28.04.2014 Views

Assessing Summertime Urban Energy Consumption in a ... - MMM

Assessing Summertime Urban Energy Consumption in a ... - MMM

Assessing Summertime Urban Energy Consumption in a ... - MMM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Assess<strong>in</strong>g</strong> <strong>Summertime</strong> <strong>Urban</strong><br />

<strong>Energy</strong> <strong>Consumption</strong> <strong>in</strong> a<br />

Semiarid Environment:<br />

WRF(BEP+BEM)<br />

F. Salamanca 1 , M. Georgescu 1,2 , A. Mahalov 1 , M. Moustaoui 1 ,<br />

M. Wang 1 , and B. M. Svoma 2<br />

1<br />

School of Mathematical and Statistical Sciences, Global Institute of Susta<strong>in</strong>ability<br />

2<br />

School of Geographical Sciences and <strong>Urban</strong> Plann<strong>in</strong>g<br />

14 th Annual WRF User’s<br />

Workshop, 24-28 June


• Introduction<br />

Contents


Introduction<br />

• Why is important to assess <strong>Urban</strong> <strong>Energy</strong><br />

<strong>Consumption</strong>?<br />

ü Evaluation of energy demand is necessary <strong>in</strong> light<br />

of global projections of urban expansion.<br />

ü Of particular concern are rapidly expand<strong>in</strong>g urban<br />

areas <strong>in</strong> warm environments where AC energy<br />

demands are significant.


Introduction<br />

• How can we estimate <strong>Urban</strong> <strong>Energy</strong><br />

<strong>Consumption</strong>?<br />

Observations:<br />

Total load<br />

values from<br />

power<br />

company <br />

Meteorology<br />

( cool<strong>in</strong>g/heat<strong>in</strong>g<br />

consumption) <br />

Human behavior<br />

consumption


Introduction<br />

• How can we estimate <strong>Urban</strong> <strong>Energy</strong><br />

<strong>Consumption</strong>?<br />

ü Cool<strong>in</strong>g/Heat<strong>in</strong>g<br />

energy requirements<br />

can be predicted<br />

with the WRF<br />

model <strong>in</strong><br />

conjunction with<br />

build<strong>in</strong>g energy<br />

parameterizations.<br />

<strong>Urban</strong> <br />

morphology <br />

Air <br />

quality <br />

<strong>Energy</strong> <br />

consump7on <br />

<strong>Urban</strong> <br />

climate


Introduction<br />

• How can we estimate <strong>Urban</strong> <strong>Energy</strong><br />

<strong>Consumption</strong>?<br />

Observations:<br />

Total load<br />

values from<br />

power<br />

company <br />

Meteorology<br />

( cool<strong>in</strong>g/heat<strong>in</strong>g<br />

consumption) <br />

Human behavior<br />

consumption <br />

WRF<br />

(BEP+BEM)<br />

simulations


Contents<br />

• Introduction<br />

• Application area


Application Area


Application Area<br />

• We focus on the rapidly expand<strong>in</strong>g<br />

Phoenix Metropolitan Area (PMA).


Application Area<br />

• We focus on the rapidly expand<strong>in</strong>g<br />

Phoenix Metropolitan Area (PMA).<br />

• The expand<strong>in</strong>g built environment is<br />

expected to raise summertime<br />

temperatures considerably.


Application Area<br />

• We focus on the rapidly expand<strong>in</strong>g<br />

Phoenix Metropolitan Area (PMA).<br />

• The expand<strong>in</strong>g built environment is<br />

expected to raise summertime<br />

temperatures considerably.<br />

• Air Condition<strong>in</strong>g cool<strong>in</strong>g requirements<br />

are excessive <strong>in</strong> summer.


Contents<br />

• Introduction<br />

• Application Area<br />

• Simulations


Simulations v The WRF (V3.4.1) simulations were<br />

performed with four two-way nested<br />

doma<strong>in</strong>s with a grid spac<strong>in</strong>g of 27, 9,<br />

3, and 1 km respectively. The<br />

number of vertical sigma pressure<br />

levels was 40 (14 levels <strong>in</strong> the lowest<br />

1.5 km).<br />

v The simulations were conducted with<br />

the NCEP F<strong>in</strong>al Analyses data<br />

(number ds083.2) cover<strong>in</strong>g a 10-day<br />

EWD period from 00 LT July 10 to<br />

23 LT July 19, 2009.<br />

v The US Geological Survey 30m 2006<br />

National Land Cover Data set was<br />

used to represent modern-day LULC<br />

with<strong>in</strong> the Noah-LSM for the urban<br />

doma<strong>in</strong>. Three different urban classes<br />

describes the morphology of the city:<br />

COI, HIR and LIR.<br />

v The build<strong>in</strong>g energy parameterization<br />

(BEP+BEM) was applied to the<br />

fraction of grid cells with built cover.


Simulations<br />

2m-Air Temperature ( 0 C)<br />

<strong>Urban</strong> Stations<br />

RMSE=1.698 0 C<br />

MAE =1.343 0 C<br />

Simulated <br />

Rural Stations<br />

RMSE=1.700 0 C<br />

MAE =1.305 0 C<br />

Observed


Contents<br />

• Introduction<br />

• Application Area<br />

• Simulations<br />

• Splitt<strong>in</strong>g the <strong>Energy</strong> <strong>Consumption</strong>


Splitt<strong>in</strong>g the <strong>Energy</strong> <strong>Consumption</strong><br />

v Observed total load values obta<strong>in</strong>ed from an electric<br />

utility company were split <strong>in</strong>to two parts, one l<strong>in</strong>ked to<br />

meteorology (AC consumption), and another to human<br />

behavior consumption (HBC).<br />

v To estimate the HBC two approaches were considered<br />

for March and November based on the assumption that<br />

heat<strong>in</strong>g/cool<strong>in</strong>g energy consumption for these months<br />

was small (ensemble of m<strong>in</strong>imum consumption days<br />

denoted as M1, M2, N1, and N2).


