08.04.2014 Views

Flowing soap films: a novel platform for 2D turbulence experiments.

Flowing soap films: a novel platform for 2D turbulence experiments.

Flowing soap films: a novel platform for 2D turbulence experiments.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Flowing</strong> <strong>soap</strong> <strong>films</strong>:<br />

a <strong>novel</strong> <strong>plat<strong>for</strong>m</strong> <strong>for</strong> <strong>2D</strong> <strong>turbulence</strong> <strong>experiments</strong>.


Why <strong>2D</strong>?<br />

• A new angle on the long standing<br />

problem of <strong>turbulence</strong>.<br />

• Conceptually simpler, scalar vorticity.<br />

• New physics, no vortex stretching.<br />

• An area where there is much theory,<br />

but few <strong>experiments</strong>.<br />

• Disagreements between simulations.<br />

• Interesting to atmospheric science,<br />

plasma <strong>turbulence</strong>.


What is a Soap Film?<br />

~µm<br />

~nm<br />

Good Books:<br />

~cm<br />

K. J. Mysels, K. Shinoda,<br />

and S. Frankel,<br />

Soap Films (Pergamon,<br />

New York, 1959).<br />

Cyril Isenberg, The<br />

Science of Soap Films<br />

and Soap Bubbles<br />

(Dover, New York, 1992).


Soap Flow History<br />

Mysels'<br />

Rainbow<br />

Y. Couder, J. M. Chomaz, and M. Rabaud,<br />

Physica D37, 384 (1989).<br />

K.J. Mysels, K. Shinoda, and<br />

S. Frankel. Soap Films:<br />

Studies of their thinning.<br />

(Pergamon, NY, 1959)<br />

M. Gharib, and P. Derango,<br />

Physica D37, 406 (1989).


Soap<br />

Solution<br />

Soap<br />

Solution<br />

Soap Film Flow Channel:<br />

Long lived <strong>films</strong><br />

Arbitrary size<br />

Controlled velocity<br />

Controlled thickness<br />

Uni<strong>for</strong>m thickness<br />

Quick Film Renewal<br />

Weight<br />

Solution<br />

Weight<br />

Soap<br />

Solution


Basic Setup<br />

a)<br />

b)<br />

c)<br />

d)<br />

∆P<br />

e)<br />

I<br />

f)<br />

y<br />

x<br />

II<br />

g)<br />

h)<br />

III


Vertical Soap Film


Measurement Techniques<br />

Z<br />

Y X<br />

Laser Velocimeter<br />

Hot Wire Anemometer<br />

Particle Imaging Velocimetry<br />

LASER


Laminar Velocity Profiles<br />

x (cm)<br />

0 0 1 2 3 4<br />

0.5<br />

1<br />

v (m/s)<br />

1.5<br />

2<br />

h (cm)<br />

v (m/s)<br />

0<br />

0<br />

20<br />

40<br />

60<br />

80<br />

1 2 3 4<br />

100<br />

120<br />

140<br />

2.5<br />

160<br />

Rutgers et al., Phys. Fluids 8:2847, 1996.


3% Atm<br />

Reducing Air Drag<br />

Soap<br />

Solution<br />

F D<br />

A = 0.66<br />

ρ air η air<br />

y<br />

v 3/2<br />

Weight<br />

Soap<br />

Solution


Supersonic shock waves


Supersonics<br />

Out of plane wave speed:<br />

2σ 2σ<br />

v wave = = ∝ h − 1/ 2<br />

ρ 2<br />

ρ H<br />

h<br />

2O<br />

wave speed ∝ h −1/ 2<br />

film speed ∝ h 2/3<br />

thickness h


Vortex Merger<br />

"Measurements of Symmetric<br />

Vortex Merger." K.S. Fine, C.F.<br />

Driscoll, J.H. Malmberg, and T.B.<br />

Mitchell; Phys. Rev. Lett. 67:588<br />

(1991)


Interaction of two vortex streets<br />

1 cm/min<br />

Film speed ~ 200 cm/sec


1000 FPS video<br />

III<br />

I<br />

4 cm<br />

IV<br />

II


Signatures of <strong>2D</strong> <strong>turbulence</strong><br />

⎛<br />

∇× ⎜<br />

∂v<br />

∂t + v ⋅ ∇v = − ∇P ⎝<br />

ρ<br />

+ ν∇ 2 v<br />

⎞<br />

⎟ ⇒ Dω<br />

⎠ Dt<br />

= ω ⋅∇v + ν∇ 2 ω<br />

3D<br />

<strong>2D</strong><br />

k -5/3<br />

k -5/3 k -3<br />

k i<br />

log k<br />

k d<br />

k i<br />

log k<br />

Kolmogorov '41 Kraichnan '67


Decaying <strong>2D</strong> <strong>turbulence</strong>


Forced <strong>2D</strong> <strong>turbulence</strong>


Forced to decaying<br />

100<br />

|v ˆ x (k y )| 2 E(k) (arb. units)<br />

10<br />

1<br />

0.1<br />

0.01<br />

-5/3<br />

E D C B<br />

-3<br />

A<br />

-3<br />

0.001<br />

0.0001<br />

0.1 1 10<br />

k/2 (cm -1 )<br />

M. A. Rutgers, PRL 81:2244 (1998)


Power Laws<br />

x<br />

π<br />

∝∝∝∝


Injection scale<br />

π


Non-intrusive excitation


Non-intrusive excitation


Shear suppression of <strong>turbulence</strong>?<br />

shear < eddy<br />

eddy<br />

0.01 sec<br />

shear rate = 100 cm/sec<br />

cm<br />

0.5<br />

x (cm)<br />

0 0 1 2 3 4<br />

1<br />

v (m/s)<br />

1.5<br />

Unstable<br />

Shear<br />

2<br />

2.5<br />

Stable Shear

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!