10.04.2014 Views

LabChip GXII for High Throughput Analysis of Protein ... - PerkinElmer

LabChip GXII for High Throughput Analysis of Protein ... - PerkinElmer

LabChip GXII for High Throughput Analysis of Protein ... - PerkinElmer

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>LabChip</strong> <strong>GXII</strong> <strong>for</strong> <strong>High</strong> <strong>Throughput</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Protein</strong><br />

Quality<br />

Bahram Fathollahi<br />

Micr<strong>of</strong>luidics R&D<br />

May 20, 2010<br />

COGS Meeting 2010<br />

1


<strong>LabChip</strong> Plat<strong>for</strong>ms<br />

on-chip capillary electrophoresis<br />

Bioanalyzer 2100<br />

<strong>LabChip</strong> <strong>GXII</strong><br />

<strong>Protein</strong> analysis<br />

N-Glycan analysis<br />

DNA sizing & quantification<br />

RNA quality assessment<br />

<strong>High</strong>er <strong>Throughput</strong><br />

Experion<br />

Improved Data Quality<br />

Labor Savings vs. Gels<br />

Digital in<strong>for</strong>mation<br />

Easy-to-use<br />

2<br />

2


<strong>LabChip</strong> <strong>GXII</strong> Applications<br />

MicroChip-CE SDS<br />

• Crude lysate analysis<br />

• <strong>Protein</strong> expression<br />

• Antibody analysis<br />

• <strong>Protein</strong> purification<br />

• Fusion protein analysis<br />

• Formulation stability<br />

• Detection <strong>of</strong> covalent<br />

aggregates (up to 500 kDa)<br />

• Pre-labeled proteins <strong>for</strong> high<br />

sensitivity<br />

MicroChip-CE<br />

• N-Glycan pr<strong>of</strong>iling<br />

3


HT <strong>Protein</strong> Assay: Microchip-CE-SDS<br />

HT <strong>Protein</strong> Assay<br />

• Integrates the entire SDS-PAGE process onto a<br />

micr<strong>of</strong>luidic chip<br />

• Determine size, quantification, and purity<br />

• Automatic sampling from 96- or 384-well plate<br />

• Fast sample analysis - 41 seconds per sample<br />

• Can run crude samples<br />

• 96-well plate analyzed in < 1.25 h<br />

• Can do >400 samples per day per instrument<br />

Microchip CE<br />

• 2 μl <strong>of</strong> sample<br />

• Minimal sample preparation<br />

• 21 CFR Part 11 support<br />

4


<strong>Protein</strong> Assay Workflow<br />

Crude or purified<br />

protein sample<br />

Add denaturing<br />

sample buffer<br />

Heat<br />

Denature<br />

2μl<br />

96- or 384-well plate<br />

Add reagents to chip<br />

well<br />

Product Quality -<br />

Titer, % purity,<br />

degree <strong>of</strong><br />

glycosylation, ….<br />

5


Automated Sample <strong>Analysis</strong> Window<br />

Identified<br />

expected protein<br />

peaks<br />

Plate View<br />

Gel View<br />

Electropherogram<br />

Sizing, Conc.,<br />

and<br />

Purity results<br />

Well table view,<br />

Peak table view<br />

6


(1) (3) (2)<br />

Resolution Ladder Mix<br />

(1) Fermentas PAGE Ruler Unstained <strong>Protein</strong> Ladder<br />

(2) Fermentas Unstained Molecular Weight Marker<br />

(3) Mix<br />

Lowe er Marker<br />

10kDa<br />

14.4 and 15kDa 45 and 50kDa<br />

MIX<br />

7


Staccato <strong>Protein</strong> Workstation: Workflow Automation<br />

Features<br />

• Integrated sample<br />

processing & analysis<br />

• Walk away automation<br />

• Easy-to-use s<strong>of</strong>tware<br />

• Enables complex DOE<br />

experiment<br />

Scalable design: Twister plate loading, liquid handling<br />

sample prep, p and fully integrated system<br />

8


<strong>Protein</strong> Assay Specifications<br />

Type<br />

Sizing Range<br />

Specification<br />

<strong>Protein</strong> 100 Assay: 14 - 100 kDa<br />

<strong>Protein</strong> 200 Assay: 14 - 200 kDa ( can detect higher Mw proteins<br />

