14.04.2014 Views

data on reliability of sprinkler systems - Vilniaus Gedimino technikos ...

data on reliability of sprinkler systems - Vilniaus Gedimino technikos ...

data on reliability of sprinkler systems - Vilniaus Gedimino technikos ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

14-osios Lietuvos jaunųjų mokslininkų k<strong>on</strong>ferencijos „Mokslas – Lietuvos ateitis“<br />

2011 metų teminės k<strong>on</strong>ferencijos straipsnių rinkinys ISSN 2029-7149 <strong>on</strong>line<br />

STATYBA ISBN 978-9955-28-929-6<br />

DATA ON RELIABILITY OF SPRINKLER SYSTEMS<br />

Tomaš Maksimovič<br />

Vilnius Gediminas Technical University, Vilnius, Lithuania<br />

E-mail: tomas.maksimovic@stst.vgtu.lt<br />

Abstract. Sprinkler failures to extinguish fires generate a basic need for assessment and increase <strong>of</strong> <strong>reliability</strong> <strong>of</strong> these crucial<br />

safety <strong>systems</strong>. This in turn creates a demand for input <str<strong>on</strong>g>data</str<strong>on</strong>g> used for <strong>reliability</strong> assessment. Broadly speaking, <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>sprinkler</strong><br />

failures is available in large amounts and some countries have well-established <strong>systems</strong> <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> collecti<strong>on</strong> and reporting.<br />

Data is accumulated in <strong>sprinkler</strong>ed envir<strong>on</strong>ments <strong>of</strong> c<strong>on</strong>venti<strong>on</strong>al buildings and some industrial facilities. The compilati<strong>on</strong> <strong>of</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> sets necessary for <strong>reliability</strong> assessment may face several problems, The size <strong>of</strong> the <str<strong>on</strong>g>data</str<strong>on</strong>g> sets can be limited by such factors<br />

as limited relevance <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> collected in different <strong>sprinkler</strong>ed envir<strong>on</strong>ments, differences in operati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s and comp<strong>on</strong>ents,<br />

ageing <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> colleted in the past, c<strong>on</strong>cealment <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> and/or high cost <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g>, poor documentati<strong>on</strong> and<br />

explanati<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> in available <str<strong>on</strong>g>data</str<strong>on</strong>g>bases. However, the <strong>reliability</strong> <strong>of</strong> <strong>sprinkler</strong> <strong>systems</strong> can be estimated even with limited<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g>, because such <str<strong>on</strong>g>data</str<strong>on</strong>g> can be accumulated in many cases and can have an acceptable level <strong>of</strong> quality.<br />

Keywords: <strong>sprinkler</strong>s, fire, <str<strong>on</strong>g>data</str<strong>on</strong>g> source, <str<strong>on</strong>g>data</str<strong>on</strong>g> base, <strong>reliability</strong>, failure rate.<br />

Introducti<strong>on</strong><br />

The problem <strong>of</strong> <strong>sprinkler</strong> <strong>reliability</strong> was addressed by<br />

many authors who applied various approaches to dealing<br />

with the potential <strong>sprinkler</strong> failure. The approaches range<br />

from a simple calculati<strong>on</strong> <strong>of</strong> country-specific failure rates<br />

to an estimati<strong>on</strong> <strong>of</strong> <strong>reliability</strong> by applying methodological<br />

means <strong>of</strong> quantitative risk assessment (QRA) based <strong>on</strong><br />

Bayesian reas<strong>on</strong>ing (e.g., Siu and Apostolakis 1986,<br />

1988; Hauptmans et al. 2008; Malm and Petterss<strong>on</strong> 2008;<br />

Vaidogas and Šakėnaitė 2010). However, the issue <strong>of</strong><br />

failure <str<strong>on</strong>g>data</str<strong>on</strong>g> and other informati<strong>on</strong> necessary for <strong>reliability</strong><br />

assessment was not addressed in a more or less systematic<br />

way.<br />

The problem <strong>of</strong> <strong>sprinkler</strong> <strong>reliability</strong> was addressed<br />

by many authors who applied various approaches to dealing<br />

with the potential <strong>sprinkler</strong> failure. The approaches<br />

range from a simple calculati<strong>on</strong> <strong>of</strong> country-specific failure<br />

rates to an estimati<strong>on</strong> <strong>of</strong> <strong>reliability</strong> by applying methodological<br />

means <strong>of</strong> quantitative risk assessment (QRA)<br />

based <strong>on</strong> Bayesian reas<strong>on</strong>ing (e.g., Siu and Apostolakis<br />

