23.03.2013 Views

Lessons on Orographic Precipitation from MAP - MMM

Lessons on Orographic Precipitation from MAP - MMM

Lessons on Orographic Precipitation from MAP - MMM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Less<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>Orographic</strong> Precipitati<strong>on</strong> <strong>from</strong> <strong>MAP</strong><br />

R. Rotunno<br />

NCAR<br />

<strong>MAP</strong> Objective<br />

R. A. Houze<br />

U. of Washingt<strong>on</strong><br />

“To improve the understanding of orographically<br />

influenced precipitati<strong>on</strong> events and related flooding<br />

episodes…” (<strong>MAP</strong> Design Proposal)


<strong>Orographic</strong> Precipitati<strong>on</strong><br />

• Large – Scale (Wind, Humidity, Stability)<br />

• Mesoscale dynamics of orographic air flow<br />

• Fine-scale air moti<strong>on</strong>s and microphysics<br />

Sawyer (1956, Weather) )


Dynamics:Stable Flow<br />

Weak Stability, No Blocking<br />

Str<strong>on</strong>g Stability, Blocking


Coalescence<br />

T > 0 deg C<br />

What microphysical processes can grow<br />

precipitati<strong>on</strong> particles quickly?<br />

Aggregati<strong>on</strong> Riming<br />

“Accreti<strong>on</strong>”<br />

T < 0 deg C


How can the airflow make the accreti<strong>on</strong><br />

processes more active?<br />

“Cellularity”<br />

Smith (1979)<br />

Cells due to c<strong>on</strong>vecti<strong>on</strong> or<br />

turbulence embedded in<br />

upslope cloud can<br />

accelerate particle growth<br />

by coalescence, riming, &<br />

aggregati<strong>on</strong><br />

Smith (1979))


Liquid water c<strong>on</strong>tent over the Cascade Mountains (Hobbs 1975)<br />

Trajectories of ice particles growing by depositi<strong>on</strong> and riming (Hobbs et al. 1973)<br />

Large particles<br />

Small<br />

particles<br />

Similar distributi<strong>on</strong><br />

found over the<br />

Sierra Nevada<br />

(Marwitz, 1987)


Dynamics: Unstable Flow<br />

•Str<strong>on</strong>g Updrafts<br />

•Cold Outflows<br />

•Moving Cells


Echo maximum<br />

locked to terrain with<br />

maximum intensity at<br />

low levels as a result<br />

of warm growth<br />

processes<br />

(coalescence)<br />

Colorado Rockies Big Thomps<strong>on</strong> Storm 1976<br />

Caracena et al. (1979)


<strong>MAP</strong><br />

Lago Maggiore Target Area<br />

Warm, Moist


Pre-SOP Results <strong>on</strong> Alpine Heavy Rain Events<br />

• Slow Moving, N-S El<strong>on</strong>gated Troughs<br />

• Ample Moisture<br />

• C<strong>on</strong>v. Inst. (Brig, Vais<strong>on</strong>-La-Romaine)<br />

• Stable Precip (Piedm<strong>on</strong>t)<br />

• Models <strong>Orographic</strong> Enhancement


Pre-SOP<br />

Piedm<strong>on</strong>t Flood<br />

1994<br />

00 Z 6 Nov 1994 Milan<br />

Nearly<br />

Moist<br />

Neutral<br />

Doswell et al. (1998)<br />

Buzzi et al. (1998)<br />

also Ferretti et al. (2000)<br />

C<strong>on</strong>trol: “Flow Over”<br />

No C<strong>on</strong>densati<strong>on</strong>: “Flow Around”


Pre-SOP<br />

Flow Over or Flow Around?<br />

Alps<br />

Latent Heating Weak Stability Flow Over<br />

Alps<br />

No Latent Heating Str<strong>on</strong>g Stability Flow Around


Pre-SOP<br />

Special Effects of Stability Variati<strong>on</strong><br />

Flow Over<br />

Alps<br />

Flow Around<br />

Weak Stability Str<strong>on</strong>g Stability<br />

Schneidereit and Schär (2000); Rotunno and Ferretti (2001)