by increasing the separation and sample-load time)<br />

Sizing Accuracy* ± 20%<br />

Resolution*<br />

Linear Dynamic Range*<br />

Relative Concentration CV*<br />

Sensitivity*<br />

<strong>Analysis</strong> Time per Sample<br />

± 10% difference in MW across the sizing range, 50% valley<br />

Resolution is comparable to a 10 cm 4-20% SDS-PAGE gel<br />

5 - 2000 μg/mL<br />

30% up to 120 kDa relative to the ladder<br />

5 μg/mL (10 ng) Carbonic Anhydrase<br />

Sensitivity is equivalent to Coomassie stain<br />

<strong>Protein</strong> 100 Assay: ~34 seconds/sample<br />

<strong>Protein</strong> 200 Assay: ~41 seconds/sample<br />

Chip Lifetime<br />

<strong>Analysis</strong> Time Per Plate<br />

Maximum Salt Concentration<br />

4 96-well plates<br />

96-well plate


Conventional CE-SDS vs <strong>LabChip</strong>: Reduced mAb<br />

CE-SDS<br />

Microchip CE-SDS<br />

Chen X. et al. Microchip assays <strong>for</strong> screening monoclonal antibody protein quality. Electrophoresis, 29 (2008) 4993-5002<br />

10


CE-SDS vs. <strong>LabChip</strong>: Non-Reducing mAb<br />

cence<br />

Fluores<br />

550<br />

40 sec<br />

Microchip-CE-SDS<br />

6<br />

500<br />

Migration Corrected Migration Corrected<br />

450<br />

Time, Relative Time, Relative<br />

400<br />

350<br />

Peak Number seconds Area minutes Area Delta<br />

300<br />

1 18.6 0.4% 15.5 0.7% 0.3%<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

5<br />

1 2 3 4<br />

6<br />

7<br />

16 18 20 22 24 26 28 30 32<br />

Time (seconds)<br />

8<br />

5<br />

9<br />

0<br />

1<br />

LC-90<br />

CE-SDS<br />

2 20.5 0.1% 18.7 0.2% 0.1%<br />

3 23.9 0.3% 22.2 0.3% 0.0%<br />

4 26.4 0.5% 25.2 0.5% 0.0%<br />

5 27.8 2.0% 26.7 2.4% 0.4%<br />

6 29.0 96.7% 27.8 95.9% 9% 08% 0.8%<br />

Total Impurities 3.3% 4.1% 0.8%<br />

35 minute separation<br />

Baseline<br />

variability<br />

Data is quite consistent, despite<br />

differences in:<br />

• Instrument<br />

• Sample preparation buffer<br />

• Detection method<br />

• Some impurities are known to<br />

be sensitive to sample<br />

preparation conditions<br />

Siemiatkoski et al. Use <strong>of</strong> <strong>LabChip</strong> 90 in Product Development <strong>of</strong> a<br />

Recombinant Fusion <strong>Protein</strong>. <strong>Protein</strong> Summit 2008, London UK<br />

11


Crude Lysate <strong>Analysis</strong><br />

Microchip-CE SDS vs SDS-PAGE<br />

Expressed protein 47.7 kDa<br />

Expressed protein 48kDa<br />

* Lysate sample and SDS-PAGE data courtesy <strong>of</strong> Structural GenomiX - San Diego, CA<br />

12


<strong>Analysis</strong> <strong>of</strong> Subunit Vaccine Expression in<br />

Pseudomonas<br />

<strong>High</strong> throughput<br />

expression<br />

monitoring with<br />

analysis on the<br />

<strong>LabChip</strong> <strong>GXII</strong> led<br />

to a 10-fold<br />

increase in yield<br />

13


<strong>Protein</strong> Expression Optimization using DOE<br />

Optimal expression condition<br />

is easily observed<br />

Swalley, S.E. et al., Quantitative <strong>Analysis</strong> <strong>of</strong> <strong>Protein</strong> Expression, Anal. Biochem, 351 (2006) 122-127<br />

14


<strong>LabChip</strong> GX Dependent Process Development <strong>for</strong> mAb Purification<br />

<strong>Analysis</strong> <strong>of</strong><br />

mAb yield<br />

and purity<br />

with varying<br />

purification<br />

parameters<br />

15


Purification Process Development<br />

Affinity resin capacity determination<br />

<strong>Protein</strong> are introduced continuously into the column and unbound fractions are<br />

monitored o by UV and Labchip90.<br />

20.0 the<br />

15.0<br />

10.0<br />

<strong>Protein</strong>s are detected in<br />

the unbound the<br />

dynamic binding<br />

capacity <strong>of</strong> the column<br />

has been reached<br />

5.0<br />

Slide courtesy <strong>of</strong> X.Le Saoût – COGS 2008 meeting<br />

16


<strong>High</strong> Sensitivity: Derivatization <strong>of</strong> <strong>Protein</strong>s<br />

with FL dye<br />

• Replaces on-chip staining with <strong>of</strong>f-chip labeling in order to increase sensitivity by<br />

