28.04.2014 Views

Mock-modular forms of weight one - UCLA Department of Mathematics

Mock-modular forms of weight one - UCLA Department of Mathematics

Mock-modular forms of weight one - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

50 W. DUKE AND Y. LI<br />

To treat both cases simultaneously, we can write<br />

⎛<br />

⎞<br />

∑<br />

g s (τ A + ɛ, τ Q ) = ⎝ ∑<br />

g s (τ A + ɛ, τ Q ) ⎠ − 1C 2 f d<br />

g s (τ A + ɛ, τ A )<br />

Q∈Q −d<br />

Q∈Q −d<br />

disc(τ Q )≠−p<br />

=<br />

⎛<br />

⎝<br />

∑<br />

Q∈Q −d /Γ<br />

⎞<br />

G s (τ A + ɛ, τ Q ) ⎠ − 1C 2 f d<br />

g s (τ A + ɛ, τ A ),<br />

where G s (τ 1 , τ 2 ) is the automorphic Green’s function defined in (56). After substituting this<br />

into equation (109), it becomes<br />

⎛<br />

⎞<br />

a(0, ψ)H(d)<br />

∑ ∑<br />

a(d, ψ) − =(−2) lim ⎝lim ψ 2 (A) G s (τ A + ɛ, τ Q ) ⎠ +<br />

H(0)<br />

ɛ→0 s→1<br />

A∈Cl(F ) Q∈Q −d /Γ<br />

(109)<br />

⎛<br />

⎞<br />

C fd lim ⎝ ∑<br />

ψ 2 (A)g 1 (τ A + ɛ, τ A ) ⎠ .<br />

ɛ→0<br />

A∈Cl(F )<br />

The first summand above can be evaluated using the identity (58). Substituting τ 1 = τ A +ɛ,<br />

τ 2 = τ Q into equation (58) and summing them together over A ∈ Cl(F ) and Q ∈ Q −d /Γ with<br />

coefficient ψ 2 (A) gives us<br />

⎛<br />

⎞<br />

∑<br />

ψ 2 (A) log |Ψ fd (τ A + ɛ)| 2 = lim ⎝ ∑ ∑<br />

ψ 2 (A) G s (τ A + ɛ, τ Q ) + 4πE(τ A + ɛ, s) ⎠ .<br />

s→1<br />

A<br />

A<br />

By (49), we have<br />

⎛<br />

lim ⎝ ∑<br />

s→1<br />

A<br />

ψ 2 (A)<br />

So the first summand is<br />

⎛<br />

−2 ⎝lim<br />

∑<br />

Q∈Q −d /Γ<br />

∑<br />

ɛ→0<br />

A∈Cl(F )<br />

⎞<br />

Q∈Q −d /Γ<br />

4πE(τ A , s) ⎠ = −24H(d) ∑ A<br />

a(0, ψ)H(d)<br />

= −<br />

2H(0)<br />

ψ 2 (A) log |Ψ fd (τ A + ɛ)| 2 ⎞<br />

(<br />

1 + 4y2<br />

⎠ −<br />

ψ 2 (A) log ∣ ∣ √ y A η 2 (τ A ) ∣ ∣<br />

a(0, ψ)H(d)<br />

.<br />

H(0)<br />

)<br />

Substitute g 1 (τ + ɛ, τ) = − log with τ = τ<br />

ɛ 2 A into the second summand, we obtain<br />

⎛<br />

⎞<br />

a(0, ψ)H(d)<br />

∑<br />

a(d, ψ) − = − 2 ⎝lim ψ 2 (A) log |Ψ fd (τ A + ɛ)| 2 ⎠<br />

a(0, ψ)H(d)<br />

−<br />

H(0)<br />

ɛ→0<br />

H(0)<br />

− 2C fd<br />

A∈Cl(F )<br />

∑<br />

A∈Cl(F )<br />

ψ 2 (A) log |y A |.<br />

After canceling the term − a(0,ψ)H(d)<br />

H(0)<br />

, equation (109) becomes equation (102) for f = f d , d > 0.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!