30.11.2014 Views

A quantum walk based search algorithm, and its optical realisation

A quantum walk based search algorithm, and its optical realisation

A quantum walk based search algorithm, and its optical realisation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>quantum</strong> <strong>walk</strong> <strong>based</strong> <strong>search</strong> <strong>algorithm</strong>,<br />

<strong>and</strong> <strong>its</strong> <strong>optical</strong> <strong>realisation</strong><br />

Aurél Gábris<br />

FJFI, Czech Technical University in Prague<br />

with<br />

Tamás Kiss <strong>and</strong> Igor Jex<br />

Prague, Budapest<br />

Student Colloquium <strong>and</strong> School<br />

on Mathematical Physics<br />

Stará Lesná, Slovakia<br />

23 – 29th August 2008<br />

1 / 26


Outline<br />

Quantum <strong>walk</strong>s on graphs<br />

The <strong>quantum</strong> mechanical <strong>search</strong> problem<br />

The SKW <strong>quantum</strong> <strong>walk</strong> <strong>search</strong> <strong>algorithm</strong><br />

Optical implementation<br />

Analysis of errors<br />

J. Kempe: Contemp. Phys. 44 307 (2003), quant-ph/0303081<br />

N. Shenvi, J. Kempe <strong>and</strong> K. B. Whaley: Phys. Rev. A 67, 052307 (2003)<br />

A. Gábris, T. Kiss <strong>and</strong> I. Jex: Phys. Rev. A 76, 062315 (2007)<br />

2 / 26


Quantum <strong>walk</strong>s on graphs<br />

Graph G = (V, E)<br />

state of system: |ψ〉 ∈ H V = Span{|v i 〉 : v i ∈ V}<br />

dynamics: according to E<br />

How to go from classical to <strong>quantum</strong> <strong>walk</strong>s<br />

