22.04.2014 Views

Open channel flows

Open channel flows

Open channel flows

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Solution of the system of PDE-s for open <strong>channel</strong> flow<br />

The 1D equation of continuity for open <strong>channel</strong> flow is<br />

∂A<br />

∂(<br />

Av )<br />

+ = 0<br />

∂t<br />

∂x<br />

. (1)<br />

∂A<br />

Here A = A(y) [meaning that = 0 ] * is the cross section of the <strong>channel</strong> filled with water, y<br />

∂x<br />

denotes the water depth, v is the mean velocity of water, t is time, x is the space coordinate<br />

along the <strong>channel</strong>.<br />

Important: the shape of the <strong>channel</strong> does not change along the <strong>channel</strong>: A doesn’t depend<br />

explicitly on x.<br />

The equation of motion is<br />

∂v<br />

∂v<br />

∂y<br />

+ v + g<br />

∂t<br />

∂x<br />

∂x<br />

∂z<br />

gn<br />

= −g<br />

−<br />

∂x<br />

R<br />

2<br />

4<br />

3<br />

h<br />

v v<br />

(2)<br />

as the pressure p – whose gradient is the source of the 3 rd term – means the hydrostatic<br />

overpressure at the bottom of the <strong>channel</strong>, p = ρgy. R h is the hydraulic radius of the wetted<br />

<strong>channel</strong> section and n is the roughness parameter in Manning’s formula. By multiplying the<br />

equation with A we get<br />

⎡<br />

2<br />

∂v<br />

∂v<br />

∂ gy ∂z<br />

gn<br />

⎤<br />

A<br />

∂t<br />

+ Av + A<br />

∂x<br />

( )<br />

∂x<br />

= −A⎢g<br />

+<br />

⎢ ∂x<br />

⎣ R<br />

4<br />

3<br />

h<br />

v v⎥<br />

.<br />

⎥<br />

⎦<br />

By adding the v-times of the above equation of continuity (1) to the left hand side – this may<br />

be done as we add zero to the equation – we get<br />

( )<br />

⎡<br />

2<br />

∂v<br />

∂A<br />

∂(Av)<br />

∂v<br />

∂ gy ∂z<br />

gn<br />

⎤<br />

A + v + v + Av + A = −A⎢g<br />

+ v v⎥<br />

.<br />

4<br />

∂t<br />

∂t<br />

∂x<br />

∂x<br />

∂x<br />

⎢ ∂x<br />

3 ⎥<br />

⎣ Rh<br />

⎦<br />

The 1 st and 2 nd and the 3 rd and 4 th terms, respectively may be united by the rule of the<br />

differentiation of a product<br />

( Av) ∂(Avv)<br />

∂( gy)<br />

∂<br />

∂t<br />

+<br />

∂x<br />

+ A<br />

∂x<br />

⎡<br />

⎢<br />

∂z<br />

gn<br />

= −A<br />

g +<br />

⎢ ∂x<br />

⎣ Rh<br />

2<br />

4<br />

3<br />

⎤<br />

v v⎥<br />

.<br />

⎥<br />

⎦<br />

∂A<br />

The last step is to ad gy = 0 to the left hand side<br />

∂x<br />

2<br />

2<br />

2<br />

( Av) ∂(Av<br />

) ∂( Agy) ∂( Av) ∂(A{ v + gy} ) ∂z<br />

gn denoted<br />

+ + = +<br />

= −A⎢g<br />

+ v v⎥<br />

= A[ J − J ]<br />

∂<br />

∂t<br />

∂x<br />

∂x<br />

∂t<br />

∂x<br />

⎡<br />

⎢<br />

⎣<br />

∂x<br />

R<br />

4<br />

3<br />

h<br />

⎤<br />

⎥<br />

⎦<br />

s<br />

R<br />

.