10X or more<br />

• NHS esters reaction with amine groups <strong>of</strong> lysine residues<br />

O O<br />

N O<br />

Dye<br />

NH 3<br />

O NH<br />

Dye<br />

MAb<br />

Dye Succinimidyl Ester<br />

O<br />

Intact Antibody<br />

Reduction<br />

2 + 2<br />

O<br />

N<br />

O<br />

O<br />

O<br />

Dye<br />

NH<br />

NH<br />

O<br />

Dye<br />

Dye<br />

MAb<br />

Heavy Light<br />

Chain Chain<br />

Dye Succinimidyl Ester<br />

O<br />

HC and LC<br />

17


Linearity <strong>of</strong> intact mAb at constant dye<br />

concentration<br />

ti<br />

• linearity <strong>of</strong> 4 orders <strong>of</strong> magnitude <strong>for</strong> high sensitivity Pico protein assay<br />

100000<br />

10000<br />

HT <strong>Protein</strong> Express 200<br />

HT Pico <strong>Protein</strong> Express<br />

R 2 = 0.999<br />

R 2 = 0.9997<br />

Time Corrected<br />

Area<br />

1000<br />

100<br />

10<br />

1<br />

0.01 0.1 1 10 100 1000 10000<br />

MAb Concentration (μg/mL)<br />

18


Low Level Impurity Detection: Non-Covalent<br />

On-Chip Staining<br />

• Impurities <strong>of</strong> as low as 1% are clearly identified<br />

• Lysozyme was spiked into the sample at 1% <strong>of</strong> total protein and was<br />

readily identified, with a S:N <strong>of</strong> 9:1<br />

HC<br />

NGHC<br />

LC<br />

Ly<br />

19


Low Level Impurity Detection: Covalent<br />

Off-Chip Staining<br />

i<br />

• Carbonic anhydrase was spiked into mAb sample at 0.01%, 0.05% and 0.5% <strong>of</strong> the<br />

total protein at 1 mg/ml.<br />

• ~ 100X improvement in sensitivity!<br />

0.5%<br />

0.05%<br />

0.01%<br />

Background mAb trace<br />

Spiked CA<br />

20


Antibody N-linked Glycans<br />

Complex<br />

Mannose<br />

Hybrid<br />

GlcNAc<br />

Fucose<br />

Galactose<br />

<strong>High</strong> Mannose<br />

• Glycosylation patterns <strong>of</strong> therapeutic proteins can influence<br />

- Efficacy and safety <strong>of</strong> therapeutic antibodies<br />

- <strong>Protein</strong>-protein interactions<br />

- Solubility<br />

- Intracellular trafficking<br />

• Important to characterize and monitor the glycosylation pattern during cell<br />

culture development<br />

Antibody image courtesy <strong>of</strong> Dr. Greg Flynn<br />

21


Neutral N-Glycan Types<br />

<strong>High</strong><br />

Mannose<br />

M5 M6* M7* M8 M9<br />

Hybrid<br />

M5G1F M5G0F M5G0 M5G1<br />

Complex<br />

G2F G1F G0F G2 G1 G0<br />

G0F‐GlcNac<br />

slide courtesy <strong>of</strong> Dr. Greg Flynn<br />

22


IgG Charged N-Glycan Types<br />

Sialylated<br />

23


Traditional N-Glycan Mapping (3-5 Days)<br />

Sample<br />

Digestion (PNGase-F)<br />

Removal <strong>of</strong> <strong>Protein</strong><br />

Carbohydrate labeling (2-AB, APTS)<br />

Removal <strong>of</strong> labeling<br />

Reagent<br />

CE-LIF<br />

Chromatography/MS<br />

• NP-HPLC<br />

• RP-HPLC<br />

24


Goals <strong>for</strong> HT N-Glycan Screening Assay in<br />

Early Development<br />

• Identification and determination <strong>of</strong> relative amounts <strong>of</strong><br />

major N-Glycans (Man 5, G0, G0F, G1F isomers, and<br />

G2F)<br />

– Sialylated glycans?<br />

– Low level glycans? gy<br />

• Ease-<strong>of</strong>-use<br />

• <strong>High</strong> throughput and fast turnaround<br />

– <strong>Analysis</strong> <strong>of</strong> 96-well plate sample in < 8 hours<br />

