12.03.2014 Views

Wide-field VLBI Techniques: A Beginner's Guide

Wide-field VLBI Techniques: A Beginner's Guide

Wide-field VLBI Techniques: A Beginner's Guide

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

John Morgan, ICRAR, Curtin University, Perth<br />

10th EVN Symposium<br />

Manchester<br />

Tuesday 21st September 2010<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

1 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

1 <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong><br />

<strong>VLBI</strong> Sensitivity<br />

Correlation<br />

Imaging<br />

2 UV Shifting<br />

Transforming correlated data<br />

Using the baseline vectors<br />

Using correlator delay model<br />

3 Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong><br />

4 Future Work<br />

Future Work<br />

Conclusions<br />

Overview<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

2 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Acknowledgements<br />

I would like to acknowledge useful discussions and material help from<br />

many people.<br />

⇒ Adam Deller<br />

⇒ Walter Brisken<br />

Also many others including (in no particular order) Franco Mantovani, Steven<br />

Tingay, Walter Alef, Helge Rottman, Enno Middelberg, Richard Porcas<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

3 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

A simple ‘figure of merit’<br />

For an interferometer with dishes of diameter d separated by D the<br />

primary beam Θ and resolution θ are given by<br />

θ ≈ λ λ<br />

,Θ ≈ 1.22·<br />

D d<br />

(1)<br />

So the number of resolution units across the primary beam is<br />

Θ<br />

θ = D ( ) D 2<br />

d ⇒ n pixel ∼ (2)<br />

d<br />

n.b. for imaging purposes the true number of pixels will be ∼ 10× bigger<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

4 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Image size of different arrays<br />

Array d D D/d<br />

m km<br />

VLA 25 36 1440<br />

MERLIN 32 217 8680<br />

EVN 100 10180 101800<br />

VLBA 25 8611 344440<br />

n.b. All arrays in longest-baseline/smallest-antenna configuration<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

5 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Three Caveats<br />

<strong>Wide</strong><strong>field</strong> <strong>VLBI</strong> techniques are only useful if:<br />

⇒ There are enough bright sources on the sky that more than one will fall<br />

within the primary beam<br />

⇒ It is possible to correlate with sufficient resolution to cover the large area<br />

⇒ There are appropriate techniques to handle the resulting large datasets<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

6 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Caveat 1: Density of Detectable Sources<br />

⇒ This depends on the sensitivity of <strong>VLBI</strong><br />

⇒ However even a decade ago it was possible to detect multiple sources<br />

⇒ Sensitivity (and therefore density of detectable sources on the sky) is<br />

increasing all the time<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

7 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Caveat 2: Offset source visibility phases in<br />

time/frequency<br />

Phase/Degrees<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

⇒ The size of the image that can be<br />

made is determined by how much<br />

averaging is done of the data<br />

→ The number of channels<br />

→ The integration time<br />

-150<br />

-200<br />

Time or Frequency<br />

0 offset<br />

offset<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

8 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

How to generate the <strong>Wide</strong>-<strong>field</strong> Dataset<br />

⇒ Generating high-resolution datasets was a problem for hardware correlators<br />

→ It was this which limited the <strong>field</strong> of view for <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> until recently<br />

⇒ With software correlators such as DiFX (Deller et al. 2007) the time penalty<br />

is acceptable.<br />

→ Greater CPU resources required for greater number of channels<br />

⇒ The main problem is the output data volume<br />

→ ∼ TB for a typical VLBA observation<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

9 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Caveat 3: <strong>Wide</strong>-<strong>field</strong> Imaging<br />

Direct wide-<strong>field</strong> imaging<br />

Very quickly becomes slow<br />

⇒ Will quickly fill computer memory<br />

⇒ Non-coplanar effects to handle<br />

⇒ parallel algorithms are in development<br />

Correlating with different phase centres<br />

⇒ Ties up correlator (and media)<br />

Correlating, transforming and averaging<br />

⇒ Correlate to create one large dataset<br />

⇒ Use this to generate several smaller datasets<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