classical<br />

prob. distrib.<br />

stochastic<br />

Two alternative approaches<br />

discrete time <strong>quantum</strong> <strong>walk</strong><br />

continuous time <strong>quantum</strong> <strong>walk</strong><br />

<strong>quantum</strong><br />

<strong>quantum</strong> state<br />

unitary<br />

(relationship: Strauch: Phys. Rev. A 74, 030301 (2006)<br />

Introductory review: J. Kempe: Contemp. Phys. 44, 307 (2003),<br />

quant-ph/0303081<br />

3 / 26


Discrete time <strong>quantum</strong> <strong>walk</strong> (coined QW)<br />

Focussing generalization on:<br />

Stochastic process → Unitary process<br />

Simple example<br />

Galton’s board (quincunx)<br />

at each pin: 50%-50% probability<br />

→ tossing a coin<br />

Resolution<br />

Replace classical coin by <strong>quantum</strong> coin!<br />

{|j〉 |v j 〉 : j = 1, . . . , degree(v j )}<br />

additional degree of freedom<br />

4 / 26


Discrete <strong>quantum</strong> <strong>walk</strong><br />

G = (V, E) n-regular graph<br />

coin states: 1, . . . , n ⇒ H C = Span {|j〉 | j = 1, . . . , n}<br />

H = H C ⊗ H V<br />

Dynamics<br />

coin operator: C ∈ Lin(H C ), unitary<br />

translation operator: S ∈ Lin(H), unitary<br />

step operator: U = S(C ⊗ 1), uniform coin<br />

Coin operators<br />

∣ ∣<br />

balanced: ∣Cij ∣∣ 2<br />

= 1/d<br />

unbalanced<br />

permutation invariant<br />

Grover coin: G = |s〉〈s| − 1<br />

Grover (diffusion) operator<br />

⎛<br />

2<br />

d − 1 2 2<br />

d d<br />

· · ·<br />

2 2<br />

d d − 1 2<br />

d<br />

· · ·<br />

2 2 2<br />

d d d<br />

⎜⎝<br />

− 1<br />

.<br />

. .<br />

..<br />

⎞⎟⎠<br />

5 / 26


Continuous time <strong>quantum</strong> <strong>walk</strong><br />

Discrete transition probabilities<br />

p t = (p t 1 , pt 2 , . . . , pt |V| )<br />

p t+1 = Mp t<br />

M ij transition prob.<br />

Continuous time Markov chain (classical)<br />

⎧<br />

−γ, if i j, {v i , v j } ∈ E<br />

dp(t)<br />

⎪⎨<br />

= −Hp(t) H ij = 0, if i j, {v<br />

dt<br />

i , v j } E<br />

⎪⎩ d i γ, if i = j (d i : rank of v i )<br />

⇒ p(t) = e −Ht p(0)<br />

Quantum mechanical generalization<br />

∑<br />

Choose: Ĥ = γ d i |v i 〉〈v i | − γ<br />

i<br />

⇒ Û(t) = e −iĤt<br />

∑<br />

{v i ,v j }∈E<br />

|v i 〉〈v j |<br />

6 / 26


Applications of QWs<br />

Designing efficient <strong>quantum</strong> <strong>algorithm</strong>s is difficult<br />

QWs may be used for this task<br />

Some findings:<br />

traversal of binary trees (exp. faster hitting time)<br />

traversal of r<strong>and</strong>omly connected binary trees<br />

(quadratic <strong>algorithm</strong>ic speedup)<br />

evaluation of NAND formulas<br />

<strong>quantum</strong> <strong>search</strong>ing<br />

. . .<br />

7 / 26


The <strong>quantum</strong> mechanical <strong>search</strong> problem<br />

Classical specification<br />

given <strong>search</strong> space X<br />

given function f : X → {0, 1}<br />

task: find ∀x ∈ X s. t. f (x) = 1<br />

Quantum mechanics<br />

Try O: O |x〉 = |f (x)〉 ⇒ not unitary!<br />

Unitary choice:<br />

i.e. O |x〉 |0〉 = |x〉 |f (x)〉<br />

O |x〉 |s〉 = |x〉 |f (x) ⊕ s〉<br />

Complexity<br />

O oracle operator<br />

Often measured as the number of oracle calls (query complexity)<br />

8 / 26


Quantum <strong>walk</strong> on a hypercube<br />

hypercube in n dimensions:<br />

n-regular graph<br />

coined <strong>quantum</strong> <strong>walk</strong><br />

(n = 4)<br />

Vertices<br />

n dimensions → x ∈ {0, 1, . . . , 2 n − 1} integer<br />

binary string repr.: ⃗x, n binary dig<strong>its</strong><br />

Useful definitions<br />

Hamming weight: |⃗x| sum of dig<strong>its</strong>/number of 1s<br />

Hamming distance: d(⃗x,⃗y) = |⃗x ⊕ ⃗y|<br />

Edges<br />

⃗x,⃗y ∈ V are connected iff d(⃗x,⃗y) = 1<br />

9 / 26


Grover <strong>walk</strong> on a hypercube<br />

Definition<br />

Graph: n dimensional hypercube<br />

n-regular graph<br />

N = 2 n vertices, → labels: n bit long binary strings<br />

(⃗x = 0, . . . , 2 n − 1) (9 = 0 . . . 01001)<br />

Coin: C = G ⊗ 1 (Grover operator)<br />

∑<br />

Propagator: S = |d,⃗x ⊕ ⃗e d 〉〈d,⃗x|<br />

Symmetries<br />

⃗x,d<br />

(<br />

⃗ed = 2 d , edges )<br />

“shift” symmetry: ⃗x → ⃗x ⊕ ⃗x s<br />

permutation symmetry: P ij swap b<strong>its</strong> at positions i, j<br />

10 / 26


Spectrum of Grover <strong>walk</strong> on a hypercube<br />

Solve problem in Fourier space. . .<br />

“Trivial” eigenvectors<br />

λ = ±1<br />

“Non-trivial” eigenvectors<br />

λ | ⃗k|<br />

= exp(±iω | ⃗k| ) = 1 − 2| ⃗k|<br />

n<br />

|v ⃗ k 〉 , |v∗ ⃗k 〉 = ∑<br />

⃗x,d<br />

(−1) ⃗ k⃗x 2−n/2<br />

√<br />

± 2i<br />

n<br />

|⃗k|(n − |⃗k|)<br />

⎧<br />

⎪⎨ 1/ √ k, if k d = 1<br />

√ |d,⃗x〉<br />

2<br />

⎪⎩ ∓i/ √ n − k, if k d = 0<br />

11 / 26


The SKW <strong>algorithm</strong><br />

SKW <strong>quantum</strong> <strong>walk</strong> (perturbed Grover <strong>walk</strong>)<br />