So the final version of the equation of motion in the so called conservation form is<br />

2<br />

( Av) ∂(A{ v + gy} )<br />

+<br />

= [ − ]<br />

∂<br />

∂t<br />

∂x<br />

A J s<br />

J R<br />

. (3)<br />

Here Js is the gravitational driving force of motion, J R is the breaking force of fluid friction.<br />

Naturally Eq. (1) has also the conservation form and this is natural as it just means<br />

conservation of water along the <strong>channel</strong> in time.<br />

It is worth of mentioning that Eqs. (1) and (3) may be written together in the compact vector<br />

form<br />

∂ ⎛ A ⎞ ∂ ⎛ Av ⎞<br />

⎞<br />

{ } ⎜ ⎛ 0<br />

⎜ ⎟ + ⎜<br />

2<br />

⎟ =<br />

∂ ⎝ ⎠ ∂ ⎝ A v + gy ⎠ ⎝ A[ J − ] ⎟⎟ .<br />

t Av x<br />

s<br />

J R ⎠<br />

In this equation or in Eqs. (1) and (3) three variables occur: A, y, v. To find their values one<br />

needs a third equation. This will be the very simple equation of state (similar to barotropy or<br />

especially isentropy for gases):<br />

dA = B . (4)<br />

dy<br />

B is the width of the free water surface at the actual water depth y.<br />

B<br />

y<br />

A<br />

Fig. 1 Geometrical data of a <strong>channel</strong> with circular cross section<br />

Eq. (4) will now be substituted into Eq (1).<br />

∂A<br />

∂(<br />

Av )<br />

+ =<br />

∂t<br />

∂x<br />

dA<br />

dy<br />

∂y<br />

+ v<br />

∂t<br />

dA<br />

dy<br />

If we divide this equation by B and we consider that<br />

continuity equation with the embedded equation of state<br />

∂y<br />

∂v<br />

⎛ ∂y<br />

∂y<br />

⎞ ∂v<br />

+ A = B⎜<br />

+ v ⎟ + A = 0 .<br />

∂x<br />

∂x<br />

⎝ ∂t<br />

∂x<br />

⎠ ∂x<br />

2 gA<br />

a =<br />

B<br />

we have the final form of the<br />

∂y<br />

∂y<br />

+ v +<br />

∂t<br />

∂x<br />

gA<br />

gB<br />

∂v<br />

∂x<br />

=<br />

2<br />

∂y<br />

∂y<br />

a<br />

+ v +<br />

∂t<br />

∂x<br />

g<br />

∂v<br />

∂x<br />

= 0<br />

. (5)<br />

It is important to note that the above formula of the wave speed is unbounded if the <strong>channel</strong> is<br />

filled completely because in this case the free surface width B → 0 and so a → ∞. There is a<br />

simple model helping us to overcome this difficulty. The top of the <strong>channel</strong> surface mustn’t


e closed. In the model, there is slot between two parallel vertical walls attached to the top of<br />

the <strong>channel</strong>. The distance B s between the walls is determined so that<br />

gA Ereduced<br />

a = = a<br />

full<br />

= is equal to the desired wave speed for the completely filled<br />

B<br />

ρ<br />

s<br />

<strong>channel</strong>. Naturally there is a small additional water-filled cross section between the walls but<br />

it is negligible; y means the pressure head in the completely filled <strong>channel</strong> in this case.<br />

B S<br />

y<br />

slot<br />

Fig. 2 Model of the completely filled circular <strong>channel</strong><br />

to give the correct pressure wave speed<br />

In the literature there are different methods to solve the system of differential equations in the<br />

red or green frames:<br />

• method of characteristics<br />

• Lax-Wendroff scheme<br />

• implicit method<br />

Method of characteristics<br />

In this case equations (2) and (5) give the base. The slope of the characteristics is<br />

dx<br />

= v ± a<br />

(6)<br />

dt<br />

The upper sign gives the C + the lower one the C – characteristic line. The actual section of the<br />

grid of characteristics with the old (t L = t R ) and new time level (t P ) and three points L, R and<br />

