14.04.2014 Views

Chuck Fadley X-ray Photoelectron Spectroscopy and Diffraction in ...

Chuck Fadley X-ray Photoelectron Spectroscopy and Diffraction in ...

Chuck Fadley X-ray Photoelectron Spectroscopy and Diffraction in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

X-<strong>ray</strong> <strong>Photoelectron</strong> <strong>Spectroscopy</strong> <strong>and</strong> <strong>Diffraction</strong><br />

<strong>in</strong> the Hard X-Ray Regime: An Overview<br />

<strong>Chuck</strong> <strong>Fadley</strong><br />

Department of Physics<br />

University of California Davis<br />

<strong>and</strong><br />

Materials Sciences Division<br />

Lawrence Berkeley National Laboratory<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background, <strong>and</strong> st<strong>and</strong><strong>in</strong>g waves<br />

Core- <strong>and</strong> valence- level spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects<br />

Plus see: Nucl. Inst. <strong>and</strong> Meth. A, Volume 547, Issue 1, Pages 1-238 (2005)<br />

2 nd Int’l Workshop-2006, Program/Abstrasts<br />

http://haxpes2006.spr<strong>in</strong>g8.or.jp/<br />

Special thanks to: C. Dallera, T. Hattori, K. Kobayashi, T. L. Lee, R.<br />

Moberg, G. Panaccione, O. Schaff, S. Suga, Y. Takata, J. Zegenhagen<br />

Japanese Physical Society Meet<strong>in</strong>g, Chiba, Sept., 2006


And 101 years later:<br />

Photoemission/photoelectron spectroscopy:<br />

UPS, XPS, ARPES<br />

<strong>Photoelectron</strong> diffraction:<br />

PD, XPD, PhD<br />

Typical photon energies: 5------------1500 eV<br />

laser, VUV soft x-<strong>ray</strong><br />

ΔE: ≤1 meV ∼50 meV<br />

Hard x-<strong>ray</strong> photoemission:<br />

HAXPES, HXPS, HIKE,…<br />

Photon energies from ∼5-15 keV?<br />

ΔE ∼50-75 meV→10 meV<br />

Why? To probe more bulklike properties, deeper <strong>in</strong>to multilayer structures,<br />

new physics, new applications…<br />

To date:<br />

• HAXPES2004 Workshop-ESRF (J. Zegenhagen)<br />

Nucl. Inst. <strong>and</strong> Meth. A, Volume 547, Issue 1, Pages 1-238 (2005)<br />

• HAXPES2006 Workshop-SPr<strong>in</strong>g8 (S. Suga, K. Kobayashi)<br />

Program/Abstracts @ http://haxpes2006.spr<strong>in</strong>g8.or.jp/<br />

• 20 published papers on “hard x-<strong>ray</strong> photoemission”, most from Japan<br />

• Talks by Tjeng, Suga, Sekiyama this morn<strong>in</strong>g,….


A first experiment<br />

SPEAR<br />

hν = 8,000 eV<br />

CMA, s<strong>in</strong>gle-channel det.<br />

25 cts./sec<br />

Siegbahn et al., late 1950s, then Pianetta, L<strong>in</strong>dau, Nature 250, 214 (1974)


Outl<strong>in</strong>e<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background<br />

St<strong>and</strong><strong>in</strong>g waves<br />

Core <strong>and</strong> valence spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects


Electron <strong>in</strong>elastic mean free paths <strong>in</strong> solids—the “universal curve”<br />

Seah & Dench, Surf. Int. Anal. 1, 2 (1979)


Electron <strong>in</strong>elastic mean free paths <strong>in</strong> solids—the “universal curve”<br />

Graphite<br />

Germanium<br />

Tanuma, Powell, Penn, Surf. Interface Analysis, 17, 911-926 (1991);<br />

36, 1 (2004) <strong>and</strong> refs. there<strong>in</strong>


How much deeper do we<br />

probe at 5-10 keV?<br />

(nm)<br />

8<br />

7<br />

Typical elements:<br />

50-200 A<br />

• 6.93 nm<br />

Au<br />

Inelastic attenuation length<br />

TPP-2M formula<br />

of Tanuma, Powell, Penn<br />

6<br />

5<br />

∝ (E k<strong>in</strong> ) 0.75<br />

• 4.72 nm<br />

• 5.86 nm<br />

• 3.48 nm<br />

4-5x deeper<br />

than normal<br />

XPS<br />

• 2.07 nm<br />

15-20x deeper<br />

than normal<br />

ARPES<br />

| | | | |<br />

4000 6000 8000 10,000<br />

http://www.ss.teen.setsunan.ac.jp/e-imfp.html


Detection of SiO 2 /Si Interface Through Thick Overlayer<br />

Si 1s<br />

<strong>Photoelectron</strong>s<br />

Hard X-<strong>ray</strong><br />

NiGe<br />

SiO 2<br />

Si sub.<br />

Θ<br />

7∼15 nm<br />

12 nm<br />

Intensity (arb. units)<br />

Si 1s<br />

Θ = 80º<br />

NiGe Layer<br />

Thickness<br />

7 nm<br />

12 nm<br />

15 nm<br />

hν = 7935 eV<br />

SiO 2<br />

Si<br />

1850 1846 1842 1838 1834<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

H. Kondo et al. (Nagoya Univ.) unpublished.


High-k Dielectric Layers-post-deposition thermal anneal<strong>in</strong>g (PDA)<br />

temperature dependence of LaOx(4 nm)/Si(100) <strong>in</strong>terfaces (room temp<br />

deposition, 10m<strong>in</strong> anneal<strong>in</strong>g <strong>in</strong> N 2 ambient at 300 C, 400 C,<strong>and</strong> 500 C)<br />

La silicate formation by anneal<strong>in</strong>g<br />

Formation of <strong>in</strong>terface transition layers<br />

La Silicate (Si-O-La) is already formed by room<br />

temperature deposition. Amount of the silicate<br />

rapidly <strong>in</strong>creases by anneal<strong>in</strong>g.<br />

Electronegativities χ Si (1.8) > χ La (1.2)<br />

H. Nohira, et al., ECS Transactions, Vol. 1 (2005) pp. 87-95.


E k<strong>in</strong> ≈ 500-1000 eV<br />

Inner potential<br />

f(θ scat )<br />

Vary<strong>in</strong>g surface sensitivity for lower<br />

electron takeoff angles<br />

•<br />

Simplest <strong>in</strong>terpretation:<br />

Average emission depth = Λ <strong>in</strong>elastic s<strong>in</strong>θ takeoff<br />

How valid?<br />

E.g.: A. Jablonski <strong>and</strong> C. J. Powell,<br />

J. Vac. Sci. Tech. A 21, 274 (2003):<br />

→ Mean Emission Depth (MED)<br />

more relevant than Λ <strong>in</strong>elastic<br />

θ takeoff<br />

>20-30°<br />

E k<strong>in</strong> ≈ 10,000 eV<br />

PD modulations<br />

weaker<br />

f(θ scat )<br />

•<br />

θ takeoff<br />

down<br />

to 5-10°<br />

Simpler analysis<br />

Cleaner bulk & surface dist<strong>in</strong>ction<br />

C. J. Powell, W. Werner et al., priv. comm.;<br />

C.S.F., Nucl. Inst. & Meth. A 547, 24 (2005)


