15.05.2014 Views

Aguablanca Dike along the Cauca River, Cali, Colombia

Aguablanca Dike along the Cauca River, Cali, Colombia

Aguablanca Dike along the Cauca River, Cali, Colombia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong><br />

<strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

Diagnosis and recommendations<br />

Final<br />

NL Agency<br />

The Ne<strong>the</strong>rlands Ministry of Foreign Affairs / <strong>Colombia</strong> Transition Facility<br />

January 2013


<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong><br />

<strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

Diagnosis and recommendations<br />

Final<br />

file : BB2984<br />

registration number : LW-AF20130064<br />

version : final<br />

classification :<br />

NL Agency<br />

The Ne<strong>the</strong>rlands Ministry of Foreign Affairs / <strong>Colombia</strong> Transition Facility<br />

January 2013<br />

© HaskoningDHV Nederland B.V. No part of <strong>the</strong>se specifications/printed matter may be reproduced and/or published by print, photocopy, microfilm or by any o<strong>the</strong>r means, without <strong>the</strong><br />

prior written permission of HaskoningDHV Nederland B.V..; nor may <strong>the</strong>y be used, without such permission, for any purposes o<strong>the</strong>r than that for which <strong>the</strong>y were produced. The quality<br />

management system of HaskoningDHV Nederland B.V.has been approved against ISO 9001.


Royal HaskoningDHV<br />

CONTENTS<br />

PAGE<br />

EXECUTIVE SUMMARY 3<br />

1 INTRODUCTION 7<br />

1.1 Extreme rainfall in <strong>Colombia</strong> has led to alarm for possible dike failure 7<br />

1.2 Scope of work 8<br />

1.3 Project team 8<br />

2 HYDROLOGY AND HYDRODYNAMIC MODELLING 9<br />

2.1 Discharge of Rio <strong>Cauca</strong> under influence of Salvajina reservoir 9<br />

2.2 Analysis of extremes leads to lower expected maxima than previously calculated 10<br />

2.3 Identification of dike locations with critical elevation level 12<br />

2.4 Flood modelling results 12<br />

3 FLOOD RISK MANAGEMENT: COST OPTIMIZATION 13<br />

4 IMPROVEMENT OF DIKE SAFETY, IMMEDIATE AND SHORT-TERM STRATEGY 15<br />

4.1 Analysis of present conditions 15<br />

4.1.1 <strong>Dike</strong> crest level of <strong>the</strong> main dike 15<br />

4.1.2 <strong>Dike</strong> conditions of Canal Sur and Rio <strong>Cali</strong> 17<br />

4.1.3 Water levels and river bed management 17<br />

4.1.4 Freeboard discussion 17<br />

4.1.5 <strong>Dike</strong> strength 17<br />

4.2 Immediate and short term strategy 18<br />

4.2.1 Immediate actions 18<br />

4.2.2 Short-term strategy 0 19<br />

5 LONG-TERM APPROACH FOR FLOOD PROTECTION CALI 22<br />

5.1 Anticipate on impact of economic and regional developments and possible climate change effects22<br />

5.1.1 Spatial developments 22<br />

5.1.2 Economic development 22<br />

5.1.3 Climate change 23<br />

5.2 Ongoing and increased need for flood protection 23<br />

5.2.1 Risk based approach for flood protection for <strong>Cali</strong> 23<br />

5.2.2 Combination of flood risk and earthquake risk 23<br />

5.3 Strategies for maintaining and improving flood protection 24<br />

5.3.1 Flood protection level 24<br />

5.3.2 Strategy 1: Controlled retention upstream of <strong>Cali</strong> and on east bank 25<br />

5.3.3 Strategy 2: Total reliance on Jarillón <strong>Aguablanca</strong> 25<br />

5.3.4 Choice of strategy 26<br />

6 GOVERNANCE AND WATER AUTHORITY 27<br />

7 REFERENCES 28<br />

ABBREVIATIONS 30<br />

8 COLOPHON 31<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

APPENDICES<br />

1 Hydrology<br />

2 Longitudinal dike profiles and hydrodynamic modelling results<br />

3 Hydrodynamic modelling, methodology<br />

4 Flood risk management methodology<br />

5 Field assessment of <strong>the</strong> conditions of <strong>the</strong> <strong>Aguablanca</strong> dike<br />

6 Structural stability and analysis of failure mechanisms<br />

7 Inspection plan<br />

8 Water governance and regional water authorities in <strong>the</strong> Ne<strong>the</strong>rlands (partially derived<br />