P is shown below<br />

t<br />

C -<br />

C +<br />

t P<br />

P<br />

t L<br />

L<br />

R<br />

Fig. 3 Piece of the characteristic mesh<br />

x


The first source term on the right hand side of Eq. (2) is a function of space only. The<br />

nonlinear term in the second source term v v may be discretised as a geometric mean between<br />

the old and new velocities<br />

v<br />

L<br />

vP<br />

on the C + and<br />

R<br />

vP<br />

v on the C – characteristic line section.<br />

By multiplying Eq. (2) with a = const., Eq.(5) by g = const., adding these equations and using<br />

the notations for the source terms J S and J R respectively we get<br />

( av) ∂( av) ∂( gy) ∂( gy) ∂( gy) ∂( av) + v + a + + v + a = a( J J )<br />

∂<br />

∂t<br />

∂x<br />

∂x<br />

This equation may be summarized for the C + characteristics as<br />

∂( gy + av)<br />

∂<br />

( )<br />

( gy + av)<br />

d<br />

+ v + a<br />

gy av a J<br />

∂t<br />

∂x<br />

= dt<br />

+ =<br />

Similarly for the C – characteristics subtracting the equations results in<br />

∂<br />

( gy − av)<br />

+<br />

∂t<br />

∂x<br />

∂x<br />

s −<br />

( ) ( J )<br />

s −<br />

∂<br />

( ) ( gy − av ) d<br />

v − a = ( gy − av) = − a( J J )<br />

R<br />

∂t<br />

∂x<br />

dt<br />

Here we have used the differential equations (6) of the characteristic lines. The discretized<br />

forms of the above ordinary differential equations along the two characteristic line segments<br />

are<br />

gy<br />

( )<br />

⎛<br />

2<br />

+ a<br />

⎞<br />

Lv<br />

− gy<br />

L<br />

+ aLvL<br />

⎜ z<br />

P<br />

− z<br />

L gn ⎟<br />

= aL<br />

⎜<br />

− g − vL<br />

v<br />

−<br />

−<br />

⎟<br />

, (7)<br />

4<br />

t<br />

P<br />

t<br />

L<br />

xP<br />

xL<br />

3<br />

⎝<br />

Rh,L<br />

⎠<br />

P<br />

s −<br />

R<br />

.<br />

.<br />

R<br />

.<br />

gy<br />

−<br />

P<br />

aRv<br />

t<br />

−<br />

P<br />

P<br />

( gy − a v )<br />

− t<br />

R<br />

R<br />

R<br />

R<br />

= −a<br />

R<br />

⎛<br />

⎜ z<br />

⎜<br />

− g<br />

x<br />

⎝<br />

P<br />

P<br />

− z<br />

− x<br />

R<br />

R<br />

gn<br />

−<br />

4<br />

R<br />

2<br />

3<br />

h,R<br />

v<br />

R<br />

⎞<br />

⎟<br />

v<br />

⎟<br />

, (8)<br />

⎠<br />

P<br />

The two bold parameters be computed step by step from the two equations (7)<br />

and (8). As it is clearly seen from Fig. 3 the grid points at the new time level are calculated<br />

through equation (6) by discretizing it<br />

xP<br />

− xL<br />

xP<br />

− xR<br />

xL<br />

+ xR<br />

vL<br />

+ vR<br />

+ aL<br />

− aR<br />

= vL<br />

+ aL<br />

and = vR<br />

− aR<br />

giving xP<br />

= + ∆t<br />

.<br />

∆t<br />

∆t<br />

2<br />

2<br />

vP yP<br />

xP<br />

− xL<br />

Now ∆t too can be computed as ∆ t = . It is advisable to keep the smallest value of<br />

vL<br />

+ aL<br />

∆t-s and interpolate the depths y, areas A and velocities v at this new time level onto the<br />

original equidistant space coordinates. Otherwise the naturally growing grid would be more<br />

and more deformed.<br />

and<br />

can<br />

Lax-Wendroff scheme<br />

This method was originally developed for computing gas dynamics (compressible) <strong>flows</strong>.<br />

Peter Lax is of Hungarian origin. It is a two-steps-in-time method (Hirsch [1991]). The<br />

intermediate time (∆t/2) is the half of the full time step (∆t).