10 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Transforming correlated data<br />

Phase/Degrees<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

⇒ Transform one dataset into the<br />

other.<br />

⇒ Then the data can be averaged<br />

⇒ Repeat for every region of interest<br />

-150<br />

-200<br />

Time or Frequency<br />

0 offset<br />

offset<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

11 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Geometry<br />

The correlator has already shifted the datastreams so that the two antennas are<br />

on a baseline perpendicular to the original phase centre:<br />

Consider a phase centre offset from this position<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

12 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Correlating, Transforming and Averaging<br />

⇒ We start with the correlated data<br />

⇒ Calculate a new delay for<br />

→ each baseline<br />

→ each time integration<br />

⇒ Apply a phase shift to each datum<br />

→ time dependent<br />

→ frequency dependent<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

13 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

How to calculate the delay?<br />

This is what the baseline vectors are for!<br />

They can be used to calculate the delay at any point in the image:<br />

∆φ = 2π λ<br />

(lu+mv) (3)<br />

The correlator delay model takes more into account than simple<br />

geometry (Sovers et al. 1998)<br />

DiFX actually calculates the baselines using the full accuracy of the<br />

correlator delay model:<br />

( ∂τ<br />

(u, v, w) = c<br />

∂l , ∂τ )<br />

∂m ,τ , (4)<br />

These differ by up to 1 part in 10 000 from purely geometrical vectors.<br />

(Walter Brisken Priv. Comm.)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

14 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

How to calculate the delay?<br />

There is still a problem<br />

⇒ There is only one value of u and v for each visibility<br />

We are treating the delay across the wide <strong>field</strong> as a linear function<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

15 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

CALC 9 generated delays across the wide <strong>field</strong><br />

1000<br />

100<br />

10<br />

delay<br />

1<br />

0.1<br />

0.01<br />

MaMc<br />

MaWz<br />

McWz<br />

0.001<br />

0.01 0.1 1 10 100<br />

offset/arcminutes<br />

The delay function varies smoothly throughout the sky<br />

No reason to think this isn’t typical<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

16 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Fractional error of a linear fit<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1e-05<br />

1e-06<br />

0.01 0.1 1 10 100<br />

offset/arcminutes<br />

Fit forced through 0 at the origin and 0.3 arcminute point<br />

Similar to the derivation done by DiFX<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

17 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Error of using a linear fit<br />

⇒ This is the reason for the UV shifting errors noted by others<br />

(Lenc et al. 2008; Middelberg et al. 2008)<br />

⇒ it cannot be calibrated out<br />

⇒ It is made whenever using UV data to look at flux away from the phase<br />

centre<br />

(though the error may be negligable for shorter shifts)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

18 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Accurate UV shifting<br />

By generating a second correlator model for the desired phase centre it<br />

should be possible to UV shift accurately.<br />

No need to recorrelate:<br />

⇒ We start with the correlated data<br />

⇒ Replace the phase centre coordinates<br />

⇒ Replace the baseline vectors (UVW)<br />

⇒ Apply the phase shift to each visibility<br />

→ difference in delay between the two models (multiplied by the frequency)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

19 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Take into account delay rate<br />

There is still an error of one part in<br />

10 6<br />

⇒ The delay is changing with time<br />

⇒ Need to take into account the<br />

change in delay over the shift<br />

Another error which is always<br />

present but only measurable for the<br />

most extreme wide-<strong>field</strong> <strong>VLBI</strong><br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

20 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Error after a phase shift of 1000000 turns<br />

180<br />

CALC dataset<br />

Reference dataset<br />

90<br />

Phase/Degrees<br />

0<br />

-90<br />

Phase/Degrees<br />

-180<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

Residuals and Chi 2 linear fit: y = 0.313256x + -2632.42 (r 2 =0.458702)<br />

8408 8409 8410 8411<br />

Frequency/MHz<br />

(Morgan et al. 2010)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

21 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Error after a phase shift of 1000000 turns<br />