– Complete from digestion to results<br />

• Robust and Reproducible<br />

• Easy to transfer and establish in QC environment<br />

25


HT Glycan Pr<strong>of</strong>iling on <strong>LabChip</strong> System<br />

Denature and Reduce mAb in Denaturing Buffer<br />

<strong>LabChip</strong> <strong>GXII</strong><br />

Add Denatured Reduced mAb to Enzyme Plate<br />

Denaturing plate<br />

Heat (Denatured mAb + Enzyme) at 37 °C <strong>for</strong> ~1h<br />

microchip<br />

Transfer to Dye Plate<br />

PNGase‐F Plate<br />

Heat Assay Plate at 55 °C <strong>for</strong> ~2h<br />

G0F<br />

G1F<br />

G1F’<br />

G2F<br />

Dilute with separation Buffer<br />

Read 96-well plate on <strong>LabChip</strong> <strong>GXII</strong> ~1.5h<br />

Glycan Labeling Plate<br />

G0<br />

M5<br />

26


HT Glycan Assay Per<strong>for</strong>mance Specifications<br />

8ul with concentration range <strong>of</strong> 1.25mg/ml to<br />

Amount <strong>of</strong> sample required:<br />

7.5mg/ml (10ug to 60ug <strong>of</strong> MAb total).<br />

Reproducibility <strong>of</strong> %area:<br />

CV < 10% <strong>for</strong> a peak >= 2.5% <strong>of</strong> total glycan.<br />

1ng <strong>of</strong> G0F standard. (Smallest amount <strong>of</strong> labeled<br />

Limit <strong>of</strong> detection:<br />

G0f standard that can be detected.)<br />

>95% <strong>of</strong> all N-Linked glycans will be released from<br />

Deglycosylation:<br />

mAb.<br />

Appropriate <strong>for</strong> neutral glycans found on MAbs.<br />

Usable size range: Some charged glycans may run outside <strong>of</strong> our<br />

usable range.<br />

Sizing ing reproducibility: CV < 2.5%<br />

< 0.5% <strong>of</strong> previous sample can be detected in<br />

Carryover:<br />

following sample.<br />

Sample prep, chip prep, and < 8 hours <strong>for</strong> a 96-well plate.<br />

analysis time:<br />

Number <strong>of</strong> samples per chip Up to 192 samples be<strong>for</strong>e chip needs to be<br />

prep: reloaded with fresh gel.<br />

Number <strong>of</strong> samples per chip Up to 384 samples be<strong>for</strong>e chip needs to be<br />

lifetime: replaced.<br />

27


PNGase-F Digestion<br />

Observed complete deglycosylation<br />

• Digested IgG (red trace) shows shift towards NGHC<br />

when compared to undigested IgG (blue trace)<br />

HC<br />

NGHC<br />

28


Use <strong>of</strong> Internal Standards <strong>for</strong> Peak Identifications<br />

• Individual neutral glycan standards show good resolution <strong>of</strong> the main glycans<br />

• The two G1F isomers, differing only in the branch position <strong>of</strong> terminal galactose, are resolved<br />

Mixture <strong>of</strong> Glycan Standards<br />

G1<br />

29


Sialylated Glycan Standards<br />

•Mono- and di-sialylated glycan standards, with and without internal fucose (A1, A1F, A2, and<br />

A2F) were purchased from ProZyme (Hayward CA)<br />

30


Use <strong>of</strong> Glucose Ladder For Peak Identification<br />

31


Identification <strong>of</strong> Glycan Peaks<br />

Expected Peaks Function in <strong>Analysis</strong> Settings<br />

32


Intermediate-Assay Reproducibility<br />

•Labeled N-glycans released from three different mAbs at starting concentrations <strong>of</strong> 1.25 mg/mL, 2.5mg/mL, and 7.5<br />

mg/mL were analyzed.<br />

•The %RSD was calculated <strong>for</strong> 35 reactions (complete from deglycosylation to labeling and separation) per mAb, 2<br />

repeat injections, 4 different chips and instruments, and 2 users.<br />

•Total %RSD’s <strong>for</strong> the five main glycan peaks were all below 10% <strong>for</strong> peaks with relative amount greater than 2.5%.<br />