Variable takeoff-angle Si 1s photoelectron spectra<br />

from NiGe(12-nm)/SiO 2 (12-nm)/Si(100)<br />

Si 1s<br />

Si 1s<br />

8 keV<br />

hν = 7935 eV<br />

Si-O<br />

Si-Si<br />

Hard X-<strong>ray</strong><br />

NiGe<br />

SiO 2<br />

Si sub.<br />

Θ<br />

7∼15 nm<br />

12 nm<br />

Intensity [a. u .]<br />

More bulk<br />

sensitive<br />

More <strong>in</strong>terface sensitive<br />

θ = 80º<br />

35º<br />

12º<br />

1848<br />

1844<br />

1840<br />

1836<br />

B<strong>in</strong>d<strong>in</strong>g energy [eV]<br />

T. Hattori et al., Int. J. High Speed Electronics 16 (2006) 353.


<strong>Photoelectron</strong> <strong>in</strong>tensities from a semi-<strong>in</strong>f<strong>in</strong>ite substrate--<br />

atom Q with subshell nlj (e.g. Au4f 7/2 )<br />

I(Qnlj) = (<strong>in</strong>cident flux) × (area of illum<strong>in</strong>ated sample seen by analyzer)<br />

(Qnlj differential cross section) × (solid angle accepted by analyzer) ×<br />

(density of atoms Q) × (photoelectron <strong>in</strong>elastic attenuation length) ×<br />

(overall detection efficiency)<br />

I(Qnlj) = I 0 (hν) × (dσ Qnlj (hν→E k<strong>in</strong> )/dΩ) ×ρ Q ×Λ e (E k<strong>in</strong> ≈ hν) × A 0 /s<strong>in</strong>θ <strong>in</strong>c × Ω 0 × D 0<br />

Sample brightness = B 0<br />

Energy-dep. analyzer prop.<br />

Given atom @ high energy--lower l subshells favored (n- l -1 radial nodes) :<br />

dσ Qnlj (hν)/dΩ ∝1/(hν) N ≈1/(E k<strong>in</strong> ) N → For Au: 1/(E k<strong>in</strong> ) ∼2.0 for s subshells<br />

1/(E k<strong>in</strong> ) ∼2.5 for p subshells<br />

1/(E k<strong>in</strong> ) ∼3.0-3.5 for d subshells<br />

1/(E k<strong>in</strong> ) ∼4.0-4.5 for f subshell<br />

<strong>and</strong> Λ e (hν→E k<strong>in</strong> ) ∝ (E k<strong>in</strong> ) 0.75<br />

So <strong>in</strong>tensity per <strong>in</strong>cident photon falls off as 1/(E k<strong>in</strong> ) ∼1.25-3.75 !<br />

What can you do with the source, the analyzer+detector<br />

S.T. Manson<br />

10 11 -10 12 /s <strong>in</strong>to A 0 /s<strong>in</strong>θ <strong>in</strong>c<br />

a small spot<br />

C.J. Powell


Photon energy dependence of cross sections for gold<br />

Subshell Cross Section (Barns)<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

5p 3/2<br />

5d<br />

4f<br />

Au cross sections--Scofield<br />

5s,5p 1/2<br />

6s<br />

5s,p<br />

5d<br />

4f<br />

4s 1/2<br />

4p 1/2<br />

4p 3/2<br />

4d 3/2<br />

4d 5/2<br />

4f 5/2<br />

4f 7/2<br />

5s 1/2<br />

5p 1/2<br />

5p 3/2<br />

5d 3/2<br />

5d 5/2<br />

6s 1/2<br />

1<br />

0 2000 4000 6000 8000 10000 12000 14000 16000<br />

Photon Energy (eV)


Changes <strong>in</strong> relative cross<br />

section with photon energy<br />

Kunz et al., Nucl. Inst. & Meth. A 547, 73 (2005)


<strong>Photoelectron</strong> <strong>in</strong>tensities from a semi-<strong>in</strong>f<strong>in</strong>ite substrate--<br />

atom Q with subshell nlj (e.g. Au4f 7/2 )<br />

I(Qnlj) = (<strong>in</strong>cident flux) × (area of illum<strong>in</strong>ated sample seen by analyzer)<br />

(Qnlj differential cross section) × (solid angle accepted by analyzer) ×<br />

(density of atoms Q) × (photoelectron <strong>in</strong>elastic attenuation length) ×<br />

(overall detection efficiency)<br />

I(Qnlj) = I 0 (hν) × (dσ Qnlj (hν→E k<strong>in</strong> )/dΩ) ×ρ Q ×Λ e (E k<strong>in</strong> ≈ hν) × A 0 /s<strong>in</strong>θ <strong>in</strong>c × Ω 0 × D 0<br />

Sample brightness = B 0<br />

Energy-dep. analyzer prop.<br />

Given atom @ high energy--lower l subshells favored (n- l -1 radial nodes) :<br />

dσ Qnlj (hν)/dΩ ∝1/(hν) N ≈1/(E k<strong>in</strong> ) N → For Au: 1/(E k<strong>in</strong> ) ∼2.0 for s subshells<br />

1/(E k<strong>in</strong> ) ∼2.5 for p subshells<br />

1/(E k<strong>in</strong> ) ∼3.0-3.5 for d subshells<br />

1/(E k<strong>in</strong> ) ∼4.0-4.5 for f subshell<br />

<strong>and</strong> Λ e (hν→E k<strong>in</strong> ) ∝ (E k<strong>in</strong> ) 0.75<br />

So <strong>in</strong>tensity per <strong>in</strong>cident photon falls off as 1/(E k<strong>in</strong> ) ∼1.25-3.75 !<br />

What can you do with the source, the analyzer+detector<br />

S.T. Manson<br />

10 11 -10 12 /s <strong>in</strong>to A 0 /s<strong>in</strong>θ <strong>in</strong>c<br />

a small spot<br />

C.J. Powell


One experimental setup: SPr<strong>in</strong>g-8 8 BL29XU<br />

Y. Takata et al., Nuclear Instrum. <strong>and</strong> Methods A547, 50 (2005).<br />

T. Ishikawa et al., Nuclear Instrum. <strong>and</strong> Methods A547, 42 (2005).<br />

★ Excitation energy: 5.95 or 7.94keV, Δ(hν): 40-60meV<br />

★ Photon flux: 10 11 photons/sec @ 55(Hor.)x 50(Vert.) μm 2<br />

★ Analyzer: R4000-10kV (Gammadata-Scienta)<br />

Other mfrs.: MBS <strong>and</strong> Specs; Another project: Suga et al., ∼6x more flux


High Energy Resolution & High Throughput<br />

Au VB @ hν=5.95 keV<br />

ΔE=75<br />

meV<br />

at 5.95keV<br />

(E/ΔE=79000)<br />

ΔE=90meV<br />

at 7.94keV<br />

(E/ΔE=88000)<br />

E pass<br />

= 200eV<br />

220sec<br />

ΔE=208 meV<br />

E pass<br />

= 200eV<br />

30sec<br />

E pass<br />

=50eV<br />

335 meV<br />

Lorentzian<br />

Y. Takata et al., Nuclear Instrum. <strong>and</strong> Methods. A547, 50 (2005)


HAXPES/HXPS <strong>in</strong> the World<br />

• •<br />

•<br />

•<br />

•<br />

ESRF—Castro et al.<br />

Panaccione et al.<br />

Zegenhagen et al.<br />

Hasylab—Drube et al.<br />

BESSY---Bressler,Svensson et al.<br />

Felser, Fecher et al.<br />

SPr<strong>in</strong>g8—Kobayashi et al.<br />

Takata et al.<br />

Suga et al.<br />

???