1986, 1988; Hauptmans et al. 2008; Malm and Petterss<strong>on</strong><br />

2008). However, the issue <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g> and other informati<strong>on</strong><br />

necessary for <strong>reliability</strong> assessment was not<br />

addressed in a more or less systematic way.<br />

The present paper takes a look at the available and<br />

accessible <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>sprinkler</strong> <strong>reliability</strong>. Several aspects<br />

related to the collecti<strong>on</strong> <strong>of</strong> this <str<strong>on</strong>g>data</str<strong>on</strong>g> are reviewed as well.<br />

An effort was made to distinguish between failure <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

collected in c<strong>on</strong>venti<strong>on</strong>al buildings and <str<strong>on</strong>g>data</str<strong>on</strong>g> accumulated<br />

in installati<strong>on</strong>s <strong>of</strong> nuclear, <strong>of</strong>fshore and process industries<br />

as well as military facilities. The attenti<strong>on</strong> was focussed<br />

<strong>on</strong> the wide category <strong>of</strong> <strong>sprinkler</strong>ed c<strong>on</strong>venti<strong>on</strong>al buildings<br />

which make up the largest part <strong>of</strong> <strong>sprinkler</strong>ed envir<strong>on</strong>ment.<br />

The main purpose was to assess the <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

situati<strong>on</strong> in terms <strong>of</strong> the possibility to form <str<strong>on</strong>g>data</str<strong>on</strong>g> sets and<br />

gain other informati<strong>on</strong> for the estimati<strong>on</strong> <strong>of</strong> <strong>sprinkler</strong><br />

<strong>reliability</strong>.<br />

Sprinkler failure modes and collecti<strong>on</strong> <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

A <strong>sprinkler</strong> system (or <strong>sprinkler</strong>s, in brief) is a relatively<br />

complicated technical object which can fail in variety <strong>of</strong><br />

ways (modes). Specific failure modes are also related to a<br />

specific type <strong>of</strong> <strong>sprinkler</strong>s which can have four principal<br />

arrangements (Table 1). These four basic types <strong>of</strong> <strong>sprinkler</strong>s<br />

differ in terms <strong>of</strong> how water is put into the area <strong>of</strong><br />

the fire and, <strong>of</strong> course, how they fail <strong>on</strong> comp<strong>on</strong>ent and<br />

system level. The lists <strong>of</strong> comp<strong>on</strong>ents and sub<strong>systems</strong><br />

given in Table 1 should be supplemented with critical<br />

human “comp<strong>on</strong>ents” (system owner, designer, installer,<br />

inspector, maintenance pers<strong>on</strong>). Human factor plays a<br />

major role in failures <strong>of</strong> <strong>sprinkler</strong>s installed in c<strong>on</strong>venti<strong>on</strong>al<br />

buildings, the safety culture <strong>of</strong> which is not necessarily<br />

very strict (e.g., Hall 2006, 2010).<br />

© <strong>Vilniaus</strong> <strong>Gedimino</strong> <strong>technikos</strong> universitetas<br />

http://dspace.vgtu.lt 1


Table 1. Four basic types <strong>of</strong> <strong>sprinkler</strong> <strong>systems</strong> (compiled from SFPE 2002)<br />

Type<br />

Wet pipe<br />

system<br />

Dry pipe<br />

system<br />

Deluge<br />

system<br />

Preacti<strong>on</strong><br />

system<br />

Principal comp<strong>on</strong>ents/sub<strong>systems</strong><br />

Water supply from the main (water tank); gate valve to c<strong>on</strong>trol water supply to<br />

system; alarm valve; piping network; <strong>sprinkler</strong> heads<br />

Water supply from the main (water tank); gate valve to c<strong>on</strong>trol water supply to<br />

system; dry pipe valve; piping network; <strong>sprinkler</strong> heads<br />

Water supply from the main (water tank); main c<strong>on</strong>trol valve; electric <strong>sprinkler</strong><br />

alarm; deluge valve; release valve; smoke detector; thermal detector;<br />

c<strong>on</strong>trol panel; piping network; battery cabinet<br />

Water supply from the main (water tank); main c<strong>on</strong>trol valve; electric <strong>sprinkler</strong><br />

alarm; deluge valve; check valve; air supply; smoke detector; thermal<br />

detector; c<strong>on</strong>trol panel; piping network; battery cabinet; closed <strong>sprinkler</strong> head;<br />

system maintaining small fire pressure in the fire network<br />

No <strong>of</strong> comp<strong>on</strong>ents/sub<strong>systems</strong><br />