1 ∑<br />

C<br />

initial state: √ |d,⃗x〉 ,<br />

0 = G,<br />

nN C 1 = −1<br />

d,⃗x<br />

O marks |⃗x tg 〉 =⇒ C ′ = C 0 ⊗ 1 + (C 1 − C 0 ) ⊗ |⃗x tg 〉〈⃗x tg |<br />

time step operator: U ′ = SC ′<br />

After optimal number of steps: t f = O( √ N)<br />

⇒ probability of |⃗x tg 〉: p 0 = ∑ | 〈d,⃗x tg |ψ(t f )〉 | 2 = 1 2 − O ( )<br />

1<br />

n<br />

d<br />

Classical analysis <strong>and</strong> protocol<br />

1 Execute SKW QW<br />

2 obtain ⃗x m<br />

3 verify ⃗x m using O<br />

−→ repeat until ⃗x tg found: 1 − ε certainty → r ε repetitions<br />

12 / 26


Proof of principle (sketch)<br />

Collapse onto a line<br />

⃗x tg can be chosen ⃗x tg = ⃗0:<br />

⇒ C = C 0 ⊗ +(C 1 − C 0 ) ⊗ |⃗0〉〈⃗0|<br />

C 0 , C 1 permutation symmetric<br />

|⃗0〉 permutation symmetric<br />

|ψ 0 〉 permutation symmetric<br />

⇒ time evolution in an invariant subspace<br />

Basis: |R, x〉, |L,<br />

∑<br />

x〉 (x<br />

∑<br />

= 0, 1, . . . , n)<br />

∑<br />

|R, x〉 = N R,x |d,⃗x〉, |L, x〉 = N L,x<br />

|⃗x|=x x d =0<br />

Re-formulate the QW<br />

|ψ 0 〉 : express in |R, x〉, |L, x〉 basis<br />

U ′ = U − 2 |L, 1〉〈R, 0|<br />

prob. success: p 0 = | 〈R, 0|ψ f 〉 | 2<br />

∑<br />

|d,⃗x〉<br />

|⃗x|=x x d =1<br />

|ψ 1 〉 has property such that, | 〈R, 0|ψ 1 〉 | 2 = 1/2.<br />

13 / 26


Proof of principle (sketch)<br />

Collapse onto a line<br />

⃗x tg can be chosen ⃗x tg = ⃗0:<br />

100<br />

110<br />

⇒ C = C 0 ⊗ +(C|d,⃗x〉<br />

1 − C 0 ) ⊗ |⃗0〉〈⃗0|<br />

1/3<br />

C 0 , C 1 permutation symmetric<br />

010<br />

101<br />

000<br />

111<br />

|⃗0〉 1/3permutation symmetric<br />

1/3<br />

|ψ 0 〉 permutation symmetric<br />

001 110<br />

⇒ time evolution in an invariant subspace<br />

Basis:<br />

1<br />

|R,<br />

2/3<br />

x〉,<br />

1/3<br />

|L,<br />

∑<br />

x〉 (x<br />

∑<br />

= 0, 1, . . . , n)<br />

|L, x〉, |R, x〉<br />

∑ ∑<br />

|R, x〉 = N R,x |d,⃗x〉, |L, x〉 = N L,x |d,⃗x〉<br />

0<br />

1 2 3<br />

1/3 2/3<br />

1<br />

|⃗x|=x x d =0<br />

Re-formulate the QW<br />

|ψ 0 〉 : express in |R, x〉, |L, x〉 basis<br />

U ′ = U − 2 |L, 1〉〈R, 0|<br />

prob. success: p 0 = | 〈R, 0|ψ f 〉 | 2<br />

|⃗x|=x x d =1<br />

|ψ 1 〉 has property such that, | 〈R, 0|ψ 1 〉 | 2 = 1/2.<br />

13 / 26


Proof of principle (sketch) 2<br />

Treat as perturbation<br />

U ′ = U + ∆U<br />

permutation symmetric<br />

subspace:<br />

no trivial eigenvalues<br />

eigenvectors:<br />

|v k 〉 = ( 1 ∑<br />

n<br />

k)<br />

|⃗k|=k<br />

Perturbed eigenvalues<br />

QUANTUM RANDOM-WALK SEARCH ALGORITHM<br />

|v ⃗ k 〉<br />

ω ′ 0 ≈ 1<br />

√<br />

2 n−1<br />

