28.04.2014 Views

The Riemann Integral

The Riemann Integral

The Riemann Integral

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

48 1. <strong>The</strong> <strong>Riemann</strong> <strong>Integral</strong><br />

Principal value integrals arise frequently in complex analysis, harmonic analysis,<br />

and a variety of applications.<br />

Example 1.83. Consider the exponential integral function Ei given in Example<br />

1.60,<br />

∫ x<br />

e t<br />

Ei(x) =<br />

−∞ t dt.<br />

Ifx < 0, the integrandis continuous for−∞ < t ≤ x, and the integralis interpreted<br />

as an improper integral,<br />

∫ x<br />

e t ∫ x<br />

e t<br />

dt = lim<br />

t r→∞<br />

−r t dt.<br />

∞<br />

This improper integral converges absolutely by comparison with e t , since<br />

e t<br />

∣ t ∣ ≤ et for −∞ < t ≤ −1,<br />

and<br />

∫ −1<br />

−∞<br />

e t dt = lim<br />

r→∞<br />

∫ −1<br />

−r<br />

e t dt = 1 e .<br />

If x > 0, then the integrand has a non-integrable singularity at t = 0, and we<br />

interpret it as a principal value integral. We write<br />

∫ x<br />

−∞<br />

e t<br />

t dt = ∫ −1<br />

−∞<br />

e t<br />

t dt+ ∫ x<br />

−1<br />

e t<br />

t dt.<br />

<strong>The</strong> first integral is interpreted as an improper integral as before. <strong>The</strong> second<br />

integral is interpreted as a principal value integral<br />

∫ x<br />

e t (∫ −ǫ<br />

e t ∫ x<br />

p.v. dt = lim<br />

−1 t ǫ→0 + −1 t dt+ e t )<br />

ǫ t dt .<br />

This principal value integral converges, since<br />

p.v.<br />

∫ x<br />

−1<br />

e t<br />

t dt = ∫ x<br />

−1<br />

e t −1<br />

t<br />

dt+p.v.<br />

∫ x<br />

−1<br />

∫<br />

1 x<br />

t dt =<br />

−1<br />

e t −1<br />

t<br />

dt+lnx.<br />

<strong>The</strong> first integral makes sense as a <strong>Riemann</strong> integral since the integrand has a<br />

removable singularity at t = 0, with<br />

( e t )<br />

−1<br />

lim = 1,<br />

t→0 t<br />

so it extends to a continuous function on [−1,x].<br />

Finally, if x = 0, then the integrand is unbounded at the left endpoint t =<br />

0. <strong>The</strong> corresponding improper or principal value integral diverges, and Ei(0) is<br />

undefined.<br />

Example 1.84. Let f : R → R and assume, for simplicity, that f has compact<br />

support, meaning that f = 0 outside a compact interval [−r,r]. If f is integrable,<br />

we define the Hilbert transform Hf : R → R of f by the principal value integral<br />

Hf(x) = 1 π p.v. ∫ ∞<br />

−∞<br />

f(t)<br />

x−t dt = 1 (∫ x−ǫ<br />

π lim<br />

ǫ→0 + −∞<br />

∫<br />

f(t) ∞<br />

x−t dt+<br />

x+ǫ<br />

f(t)<br />

x−t dt )<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!