from [14])<br />

9 Ownership of <strong>the</strong> <strong>Aguablanca</strong> dike<br />

10 Table of damage and investment costs<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

EXECUTIVE SUMMARY<br />

Commissioned by Agency NL 1 , Royal HaskoningDHV in collaboration with <strong>Colombia</strong>n consultant<br />

Corporación OSSO, and supported with input by Dutch Waterboard Aa and Maas has made an analysis of<br />

<strong>the</strong> status of <strong>the</strong> <strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong> near <strong>Cali</strong>, and elaborated recommendations for a<br />

short and long term strategy to improve its safety level.<br />

Our main conclusions are <strong>the</strong> following:<br />

1. The <strong>Aguablanca</strong> <strong>Dike</strong> is basically a good dike, but enforcement and maintenance of <strong>the</strong> dike and river<br />

profile over <strong>the</strong> past 50 years has been insufficient. This lack of maintenance leads to a number of<br />

immediate and short term measures to be taken.<br />

2. The protected area has developed over 50 years from an agricultural area into a densely populated<br />

urban area. This leads to <strong>the</strong> necessity for an increase in flood protection level as a long term<br />

objective.<br />

3. Legally, at least until October 2012, CVC has been owner of <strong>the</strong> dike since its construction, but<br />

responsibility for maintenance and control of <strong>the</strong> dike are not transparent.<br />

Ad. 1<br />

The present state of river flood protection of <strong>Cali</strong> has fallen below <strong>the</strong> standard of <strong>the</strong> original dike design<br />

of <strong>the</strong> <strong>Aguablanca</strong> <strong>Dike</strong> in 1958 (T=100 + 1.5 m freeboard). With relatively limited effort this original flood<br />

protection can be restored. The short-term strategy 0 (reference strategy) is aimed at this original<br />

protection.<br />

A serious point of attention is <strong>the</strong> lack of maintenance of <strong>the</strong> main pumping station in <strong>the</strong> dike body.<br />

Immediate action is required to repair a number of <strong>the</strong> outer valves that are essential for flood prevention,<br />

before a threatening situation may occur. EMCALI is owner of this pumping station.<br />

Ad. 2<br />

Since 1958, 700,000 to 800,000 people have come to live and work in <strong>the</strong> flood prone area of <strong>Cali</strong>.<br />

Therefore <strong>the</strong> flood protection of <strong>the</strong>se people and <strong>the</strong>re economic activities needs to increase. In o<strong>the</strong>r<br />

words, <strong>the</strong> Jarillón <strong>Aguablanca</strong> needs to be raised and streng<strong>the</strong>ned.<br />

Ad. 3<br />

We have verified that, at least until recently, CVC has been <strong>the</strong> legal owner of <strong>the</strong> dike (see Annex 9).<br />

During presentation of <strong>the</strong> results of this study on December 7, 2012, it came to our attention that CVC<br />

may have signed away its ownership to <strong>the</strong> City of <strong>Cali</strong> during October or November 2012, but this has not<br />

been verified through documents. Anyhow, more organisations are involved in decisions regarding<br />

constructions on and near <strong>the</strong> dike. In this situation it is not transparent which organisation has ultimate<br />

responsibility for <strong>the</strong> dike, leading to a questionable lack of maintenance and increase of inundation risk.<br />

To have a solid defence against inundation from <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, it is a prerequisite to have only one<br />

organisation ultimately responsible for control of <strong>the</strong> dike. Over <strong>the</strong> years, <strong>the</strong> involvement of CVC in<br />

maintenance and control of <strong>the</strong> dike has diminished. Various structures in <strong>the</strong> dike body belong to o<strong>the</strong>r<br />

1 Financed through <strong>the</strong> Transition Facility which is supported by <strong>the</strong> Ministry of Economic Affairs,<br />