<strong>Photoelectron</strong> <strong>in</strong>tensities from a semi-<strong>in</strong>f<strong>in</strong>ite substrate--<br />

atom Q with subshell nlj (e.g. Au4f 7/2 )<br />

I(Qnlj) = (<strong>in</strong>cident flux) × (area of illum<strong>in</strong>ated sample seen by analyzer)<br />

(Qnlj differential cross section) × (solid angle accepted by analyzer) ×<br />

(density of atoms Q) × (photoelectron <strong>in</strong>elastic attenuation length) ×<br />

(overall detection efficiency)<br />

I(Qnlj) = I 0 (hν) × (dσ Qnlj (hν→E k<strong>in</strong> )/dΩ) ×ρ Q ×Λ e (E k<strong>in</strong> ≈ hν) × A 0 /s<strong>in</strong>θ <strong>in</strong>c × Ω 0 × D 0<br />

Sample brightness = B 0<br />

Energy-dep. analyzer prop.<br />

Given atom @ high energy--lower l subshells favored (n- l -1 radial nodes) :<br />

dσ Qnlj (hν)/dΩ ∝1/(hν) N ≈1/(E k<strong>in</strong> ) N → For Au: 1/(E k<strong>in</strong> ) ∼2.0 for s subshells<br />

1/(E k<strong>in</strong> ) ∼2.5 for p subshells<br />

1/(E k<strong>in</strong> ) ∼3.0-3.5 for d subshells<br />

1/(E k<strong>in</strong> ) ∼4.0-4.5 for f subshell<br />

<strong>and</strong> Λ e (hν→E k<strong>in</strong> ) ∝ (E k<strong>in</strong> ) 0.75<br />

So <strong>in</strong>tensity per <strong>in</strong>cident photon falls off as 1/(E k<strong>in</strong> ) ∼1.25-3.75 !<br />

What can you do with the source, the analyzer+detector<br />

S.T. Manson<br />

10 11 -10 12 /s <strong>in</strong>to A 0 /s<strong>in</strong>θ <strong>in</strong>c<br />

a small spot<br />

C.J. Powell


Measurement of <strong>in</strong>elastic<br />

attenuation lengths<br />

º<br />

∝<br />

º<br />

º<br />

∝ E<br />

0.75 #<br />

k<strong>in</strong><br />

º<br />

∝ 0.75E<br />

0.50<br />

k<strong>in</strong><br />

#<br />

More accurate<br />

Dallara et al. NIMA 547, 113 (2005)


<strong>Photoelectron</strong> <strong>in</strong>tensities from a semi-<strong>in</strong>f<strong>in</strong>ite substrate--<br />

atom Q with subshell nlj (e.g. Au4f 7/2 )<br />

I(Qnlj) = (<strong>in</strong>cident flux) × (area of illum<strong>in</strong>ated sample seen by analyzer)<br />

(Qnlj differential cross section) × (solid angle accepted by analyzer) ×<br />

(density of atoms Q) × (photoelectron <strong>in</strong>elastic attenuation length) ×<br />

(overall detection efficiency)<br />

I(Qnlj) = I 0 (hν) × (dσ Qnlj (hν→E k<strong>in</strong> )/dΩ) ×ρ Q ×Λ e (E k<strong>in</strong> ≈ hν) × A 0 /s<strong>in</strong>θ <strong>in</strong>c × Ω 0 × D 0<br />

Sample brightness = B 0<br />

Energy-dep. analyzer prop.<br />

Given atom @ high energy--lower l subshells favored (n- l -1 radial nodes) :<br />

dσ Qnlj (hν)/dΩ ∝1/(hν) N ≈1/(E k<strong>in</strong> ) N → For Au: 1/(E k<strong>in</strong> ) ∼2.0 for s subshells<br />

1/(E k<strong>in</strong> ) ∼2.5 for p subshells<br />

1/(E k<strong>in</strong> ) ∼3.0-3.5 for d subshells<br />

1/(E k<strong>in</strong> ) ∼4.0-4.5 for f subshell<br />

<strong>and</strong> Λ e (hν→E k<strong>in</strong> ) ∝ (E k<strong>in</strong> ) 0.75<br />

So <strong>in</strong>tensity per <strong>in</strong>cident photon falls off as 1/(E k<strong>in</strong> ) ∼1.25-3.75 !<br />

What can you do with the source, the analyzer+detector<br />

S.T. Manson<br />

10 11 -10 12 /s <strong>in</strong>to A 0 /s<strong>in</strong>θ <strong>in</strong>c<br />

a small spot<br />

C.J. Powell


Quantitative analysis of peak <strong>in</strong>tensities us<strong>in</strong>g theoretical cross sections:<br />

La 0.7<br />

Sr 0.3<br />

MnO 3<br />

, hν = 7700 eV<br />

La4s<br />

Sr3s<br />

La4p: classis many-e - effect<br />

4p 5 4d n + configs. 4p 6 4d n-1 E<br />

1<br />

F<br />

Intensity (arb.units)<br />

5000<br />

Sr3p 1/2<br />

Sr3p 3/2<br />

La 4d<br />

La5s<br />

Sr4s<br />

Sr3d<br />

O2s,Sr4p,La5p<br />

Mn3s<br />

0<br />

Mn3p<br />

VB<br />

400 200 0<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

Pard<strong>in</strong>i, Offi,<br />

Panaccione, CF, TBP


Quantitative analysis of peak <strong>in</strong>tensities us<strong>in</strong>g theoretical cross<br />

sections (Scofield): La 0.7 Sr 0.3 MnO 3 , hν = 7700 eV<br />

Concentration-weighted subshell cross sestion (Mb)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

Mn3p<br />

150<br />

La5s<br />

Mn3s<br />

La4d<br />

Sr3s<br />

100<br />

50<br />

Sr4s Sr3d<br />

0<br />

0 5000 10000 15000 20000 25000<br />

La4p<br />

Core-level cross sections work very well→<br />

More accurate “bulk” quantitative analysis<br />

0 10000 20000 30000 40000 50000 60000 70000<br />

Core peak <strong>in</strong>tensity (a.u.)<br />

Pard<strong>in</strong>i, Offi,<br />

Panaccione, CF, TBP


Other considerations as energy <strong>in</strong>creases:<br />

--Atom recoil <strong>in</strong> core-level emission (ala Mőssbauer):<br />

•<br />

M<br />

1/2<br />

2 2<br />

⎛me<br />

⎞<br />

⎡E ⎛<br />

k<strong>in</strong><br />

2E ⎞<br />

k<strong>in</strong><br />

hν<br />

⎤ h ke<br />

-4 ⎡ E<br />

k<strong>in</strong>(eV)<br />

⎤<br />

E<br />

recoil<br />

(eV ) = hν<br />

⎜ 5.5 x 10<br />

2 2<br />

M<br />

⎟ ⎢ + ⎜ ⎟ + ⎥ ≈ ≈<br />

hν<br />

mc<br />

e<br />

2mc<br />

e<br />

2M<br />

⎢<br />

M(amu)<br />

⎥<br />

⎝ ⎠⎢ ⎣ ⎝ ⎠<br />

⎥⎦<br />

⎣ ⎦<br />

Fraction of transitions recoil free = f RF<br />

= exp(-3E recoil<br />

/2k B<br />

Θ D<br />

) at T = 0<br />

At 10 keV:<br />

= exp[-1.7x10 4 E recoil<br />

(eV)/Θ D<br />

(K)]<br />

Atom H C Ni Au<br />

E recoil<br />

6.0 eV 0.5 eV 0.1eV 0.03 eV<br />

Θ D<br />

(K) --- 2230 450 225<br />

f RF<br />

--- 0.02 0.02 0.10<br />

An extra energy shift/broaden<strong>in</strong>g? Yes-Takata et al., graphite!<br />

Source for electronic excitations?<br />

--Smear<strong>in</strong>g of coherent emission from valence b<strong>and</strong>s:<br />

Fraction of transitions that are “direct” with no phonon momentum k r phonon<br />

<strong>in</strong>volved: 1 st estimate ≈ Debye-Waller Factor = W(T) ≈ exp(-k<br />

2<br />

e<br />

)<br />

= exp(-CE k<strong>in</strong><br />

) (more later)


Experimental observation<br />

of atomic recoil <strong>in</strong> graphite:<br />

Theory us<strong>in</strong>g Debye model<br />

Takata et al.,<br />

arXiv:cond-mat/0609241 (11 Sep 2006)