PHYSICAL<br />

Corresponding eigenvectors<br />

|ψ 0 〉 ≈ 1 √<br />

2<br />

(|ω ′ 0 〉 + |−ω′ 0 〉)<br />

|ψ 1 〉 ≈ 1 √<br />

2<br />

(|ω ′ 0 〉 − |−ω′ 0 〉) =⇒ (U ′ ) t |ψ 0 〉 ≈ cos ω ′ 0 t |ψ 0〉 − sin ω ′ 0 t |ψ 1〉<br />

Optimal time<br />

t f =<br />

π<br />

2|ω ′ 0 | = π 2<br />

√<br />

2 n−1 + O ( )<br />

1<br />

n<br />

14 / 26


Linear <strong>quantum</strong> optics<br />

Basic elements<br />

beam splitter<br />

described by an SU(2) matrix R<br />

(â out , ˆb out ) = R (â in , ˆb in )<br />

b out<br />

R<br />

phase shifter<br />

changes <strong>optical</strong> path length<br />

â out = e iϕ â in<br />

a in<br />

b in<br />

a out<br />

Optical multiport<br />

n input, n output<br />

transformation: SU(n)<br />

beam splitter: 2–2 multiport<br />

Can be assembled from beam splitters (<strong>and</strong> phase shiters)<br />

15 / 26


Quantum <strong>optical</strong> realization of SKW <strong>algorithm</strong><br />

n − n multiport<br />

0<br />

1<br />

n − 1<br />

1<br />

n 0<br />

n<br />

n − 1<br />

Single photon<br />

|d〉 ≡ one photon at port d<br />

transformation:<br />

n−1 ∑<br />

d=0<br />

a d |d〉 → n−1 ∑<br />

→ coin operator<br />

d,k=0<br />

C dk a k |d〉<br />

16 / 26


Quantum <strong>optical</strong> realization of SKW <strong>algorithm</strong><br />

n − n multiport<br />

0<br />

1<br />

n<br />

n − 1<br />

Scattering r<strong>and</strong>om <strong>walk</strong><br />

x = 0<br />

t<br />

t + 1<br />

n − 1<br />

1<br />

n 0<br />

transformation:<br />

n−1 ∑<br />

d=0<br />

a d |d〉 → n−1 ∑<br />

→ coin operator<br />

d,k=0<br />

C dk a k |d〉<br />

x = 1<br />

x = 2<br />

x = 3<br />

x = 4<br />

|d, x〉 → |d, x ⊕ e d 〉<br />

16 / 26


Quantum <strong>optical</strong> realization of SKW <strong>algorithm</strong><br />

n − n multiport<br />

0<br />

1<br />

n<br />

n − 1<br />

Scattering r<strong>and</strong>om <strong>walk</strong><br />

x = 0<br />

t<br />

t + 1<br />

n − 1<br />

1<br />

n 0<br />

transformation:<br />

n−1 ∑<br />

d=0<br />

a d |d〉 → n−1 ∑<br />

→ coin operator<br />

d,k=0<br />

C dk a k |d〉<br />

x = 1<br />

x = 2<br />

x = 3<br />

x = 4<br />

|d, x〉 → |d, x ⊕ e d 〉<br />

S(C 0 ⊗ 1) ∑ a dx |d, x〉 = ∑ C dk a kx |d, x ⊕ e d 〉<br />

dx<br />

dxk<br />

16 / 26


Quantum <strong>optical</strong> realization of SKW <strong>algorithm</strong><br />

n − n multiport<br />

0<br />

1<br />

n<br />

n − 1<br />

n −With 1 loopback 1 x = 1<br />

Ansingle column: scattering 0 <strong>quantum</strong> r<strong>and</strong>om <strong>walk</strong><br />

