br />

¢<br />

T ©<br />

©<br />

u m u<br />

E u p ρ' u ©<br />

¯F J¯<br />

¯<br />

2<br />

1<br />

J¯<br />

¯<br />

1<br />

f<br />

2HR c p<br />

¯ J 1 H ¯ ¯ ¯<br />

ρ ¯<br />

ρ ¯<br />

ρ ¯<br />

f ¯F ¯ u<br />

¢<br />

p<br />

p ¯<br />

u ¯<br />

u<br />

u ¯<br />

u ¯<br />

m<br />

3 ¯<br />

J 1<br />

¨*% F H ¯ p ¯ ¡<br />

J 1 )( <br />

2<br />

<br />

¯F ¯ J 1<br />

ρ ¯<br />

3<br />

J2<br />

¡<br />

u ¯<br />

¦ (27)<br />

¦ (28)<br />

¯ © ¡ ©<br />

u £' m<br />

H<br />

m ¯<br />

u ¯ F<br />

2 ¡<br />

¦ (29)<br />

ρ<br />

£§<br />

¯ ρ<br />

(30)<br />

For linear disturbances whose time dependence is proportional<br />

to e iωt , the equations <strong>for</strong> the perturbations <strong>of</strong> mass flux,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!