5<br />

5<br />

10<br />

10<br />

C<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> failures <strong>on</strong> the comp<strong>on</strong>ent level to<br />

the <strong>sprinkler</strong> system failure is represented by means <strong>of</strong><br />

fault tree diagrams (Rönty et al. 2004; Hauptmans et al.<br />

2008). Both identificati<strong>on</strong> <strong>of</strong> system failure modes and<br />

development <strong>of</strong> fault tree diagrams for them will reveal<br />

what <str<strong>on</strong>g>data</str<strong>on</strong>g> is necessary for the estimati<strong>on</strong> <strong>of</strong> system <strong>reliability</strong>.<br />

A unified and, ideally, world-wide classificati<strong>on</strong><br />

<strong>of</strong> causes and modes <strong>of</strong> <strong>sprinkler</strong> failures could improve<br />

the collecti<strong>on</strong> and exchange <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g> and probably<br />

the quality <strong>of</strong> the <str<strong>on</strong>g>data</str<strong>on</strong>g>. Unfortunately, a simple look at the<br />

literature devoted to <strong>sprinkler</strong> <strong>reliability</strong> shows that in the<br />

past years different authors/countries applied different<br />

classificati<strong>on</strong>s <strong>of</strong> modes and causes <strong>of</strong> system failure<br />

(Tables 2 and 3). Some authors mix modes, causes and<br />

circumstances <strong>of</strong> failures together in <strong>on</strong>e list. Differences<br />

between some definiti<strong>on</strong>s <strong>of</strong> failure modes may be <strong>on</strong>ly<br />

semantic; however, the lack <strong>of</strong> a unified failure terminology<br />

does not facilitate the collecti<strong>on</strong> and exchange <strong>of</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

Reas<strong>on</strong>s for the variati<strong>on</strong> <strong>of</strong> failure causes and<br />

modes are analysed by Malm and Petterss<strong>on</strong> (2008). They<br />

also detected and addressed an obvious variati<strong>on</strong> <strong>of</strong> <strong>reliability</strong><br />

estimates am<strong>on</strong>g different sources. An illustrati<strong>on</strong><br />

<strong>of</strong> such a variati<strong>on</strong> is shown in Table 4. In our opini<strong>on</strong>,<br />

the variati<strong>on</strong> am<strong>on</strong>g <strong>reliability</strong> estimates as well as the<br />

lack <strong>of</strong> unificati<strong>on</strong> in naming causes and modes <strong>of</strong> <strong>sprinkler</strong><br />

failures is am<strong>on</strong>g four factors which complicate the<br />

estimati<strong>on</strong> <strong>of</strong> <strong>sprinkler</strong> <strong>reliability</strong> (Fig. 1, corners 1 and<br />

2).<br />

One can expect that <strong>sprinkler</strong> failure terminology is<br />

unified in some industries and military envir<strong>on</strong>ments with<br />

high safety culture and well-developed system <strong>of</strong> <strong>reliability</strong><br />

and accident <str<strong>on</strong>g>data</str<strong>on</strong>g> collecti<strong>on</strong>, first <strong>of</strong> all, nuclear and<br />

<strong>of</strong>fshore industries (e.g., see Cadwallader and Eide 2010<br />

and the references therein, NTNU 2010). However, the<br />

industrial and military installati<strong>on</strong>s are <strong>on</strong>ly a small fracti<strong>on</strong><br />

<strong>of</strong> spinklered built envir<strong>on</strong>ment.<br />

The dominance <strong>of</strong> human factor am<strong>on</strong>g causes <strong>of</strong><br />

<strong>sprinkler</strong> failures is another issue which complicates <strong>reliability</strong><br />

estimati<strong>on</strong> (Fig. 1, corner 3). Human errors can be<br />

the cause <strong>of</strong> all types <strong>of</strong> <strong>sprinkler</strong> system failures (Fig. 2).<br />

Hall (2006, 2010) states that, according to US <str<strong>on</strong>g>data</str<strong>on</strong>g> collected<br />

after fires in c<strong>on</strong>venti<strong>on</strong>al buildings, almost all<br />