P<br />

L<br />

R<br />

∆t<br />

∆t/2<br />

i-1<br />

i<br />

i+1<br />

∆x<br />

∆x<br />

Fig. 4 Grid points of the Lax-Wendroff scheme<br />

In the figure ∆x is the fixed distance between the main grid points. At the intermediate time<br />

level ∆t/2 wetted areas A are computed in points L and R using the continuity equation (1) in<br />

the conservation form. For A L the discretized form of (1) is<br />

Ai<br />

−1<br />

+ Ai<br />

AL<br />

−<br />

2 vi<br />

Ai<br />

− vi−<br />

1Ai<br />

−1<br />

+<br />

= 0<br />

∆t<br />

∆x<br />

2<br />

from which<br />

Ai<br />

−1<br />

+ Ai<br />

∆t<br />

vi<br />

Ai<br />

− vi−<br />

1Ai<br />

−1<br />

AL<br />

= −<br />

,<br />

2 2 ∆x<br />

A R is computed in a similar way.<br />

Ai<br />

+ Ai<br />

+ 1 ∆t<br />

vi+<br />

1Ai<br />

+ 1<br />

− vi<br />

Ai<br />

AR<br />

= −<br />

.<br />

2 2 ∆x<br />

We see that the first step is an explicit scheme forward in time and central in space.<br />

To complete the time step one will need y L and y R too. These values may me received in case<br />

of a known <strong>channel</strong> shape, e.g. a circle through a purely geometric way or using the equation<br />

∂A<br />

∂y<br />

of state (4). The time derivative of the area is then = B and this can be substituted into<br />

∂t<br />

∂t<br />

Eq. (1) giving<br />

yi−<br />

1<br />

+ yi<br />

y −<br />

B<br />

−1<br />

+ B<br />

L<br />

i i 2 vi<br />

Ai<br />

− vi−<br />

1Ai<br />

−1<br />

+<br />

= 0<br />

2 ∆t<br />

∆x<br />

2<br />

in case of point L and a similar formula results for the intermediate point R. These equations<br />

can again be rearranged for the depths y L and y R .<br />

Naturally, the velocities v L nd v R are computed from the conservation form (3) of the equation<br />

of motion.<br />

Ai<br />

−1vi<br />

−1<br />

+ Ai<br />

vi<br />

ALvL<br />

−<br />

2<br />

2<br />

2 A ( ) ( ) 1( 1 1<br />

) ( )<br />

i<br />

vi<br />

+ gyi<br />

− Ai<br />

1<br />

vi<br />

1<br />

gy A<br />

i 1 i<br />

J<br />

s,i<br />

− J<br />

R ,i<br />

+ Ai<br />

J<br />

s ,i<br />

− J<br />

− −<br />

+<br />

− − − −<br />

R ,i<br />

+<br />

=<br />

∆t<br />

∆x<br />

2<br />

2<br />

And a similar approximation of Eq. (3) holds for the section i – i+1 to give (Av) R = A R v R .


If one had computed (Av) L and (Av) R at the intermediate time level the velocities v L and v R<br />

could be received by a simple division by the already known A-values.<br />

The completing half time step is now – again for the area A P – straightforward using Eq. (1).<br />

This step is explicit and central difference scheme for both time and space.<br />

AP<br />

− Ai<br />

vR<br />

AR<br />

− vL<br />

AL<br />

+<br />

= 0 .<br />

∆t<br />

∆x<br />

After rearranging we have the new area A P :<br />

vR<br />

AR<br />

− vL<br />

AL<br />

AP<br />

= Ai<br />

− ∆t<br />

.<br />

∆x<br />

The water depth y P can again be computed from either the direct geometrical relation or by<br />

employing equation of state (4). Finally one uses again the equation of motion in conservation<br />

form to get (Av) P and then v P .<br />

It is well known that explicit schemes are not unconditionally stable. One has proved that the<br />

proper selection of the time step ∆t is<br />

⎪⎧<br />

∆x<br />

⎪⎫<br />

∆ t = min⎨<br />

⎬,<br />

i = 1,...,I<br />

.<br />

⎪⎩ ai<br />

+ vi<br />

⎪⎭<br />

Here I denotes the number of grid points in space. This step size ∆t is the same as suggested<br />

in case of the method of characteristics to interpolate at.<br />

Implicit method<br />

The time steps will decrease and are getting small if the <strong>channel</strong> is filled with water (for<br />

example in case of a tidal wave reaching the top of the <strong>channel</strong>) as the wave speed will<br />

increase very much and for stability the above defined ∆t mustn’t be exceeded. Implicit<br />

methods, however, allow much larger time steps helping to save computer time.<br />