Other considerations as energy <strong>in</strong>creases:<br />

--Atom recoil <strong>in</strong> core-level emission (ala Mőssbauer):<br />

•<br />

M<br />

1/2<br />

2 2<br />

⎛me<br />

⎞<br />

⎡E ⎛<br />

k<strong>in</strong><br />

2E ⎞<br />

k<strong>in</strong><br />

hν<br />

⎤ h ke<br />

-4 ⎡ E<br />

k<strong>in</strong>(eV)<br />

⎤<br />

E<br />

recoil<br />

(eV ) = hν<br />

⎜ 5.5 x 10<br />

2 2<br />

M<br />

⎟ ⎢ + ⎜ ⎟ + ⎥ ≈ ≈<br />

hν<br />

mc<br />

e<br />

2mc<br />

e<br />

2M<br />

⎢<br />

M(amu)<br />

⎥<br />

⎝ ⎠⎢ ⎣ ⎝ ⎠<br />

⎥⎦<br />

⎣ ⎦<br />

Fraction of transitions recoil free = f RF<br />

= exp(-3E recoil<br />

/2k B<br />

Θ D<br />

) at T = 0<br />

At 10 keV:<br />

= exp[-1.7x10 4 E recoil<br />

(eV)/Θ D<br />

(K)]<br />

Atom H C Ni Au<br />

E recoil<br />

6.0 eV 0.5 eV 0.1eV 0.03 eV<br />

Θ D<br />

(K) --- 2230 450 225<br />

f RF<br />

--- 0.02 0.02 0.10<br />

An extra energy shift/broaden<strong>in</strong>g? Yes-Takata et al., graphite!<br />

Source for electronic excitations?<br />

--Smear<strong>in</strong>g of coherent emission from valence b<strong>and</strong>s:<br />

Fraction of transitions that are “direct” with no phonon momentum k r phonon<br />

<strong>in</strong>volved: 1 st estimate ≈ Debye-Waller Factor = W(T) ≈ exp(-k<br />

2<br />

e<br />

)<br />

= exp(-C 1<br />

E k<strong>in</strong><br />

) exp(-C 2<br />

E k<strong>in</strong><br />

T) (more later)<br />

⎯⎯⎯→


Other considerations as energy <strong>in</strong>creases (cont’d) :<br />

Dipole<br />

--Non-dipole effects <strong>in</strong> matrix elements:<br />

r r r<br />

r r r<br />

r<br />

Int. ∝ Ψ | exp( ik • ) eˆ •∇| Ψ ≈ Ψ | (1 + ik • + ...) eˆ •∇| Ψ ≈ Ψ | eˆ<br />

•∇|<br />

Ψ<br />

f<br />

2 2 2<br />

hv i<br />

f hv<br />

i<br />

f<br />

• Photon momentum k r hv cannot always be neglected, e.g. <strong>in</strong><br />

r r r r r r r 2<br />

valence-b<strong>and</strong> studies: Int. ∝ u ˆ<br />

f<br />

exp( ikf • ) | exp( ikhv<br />

• r ) e • ∇ | uiexp( iki<br />

•<br />

)<br />

r r r r<br />

→ k + k + g = k<br />

• Additional non-dipole matrix elements: E2, M1,…<br />

i<br />

hv<br />

f<br />

i<br />

• And differential cross section more complex:<br />

φ<br />

θ p<br />

e - ê<br />

=<br />

light polarization<br />

dσ σ ⎡ β<br />

2 2<br />

⎤<br />

= 1 (3cos θ<br />

p<br />

1) ( δ γ cos θp )s<strong>in</strong>θpcosφ<br />

dΩ<br />

4π<br />

⎢<br />

+ − + +<br />

⎣ 2<br />

⎥<br />

⎦<br />

Dipole<br />

Non-Dipole<br />

≈ 1.0 at 4 keV electron energy<br />

Woodruff, Nucl. Inst. <strong>and</strong> Meth. A 547, 187 (2005)<br />

ˆk<br />

h ν


Outl<strong>in</strong>e<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background<br />

St<strong>and</strong><strong>in</strong>g waves<br />

Core <strong>and</strong> valence spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects


Au 4f <strong>in</strong>tensity (counts/sec)→<br />

X-<strong>ray</strong> Optical Effects<br />

<strong>in</strong> Photoemission:<br />

The Beg<strong>in</strong>n<strong>in</strong>g<br />

B.L. Henke, Phys. Rev. A 6, 94 (1972)<br />

•Enhanced x-<strong>ray</strong> penetration depth as<br />

critical angle approached<br />

•Effects on average depth <strong>and</strong> <strong>in</strong>tensity<br />

<strong>in</strong> photoemission<br />

•Determ<strong>in</strong>ation of optical constants<br />

from data<br />

θ c<br />

<strong>in</strong>c<br />

θ <strong>in</strong>c<br />

e -<br />

Incidence angle (degrees)→<br />

X-<strong>ray</strong> attenuation length (Å)→<br />

Au 4f <strong>in</strong>tensity (normalized)→<br />

1487 eV 183 eV 109 eV<br />

Incid. angle (mrad)→<br />

Critical angle (mrad)→<br />

θ crit<br />

X-<strong>ray</strong> optical theory<br />

Experiment<br />

Incidence angle (mrad)→


Problem: <strong>in</strong>elastic<br />

backgrounds <strong>in</strong> core<br />

spectra with multi-keV<br />

excitation-<br />

Solution: reduction via<br />

total reflection<br />

Kawai et al., Spectrochim.<br />

Acta B 47, 983 (‘92)<br />

Chester & Jach, Phys. Rev.<br />

B 4817262 (’93)<br />

Jach & L<strong>and</strong>ree, Surf. & Int.<br />

Anal. 31, 768 (‘01)<br />

The JEOL JPS-9010MC<br />

e -<br />

lens


Surface Insensitivity & High Throughput<br />

<strong>in</strong>c<br />

<strong>Photoelectron</strong> Intensity<br />

SiO 2<br />

-0.8nm/Si(100)<br />

hν=7.94 keV<br />

θ=1 deg.<br />

30 sec!!<br />

Si 2p<br />

SiO 2<br />

Si<br />

7830 7835 7840<br />

K<strong>in</strong>etic Energy (eV)<br />

Takata et al., SPr<strong>in</strong>g8


Outl<strong>in</strong>e<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background<br />

St<strong>and</strong><strong>in</strong>g waves<br />

Core <strong>and</strong> valence spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects


St<strong>and</strong><strong>in</strong>g wave formation <strong>in</strong> reflection from a surface,<br />

or s<strong>in</strong>gle-crystal Bragg planes + , or a multilayer mirror<br />

Incident<br />

Reflected<br />

1<br />

e - hν<br />

λ SW (|E 2 |) =<br />

λ x /2s<strong>in</strong>θ <strong>in</strong>c<br />

R<br />

• Rock<strong>in</strong>g curve:<br />

I(θ ) ∝ 1 + R(θ ) + 2 R(θ ) f cos[φ(θ ) −<br />

2πP]<br />

<strong>in</strong>c <strong>in</strong>c <strong>in</strong>c <strong>in</strong>c<br />

• Energy scan:<br />

I(hν ) ∝ 1 + R( hν ) + 2 R( hν ) f cos[φ( hν ) −<br />

2πP]<br />

with: f = coherent fraction, P = phase of atomic position<br />

% modulation ≈<br />

100 x 4√R<br />

∴ R = 5% → 90% mod.<br />

• Phase scan with wedge-shaped sample (“Swedge” method):<br />

+<br />

St<strong>and</strong><strong>in</strong>g waves via Bragg reflection of hard x-<strong>ray</strong>s: Batterman, Phys. Rev A 133, 759 (1964)