<strong>sprinkler</strong> failures to operate (demand failures) were<br />

caused by human errors. Only 2 to 3 % <strong>of</strong> such failures<br />

were due to damaged comp<strong>on</strong>ents. It is obvious that, at<br />

least in buildings with relatively lax safety culture, the<br />

problem <strong>of</strong> <strong>sprinkler</strong> <strong>reliability</strong> is largely the problem <strong>of</strong><br />

human <strong>reliability</strong>. In this respect, <strong>sprinkler</strong>s are similar to<br />

building structures, the failures <strong>of</strong> which are caused predominantly<br />

by human errors (e.g., Melchers 1999). The<br />

predicti<strong>on</strong> <strong>of</strong> improper human behaviour in the design,<br />

installati<strong>on</strong> and use <strong>of</strong> <strong>sprinkler</strong>s requires specific <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

The influence <strong>of</strong> human factor now can be approximately<br />

assessed from the general studies <strong>of</strong> <strong>sprinkler</strong><br />

<strong>reliability</strong> (e.g., Rönty et al. 2004, Malm and Petterss<strong>on</strong><br />

2008, and Hall 2006, 2010). The incorporati<strong>on</strong> <strong>of</strong> human<br />

errors into the fault tree analysis (FTA) aimed to estimate<br />

<strong>sprinkler</strong> <strong>reliability</strong> can reveal what specific human <strong>reliability</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> may be necessary for the estimati<strong>on</strong> (Hauptmans<br />

et al. 2008). However, FTA as such does not<br />

generate <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

The changes during a l<strong>on</strong>g-lasting life <strong>of</strong> <strong>sprinkler</strong><br />

<strong>systems</strong> are the fourth factor which makes difficult the<br />

collecti<strong>on</strong> <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g> suitable to adequate <strong>reliability</strong><br />

estimati<strong>on</strong> (Fig. 1, corner 4). In c<strong>on</strong>venti<strong>on</strong>al buildings,<br />

<strong>sprinkler</strong>s are used over several decades and are subjected<br />

to a gradual ageing. It is natural to expect that the ageing<br />

al<strong>on</strong>g with modificati<strong>on</strong>s and repairs “invisibly” influence<br />

the <strong>reliability</strong> <strong>of</strong> <strong>sprinkler</strong>s. In additi<strong>on</strong>, changes in<br />

building ownership or tenancy during the life-time <strong>of</strong><br />

<strong>sprinkler</strong>s can lead to changes in the safety culture and so<br />

the influence <strong>of</strong> human factor <strong>on</strong> possible failures.<br />

2


Table 2. Lists <strong>of</strong> modes and causes <strong>of</strong> <strong>sprinkler</strong> failures used by different authors<br />

Author(s)<br />

Failure modes and causes<br />

Linder (1993)<br />

Installati<strong>on</strong> errors, design mistakes, manufacturing/equipment defects, lack <strong>of</strong> maintenance,<br />

exceeding design limits, and envir<strong>on</strong>mental factors<br />

Rönti et al. (2004) Usage failure, maintenance failure, installati<strong>on</strong> failure, device failure, instructi<strong>on</strong> failure<br />

Malm and Petterss<strong>on</strong> No activati<strong>on</strong> <strong>of</strong> <strong>sprinkler</strong> system, fire in an n<strong>on</strong>-<strong>sprinkler</strong>ed area with deficient fire compatmentati<strong>on</strong>,<br />

extinguishing agent does not reach the fire (insufficient amount <strong>of</strong> water,<br />

(2008)<br />

inadequate design), <strong>sprinkler</strong> system shut <strong>of</strong>f<br />

Siu and Apostolakis (1986, Failure to actuate given an demand (demand unavailability), failure to put out the fire<br />

1988)<br />

given an actuati<strong>on</strong>, suppressi<strong>on</strong> <strong>of</strong> fire after a critical set <strong>of</strong> comp<strong>on</strong>ents has been damaged<br />

K<strong>of</strong>fel (2006), Hall (2010) Operati<strong>on</strong>al failure/<strong>reliability</strong>, performance failure/<strong>reliability</strong><br />

Table 3. A brief summary <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>sprinkler</strong> failure probabilities (Moelling et al. 1980, reproduced also by Rönti<br />

et al. 2004)<br />

Failure mode<br />

Point estimates and 90% c<strong>on</strong>fidence estimates <strong>of</strong> probability per demand<br />