The implicit method means that all water depths y j and velocities v j are computed<br />

simultaneously at the new time level. If there are I nodes along the <strong>channel</strong> then there are 2I<br />

unknowns. The space-time coordinate system is split into “final volumes” with dimensions ∆t<br />

and ∆x. The equations in conservation form (1) and (3) must be integrated over each of these<br />

I-1 finite volumes in space and in time. As there are two equations for each volume – one<br />

continuity and one equation of motion – there are 2(I-1) equations altogether. The two<br />

missing equations are prescribed values of depths and/or velocities at the two boundaries of<br />

the <strong>channel</strong> or some algebraic relations between these flow parameters.<br />

The finite volume is shown below<br />

t+∆t<br />

∆t<br />

t<br />

∆x<br />

x j x j+1<br />

Fig. 5 Finite volume of the implicit method


Let’s see first the integration of Eq. (1) over the above finite volume. The first term is<br />

integrated first over the time and then over the space. The second term is integrated first over<br />

the space then over the time. The time integral of the derivative of A with respect to time is<br />

the difference of the A values during the time increment, A(t + ∆t) – A(t). A similar rule is<br />

applied for the second term.<br />

0 =<br />

x j+<br />

1<br />

x j<br />

t+∆t<br />

∫ ∫<br />

t<br />

⎡∂A<br />

∂( vA ) ⎤<br />

⎢<br />

+ dtdx =<br />

t x ⎥<br />

⎣ ∂ ∂ ⎦<br />

=<br />

x j+<br />

1<br />

∫<br />

x j<br />

x<br />

j+<br />

1<br />

∫<br />

x j<br />

⎛<br />

⎜<br />

⎝<br />

t+∆t<br />

∫<br />

t<br />

∂A<br />

⎞<br />

dt ⎟dx<br />

+<br />

∂t<br />

⎠<br />

t+∆t<br />

( A( t + ∆t<br />

) − A( t )) dx +<br />

( vA ) −( vA ) )dt<br />

∫<br />

t<br />

t+∆t<br />

∫<br />

t<br />

j+<br />

1<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

x<br />

j+<br />

1<br />

∫<br />

x j<br />

∂( vA ) ⎞<br />

dx⎟dt<br />

=<br />

∂x<br />

⎟<br />

⎠<br />

Now Eq. (4) can be applied, A(t + ∆t) – A(t) = B(t)·∆y, where ∆y denotes the depth change<br />

during ∆t. The first integral in the second row can now be approximated by the integral mean<br />

low as<br />

B ∆ + ∆<br />

j<br />

y<br />

j<br />

B<br />

j+ 1<br />

y<br />

j+1<br />

∆x .<br />

2<br />

The second integral is approximated as ∆t times the arithmetic mean of the product (Av) over<br />

the time interval ∆t which can be written as<br />

( vA ) + ( vA ) ( vA ) + {( vA ) + A ∆v<br />

+ v ∆A}<br />

t<br />

t+∆t<br />

t<br />

t t t<br />

( vA ) ∆t<br />

=<br />

=<br />

=<br />

t+<br />

2 2<br />

2<br />

.<br />

∆v<br />

∆A<br />

∆v<br />

∆y<br />

= ( vA ) + A + v = ( vA ) + A + v B<br />

t t<br />

t<br />

t t<br />

t t<br />

2 2<br />

2 2<br />

In the last term again the change of the wetted area is expressed with the width of the surface<br />

times the change of depth.<br />

After substituting these approximations the final form of the discretized continuity equation is<br />

B<br />

B<br />

A t A t<br />

i<br />

j+<br />

1<br />

j∆<br />

j+<br />

1∆<br />

( ∆ x − v<br />

j∆t<br />

) ∆y<br />

j<br />

+ ( ∆x<br />

+ v<br />

j+<br />

1∆t<br />

) ∆y<br />

j+<br />

1<br />

− ∆v<br />

j<br />

+ ∆v<br />

j+<br />

1<br />

=<br />

j j j+<br />

1 j+<br />

2<br />

2<br />

2 2<br />

This is an inhomogeneous equation with four unknowns:<br />

• ∆v j velocity change at the upstream end of the finite volume<br />

• ∆v j+1 velocity change at the downstream end of the finite volume<br />

• ∆y j depth change at the upstream end of the finite volume<br />

• ∆y j+1 depth change at the downstream end of the finite volume.<br />

j<br />

( v A − v A ) ∆t<br />

The same unknowns appear in the integral of the equation of motion.<br />

Eq. (2) has an alternative conservation form containing partial derivatives only with respect to<br />