Agriculture and Innovation and <strong>the</strong> Ministry of Foreign Affairs<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

entities like EMCALI and DAGMA. The different authorities lack communication on important issues of<br />

design of new constructions and maintenance issues.<br />

We have defined an action plan including technical and non-technical issuesactions to be taken and<br />

strategies to follow.<br />

Tabel 1<br />

Urgent:<br />

Action plan<br />

1. Rehabilitation of pumping station<br />

The condition of <strong>the</strong> closing systems of <strong>the</strong> pumping station Paso del Comercio is alarming. They are<br />

ei<strong>the</strong>r out of order or malfunctioning. Immediate action to repair broken or malfunctioning valves is<br />

required to ensure maximum flood protection. This action cannot be postponed 2 .<br />

2. Rehabilitate 6 critical points in <strong>the</strong> <strong>Aguablanca</strong> dike and low points in <strong>the</strong> dike of Canal Interceptor Sur<br />

Where <strong>the</strong> dike crest level is <strong>the</strong> most important parameter in flood protection, immediate action is<br />

recommended to rehabilitate <strong>the</strong> lowest points in <strong>the</strong> <strong>Aguablanca</strong> dike :<br />

1 km 128+581<br />

2 km 134+581<br />

3 km 136+081<br />

4 km 140+781<br />

5 km 142+281<br />

6 km 143+281<br />

In addition it is recommended to rehabilitate <strong>the</strong> low points of <strong>the</strong> dike of Canal Interceptor Sur, which<br />

have been identified in <strong>the</strong> longitudinal profile of Annex 2.<br />

3. Remove ant nests and fill <strong>the</strong> cavities caused by <strong>the</strong>se nests<br />

The cavities of ant nests (hormiga arriera) need to be filled. Shallow nest cavities can easily be repaired<br />

by digging out and applying new clay filling. Deeper nests should be filled, preferably with bentonite.<br />

Short term:<br />

1. Raise <strong>the</strong> security level of <strong>the</strong> dike<br />

We recommend a security level for a return period of 500 years with a freeboard of 0.5 m. The extra costs<br />

for a safety level with a return period of 500 years as compared to 100 years are relatively small.<br />

2. Resettlement of house on <strong>the</strong> dike and in <strong>the</strong> berm of <strong>the</strong> dike<br />

Approximately 15000 families are living on <strong>the</strong> dike and berm which need to be resettled.<br />

3. Install by law one entity with ultimate responsibility for <strong>the</strong> dike<br />

This entity should have responsibility for maintenance, inspection and supervision of all construction in<br />

<strong>the</strong> dike, and have <strong>the</strong> technical and financial resources to perform its task properly.<br />

4. Introduce a maintenance system<br />

Develop a system for maintenance of <strong>the</strong> dike, including norms for interventions, constructions, housing,<br />

2 In a letter to Dr. M. Guerrero, <strong>the</strong> Mayor of <strong>Cali</strong>, dated December 17, 2012, EMCALI has confirmed that it<br />

is envisaged to repair <strong>the</strong> damaged valves in January 2013<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

industries and a plan for periodic inspection.<br />

5. Evaluate existing plans for dike re-enforcement<br />

There are existing plans by EMCALI for dike re-enforcement around <strong>the</strong> drinking water plant. We<br />

recommend an evaluation of <strong>the</strong>se plans in cooperation with CVC and investigate alternatives in order to<br />

reduce costs.<br />

6. Control fur<strong>the</strong>r spreading of <strong>the</strong> ant species “Arriera”<br />

Regular inspection should be aimed at eradication of <strong>the</strong> ants. Ant nests should be dug out as soon as<br />

observed.<br />

7. Action for river bed and flood plain maintenance and construction debris control<br />

Enforcement of river bed maintenance needs to be improved. This is on one hand predominantly a<br />

government issue, on <strong>the</strong> o<strong>the</strong>r hand economical incentives and technical possibilities can help.<br />

Especially <strong>the</strong> dumping of construction debris needs to be stopped.<br />