(similar: by Bužek <strong>and</strong> Košík) x = 2<br />

transformation:<br />

n−1 ∑<br />

d=0<br />

a d |d〉 → n−1 ∑<br />

→ coin operator<br />

d,k=0<br />

C dk a k |d〉<br />

Scattering r<strong>and</strong>om <strong>walk</strong><br />

x = 0<br />

x = 3<br />

x = 4<br />

S(C 0 ⊗ 1) ∑ a dx |d, x〉 = ∑ C dk a kx |d, x ⊕ e d 〉<br />

dx<br />

dxk<br />

t<br />

t + 1<br />

|d, x〉 → |d, x ⊕ e d 〉<br />

16 / 26


QRW <strong>search</strong> in linear <strong>optical</strong> network<br />

Column of multiports<br />

x = 0<br />

x = 1<br />

x = 2<br />

x = 3<br />

x = 4<br />

Consequence<br />

Coin at x = 1 differs!<br />

non-uniform coin → QRW <strong>search</strong><br />

17 / 26


QRW <strong>search</strong> in linear <strong>optical</strong> network<br />

Column of multiports<br />

x = 0<br />

x = 1<br />

x = 2<br />

x = 3<br />

x = 4<br />

Consequence<br />

Coin at x = 1 differs!<br />

non-uniform coin → QRW <strong>search</strong><br />

Graph topology: hypercube<br />

connect:<br />

port d of x → port d of x ⊕ 2 d 17 / 26


QRW <strong>search</strong> in linear <strong>optical</strong> network<br />

Column of multiports<br />

x = 0<br />

x = 1<br />

x = 2<br />

x = 3<br />

x = 4<br />

Consequence<br />

Coin at x = 1 differs!<br />

non-uniform coin → QRW <strong>search</strong><br />

Graph topology: hypercube<br />

connect:<br />

port d of x → port d of x ⊕ 2 d<br />

Search problem<br />

Find the multiport different from the<br />

rest!<br />

17 / 26


Losses, errors <strong>and</strong> decoherence<br />

Decoherence<br />

Basis of <strong>quantum</strong> computing:<br />

“<strong>quantum</strong> coherence”<br />

Losses <strong>and</strong> errors are inevitable in all physical realization:<br />

non-unitary time evolution<br />

Typical errors in optics<br />

Photon loss (absorption or scattering in media)<br />

Phase errors (difference in <strong>optical</strong> paths)<br />

18 / 26


Uniform loss<br />

Loss model<br />

D(ϱ) = η 2 ϱ + (1 − η 2 ) |0〉〈0|<br />

after t iterations:<br />

ϱ → D t (U t ϱU †t )<br />

Initial pure state |ψ〉: (η ≤ 1)<br />

|ψ〉 → D |ψ〉 = η |ψ〉<br />

Evolution operator: U ′′ = ηU ′ 19 / 26


Uniform loss<br />

Loss model<br />

D(ϱ) = η 2 ϱ + (1 − η 2 ) |0〉〈0|<br />

after t iterations:<br />

ϱ → D t (U t ϱU †t )<br />

Initial pure state |ψ〉: (η ≤ 1)<br />

|ψ〉 → D |ψ〉 = η |ψ〉<br />

Evolution operator: U ′′ = ηU ′ log 2 x ≈ −ε + n/2 − 1/2<br />

Success probability<br />

Maximum success probability (p max )<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-15<br />

-10<br />

-5<br />

0<br />

5<br />

10<br />

x = − log 2 η √ 2 n−1<br />

η = 1 − 2 −ε<br />

p max (η) =<br />

for large n: p max (x) ≈ 1 2<br />

[<br />

exp(−2x acot x) 1<br />

1+x 2 2 − O ( ( )]<br />

1<br />

n)<br />

+ x acot x O<br />

1<br />

n<br />

exp(−2x acot x)<br />

1<br />

1+x 2 19 / 26


Comparison with numerical results<br />

Maximum success probability (p max )<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