St<strong>and</strong><strong>in</strong>g waves <strong>in</strong> Bragg reflection from TiO 2 :<br />

Scann<strong>in</strong>g energy with<strong>in</strong> Bragg rock<strong>in</strong>g curve--hν = 3 keV<br />

St<strong>and</strong><strong>in</strong>g<br />

wave on Ti<br />

St<strong>and</strong><strong>in</strong>g<br />

wave on O<br />

Woicik, NIMA 547, 227 (2005)<br />

<strong>and</strong> earlier papers


0.009400<br />

0.008080<br />

0.006760<br />

0.005440<br />

0.004120<br />

0.002800<br />

Site-specific valence electronic structure of SrTiO3<br />

S. Thieß, T.-L. Lee, F. Bott<strong>in</strong>, B. Cowie <strong>and</strong> J. Zegenhagen<br />

Relative photon energy ΔE (eV)<br />

normalised Intensities<br />

Intensity [a.u.]<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

10 9 8 7 6 5 4 3<br />

E = 2.75 keV<br />

Ti<br />

Sr<br />

SrTiO 3<br />

valence b<strong>and</strong><br />

O 3<br />

ΔE<br />

+<br />

+<br />

10 9 8 7 6 5 4 3<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

Valence b<strong>and</strong> XSW<br />

_-<br />

-<br />

Ti<br />

2p<br />

+ 0.5<br />

Sr<br />

O<br />

Ti<br />

(111)<br />

Reflectivity<br />

0.8 0.6 0.4 0.2 0.0<br />

SrTiO 3<br />

(111)<br />

O<br />

Sr<br />

1s<br />

3p<br />

2.0 1.5 1.0 0.5 0.0<br />

normalised Intensity<br />

Core-level XSW<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Relative photon energy ΔE (eV)<br />

(112)


Prob<strong>in</strong>g Buried Interfaces<br />

with Soft X-<strong>ray</strong> St<strong>and</strong><strong>in</strong>g<br />

Wave/Wedge (“Swedge”)<br />

Method: core spectra<br />

<strong>and</strong> depth distributions<br />

X-<strong>ray</strong><br />

900 eV<br />

<strong>Photoelectron</strong><br />

Al 2 O 3 /Co 65 Pt 35 /Ru cap:<br />

Tunnel junction system<br />

(see Kaiser et al., PRL<br />

94, 247203 (2005)<br />

12Å Ru cap with Oxide surface<br />

15Å CoPt(65/35)<br />

30 sec oxidation<br />

Al 2 O 3 wedge<br />

θ Bragg<br />

Scanned st<strong>and</strong><strong>in</strong>g wave<br />

∼0.1 mm<br />

spot<br />

M Co<br />

Multilayer<br />

Mirror<br />

B 4 C<br />

W<br />

B 4 C<br />

W<br />

Sell, Yang, Watanabe,<br />

Mun, Park<strong>in</strong> et al., TBP<br />

SiO 2<br />

Si-wafer<br />

Scanned sample<br />

∼6.0 mm


Representative spectra:<br />

4100000<br />

4000000<br />

3900000<br />

3800000<br />

3700000<br />

3600000<br />

3500000<br />

3400000<br />

Co 2p<br />

Co<br />

500000<br />

450000<br />

400000<br />

350000<br />

300000<br />

Co 2+<br />

250000<br />

200000<br />

150000<br />

Pt 4f<br />

2200000<br />

2000000<br />

Ru 3d<br />

1800000<br />

1600000<br />

1400000<br />

1200000<br />

1000000<br />

800000<br />

600000<br />

400000<br />

200000<br />

0<br />

300 295 290 285 280 275 270 265<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

784 782 780 778 776 774 772 770<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

100000<br />

50000<br />

84 82 80 78 76 74 72 70 68 66 64 62 60<br />

Intensity (arb. unit)<br />

O 1s<br />

Adsorbed<br />

O<br />

RuO x<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

B.C. Sell et al.<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

VB<br />

5000<br />

536 534 532 530 528 526 524 522<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

0<br />

12 10 8 6 4 2 0 -2 -4 -6<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)


Co 2p spectrum dur<strong>in</strong>g a st<strong>and</strong><strong>in</strong>g wave scan<br />

2.4 eV<br />

7.0 eV<br />

Kl<strong>in</strong>genberg et al., Surf.<br />

Sci. 283, 13 (1997)


St<strong>and</strong><strong>in</strong>g waves from multilayers <strong>in</strong> the hard x-<strong>ray</strong> regime<br />

Electric Field Strength (|E| 2 )<br />

Reflectivity<br />

0.0 0.5 1.0<br />

(a)<br />

(c)<br />

R = 0.28<br />

hν = 1.0 keV<br />

0.0 5.0 10.0 15.0<br />

Incidence angle (°)<br />

2.5 Vac. B 4<br />

C/W Multilayer<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-100 0 100 200 300 400 500<br />

Depth, z (Å)<br />

1.0 keV<br />

θ Bragg<br />

= 9.3 o<br />

Reflectivity<br />

0.0 0.5 1.0<br />

(b)<br />

(d)<br />

Electric Field Strength (|E| 2 )<br />

R = 0.80<br />

hν = 10.0 keV<br />

0.0 1.0 2.0 3.0<br />

Incidence angle (°)<br />

4.0 Vac. B 4<br />

C/W Multilayer<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

10.0 keV<br />

θ Bragg<br />

= 0.93 o<br />

0.0<br />

-100 0 100 200 300 400 500<br />

Depth, z (Å)<br />

S.H. Yang


Outl<strong>in</strong>e<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background<br />

St<strong>and</strong><strong>in</strong>g waves<br />

Core <strong>and</strong> valence spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects


LaMnO 3 th<strong>in</strong> film--2p core levels<br />

with vary<strong>in</strong>g degrees of surface sensitivity<br />

“Surface”<br />

“Near-Surface”<br />

“Bulk”<br />

Bulkassociated<br />

screen<strong>in</strong>g<br />

feature<br />

Horiba et al., PRL 93, 236401 (2004)


Electronic Structure of Stra<strong>in</strong>ed Manganite Th<strong>in</strong> Films with Room Temperature<br />

Ferromagnetism Investigated by Hard X-<strong>ray</strong> Photoemission <strong>Spectroscopy</strong>:<br />

La 0.85<br />

Ba 0.15<br />

MnO 3<br />

5.95 keV<br />

Stra<strong>in</strong>/Mag<br />

netismassociated<br />

screen<strong>in</strong>g<br />

feature<br />

Tanaka et al., Spr<strong>in</strong>g8, PRB, <strong>in</strong> press


Fractured “cubic” La 0.7<br />

Sr 0.3<br />

MnO 3<br />

T = 150K<br />

Manella et al., TBP<br />

Pard<strong>in</strong>i, Offi, Panaccione, CF, TBP


Electronic Structure of Bulk Manganite Crystals with No Room Temperature<br />

Remanent FM Investigated by Hard X-<strong>ray</strong> Photoemission <strong>Spectroscopy</strong>:<br />

“Cubic” La 0.7<br />

Sr 0.3<br />

MnO 3<br />

—fractured <strong>in</strong> situ<br />

Intensity (arb.units)<br />

30000<br />

25000<br />

hν = 7700 eV<br />

∼ 0.5 eV<br />

Opposite<br />

Direction<br />

∼ No shift<br />

T<br />

150<br />

300<br />

423<br />

T C<br />

Structural<br />

<strong>and</strong>/or<br />

SRMOassociated<br />

screen<strong>in</strong>g<br />

feature?<br />

20000<br />

665 660 655 650 645 640 635<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