Lower bound Point estimate Upper bound<br />

Sprinkler heads fail to open Not reported


proach to QRA (Siu and Kelly 1998, Kelly and Smith<br />

2009).<br />

The number <strong>of</strong> <strong>sprinkler</strong> installati<strong>on</strong>s in large countries<br />

and regi<strong>on</strong>s is in milli<strong>on</strong>s. The number <strong>of</strong> fires in<br />

<strong>sprinkler</strong>ed buildings can be in thousands <strong>of</strong> events from<br />

the populati<strong>on</strong> <strong>of</strong> milli<strong>on</strong>s and the number <strong>of</strong> <strong>sprinkler</strong><br />

failures in fires can reach hundreds <strong>of</strong> events (e.g., Rohr<br />

2001; Rohr and Hall 2006; Hall 2010). Thus, at first<br />

glance, the possibly large amount <strong>of</strong> direct <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>sprinkler</strong><br />

failures might allow to assess the <strong>sprinkler</strong> failure<br />

probability by means <strong>of</strong> the classical (Fisherian) approach.<br />

However, the variety <strong>of</strong> envir<strong>on</strong>ments, in which<br />

<strong>sprinkler</strong>s are installed, and differences within the populati<strong>on</strong><br />

<strong>of</strong> <strong>sprinkler</strong>s may c<strong>on</strong>strain the possibility to estimate<br />

the <strong>reliability</strong> directly from the failure <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

The size <strong>of</strong> the populati<strong>on</strong> <strong>of</strong> <strong>sprinkler</strong> installati<strong>on</strong>s<br />

and failure <str<strong>on</strong>g>data</str<strong>on</strong>g> retrieved from this populati<strong>on</strong> may be<br />

limited by several factors. These factors include:<br />

<br />

<br />

<br />

The culture <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> collecti<strong>on</strong> and exchange;<br />

The relevance <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> from different envir<strong>on</strong>ments;<br />

Possible c<strong>on</strong>cealment <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

The collecti<strong>on</strong> and exchange <strong>of</strong> <strong>sprinkler</strong> <strong>reliability</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> has different level <strong>of</strong> organisati<strong>on</strong> in different envir<strong>on</strong>ments.<br />

Data is systematically accumulated and shared<br />

in nuclear power plants though a voluntary collaborati<strong>on</strong><br />

<strong>of</strong> a number <strong>of</strong> installati<strong>on</strong>s worldwide (e.g., Berg et al.<br />

2000, Atwood et al. 2003, Cadawallader 2007). Some<br />

other industries, for instance, oil and gas producti<strong>on</strong>, have<br />

also a well-organised collecti<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>reliability</strong> <strong>of</strong><br />

fire detecti<strong>on</strong> and suppressi<strong>on</strong> measures (e.g., OGP<br />

2010). However, nuclear power plants as well as some<br />

industrial and military installati<strong>on</strong>s are a relatively small<br />

fracti<strong>on</strong> <strong>of</strong> <strong>sprinkler</strong>ed build envir<strong>on</strong>ment. An internati<strong>on</strong>al<br />

collaborati<strong>on</strong> in collecti<strong>on</strong> <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g> seems not<br />

to be available in the case <strong>of</strong> <strong>sprinkler</strong> installati<strong>on</strong>s in<br />

c<strong>on</strong>venti<strong>on</strong>al buildings (e.g., residential, instituti<strong>on</strong>al and<br />

public <strong>on</strong>es).<br />

The availability and quality <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g> may be<br />

positively influenced by legislati<strong>on</strong> and/or practice <strong>of</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> collecti<strong>on</strong> and reporting in specific countries (Malm<br />

and Petterss<strong>on</strong> 2008). Hall (2006, 2010) describes the<br />

American fire accident reporting system NFRIS which<br />

allows to calculate <strong>sprinkler</strong> failure rates using US <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

<strong>on</strong> fires. Unfortunately, it is difficult to say how much the<br />

failure <str<strong>on</strong>g>data</str<strong>on</strong>g> from these three countries is relevant to<br />

<strong>sprinkler</strong>ed envir<strong>on</strong>ments in other regi<strong>on</strong>s.<br />