180<br />

CALC dataset<br />

Reference dataset<br />

90<br />

Phase/Degrees<br />

0<br />

-90<br />

Phase/Degrees<br />

-180<br />

Residuals and Chi 2 linear fit: y = 0.0505706x + 0.588864 (r 2 =0.408585)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

0 10 20 30 40 50<br />

Time/s<br />

(Morgan et al. 2010)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

22 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Implementations<br />

This is implemented with full accuracy in:<br />

⇒ difx2fits (not in the standard release)<br />

The latest release of DiFX (2.0) also implements the shifting algorithm<br />

with full accuracy<br />

⇒ The extremely high resolution dataset never leaves the computer’s memory<br />

⇒ The PI receives one standard visibility datset for each requested phase<br />

centre<br />

⇒ The computational efficiency is breathtaking!<br />

(Deller et al. 2010)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

23 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Amplitude Correction and Calibration<br />

Correction for smearing:<br />

⇒ Amplitude correction can be calculated fairly accurately from the shift delay<br />

⇒ Larger than simple smearing for DiFX due to triangular weight function<br />

(Morgan et al. 2010)<br />

Primary Beam:<br />

⇒ Assume that within a single image the correction is the same<br />

⇒ Adjust the visibilities for the primary beam response of the baseline<br />

→ time & frequency dependent<br />

(See my poster for more details)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

24 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Amplitude Correction and Calibration<br />

Correction for smearing:<br />

⇒ Amplitude correction can be calculated fairly accurately from the shift delay<br />

⇒ Larger than simple smearing for DiFX due to triangular weight function<br />

(Morgan et al. 2010)<br />

Primary Beam:<br />

⇒ Assume that within a single image the correction is the same<br />

⇒ Adjust the visibilities for the primary beam response of the baseline<br />

→ time & frequency dependent<br />

(See my poster for more details)<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

24 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Future Work<br />

We can generate a model for any point on the primary beam<br />

What would be better would be to characterise the delay across the entire<br />

primary beam<br />

⇒ not just u, v and w but also higher terms<br />

This would allow the calculation of the delay at any point with full<br />

accuracy.<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

25 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Radio Astronomers do it in four dimensions<br />

⇒ Accurate UV shifting at any point during correlation, calibration or imaging<br />

⇒ This four-dimensional (antenna, l, m, t) could then be refined during<br />

calibration<br />

→ Phase calibration from multiple source within and outside the primary beam<br />

→ Synergies with low-frequency interferometry?<br />

→ Synergies with new and future wide<strong>field</strong> interferometers?<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

26 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

Conclusion<br />

⇒ <strong>VLBI</strong> across the primary beam is now possible<br />

⇒ The density of sources on the sky means that many sources are detectable<br />

in an 8-hour observation at L-Band<br />

⇒ I am interested in collaborating on <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> projects<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

27 / 28


<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> UV Shifting Using <strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> Future Work References<br />

References<br />

Deller, A., Brisken, W., Phillips, C. J., et al. 2010, submitted PASP<br />

Deller, A. T., Tingay, S. J., Bailes, M., & West, C. 2007, PASP, 119, 318<br />

Lenc, E., Garrett, M. A., Wucknitz, O., Anderson, J. M., & Tingay, S. J. 2008, ApJ, 673, 78<br />

Middelberg, E., Rottmann, H., Alef, W., et al. 2008, in The role of <strong>VLBI</strong> in the Golden<br />

Age for Radio Astronomy<br />

Morgan, J., Mantovani, F., Deller, A., et al. 2010, Submitted A&A<br />

Sovers, O. J., Fanselow, J. L., & Jacobs, C. S. 1998, Reviews of Modern Physics, 70, 1393<br />

<strong>Wide</strong>-<strong>field</strong> <strong>VLBI</strong> <strong>Techniques</strong>: A Beginner’s <strong>Guide</strong><br />

28 / 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!