Pard<strong>in</strong>i, Offi, Panaccione, CF, TBP


Temperature-<br />

Dependent<br />

Soft X-Ray<br />

Photoemission :<br />

La 0.7<br />

Sr 0.3<br />

MnO 3<br />

(a)<br />

O more positive<br />

Mn higher sp<strong>in</strong>,<br />

more negative<br />

Mannella et al.,<br />

Phys. Rev. Lett. 92,<br />

166401 (2004)<br />

<strong>Photoelectron</strong> Intensity (a.u.)<br />

(c)<br />

BE Displacement (meV)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

LSMO, x = 0.3, T dependence of Mn 3s<br />

T = 135 K<br />

T max = 500 K<br />

T C = 370 K<br />

T = 110 K<br />

0<br />

96<br />

94<br />

92<br />

90<br />

ΔE 3s<br />

88<br />

86<br />

84<br />

82<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

Mn 3s<br />

hv = 212 eV<br />

Longer<br />

times<br />

Mn 3s<br />

hv = 212 eV<br />

80<br />

-200<br />

100 150 200 250 300 350 400 450 500 550<br />

Temperature (K)<br />

T<br />

I<br />

M<br />

E<br />

78<br />

T dependence of Mn 3s b<strong>in</strong>d<strong>in</strong>g energies<br />

(b)<br />

<strong>Photoelectron</strong> Intensity (a.u.)<br />

T c<br />

T sat Change <strong>in</strong> ΔE 3s<br />

Average 3s BE<br />

TIME→<br />

T sat<br />

(d)<br />

LSMO, x = 0.3, T dependence of O 1s<br />

T = 135 K<br />

T max = 500 K<br />

T C = 370 K<br />

T = 110 K<br />

533 532 531<br />

BE Displacement (meV)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

“Bulk”<br />

“Surface”<br />

530 529 528<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

O 1s-”bulk”<br />

hv = 652 eV<br />

O1s<br />

T c<br />

O 1s<br />

hv = 652 eV<br />

T<br />

I<br />

M<br />

E<br />

527 526 525<br />

T dependence of O 1s b<strong>in</strong>d<strong>in</strong>g energy<br />

TIME→<br />

-100<br />

100 150 200 250 300 350 400 450 500 550<br />

Temperature (K)<br />

T sat


e<br />

Stra<strong>in</strong>/Mag<br />

netismassociated<br />

screen<strong>in</strong>g<br />

feature<br />

Pard<strong>in</strong>i, Offi,<br />

Panaccione, CF, TBP<br />

T = 110 K (start)<br />

T = 500 K (T max<br />

)<br />

T = 110 K (start)<br />

T = 500 K<br />

Mannella et al.,<br />

Phys. Rev. Lett. 92,<br />

166401 (2004)<br />

Qualitat. the<br />

same, but<br />

still some<br />

surface<br />

<strong>in</strong>fluence?


More dramatic screen<strong>in</strong>g effects <strong>in</strong> strongly correlated materials—<br />

high T C Nd 2-x<br />

Ce x<br />

CuO 4<br />

(5.9keV)<br />

(1.5keV)<br />

M. Taguchi et al., Phys. Rev. Lett. 95, 17702 (2005).


(6.0 keV)<br />

(1.5 keV)<br />

Evidence for a suppressed core-hole<br />

screen<strong>in</strong>g on the surface of hightemperature<br />

superconductors<br />

La 2-x<br />

Sr x<br />

CuO 4<br />

<strong>and</strong> Nd 2-x<br />

Ce x<br />

CuO 4<br />

Intense screened/shakedown peak <strong>in</strong> e-<br />

doped cuprates<br />

Zhang-Rice s<strong>in</strong>glet <strong>in</strong> LCO not <strong>in</strong> NCCO<br />

Screen<strong>in</strong>g due to delocalized coherent<br />

state at E F<br />

Screen<strong>in</strong>g with<strong>in</strong> the first 15 Å of the<br />

surface is different from the bulk!<br />

M. Taguchi et al.,<br />

PRL 95, 177002 (2005)


V 2 O 3 --2p core level--transfer of spectral weight across<br />

the metal-<strong>in</strong>sulator transition<br />

Photoemission Intensity (Arb. Units)<br />

V 2p core level--hν = 5934 eV<br />

300 K (PM phase)<br />

140 K (AFI phase)<br />

Difference<br />

Photoemission Intensity (Arb. Units)<br />

T= 190 K<br />

T= 180 K<br />

T= 170 K<br />

T= 155 K<br />

T= 145 K<br />

hν = 5934 eV<br />

V 2p 3/2<br />

525 520 515 510<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

518 516 514 512<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

G. Panaccioned et al., VOLPE @ ESRF


Core <strong>and</strong> valence effects <strong>in</strong> V 2 O 3<br />

Photoemission Intensity (Arb. units)<br />

QP peak<br />

V 3d<br />

Sample 1 (flat)<br />

Sample 2 (rough)<br />

Polished<br />

Screen<strong>in</strong>g/<br />

Shakedown<br />

V 2p 3/2<br />

G. Panaccione et al., VOLPE ESRF<br />

2.5 2.0 1.5 1.0 0.5 0.0<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

514 513 512<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

See also: M. Taguchi et al. PRB 71, 155102 (2005)


Valence effects <strong>in</strong> the metal-to-<strong>in</strong>sulator transition of VO 2<br />

Photoemission <strong>in</strong>tensity (arb. units)<br />

a<br />

12 8 4 0<br />

b<br />

O 2p<br />

valence<br />

b<strong>and</strong><br />

3 2 1 0 -1<br />

c<br />

1<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

Metal<br />

Insulator<br />

V 3d<br />

350 K<br />

PES data<br />

PES/FD<br />

0<br />

O 2p valence b<strong>and</strong> : clear change<br />

I: two peaks at 7.3 <strong>and</strong> 5.2 eV.<br />

7.3 eV peak shifts toward E F<br />

by<br />

0.6 eV. The high E B<br />

tail is<br />

enhanced around 9 eV.<br />

⇐<strong>in</strong>creased hybridization <strong>in</strong> the<br />

M phase. The threshold of the<br />

non bond<strong>in</strong>g peak between 5 <strong>and</strong><br />

2.7 eV shifts by 0.3 eV toward E F<br />

.<br />

3d peak is at 0.9 eV <strong>in</strong> I phase.<br />

M<strong>in</strong>imum gap is 0.28 eV. (π b<strong>and</strong> is<br />

expected ∼0.5 eV above E F<br />

.<br />

(Interb<strong>and</strong> gap can be 0.78 eV.)<br />

M phase: FD cut off. QP DOS<br />

<strong>in</strong>creases beyond E F<br />

. Higher<br />

energy tail of 3d spectra is due to<br />

the <strong>in</strong>coherent state. 0.9 eV peak<br />

<strong>in</strong> I phase is a coherent QP.<br />

Crystal distortion⇒b<strong>and</strong> changes<br />

⇒trigger MIT (renorm. Peierls Ins.)<br />

Suga et al.


