01.04.2014 Views

Topological insulators

Topological insulators

Topological insulators

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

http://www.physik.uni-regensburg.de/forschung/fabian<br />

<strong>Topological</strong> <strong>insulators</strong><br />

Jaroslav Fabian<br />

Institute for Theoretical Physics<br />

University of Regensburg<br />

Stara Lesna, 21.8.2012 DFG SFB 689


what are topological <strong>insulators</strong>?<br />

gapped bulk states +<br />

conducting (gapless) edge (surface) states due to topology<br />

M. Z. Hasan and C. L. Kane, <strong>Topological</strong> <strong>insulators</strong>, Rev. Mod. Phys. 82, 3045 (2010)


:outline:<br />

• mesoscopics for pedestrians<br />

• topological <strong>insulators</strong><br />

• edge states in HgTe quantum wells<br />

• magnetism of HgTe edge states<br />

B. Scharf, A. Matos-Abiague, and J. Fabian,<br />

Phys. Rev. B 86, 075418 (2012)


mesoscopics for pedestrians<br />

bulk states<br />

quantum point contacts<br />

current states


How much current per spin flows in a quantum channel?<br />

…….. conductance quantum<br />

…….. resistance quantum


conductance quantization: n-channel transport<br />

…….. conductance quantization


conductance quantization<br />

B. J. van Wees, Phys. Rev. Lett. 60, 848 (1988).<br />

D. A. Wharam et al. J. Phys. C 21, L209 (1988).<br />

e<br />

n=1 (2 spins)<br />

GaAs/AlGaAs QPC<br />

lead resistance subtracted<br />

B. J. van Wees, Phys. Rev. Lett. 60, 848 (1988)<br />

picture from C. W. J. Beenakker and H. van Houten, Solid State Physics, 44, 1 (1991).


integer quantum Hall effect: topological edge states<br />

bulk states<br />

bulk Landau levels<br />

edge states<br />

edge states<br />

no backscattering


integer quantum Hall effect: topological edge states<br />

voltage probe


integer quantum Hall effect<br />

K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)<br />

Si MOSFET<br />

Original MOSFET<br />

von Klitzing’s web site<br />

SdH IQHE<br />

GaAs/AlGaAs<br />

Cl<br />

picture from http://www.ptb.de/en/org/2/Inhalte/qhe/E-quantenhalleffekt.htm


topological nature of the integer<br />

quantum Hall effect<br />

1 st Chern number<br />

Blount-Berry curvature<br />

Blount-Berry phase<br />

Bloch state<br />

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)<br />

Q. Niu, D.J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372 (1985)


topological <strong>insulators</strong><br />

another look at the quantum Hall edge states<br />

quantum Hall edge states come in spin pairs:<br />

time reversal symmetry is broken<br />

skipping orbits<br />

bulk orbits (Landau levels)


topological <strong>insulators</strong><br />

edge states with time reversal preserved: spin-orbit coupling<br />

spin-orbit edge states come in spin pairs, but move opposite:<br />

time reversal symmetry is preserved<br />

edge states<br />

no backscattering !!!<br />

the edge states are topologically protected against TR scattering


emergence of spin-orbit fields<br />

space-inversion symmetry breaking


Time reversal points<br />

spin degeneracy preserved


Z 2 invariance<br />

stable to continuous change of band parameters<br />

even number of crossings<br />

odd number of crossings


(non-exotic) materials classes of<br />

topological <strong>insulators</strong><br />

• Graphene<br />

Kane and Mele, 2005, spin quantum Hall effect<br />

• 2d topological <strong>insulators</strong><br />

Zhang and co., 2006, HgTe quantum wells (see later)<br />

• 3d topological <strong>insulators</strong> (Zhang and Co)<br />

BiSe, BiTe, BiSb …<br />

yet to be experimentally confirmed<br />

first 3d experimental TI<br />

• other special materials structures …


Electronic structure of CdTe and HgTe<br />

CdTe<br />

HgTe<br />

normal band ordering<br />

1.6 eV gap<br />

narrow-gap semiconductor<br />

inverted band structure<br />

“negative band gap” -0.3 eV


HgTe/CdTe quantum wells<br />

CdTe<br />

CdTe<br />

CdTe<br />

CdTe<br />

HgTe<br />

HgTe<br />

2d topological insulator


HgTe/CdTe quantum wells: TI states<br />

B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).<br />

CdTe<br />

HgTe<br />

2d topological insulator<br />

“trivial” interface states<br />

CdTe<br />

B. A. Volkov and O. A. Pankratov, JETL Lett. 42, 178 (1985)<br />

M. I. Dyakonov and A. V. Khaetskii, JETP Lett. 33, 110 (1981).


experimental evidence of TI states<br />

mesoscopic transport<br />

tunable gate and width<br />

Konig et al. (Molenkapm group, Wurzburg), Science 318, 766 (2007)