time or to space on the left hand side:<br />

2<br />

2<br />

∂v<br />

∂ ⎛ v ⎞ ∂z<br />

gn<br />

+ ⎜ gy ⎟ = −g<br />

− v v<br />

4<br />

t x<br />

+<br />

2<br />

(9)<br />

∂ ∂ ⎝ ⎠ ∂x<br />

3<br />

Rh<br />

The double integral of this equation on the final volume is<br />

1<br />

.


x<br />

j + 1<br />

x<br />

j<br />

=<br />

t+∆t<br />

∫ ∫<br />

x<br />

x<br />

t<br />

j + 1<br />

∫<br />

= −g<br />

2<br />

2<br />

⎡ v ⎤<br />

⎛ v ⎞<br />

( gy )<br />

x<br />

x<br />

⎢ ∂ +<br />

( gy )<br />

v<br />

⎥<br />

j + 1 t+∆t<br />

t+∆t<br />

⎜ j + 1 ∂ + ⎟<br />

∂<br />

⎛ ∂v<br />

⎞<br />

⎢ +<br />

2<br />

⎥dtdx<br />

= ⎜ dt ⎟dx<br />

+ ⎜ 2<br />

dx⎟dt<br />

t x<br />

t<br />

=<br />

⎢ ∂ ∂<br />

∫ ∫<br />

x<br />

x j ⎝ ∂<br />

∫ ⎜ ∫<br />

⎥<br />

t ⎠<br />

∂ ⎟<br />

t x j<br />

⎢<br />

⎜<br />

⎟<br />

⎣<br />

⎥⎦<br />

⎝<br />

⎠<br />

t+∆t<br />

2<br />

2<br />

⎛ v<br />

v ⎞<br />

dx + ∫<br />

⎜(<br />

gy )<br />

j<br />

( gy ) ⎟<br />

+<br />

+ 1<br />

− +<br />

j<br />

dt =<br />

t ⎝ 2<br />

2 ⎠<br />

⎛<br />

⎞<br />

⎜<br />

⎟ v + v v + v<br />

j+<br />

1 j ⎜ 4<br />

4 ⎟<br />

2 ⎜<br />

3<br />

3<br />

Rh<br />

R ⎟ 2 2<br />

⎝ j h j+<br />

1 ⎠<br />

( v( t + ∆t<br />

) − v( t ))<br />

j<br />

2<br />

2<br />

1 gn gn<br />

j j+<br />

1 j j+<br />

1<br />

( z − z ) ⋅ ∆t<br />

− + ⋅ ⋅ ⋅ ∆x<br />

⋅ ∆t<br />

The right hand side has already been approximated and integrated. The second row of the<br />

above equation still contains definite integrals. Again they can be approximated by the<br />

integral mean value rule.<br />

x j + 1<br />

x j + 1<br />

∆v<br />

j<br />

+ ∆v<br />

j+<br />

1<br />

For example ∫ ( v( t + ∆t<br />

) − v( t )) dx = ∫ ∆vdx<br />

=<br />

∆x<br />

.<br />

2<br />

x j<br />

One has to notice that ∆v j , ∆y j appears not only in the equations of the finite volume (j; j+1)<br />

but also in that of (j-1; j).<br />

Finally together with the boundary conditions the number of equations is just the same as the<br />

number of unknowns. Through an appropriate ordering of the equations it can be reached that<br />

all nonzero coefficients stand in the main diagonal and the two lower and upper neighbouring<br />

diagonals of the matrix M of the linear equation system. Such a matrix is called<br />

pentadiagonal. There are efficient separation methods (M = L·U) for inverting this type of a<br />

matrix; L denotes a lower triangular matrix and U is an upper triangular matrix. They can be<br />

inverted very easily.<br />

x j

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!