Outl<strong>in</strong>e<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background<br />

St<strong>and</strong><strong>in</strong>g waves<br />

Core <strong>and</strong> valence spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects


Valence-B<strong>and</strong> Photoemission at High Energy--<br />

What & Where is the “XPS Limit”?:<br />

Additional effects at higher energies:<br />

• non-dipole--the photon momentum<br />

• angular acceptance→B.Z. averag<strong>in</strong>g<br />

• lattice recoil, phonon creation→more<br />

k hν @<br />

1,253 eV<br />

k hν @<br />

10,000 eV<br />

B.Z. averag<strong>in</strong>g, ∼Debye-Waller factor = W(T) ≈ exp[-(k f ) 2 ]<br />

….the “XPS limit” of full B.Z. averag<strong>in</strong>g <strong>and</strong><br />

D.O.S. sensitivity<br />

Hussa<strong>in</strong> et al., Phys.<br />

Rev. B 22, 3750 (‘80)


XPS <strong>and</strong> HXPS <strong>in</strong> k space:<br />

hν = 1254 eV<br />

r r r r<br />

f<br />

ki<br />

+ g = k −kh<br />

ν<br />

hν = 10,000 eV<br />

r<br />

g = 26(2 π / a)yˆ<br />

f<br />

k r<br />

k f = 25.80 (2π/a), k hν<br />

= 2.54(2π/a)<br />

g r<br />

ACCEPTANCE<br />

CONE OF ±0.5°<br />

−k r<br />

h ν<br />

Angular resolutions<br />

of 0.02º with an acceptance<br />

±2º may be possible!<br />

B. Wannberg, P. Balzer


Gold Valence Spectrum<br />

In the XPS Limit<br />

Intensity (a.u.)<br />

XPS<br />

Broadened<br />

Theo. DOS<br />

10 8 6 4 2 0<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

E F<br />

15<br />

10<br />

Gold Valence Spectrum<br />

300 (b) K<br />

D.W.<br />

factor<br />

≈ 6x10 -6 !<br />

Siegbahn XPS @ 1.487 keV<br />

Silver Valence Spectrum<br />

5<br />

0<br />

Fixed mode<br />

Measurement Time 3:40 x1<br />

5938<br />

5940<br />

5942<br />

5944<br />

5946<br />

5948<br />

5950<br />

Intensity (a.u.)<br />

XPS<br />

Broadened<br />

Theo. DOS<br />

E F<br />

eV<br />

Measurement time: 3 m<strong>in</strong> 40 s<br />

Total resolution: ca. 80 meV<br />

Takata et al., SPr<strong>in</strong>g8 @ 5.495 keV<br />

10 8 6 4 2 0<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)


In the XPS<br />

Limit—<br />

Comparison to<br />

theoretical<br />

DOSs<br />

15<br />

10<br />

Total DOS<br />

Expt.<br />

(b)<br />

Takata et al.,<br />

SPr<strong>in</strong>g8 @<br />

5.495 keV<br />

5<br />

High energy<br />

suggests analysis as:<br />

B<strong>and</strong> / MO<br />

dσ<br />

dσ<br />

∝ |P |<br />

AO<br />

j 2 Aλ<br />

∑ Aλj<br />

dΩ Atom A dΩ<br />

Orbital λ<br />

with P<br />

Aλj<br />

=<br />

0<br />

5938<br />

projected density of states<br />

or MO population analysis<br />

Fixed mode<br />

Measurement Time 3:40 x1<br />

5940<br />

5942<br />

5944<br />

5946<br />

eV<br />

5948<br />

5950<br />

Cross sec.<br />

6s x 5 1.00<br />

6p x 5 -----<br />

5d total 3.88<br />

5d e g<br />

5d t 2g<br />

Z. Y<strong>in</strong><br />

W.E. Pickett<br />

E F


Normalized Intensity<br />

In the XPS Limit<br />

SiO 2 -0.58nm/Si(100)<br />

@0.85keV<br />

(Exp.)<br />

SiO 2<br />

@7.94keV<br />

(Exp.)<br />

a<br />

20 15 10 5 0<br />

b<br />

c<br />

B<strong>in</strong>d<strong>in</strong>g Energy (eV)<br />

XPS—<br />

850 eV<br />

HXPS—<br />

7940 eV<br />

300 sec!!<br />

Theory:<br />

Si DOS<br />

s<br />

p<br />

a b c<br />

σ Si3s<br />

(8 keV) = 14.9 Barns<br />

∼1/27<br />

σ Si3p<br />

(8 keV) = 0.54 Barns<br />

Takata et al.,<br />

Appl.Phys.Lett.<br />

84, 4310 (2004)<br />

Papaconstantopoulos


W at room temp.—not<br />

quite the XPS limit: Effect<br />

of photon momentum on k<br />

conservation: W(110) at<br />

1253.6 eV <strong>and</strong> room temp.<br />

W(001)<br />

300 K<br />

hν<br />

hν<br />

hν<br />

Symmetry-related<br />

spectra shifted by<br />

6.0° for best match.<br />

Calculated 4.8°<br />

due to k hν<br />

Hussa<strong>in</strong> et al.,<br />

Phys. Rev. 22,<br />

3750 (1980)


Suppression<br />

of direct-transition<br />

effects with<br />

temperature:<br />

W(110) at 1253.6 eV<br />

Hussa<strong>in</strong> et al.,<br />

Phys. Rev. 22,<br />

3750 (1980)


Alum<strong>in</strong>um soft x-<strong>ray</strong> valence spectra: Direct transitions to >710 eV<br />

Surface<br />

state<br />

300 K<br />

W = 0.19<br />

Surface—<br />

less affected?<br />

Hofmann et al., PRB 66, 245422 (2002)


T = 300K, T/Θ Debye<br />

= 0.75<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

12 10 8 6 4 2 0 -2<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

12 10 8 6 4 2 0 -2<br />

90 95 100 105<br />

Emission angle (deg)<br />

470K, 1.18 607K, 1.52 780K, 1.95<br />

90 95 100 105<br />

Emission angle (deg)<br />

90 95 100 105<br />

Emission angle (deg)<br />

90 95 100 105<br />

Emission angle (deg)<br />

780K<br />

607K<br />

470K<br />

300K<br />

12 10 8 6 4 2 0 2<br />

780K 780K, .22<br />

607K, .31<br />

470K 470K, .40<br />

300K, D.W. = 0.55<br />

W(110)<br />

T-Dep. Soft X-Ray<br />

ARPES<br />

hν = 260 eV<br />

90º = normal<br />

800 angle channels<br />

Θ Debye<br />

= 400K<br />

L. Pluc<strong>in</strong>ski<br />

B.C. Sell<br />

Absolute photocurrent-20 channels (a.u.)<br />

Absolute photocurrent-20 channels (a.u.)<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

12 10 8 6 4 2 0 -2<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

12 10 8 6 4 2 0 -2


The W B<strong>and</strong><br />

Structure<br />

(Christensen &<br />

Feuerbacher;<br />

Byl<strong>and</strong>er &<br />

Kle<strong>in</strong>man)<br />

“Gap”


W(110)<br />

Soft X-Ray ARPES<br />

Compared to simple DT theory<br />

hν = 260 eV<br />

90º = normal<br />

T = 300K<br />

Free-e - DT<br />

Theory<br />

“Gap”<br />

|<br />

Γ<br />

|<br />

N<br />

[110]<br />

L. Pluc<strong>in</strong>ski<br />

Free-e - DT<br />

Theory<br />

+ Secondary cones?


T = 300K, T/Θ 300K Debye<br />

= 0.75 470K, 1.18 607K, 1.52 780K, 780K 1.95<br />

“Gap”<br />

|<br />

N<br />

|<br />

Γ<br />

Absolute photocurrent-20 channels (a.u.)<br />

D.O.S.<br />

14 12 10 8 6 4 2 0<br />

780K, .22<br />

607K, .31<br />

470K, .40<br />

300K, D.W. = .55<br />

W(110)<br />

Not-So-Soft X-Ray ARPES<br />

hν = 870 eV<br />

90º = normal<br />

800 angle channels<br />

Θ Debye<br />

= 400K<br />

L. Pluc<strong>in</strong>ski


W(110) X-Ray ARPES<br />

Not-So-Soft X-Ray ARPES<br />

Compared to simple DT theory<br />

hν = 870 eV & 900 eV<br />

90º = normal<br />

T = 300K<br />

L. Pluc<strong>in</strong>ski<br />

|<br />

N<br />

870 eV<br />

|<br />

Γ<br />

870 eV 900 eV


Now take it up to 10 keV:<br />

hν = 870 eV<br />

T = 780K<br />

W ≈ 0.21<br />

hν = 10,000 eV<br />

r<br />

g = 26(2 π / a)yˆ<br />

f<br />

k r<br />

k f = 25.80 (2π/a), k hν<br />

= 2.54(2π/a)<br />

g r<br />

ACCEPTANCE<br />

CONE OF ±0.5°<br />

−k r<br />

h ν<br />

Θ Debye = 310K, (10 -20 cm 2 ) = 5.34 + 0.0583T 0.0583T<br />

Debye-Waller Factor = W(T) ≈ exp(-k e<br />

2<br />

)<br />

High T<br />

⎯⎯⎯→<br />

High T<br />

⎯⎯⎯→<br />

= exp(-C 1<br />

E k<strong>in</strong><br />

) exp(-C 2<br />

E k<strong>in</strong><br />

T)<br />

W at 4K: W ≈ 0.21, ≈ 21% direct<br />

at 77K: W ≈ 0.16, ≈ 16% direct<br />

at 300K: W ≈ 0.01, ≈ 1% direct<br />

Correlated vibrations <strong>and</strong> a better theory (e.g. Phys. Rev. B 35, 1147<br />