Different envir<strong>on</strong>ments are characterised by different<br />

safety culture and, possibly, different dominant causes<br />

<strong>of</strong> failures and quality <strong>of</strong> <strong>reliability</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g>. One might expect<br />

that the safety culture in nuclear and military installati<strong>on</strong>s<br />

is higher than that in c<strong>on</strong>venti<strong>on</strong>al buildings. Thus<br />

failure <str<strong>on</strong>g>data</str<strong>on</strong>g> from nuclear industry can hardly be automatically<br />

applied to, say, domestic <strong>sprinkler</strong>s. Any attempts<br />

to measure formally, more or less, the degree <strong>of</strong><br />

relevance <strong>of</strong> system failure <str<strong>on</strong>g>data</str<strong>on</strong>g> to different envir<strong>on</strong>ments<br />

are not known to us.<br />

The relevance <strong>of</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g> can be c<strong>on</strong>sidered <strong>on</strong><br />

the much more detailed level. It is probable that different<br />

manufacturers and installers <strong>of</strong> a specific <strong>sprinkler</strong> system<br />

achieve different level <strong>of</strong> <strong>reliability</strong>. Thus failure <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong><br />

system and comp<strong>on</strong>ent levels collected by specific manufacturer<br />

may not be applicable to products <strong>of</strong> other manufacturers.<br />

The relevance <strong>of</strong> <strong>sprinkler</strong> failure <str<strong>on</strong>g>data</str<strong>on</strong>g> can also be<br />

influenced by the period in which the <str<strong>on</strong>g>data</str<strong>on</strong>g> was collected.<br />

It is natural to expect that <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> failures accumulated in,<br />

say, 1960s and 1970s may not be fully relevant to <strong>sprinkler</strong><br />

<strong>systems</strong> manufactured after 30 or 40 years. The general<br />

problem and causes <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> ageing is menti<strong>on</strong>ed in<br />

the <strong>reliability</strong> literature, for instance, by Cadwallader and<br />

Eide (2010). However, any study <strong>on</strong> “ageing” <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong><br />

<strong>sprinkler</strong> system failures doesn’t seem to be available.<br />

The availability <strong>of</strong> the <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>sprinkler</strong> failures can<br />

also depend <strong>on</strong> the possible negative influence <strong>of</strong> these<br />

events <strong>on</strong> the business <strong>of</strong> system manufacturers and insurance<br />

companies. One can expect that, at least in some<br />

countries, <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>sprinkler</strong> failures in some specific built<br />

envir<strong>on</strong>ments are kept secret by insurers and manufacturers<br />

for commercial reas<strong>on</strong>s. This may be the cause <strong>of</strong><br />

scarceness <strong>of</strong> such <str<strong>on</strong>g>data</str<strong>on</strong>g> for those who do not have access<br />

to the in-house informati<strong>on</strong> owned by insurers and manufacturers.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

This paper presented a review <strong>of</strong> problems related to the<br />

collecti<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>reliability</strong> <strong>of</strong> fire <strong>sprinkler</strong>s. The<br />

main findings formed in the course <strong>of</strong> review preparati<strong>on</strong><br />

are as follows:<br />

1. Failure <str<strong>on</strong>g>data</str<strong>on</strong>g> recorded after fires in <strong>sprinkler</strong>ed<br />

buildings and possibly routine inspecti<strong>on</strong>s <strong>of</strong> <strong>sprinkler</strong>s<br />

are undoubtedly available. In some countries, collecti<strong>on</strong><br />

and reporting <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> is well-organised. However, the<br />

compilati<strong>on</strong> <strong>of</strong> the entire body <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> was made without<br />

a general, internati<strong>on</strong>al agreement, and therefore the body<br />

<strong>of</strong> collected <str<strong>on</strong>g>data</str<strong>on</strong>g> is not sufficiently systematic.<br />

2. The main obstacles to an systematic collecti<strong>on</strong> <strong>of</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> sets which would allow a smooth assessment <strong>of</strong><br />

4


<strong>sprinkler</strong> <strong>reliability</strong> can be detected with relative ease: (i)<br />

differences in definiti<strong>on</strong> and naming <strong>of</strong> failure modes; (ii)<br />

differences in failure <str<strong>on</strong>g>data</str<strong>on</strong>g> reporting; (iii) the prevalence<br />

<strong>of</strong> human factor am<strong>on</strong>g causes <strong>of</strong> <strong>sprinkler</strong> failures in<br />

c<strong>on</strong>venti<strong>on</strong>al building; (iv) the influence <strong>of</strong> ageing, modificati<strong>on</strong>s<br />

and repairs <strong>on</strong> <strong>reliability</strong>.<br />

3. The accumulati<strong>on</strong>, availability and quality <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

<strong>on</strong> <strong>sprinkler</strong> system failures is negatively influenced by<br />

several factors: (i) the limited relevance <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> collected<br />

in <strong>sprinkler</strong>ed envir<strong>on</strong>ments with different safety culture,<br />

operati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s and different <strong>sprinkler</strong> comp<strong>on</strong>ents;<br />

