28.04.2014 Views

Mock-modular forms of weight one - UCLA Department of Mathematics

Mock-modular forms of weight one - UCLA Department of Mathematics

Mock-modular forms of weight one - UCLA Department of Mathematics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MOCK-MODULAR FORMS OF WEIGHT ONE 51<br />

We can now easily deduce Theorem 1.2. It is convenient to give a slightly more general<br />

version stated in terms <strong>of</strong> theta series and quadratic <strong>forms</strong>.<br />

Corollary 9.3. Let p be a prime number congruent to 3 modulo 4, and −d a discriminant<br />

not <strong>of</strong> the form −pm 2 for any integer m. For a class B ∈ Cl(F ), suppose ˜ϑ B 2(z) =<br />

∑<br />

n∈Z r+ B<br />

(n)q n ∈ M − 2 1 (p) has shadow ϑ B 2(z) and ord ∞ ( ˜ϑ B 2) > −p/4. Then<br />

∣<br />

(110) log<br />

∣<br />

∏<br />

q∈Q −d /Γ<br />

(j(τ B ) − j(τ q )) 1/wq ∣ ∣∣∣∣∣<br />

= − 1 4<br />

∑<br />

Remark. When −d is fundamental, w d = 2w q for all q ∈ Q −d .<br />

k∈Z<br />

δ(k) r + B 2 ( pd−k2<br />

4<br />

).<br />

Pro<strong>of</strong>. Let f(z) = f d (z) with d not <strong>of</strong> the form pm 2 . Using the Borcherds lift <strong>of</strong> f d (z) in (99),<br />

the right hand side <strong>of</strong> (102) can be rewritten as<br />

∣<br />

−4<br />

∑<br />

∏<br />

∣∣∣∣∣<br />

ψ 2 (A) log<br />

(j(τ A ) − j(τ q )) 1/wq .<br />

∣<br />

A∈Cl(F )<br />

q∈Q −d /Γ<br />

For each non-trivial character ψ, choose ˜g ψ (z) ∈ M − 1 (p) having shadow g ψ (z) and r + ψ (n) = 0<br />

for all n ≤ −p/4. For these ˜g ψ (z), equation (101) becomes<br />

〈f lift,θ<br />

d<br />

, g ψ 〉 reg = ∑ ( ) pd − k<br />

r + 2<br />

ψ<br />

δ(k).<br />

4<br />

k∈Z<br />

Combining these two together and dividing both sides by -4, we have<br />

∣<br />

∑<br />

( ) pd − k<br />

(111) − 1 r + 2<br />

4 ψ<br />

δ(k) =<br />

∑<br />

∣∣∣∣∣ ∏<br />

ψ 2 (A) log<br />

4<br />

(j(A) − j(τ q )) 1/wq ,<br />

∣<br />

k∈Z<br />

A∈Cl(F )<br />

which is precisely equation (15) when −d is fundamental.<br />

Consider the mock-<strong>modular</strong> form ˜F (z) ∈ M − 1 (p) defined by<br />

⎛<br />

˜F (z) := 1<br />

H(p)<br />

⎜<br />

⎝ E+ 1 (z) +<br />

∑<br />

ψ:Cl(F )→C ×<br />

ψ non-trivial<br />

q∈Q −d /Γ<br />

⎞<br />

ψ(B −2 )˜g ψ (z) ⎟<br />

⎠ − ˜ϑ B 2(z).<br />

∑<br />

Since ϑ B 2(z) = 1<br />

H(p) ψ ψ(B−2 )g ψ (z), ˜F (z) has shadow F (z) = 0, hence is <strong>modular</strong>. Also, it<br />

has Fourier expansion in the form<br />

˜F (z) =<br />

∑<br />

c + (n)q n .<br />

From the pro<strong>of</strong> <strong>of</strong> Lemma 9.2, we know that<br />

∑ (<br />

c +<br />

k∈Z<br />

pd−k 2<br />

4<br />

n>−p/4<br />

χ p(n)≠1<br />

)<br />

δ(k) = 〈f lift,θ<br />

d<br />

, F 〉 reg = 0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!