IgG_A AVG % Area CV_10ug CV_20ug CV_60ug Total CV<br />

G0 6.82 3.6% 3.4% 3.8% 6.3%<br />

G0F 53.39 3.4% 1.6% 2.5% 3.2%<br />

G1F 9.05 4.1% 1.9% 2.8% 4.1%<br />

G1F' 9.28 4.6% 1.9% 2.1% 4.9%<br />

G2F 2.05 12.2% 6.3% 2.2% 13.4%<br />

Man5 4.61 4.9% 3.6% 6.3% 8.7%<br />

IgG_B G0 10.55 5.8% 4.9% 4.2% 5.4%<br />

G0F 47.78 2.4% 1.6% 1.2% 2.1%<br />

G1F 5.70 5.1% 5.2% 4.3% 6.5%<br />

G1F' 17.92 2.9% 2.0% 1.4% 3.2%<br />

G2F 258 2.58 82% 8.2% 75% 7.5% 33% 3.3% 98% 9.8%<br />

Man5 1.79 7.2% 8.8% 6.8% 12.1%<br />

IgG_C G0 5.01 4.5% 3.2% 3.4% 6.8%<br />

G0F 57.33 3.1% 2.1% 3.3% 3.1%<br />

G1F 457 4.57 49% 4.9% 36% 3.6% 41% 4.1% 63% 6.3%<br />

G1F' 13.92 3.5% 2.3% 1.8% 3.1%<br />

G2F 1.25 14.4% 13.4% 6.7% 15.5%<br />

Man5 5.58 4.9% 3.5% 3.3% 6.8%<br />

33


NPLC (2-AB labeled)<br />

G0F Man5<br />

Comparison to NPLC and CE-LIF<br />

180 min<br />

G1FA G1FB G2F<br />

CE-LIF (APTS labeled)<br />

Int Std<br />

Man5<br />

G0F<br />

6min<br />

G1FA G1FB<br />

G2F<br />

Microchip-CE (FL labeled)<br />

G0F<br />

45 sec<br />

Int Std<br />

Man5<br />

G0<br />

G1FB<br />

G1FA<br />

G2F<br />

NPLC and CE pr<strong>of</strong>iles courtesy <strong>of</strong> Dr. Nate Lacher<br />

34


Relative Amounts Comparison<br />

Glycan NP‐HPLC Microchip‐CE<br />

% CPA %CPA<br />

G0 06 0.6<br />

Man5 2.00 3.4<br />

G0‐GlcNAc 3.00 4.8<br />

G0F 44.60 43.6<br />

G1F 14.80 16.3<br />

G1F' 19.40 20.3<br />

G2F 6.90 6.9<br />

35


HT N-Glycan Assay: Summary <strong>of</strong> Key Features<br />

• Integrates the CE-LIF process onto a micr<strong>of</strong>luidic chip<br />

• Fast separation time – 45 sec per sample; 96-well plate in ~90 min<br />

• Reagents provided in 96-well plate <strong>for</strong>mat <strong>for</strong> convenience and ease <strong>of</strong> automation<br />

• Rapid digestion ~ 1hr<br />

• Labeling in presence <strong>of</strong> released antibody without requiring NaBH 3 CN<br />

• Able to identify major N-glycan peaks, including mono- and di-sialylated glycans<br />

• S<strong>of</strong>tware determines the relative amounts <strong>of</strong> major N-glycans<br />

• Up to 200 samples per chip with single chip preparation<br />

• Chip lifetime <strong>of</strong> 400 samples<br />

• Capable <strong>of</strong> interfacing with plate robotics <strong>for</strong> complete automation <strong>of</strong> sample prep and<br />

analysis<br />

• 21CFR Part 11 s<strong>of</strong>tware support<br />

36


Acknowledgements<br />

Collaborators<br />

– Greg Flynn - Amgen<br />

– Joe Semiatkoski – Biogen Idec<br />

– Xiaoyu Chen - Novartis<br />

– Nate Lacher – Pfizer<br />

Caliper Life Sciences<br />

• Assay Development<br />

– Mai Ho<br />

– Raj Singh<br />

• Micr<strong>of</strong>luidics R&D<br />

– Roger Dettl<strong>of</strong>f<br />

– Hui Xu<br />

– Melissa Takahashi<br />

• Chip Manufacturing<br />

• SW Engineering<br />

37


Select Publications<br />

38


<strong>LabChip</strong> System<br />

Sampling <strong>of</strong> <strong>LabChip</strong> Users Quantitative Screening Assays<br />

on One Plat<strong>for</strong>m<br />

labchip@caliperls.com<br />

• Antibody analysis<br />

– Titer<br />

– Purity <strong>for</strong> R and NR<br />

• Crude lysate analysis<br />

• <strong>Protein</strong> expression<br />

• Fusion protein analysis<br />

• Formulation stability<br />

• Detection <strong>of</strong> covalent aggregates<br />

• Pre-labeled proteins <strong>for</strong> high<br />

sensitivity<br />

• Purification process development<br />

– Purity and Yield<br />

• N-Glycan Pr<strong>of</strong>iling<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!