(ii) ageing <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> colleted in the past; (iii) c<strong>on</strong>cealment<br />

<strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> and/high cost <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g>; (iv) poor documentati<strong>on</strong><br />

and explanati<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> in available <str<strong>on</strong>g>data</str<strong>on</strong>g> bases.<br />

References<br />

Atwood, C. L.; LaChance, J. L.; Martz, H. F. 2003. Handdbook<br />

<strong>of</strong> Parameter Estimati<strong>on</strong> for Probabilistic Risk Assessment.<br />

NUREG/CR-6823. Washingt<strong>on</strong>: US Nuclear Regulatory<br />

Commissi<strong>on</strong>.<br />

Berg, H. P.; Rowekamp, M. 2000. Reliability Data Collecti<strong>on</strong><br />

for Fire Protecti<strong>on</strong> Features. Kerntechnik 65(2-3): 102-107.<br />

Butry, D. T.; Brw<strong>on</strong>, M. H.; Fuller, S. K. 2007. Benefit-Cost<br />

Analysis <strong>of</strong> Residential Fire Sprinkler Systems. NISTIR<br />

7451. Gaithersburg, MD: Nati<strong>on</strong>al Institute <strong>of</strong> Standards<br />

and Technology.<br />

Cadwallader, L. C. 2007. Failure rate <str<strong>on</strong>g>data</str<strong>on</strong>g> analysis for high<br />

technology comp<strong>on</strong>ents, In Eighth Internati<strong>on</strong>al Topical<br />

Meeting <strong>on</strong> Nuclear Applicati<strong>on</strong>s and Utilisati<strong>on</strong> <strong>of</strong> Accellerators.<br />

INL/CON-07-12265. Idaho Falls: Idaho Nati<strong>on</strong>al<br />

Laboratory.<br />

Cadwallader, L. C.; Eide, S. A. 2010. Comp<strong>on</strong>ent failure rate<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> sources for probabilistic safety and <strong>reliability</strong>. Process<br />

Safety Progress 29(3), 236-241.<br />

Hall, J. R. 2006. An Analysis <strong>of</strong> Automatic Sprinkler System<br />

Reliability Using Current Data. Quincy, MA: Nati<strong>on</strong>al Fire<br />

Protecti<strong>on</strong> Associati<strong>on</strong>.<br />

Hall, J. R. 2010. U.S. Experience with Sprinklers and other<br />

other Fire ExtinguishingEquipment. Quincy, MA: Nati<strong>on</strong>al<br />

Fire Protecti<strong>on</strong> Associati<strong>on</strong>.<br />

Hauptmanns, U.; Marx, M.; Grünbeck, S. 2008. Availability<br />

analysis for fixed wet <strong>sprinkler</strong> system, Fire Safety Journal<br />

43(7): 468–476.<br />

Jensen, G.; Reitan, A.; Utstrand, J. I. 2006. Analysis <strong>of</strong> Sprinkler<br />

Failures in Listed Heritage Buildings. Oslo: The<br />

Norvegian Directorate for Cultural Heritage.<br />

K<strong>of</strong>fel, W. E. 2006. Reliability <strong>of</strong> Automatic Sprinkler Systems.<br />

Proceedings <strong>of</strong> 2006 Fire Superssi<strong>on</strong> and Detecti<strong>on</strong> Research<br />

Applicati<strong>on</strong> Symposium. Quincy, MA: Nati<strong>on</strong>al Fire<br />

Protecti<strong>on</strong> Associati<strong>on</strong>.<br />

Linder, K. W. 1993. Field <strong>reliability</strong> <strong>of</strong> fire detecti<strong>on</strong> <strong>systems</strong>.<br />

In Bukowski, R. W. (Ed.). In Balanced Design C<strong>on</strong>cepts<br />

Workshop, June 30, July 1–2, 1993. NISTIR 5264,<br />

Gaithersburg, MD: Nati<strong>on</strong>al Institute <strong>of</strong> Standards and<br />

Technology, 34–53.<br />

Malm, D.; Petterss<strong>on</strong>, A.-I. 2008. Reliability <strong>of</strong> Automatic<br />