experimental evidence of TI states<br />

mesoscopic transport<br />

(d)<br />

R14,23 (Ω)<br />

G = .3 e 2 /h<br />

G = 2 e 2 /h<br />

V g -V thr (V)<br />

Konig et al. (Molenkapm group, Wurzburg), Science 318, 766 (2007)


magnetism of the TI edge states in HgTe<br />

how the edge states evolve with B-field?<br />

CdTe<br />

CdTe<br />

HgTe<br />

B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).


magnetism of the TI edge states in HgTe<br />

how the edge states evolve with B-field?<br />

B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).


magnetism of the TI edge states in HgTe<br />

B = 0<br />

B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 075418 (2012)<br />

E [meV]<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

(a)<br />

Fig. (b) Fig. (c)<br />

2<br />

10.78 1<br />

10.76<br />

10.74<br />

-2 -1 0 1 2<br />

k [10 6 1/m]]<br />

-2 -1 0 1<br />

k [10 6 1/m]<br />

(b)<br />

v k<br />

0<br />

bulk states<br />

v k<br />

0<br />

5<br />

4<br />

3<br />

0<br />

5<br />

0<br />

2 -100 -50 0 50 100<br />

y [nm]<br />

4<br />

3<br />

2<br />

1<br />

ρ [10 13 1/m 2 ]<br />

ρ [10 13 1/m 2 ]<br />

E [meV]<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

(a)<br />

8<br />

7.6<br />

7.2<br />

Fig. (b)<br />

-2 -1 0 1<br />

k [10 6 1/m]<br />

Fig. (c)<br />

-2 -1 0 1 2<br />

k [10 6 1/m]<br />

(b)<br />

(c)<br />

v k<br />

0<br />

TI states<br />

1.5<br />

1<br />

ρ [10 14 1/m 2 ]<br />

0<br />

1.5<br />

0<br />

2 -100 -50 0 50 100<br />

y [nm]<br />

1<br />

ρ [10 14 1/m 2 ]


magnetism of the TI edge states in HgTe<br />

B =10 T<br />

B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 075418 (2012)<br />

E [meV]<br />

100<br />

50<br />

0<br />

-50<br />

(a)<br />

Fig. (b)<br />

Fig. (c)<br />

(b) v k<br />

0<br />

QH edge states<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

ρ [10 14 1/m 2 ]<br />

ρ [10 14 1/m 2 ]<br />

E [meV]<br />

100<br />

50<br />

0<br />

-50<br />

(a)<br />

Fig. (b)<br />

Fig. (c)<br />

(b) v k<br />

0<br />

QH edge states<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

ρ [10 14 1/m 2 ]<br />

ρ [10 14 1/m 2 ]<br />

-100<br />

-2 -1 0 1<br />

k [10 9 1/m]<br />

0<br />

2 -100 -50 0 50 100<br />

y [nm]<br />

-100<br />

-2 -1 0 1<br />

k [10 9 1/m]<br />

0<br />

2 -100 -50 0 50 100<br />

y [nm]


magnetism of the TI edge states in HgTe<br />

how the edge states evolve with B-field?<br />

B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 075418 (2012)<br />

100<br />

E [meV]<br />

50<br />

0<br />

-50<br />

SQH<br />

QH<br />

-100<br />

0 2 4 6 8 10<br />

B [T]


magnetism of the TI edge states in HgTe<br />

bulk magnetic susceptibility<br />

B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 075418 (2012)<br />

χ [10 17 J/(Tm) 2 ]<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

T = 1 K<br />

T = 10 K<br />

T = 100 K<br />

μ = 20 meV<br />

0.25 5 10 15 20<br />

1/B [1/T]<br />

χ [10 17 J/(Tm) 2 ]<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

T = 1 K<br />

T = 10 K<br />

T = 100 K<br />

μ = 20 meV<br />

0.25 5 10 15 20<br />

1/B [1/T]


Conclusion<br />

topological <strong>insulators</strong> are a new playground for<br />

(not only*) solid state physicists<br />

*X. Qi, E. Witten, and S. Zhang, Axion topological field theory of topological <strong>insulators</strong>, arXiv: 1206.1407

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!