Splitt<strong>in</strong>g the <strong>Energy</strong> <strong>Consumption</strong><br />

v Observed total load values obta<strong>in</strong>ed from an electric<br />

utility company were split <strong>in</strong>to two parts, one l<strong>in</strong>ked to<br />

meteorology (AC consumption), and another to human<br />

behavior consumption (HBC).<br />

v To estimate the HBC two approaches were considered<br />

for March and November based on the assumption that<br />

heat<strong>in</strong>g/cool<strong>in</strong>g energy consumption for these months<br />

was small (ensemble of m<strong>in</strong>imum consumption days<br />

denoted as M1, M2, N1, and N2).


Contents<br />

• Introduction<br />

• Application Area<br />

• Simulations<br />

• Splitt<strong>in</strong>g the <strong>Energy</strong> <strong>Consumption</strong><br />

• Results


Ratio of observed AC consumption to total<br />

electric consumption<br />

Dur<strong>in</strong>g even<strong>in</strong>g hours<br />

the 65% of the total<br />

electric consumption<br />

is due to the use of the<br />

A C s y s t e m s . A C<br />

systems accounted for<br />

~ 53% averaged across<br />

the diurnal cycle.<br />

M1<br />

M2<br />

N1<br />

N2<br />

Normalized time of day<br />

t=0.25 sunrise<br />

t=0.75 sunset<br />

The time scale of<br />

the hourly loads<br />

was normalized to<br />

m<strong>in</strong>imize monthly<br />

variation.


Diurnal Mean AC <strong>Consumption</strong><br />

Park<strong>in</strong>g structures, home<br />

garages, etc are represented as<br />

air conditioned build<strong>in</strong>gs when<br />

these spaces are not really<br />

cooled.<br />

Assum<strong>in</strong>g 65% of <strong>in</strong>door volume<br />

i s c o o l e d f o r t h e P M A ,<br />

WRF(BEP+BEM)-simulated<br />

results are <strong>in</strong> excellent<br />

agreement with observational<br />

data.<br />

BEP+BEM (65%)<br />

M1<br />

M2<br />

N1<br />

N2


Non-dimensional AC consumption profiles<br />

BEP+BEM<br />

M1<br />

M2<br />

N1<br />

N2<br />

Diurnal evolution of<br />

observed and simulated<br />

AC consumption as a<br />

fraction of total AC<br />

consumption.<br />

The general shape of<br />

model-simulated nond<br />

i m e n s i o n a l A C<br />

consumption profiles<br />

w a s a p p a r e n t f o r<br />

different Extreme Heat<br />

Events <strong>in</strong> July.


2D-Diurnal Mean AC Electric <strong>Consumption</strong>


Contents<br />

• Introduction<br />

• Application Area<br />

• Simulations<br />

• Splitt<strong>in</strong>g the <strong>Energy</strong> <strong>Consumption</strong><br />

• Results<br />

• Conclusions


Conclusions<br />

v The hourly ratio of AC to total electric consumption<br />

accounted for 53% of diurnally averaged total electric<br />

demand, rang<strong>in</strong>g from 35% dur<strong>in</strong>g early morn<strong>in</strong>g to<br />

65% dur<strong>in</strong>g even<strong>in</strong>g hours.<br />

v WRF(BEP+BEM)-simulated non-dimensional AC<br />

consumption profiles compared favorably to diurnal<br />

observations <strong>in</strong> terms of both amplitude and tim<strong>in</strong>g.<br />

v Assum<strong>in</strong>g 65% of <strong>in</strong>door volume is cooled for the PMA,<br />

WRF(BEP+BEM)-simulated results are <strong>in</strong> excellent<br />

agreement with observational data.<br />

v The presented methodology establishes a new energy<br />

consumption-model<strong>in</strong>g framework that can be applied to<br />

any urban environment where the use of the AC systems<br />

is prevalent across the entire metropolitan area.


Simulations<br />

2m-Air Temperature ( 0 C)<br />

Daytime <strong>Urban</strong> Cool<strong>in</strong>g<br />

Nighttime <strong>Urban</strong> Heat Island


Simulations<br />

10m-W<strong>in</strong>d Speed (m/s) 10m-W<strong>in</strong>d Direction ( 0 )<br />

<strong>Urban</strong> Stations<br />

Rural Stations<br />

Observed <br />

Simulated


Splitt<strong>in</strong>g the <strong>Energy</strong> <strong>Consumption</strong> <br />

v For the first method we select the day with the m<strong>in</strong>imum<br />

total load (EC1) and the day with the m<strong>in</strong>imum hourly<br />

load range (EC2) (methods N1 and M1):<br />

HBC i<br />

=<br />

EC1 i + EC2 i<br />

2<br />

for all i =1,...,24<br />

v For the second method, the m<strong>in</strong>imum hourly load was<br />

selected for each hour of the day consider<strong>in</strong>g the entire<br />

month (methods N2 and M2):<br />

HBC i<br />

= m<strong>in</strong> j<br />

(EC ij<br />

)for all i =1,...,24;<br />

j =1,...,30 (November), 31(March)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!