Sprinkler Systems. An Analysis <strong>of</strong> Available Statistics. Report<br />

5270. Lund: Department <strong>of</strong> Fire Safety Engineering<br />

and System Safety, Lund University.<br />

Moelling, D. S.; Sideris, A. G.; Hockenbury, R. W. 1980. Reliability<br />

<strong>of</strong> fire protecti<strong>on</strong> <strong>systems</strong> in nuclear power plants.<br />

Thermal Reactor Safety, In Proceedings <strong>of</strong> the American<br />

Nuclear Society/European Nuclear Society Topical Meetin,<br />

April 6–9, Knoxville, TN, CONF_800403, 1: 102–109.<br />

OGP 2010. Guide to Finding and Using Reliability Data for<br />

QRA. Report No. 434-20.1. Internati<strong>on</strong>al Associati<strong>on</strong> <strong>of</strong> Oil<br />

and Gas Producers. OGP Publicati<strong>on</strong>s.<br />

Rohr, K. 2001. U.S. Experience with Sprinklers. Quincy, MA:<br />

Nati<strong>on</strong>al Fire Protecti<strong>on</strong> Associati<strong>on</strong>.<br />

Rohr, K.; Hall, J. R. 2005. U.S. Experience with Sprinklers and<br />

other Fire Extinguishing Equipment. Quincy, MA: Nati<strong>on</strong>al<br />

Fire Protecti<strong>on</strong> Associati<strong>on</strong>.<br />

Rönty, V.; Keski-Rahk<strong>on</strong>en, O.; Hassinen, J. P. 2004. Reliability<br />

<strong>of</strong> <strong>sprinkler</strong> <strong>systems</strong>. Explorati<strong>on</strong> and analysis <strong>of</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

from nuclear and n<strong>on</strong>-nuclear installati<strong>on</strong>s. Finland: VTT<br />

Building Technology.<br />

Siu, N.; Apostolakis, G. 1986. A methodology for analyzing the<br />

detecti<strong>on</strong> and suppressi<strong>on</strong> <strong>of</strong> fires in nuclear power plants,<br />

Nuclear Science and Engineering 94(2): 213–226.<br />

Siu, N.; Apostolakis, G. 1988. Uncertain <str<strong>on</strong>g>data</str<strong>on</strong>g> and expert opini<strong>on</strong>s<br />

in the assessment <strong>of</strong> the unavailability <strong>of</strong> suppressi<strong>on</strong><br />

<strong>systems</strong>, Fire Technology 24(2): 138–62.<br />

Siu, N. O.; Kelly, D. L. 1998.Bayesian parameter estimati<strong>on</strong> in<br />

probabilistic risk assessment. Reliability Engineering and<br />

System Safety 62(1–2): 89–116.<br />

Vaidogas, E. R.; Šakėnaitė, J. 2010. A brief look at <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> the<br />

<strong>reliability</strong> <strong>of</strong> <strong>sprinkler</strong>s used in c<strong>on</strong>venti<strong>on</strong>al buildings,<br />

Journal <strong>of</strong> Civil Engineering and Managment 17(1): 115–<br />

125.<br />

DUOMENYS APIE SPRINKLERIŲ SISTEMŲ<br />

PATIKIMUMĄ<br />

T. Maksimovič<br />

Santrauka<br />

Duomenys apie <strong>sprinkler</strong>ių sistemų atsakus yra labai svarbūs<br />

vertinant tų sistemų patikimumą. Tokių duomenų yra sukaupta<br />

nemažai, ypač šalyse su gerai organizuotomis techninių duomenų<br />

rinkimo ir skelbimo sistemomis. Tačiau duomenų rinkimas<br />

patikimumui vertinti susiduria su eile problemų. Duomenų kiekį<br />

gali riboti tokie faktoriai, kaip duomenų tinkamumas k<strong>on</strong>krečiai<br />

sistemai, sistemų eksploatavimo aplinkos skirtumai, sistemų<br />

komp<strong>on</strong>entų nevienodumas, sistemų senėjimas, duomenų slėpimas<br />

ir t. t. Tačiau yra daug atvejų, kai duomenų patikimumui<br />

vertinti sukaupti galima ir tų duomenų kokybė yra priimtina.<br />

Reikšminiai žodžiai: <strong>sprinkler</strong>iai, gaisras, duomenų šaltinis,<br />

duomenų bazė, patikimumas, atsako dažnis.<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!