Pre-SOP<br />

Special Effects of 3D Topography<br />

“C<strong>on</strong>cavity”<br />

Alps<br />

Schneidereit and Schär (2000); Rotunno and Ferretti (2001)


SOP Results<br />

• IOP2a Str<strong>on</strong>g C<strong>on</strong>vecti<strong>on</strong>/Ouflows<br />

• IOP2b Flow-Over Regime / Weak C<strong>on</strong>vecti<strong>on</strong><br />

Enhancement Mechanism Coalescence and<br />

Riming at Low Levels in Weak C<strong>on</strong>vective Cells<br />

• IOP8 Blocking / Stratiform Precip<br />

Enhancement Mechanism Turbulence in Shear<br />

Layer Accentuates Accreti<strong>on</strong>


IOP 2a – 17 September 1999<br />

A short, intense, isolated, c<strong>on</strong>vective event<br />

70 mm within 12 hours<br />

<strong>MAP</strong> target area<br />

Richard et al. (2003)


IOP 2a – 17 September 1999<br />

SIMULATION<br />

Richard et al. (2003, QJRMS)


RADAR<br />

IOP 2a – 17 September 1999<br />

SIMULATION<br />

ECMWF: OP. ANA 1999<br />

12 hour accumulated precipitati<strong>on</strong><br />

Richard et al. (2003)


Radar Retrieval<br />

(S-Pol)<br />

(x) hail + graupel<br />

(o) hail<br />

rain<br />

12 km<br />

IOP 2a – 17 September 1999<br />

100 km<br />

18:00 UT<br />

19:00 UT<br />

20:00 UT<br />

Simulati<strong>on</strong><br />

(Meso-NH)<br />

graupel<br />

hail<br />

rain<br />

Richard et al


Comparis<strong>on</strong> of IOP2b and IOP8<br />

Rotunno and Ferretti (2003, QJRMS)


“<strong>Orographic</strong> Effects <strong>on</strong> Rainfall in <strong>MAP</strong> Cases IOP2b and IOP8”<br />

Rotunno and Ferretti (2003, QJRMS)<br />

Trajectories passing through T at levels 1.5 (red), 2.25(blue) and 3.0 (purple) km<br />

Observati<strong>on</strong>s and MM5 Simulati<strong>on</strong>s <br />

IOP 2b<br />

Heavy Rain in Target Area<br />

Nearly Neutral Flow Over Alps<br />

Later Period of Deep C<strong>on</strong>vecti<strong>on</strong><br />

IOP 8<br />

Light Rain in Target Area<br />

Low-Level Flow Blocked in Po Valley<br />

No Period of Deep C<strong>on</strong>vecti<strong>on</strong>


Height (km)<br />

1 2 3 4 5 6<br />

1 2 3 4 5 6<br />

Precipitati<strong>on</strong> Enhancement Mechanism in IOP2b<br />

REFLECTIVITY<br />

1 2 3 4 5 63h MEAN S-Pol RADAR DATA<br />

FREQUENCY OCCURRENCE<br />

Dry snow (50 %)<br />

Wet snow (30 %)<br />

Graupel - Shaded<br />

dBZ<br />

54<br />

44<br />

34<br />

24<br />

14<br />

4<br />

-6<br />

-16<br />

-26<br />

m/s<br />

RADIAL VELOCITY 36<br />

30<br />

24<br />

18<br />

12<br />

6<br />

0<br />

-6<br />

-12<br />

%<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

120 90 60 30 0<br />

Distance (km) <strong>from</strong> S-Pol radar<br />

snow<br />

0ºC<br />

rain<br />

Slightly<br />

unstable<br />

air<br />

cloud droplets<br />

rain growing<br />

by coalescence<br />

TERRAIN<br />

graupel growing<br />

by riming<br />

Medina and Houze (2003) &<br />

Houze and Medina (2005)