2<br />

4<br />

ε = 12<br />

ε = 8<br />

ε = 6<br />

ε = 2<br />

6 8 10<br />

Rank of hypercube (n)<br />

12<br />

14<br />

p max (η) =<br />

[<br />

exp(−2x acot x) 1<br />

1+x 2 2 − O ( ( )]<br />

1<br />

n)<br />

+ a acot xO<br />

1<br />

n<br />

20 / 26


Direction dependent loss<br />

η 0<br />

η 1<br />

η n−1<br />

η 0 , η 1 , . . . , η n−1 can be different<br />

Warning: original symmetry of hypercube broken!<br />

Walk cannot be collapsed onto a line<br />

21 / 26


Direction dependent loss<br />

Description<br />

starting with pure state: D = n−1 ∑<br />

d=0<br />

η d |d〉〈d|, {η} = {η d | d = 0, . . . , n − 1}<br />

a lower bound: p({η}, t) ≥ ¯η 2t { √<br />

pi (t) − (η max /¯η) [ (η max /¯η) t − 1 ] } 2<br />

¯η = η max + η min<br />

2<br />

21 / 26


Direction dependent loss<br />

Description<br />

starting with pure state: D = n−1 ∑<br />

d=0<br />

η d |d〉〈d|, {η} = {η d | d = 0, . . . , n − 1}<br />

a lower bound: p({η}, t) ≥ ¯η 2t { √<br />

pi (t) − (η max /¯η) [ (η max /¯η) t − 1 ] } 2<br />

〈η〉 = 1 n<br />

n−1 ∑<br />

d=0<br />

¯η = η max + η min<br />

2<br />

η d , δ d = η d − 〈η〉 , Q 2 = 1 n<br />

n−1 ∑<br />

d=0<br />

δ 2 d , 21 / 26


Direction dependent loss<br />

Description<br />

starting with pure state: D = n−1 ∑<br />

d=0<br />

η d |d〉〈d|, {η} = {η d | d = 0, . . . , n − 1}<br />

a lower bound: p({η}, t) ≥ ¯η 2t { √<br />

pi (t) − (η max /¯η) [ (η max /¯η) t − 1 ] } 2<br />

¯η = η max + η min<br />

2<br />

〈η〉 = 1 n<br />

n−1 ∑<br />

d=0<br />

η d , δ d = η d − 〈η〉 , Q 2 = 1 n<br />

n−1 ∑<br />

d=0<br />

δ 2 d ,<br />

W3 = 1 n−1 ∑<br />

n<br />

δ 3 d<br />

d=0<br />

Taylor expansion<br />

around 〈η〉, (using permutation symmetry)<br />

p max ({η}) = p max (〈η〉) + BQ 2 + CW 3 + R<br />

21 / 26


Numerical results<br />

Second order Taylor coefficient (n = 8)<br />

Second order Taylor coefficient (B)<br />

(log 2 scale)<br />

64<br />

16<br />

4<br />

1<br />

2 −2<br />

2 −4<br />

2 −6<br />

2 −8<br />

2 −10<br />

0.1<br />

0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

Average transmission (〈η〉)<br />

0.9<br />

1<br />

Effect of higher orders: p max ({η}) ≥ p max (〈η〉) + 2 −n Q 2 22 / 26


Numerical results<br />

Second order Taylor coefficient (n = 8)<br />

Second order Taylor coefficient (B)<br />

(log 2 scale)<br />

64<br />

16<br />

Empirical lower bound<br />

4<br />

using size, <strong>and</strong> the elementary statistical properties of noise:<br />