(‘87) <strong>and</strong> 53, 7524 (’96) + 54, 14703 (‘96)) may suggest higher DT<br />

percentages, but needs further E&T study


Quantitative systematics—Tungsten :<br />

Debye-Waller Factor =<br />

sensitive<br />

More than<br />

50% b<strong>and</strong>


Outl<strong>in</strong>e<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background<br />

St<strong>and</strong><strong>in</strong>g waves<br />

Core <strong>and</strong> valence spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects


<strong>Photoelectron</strong><br />

diffraction→<br />

holography:<br />

Elementspecific<br />

short-range<br />

atomic<br />

structure<br />

FORWARD SCATT. = “O TH ORDER”<br />

θ scat<br />

HIGHER ORDERS<br />

Bond & Low-Index<br />

Directions<br />

Bond Lengths<br />

&<br />

Atomic<br />

Positions<br />

→Holographic<br />

fr<strong>in</strong>ges


<strong>Photoelectron</strong> diffraction: F<strong>in</strong>e structure at ∼1 keV energy<br />

φ = 0°<br />

[001]<br />

hν<br />

θ <strong>in</strong>c<br />

[011]<br />

φ<br />

W(011)<br />

e -<br />

θ<br />

AZIMUTHAL ANGLE φ


XPD @ 1 keV<br />

B 1s from hex-BN<br />

monolayer on<br />

Ni(111)<br />

N on-top on Ni(111)<br />

B fcc on Ni(111), 0.1 Å below N<br />

Expt.-Osterwalder et al<br />

Theory-Osterwalder et al.<br />

Program by Kaduwela


X-<strong>ray</strong> <strong>Photoelectron</strong> <strong>Diffraction</strong><br />

from Diamond Lattice (111) Surfaces<br />

Fwd.<br />

scatt.<br />

Lattice<br />

Constants<br />

3.57Å<br />

Kikuchi<br />

b<strong>and</strong><br />

C 1s (964eV) from diamond(111)<br />

Widths of Kikuchi b<strong>and</strong>s<br />

scale <strong>in</strong>versely with<br />

<strong>in</strong>terplanar spac<strong>in</strong>g<br />

And will scale directly with<br />

photoelectron wavelength,<br />

e.g at 10 keV<br />

Fwd.<br />

scatt.<br />

5.43Å<br />

Kikuchi<br />

b<strong>and</strong><br />

Si 2p (1154eV) from Si(111)<br />

J. Osterwalder, R. Fasel, A.<br />

Stuck, P. Aebi, L. Schlapbach,<br />

JESRP 68, 1 (1994)


Small-cluster simulations of photoelectron diffraction<br />

W(100)<br />

Expt.—<br />

Effects of<br />

∼50% seen<br />

<strong>in</strong> TiS 2<br />

(Takata et al.)<br />

Theory:<br />

Emitter<br />

E k<strong>in</strong><br />

= 1500 eV E k<strong>in</strong><br />

= 6000 eV E k<strong>in</strong><br />

= 10,000 eV<br />

J. Garcia de Abajo, EDAC onl<strong>in</strong>e program for PD:<br />

http://csic.sw.ehu.es/jga/software/edac/<strong>in</strong>dex.html


Statistics: Growth of HAXPES User<br />

Beamtime at SPr<strong>in</strong>g8<br />

No.o f A c c e pte d P ro po sals<br />

HX-PES User Beam time Shifts<br />

30<br />

25<br />

20<br />

15<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

TotalS h ifts<br />

User Shifts<br />

In te rn al R & D<br />

Shifts<br />

10<br />

60<br />

5<br />

40<br />

20<br />

0<br />

2004A 2004B 2005A 2005B 2006A<br />

0<br />

2004A 2004B 2005A 2005B 2006A<br />

Ma<strong>in</strong> Beaml<strong>in</strong>e BL47XU. Partly we use Bl29XU, BL39XU, <strong>and</strong> BL22XU.<br />

K. Kobayashi


Outl<strong>in</strong>e<br />

Basic considerations: prob<strong>in</strong>g depth, cross sections,<br />

source, analyzer, detector, surface vs. bulk sensitivity<br />

X-<strong>ray</strong> optics, spectral background<br />

St<strong>and</strong><strong>in</strong>g waves<br />

Core <strong>and</strong> valence spectroscopy<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons, etc.<br />

<strong>Photoelectron</strong> diffraction <strong>and</strong> Kikuchi b<strong>and</strong>s<br />

Summary <strong>and</strong> future prospects


SUMMARY AND FUTURE PROSPECTS<br />

Basic <strong>in</strong>tensity/resolution considerations:<br />

Source, analyzer, detector—several work<strong>in</strong>g systems<br />

Much more a bulk probe, ∼ 50 meV→10 meV resolution, recoil limit?<br />

Quantitative analysis simpler<br />

Spectral background, surface vs. bulk: graz<strong>in</strong>g <strong>in</strong>cidence, variable takeoff<br />

Prob<strong>in</strong>g multilayer nanostructures/devices: many applied systems<br />

X-<strong>ray</strong> optics <strong>and</strong> st<strong>and</strong><strong>in</strong>g waves (SWs):<br />

Prob<strong>in</strong>g site-specific DOSs via Bragg-reflection SWs<br />

Prob<strong>in</strong>g buried layers <strong>and</strong> <strong>in</strong>terfaces via multilayer SWs<br />

Core <strong>and</strong> valence level spectroscopy<br />

High resolution core spectra: ∼ 50 meV<br />

Observation of new screened peaks <strong>in</strong> TM 2p <strong>and</strong> valence spectra of oxides, SC<br />

materials: surface vs. bulk electron screen<strong>in</strong>g<br />

MCD <strong>and</strong> sp<strong>in</strong>-resolved PS--future<br />

Valence b<strong>and</strong>s, the XPS limit, photon wave vector, phonons<br />

Expect DOS-like spectra often, but with cryocool<strong>in</strong>g <strong>and</strong> high angular resolution ≤<br />

0.1º, b<strong>and</strong> mapp<strong>in</strong>g possible up to at least 1 keV,<br />

maybe higher—but 10 keV likely smeared out<br />

High resolution VB DOS spectra—partial DOS determ<strong>in</strong>ations<br />

<strong>Photoelectron</strong> diffraction (short-range)←→Kikuchi b<strong>and</strong>s (long-range)<br />

In both core <strong>and</strong> valence emission,<br />

Sensitive probe of local structure <strong>in</strong> bulk, e.g. dopants<br />

----------------------------------<br />

Plus see: Nucl. Inst. <strong>and</strong> Meth. A, Volume 547, Issue 1, Pages 1-238 (2005)<br />

2nd Int’l Workshop-2006, Program/Abstracts http://haxpes2006.spr<strong>in</strong>g8.or.jp/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!