1 2 3 4 5 6<br />

Height (km)<br />

1 2 3 4 5 6<br />

Precipitati<strong>on</strong> Enhancement Mechanism in IOP 8<br />

REFLECTIVITY<br />

1 2 3 4 5 63h MEAN S-Pol RADAR DATA<br />

SPOL P3 RADIAL VELOCITY<br />

dBZ<br />

54<br />

44<br />

34<br />

24<br />

14<br />

4<br />

-6<br />

-16<br />

-26<br />

m/s<br />

36<br />

30<br />

24<br />

18<br />

12<br />

6<br />

0<br />

-6<br />

-12<br />

%<br />

FREQUENCY OCCURRENCE 16<br />

Dry snow (50 %)<br />

Wet snow (30 %)<br />

Graupel and/or<br />

dry aggregates<br />

- Shaded<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

120 90 60 30 0<br />

Distance (km) <strong>from</strong> S-Pol radar<br />

Height (km)<br />

0 2 4 6 8 10<br />

VERTICAL POINTING RADAR<br />

RADIAL VELOCITY<br />

Updraft cells occur in shear layer<br />

0600 0800 1000 1200<br />

Time (UTC) 21 Oct<br />

This structure leads to a sec<strong>on</strong>d<br />

paradigm for fine-scale moti<strong>on</strong>s<br />

& microphysics in stable flow<br />

over the barrier


More <strong>on</strong> IOP2b…


Cellularity in <strong>Orographic</strong> Flow<br />

Smith et al. (2003)<br />

Also <br />

Georgis et al. (2003);<br />

Asencio et al. (2003)


Three Views of Mesoscale Airflow Patterns in IOP2b<br />

Air-Mass Scrambling<br />

C<strong>on</strong>tradicts Classic<br />

2D C<strong>on</strong>ceptual Model<br />

(Smith et al. 2003)<br />

Precipitati<strong>on</strong> Intensity<br />

~ Strength of Low-<br />

Level Easterlies<br />

(Asencio et al. 2003)<br />

C<strong>on</strong>vergence of Easterlies<br />

with Southerlies Important<br />

(Rotunno and Ferretti<br />

2003; also Georgis et al.<br />

2003)


More <strong>on</strong> IOP8…


Bousquet and Smull (2003, QJRMS)


Down-valley flow under persistent upslope precipitati<strong>on</strong><br />

Steiner et al. (QJ 2003)<br />

Bousquet & Smull<br />

(QJ 2003; JAM 2003)<br />

IOP8


<str<strong>on</strong>g>Less<strong>on</strong>s</str<strong>on</strong>g>


Miglietta and<br />

Buzzi (2004)<br />

Rakovec, Gaberšek<br />

and Vrhovec (2004)<br />

3D<br />

Mesoscale<br />

Topographic<br />

Effects<br />

Matter<br />

Gheusi and Davies (2004)


Moist Stability Matters<br />

Fundamental N<strong>on</strong>linearity<br />

g<br />

δ<br />

Upward Displacement:<br />

Parcel Remains<br />

Saturated<br />

Downward Displacement:<br />

Parcel May Desaturate


46.0<br />

Latitude ( °N )<br />

45.0<br />

Small-Scale Topo Effects Matter<br />

Observati<strong>on</strong>s, Oreg<strong>on</strong> Idealized Flow / Secti<strong>on</strong> of Real Topo<br />

-124.25 L<strong>on</strong>gitude ( °E ) -122.75<br />

U = 10m<br />

/<br />

s<br />

Weak Instability<br />

Courtesy D. Kirshbaum<br />

also Cosma et al. (2002)


Fine-scale air moti<strong>on</strong>s & microphysics matter<br />

snow<br />

0ºC<br />

rain<br />

Slightly<br />

unstable<br />

air<br />

0°C<br />

cloud droplets<br />

SNOW<br />

rain growing<br />

by coalescence<br />

TERRAIN<br />

graupel growing<br />

by riming<br />

RAIN Shear layer and turbulent cells<br />

2 <strong>MAP</strong> Paradigms<br />

need to be tested<br />

Unstable case<br />

Stable case<br />

2008 SHARE<br />

is an opportunity

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!