1<br />

2 −2<br />

2 −4<br />

2 −6<br />

2 −8<br />

2 −10<br />

0.1<br />

〈η〉 <strong>and</strong> Q<br />

0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

Average transmission (〈η〉)<br />

Effect of higher orders: p max ({η}) ≥ p max (〈η〉) + 2 −n Q 2<br />

0.9<br />

1<br />

22 / 26


Numerical results<br />

Absolute improvement (n = 7)<br />

40<br />

Absolute improvement (%)<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

0<br />

0.05<br />

0.1<br />

0.15 0.2 0.25 0.3<br />

Second moment (Q)<br />

0.35<br />

0.4<br />

0.45<br />

p max ({η}) − p max (η max )<br />

p max (η max )<br />

increase efficiency by loss!<br />

23 / 26


Phase Errors<br />

Description<br />

F({ϕ}) = ∑ d,x<br />

e iϕ dx<br />

|d, x〉〈d, x|<br />

U({ϕ}) = U ′ F({ϕ})<br />

Stable phase in one run<br />

|ψ t ({ϕ})〉 = U({ϕ}) t |ψ 0 〉<br />

ϱ out = |ψ t ({ϕ})〉〈ψ t ({ϕ})| {ϕ}<br />

Gaussian: 〈ϕ〉 = 0, ∆ϕ variance<br />

24 / 26


Phase Errors<br />

Description<br />

F({ϕ}) = ∑ e iϕ dx<br />

|d, x〉〈d, x|<br />

d,x<br />

U({ϕ}) = U ′ F({ϕ})<br />

Single runs<br />

0.4<br />

0.35<br />

Average probability (n = 6)<br />

Average probability of success<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0<br />

100<br />

200 300<br />

Number of steps (t)<br />

∆ϕ = 3 o<br />

∆ϕ = 6 o<br />

∆ϕ = 9 o<br />

∆ϕ = 12 o<br />

400<br />

500<br />

Probability of success<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0<br />

20<br />

40<br />

60 80 100<br />

Number of steps (t)<br />

120<br />

140<br />

160<br />

Stable phase in one run<br />

|ψ t ({ϕ})〉 = U({ϕ}) t |ψ 0 〉<br />

ϱ out = |ψ t ({ϕ})〉〈ψ t ({ϕ})| {ϕ}<br />

Gaussian: 〈ϕ〉 = 0, ∆ϕ variance<br />

24 / 26


Phase Errors<br />

0.4<br />

Description<br />

0.35<br />

F({ϕ}) = ∑ e iϕ dx<br />

|d, x〉〈d, x|<br />

0.3 d,x<br />

U({ϕ}) = 0.25 U ′ F({ϕ})<br />

0.2<br />

Single runs<br />

0.15<br />

Probability of success<br />

Average probability (n = 6)<br />

Average probability of success<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0<br />

20<br />

0.1<br />

0.05<br />

0<br />

0<br />

100<br />

40 60 80 100<br />

Number of steps (t)<br />

120<br />

140<br />

160<br />

Average probability (n = 6)<br />

∆ϕ = 3 o<br />

0.4<br />

∆ϕ = 6 o<br />

0.35<br />

∆ϕ = 9 o<br />

0.3<br />

∆ϕ = 12 o<br />

Average probability of success<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0<br />

100<br />

200 300<br />

Number of steps (t)<br />

Stable phase in one run<br />

|ψ t ({ϕ})〉 = U({ϕ}) t |ψ 0 〉<br />

200 300 400<br />

ϱ out = |ψ t ({ϕ})〉〈ψ t ({ϕ})| {ϕ}<br />

Number of steps (t)<br />

∆ϕ = 3 o<br />

∆ϕ = 6 o<br />

∆ϕ = 9 o<br />

∆ϕ = 12 o<br />

400<br />

500<br />

Gaussian: 〈ϕ〉 = 0, ∆ϕ variance<br />

500<br />

24 / 26


Phase Errors<br />

Numerical results<br />

Max. average success probability<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

4 5<br />

6 7 8<br />

rank of hypercube (n)<br />

ideal<br />

∆ϕ = 3 o<br />

∆ϕ = 6 o<br />

∆ϕ = 15 o<br />

9<br />

10<br />

25 / 26


Conclusions<br />

Quantum <strong>walk</strong>s<br />

Interesting for<br />

new <strong>quantum</strong> <strong>algorithm</strong>s<br />

<strong>its</strong> mathematics<br />

Quantum <strong>walk</strong> <strong>search</strong> <strong>algorithm</strong><br />

proposal for <strong>optical</strong> realization<br />

analysis of errors <strong>and</strong> losses<br />

J. Kempe: Contemp. Phys. 44 307 (2003), quant-ph/0303081<br />

N. Shenvi, J. Kempe <strong>and</strong> K. B. Whaley: Phys. Rev. A 67, 052307 (2003)<br />

A. Gábris, T. Kiss <strong>and</strong> I. Jex: Phys. Rev. A 76, 062315 (2007)<br />

26 / 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!