8. Review <strong>the</strong> operation rules of <strong>the</strong> Salvajina reservoir<br />

We recommend a review of <strong>the</strong> operation rules to attempt a fur<strong>the</strong>r optimization of compliance with <strong>the</strong><br />

different objectives of <strong>the</strong> reservoir, i.e. reduce peak discharge, supply a certain minimum discharge for<br />

environmental purposes and produce energy. This will require a simulation study based on historic<br />

discharges, where we suggest to use stochastic modelling and use of generated syn<strong>the</strong>tic time series. A<br />

special point of focus is <strong>the</strong> time scale to be used, and possible use of meteorological forecasting.<br />

Medium term and long term:<br />

1. Improve land use planning<br />

Water safety should be a leading principle in an integral approach of land use planning by <strong>the</strong> municipality<br />

and regional authorities. It is <strong>the</strong>refore an important issue related to <strong>the</strong> institutional issues. Enforcement<br />

of spatial management and assessment of spatial developments on consistency with <strong>the</strong> long-term flood<br />

approach needs to be implemented. The analysis of this study should be incorporated into <strong>the</strong> land use<br />

planning strategy of <strong>the</strong> municipality.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 5 -


Royal HaskoningDHV<br />

In addition to <strong>the</strong> action plan, we have <strong>the</strong> following recommendations:<br />

1. Research into climate change effects<br />

We recommend fur<strong>the</strong>r research into <strong>the</strong> effects of <strong>the</strong> trend in <strong>the</strong> ONI (Oceanic Niño Index) on extremes<br />

of <strong>the</strong> <strong>Cauca</strong> river discharge.<br />

2. Research into fluvial morphodynamics<br />

We recommend that <strong>the</strong> fluvial morphodynamics of <strong>the</strong> river <strong>Cauca</strong> be studied in order to have a better<br />

understanding of its morphodynamics and <strong>the</strong> influence of <strong>the</strong> human activities on <strong>the</strong> morphological<br />

developments.<br />

3. Fur<strong>the</strong>r research into river hydrodynamics<br />

Develop an integrated hydrodynamic model of <strong>the</strong> river <strong>Cauca</strong> starting at Salvajina reservoir. In this model<br />

<strong>the</strong> overtopping and flooding should be included. The model should be calibrated in order to reproduce <strong>the</strong><br />

last flooding events for instance by comparing <strong>the</strong> inundated area with aerial photographs.<br />

We have understood that this model will be constructed in ano<strong>the</strong>r project [5] and advise <strong>the</strong> local team to<br />

participate in this study.<br />

4. More soil investigation for strength parameters related to dike slope stability<br />

We recommend doing more triaxial tests on undisturbed clay samples of <strong>the</strong> dike body to gain a better<br />

insight into <strong>the</strong> strength parameters <strong>along</strong> <strong>the</strong> profile of <strong>the</strong> <strong>Aguablanca</strong> dike. We suggest making and<br />

executing a detailed plan, based on a number of indicative borings.<br />

5. <strong>River</strong> bed and flood plain maintenance and construction debris control<br />

Enforcement of river bed maintenance needs to be improved. This is on one hand predominantly a<br />

government issue, on <strong>the</strong> o<strong>the</strong>r hand economical incentives and technical possibilities can help. Especially<br />

<strong>the</strong> dumping of construction debris needs to be stopped. A strong recommendation is to invest in debris<br />

crusher systems to convert waste debris into raw construction materials, ready for re-use.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 6 -


Royal HaskoningDHV<br />

1 INTRODUCTION<br />

1.1 Extreme rainfall in <strong>Colombia</strong> has led to alarm for possible dike failure<br />

Extreme rainfall in 2010 and 2011 has resulted in extreme river discharges and water levels in various river<br />

basins in <strong>Colombia</strong> and has disrupted <strong>the</strong> lives of more than three million <strong>Colombia</strong>ns, uprooted thousands<br />

from <strong>the</strong>ir homes and destroyed swa<strong>the</strong>s of farmland.<br />

In <strong>Cali</strong>, <strong>the</strong> threat of a possible breach of <strong>the</strong> existing dike system has alarmed <strong>the</strong> highest authorities. The<br />

impact of such a breach on <strong>the</strong> city and <strong>the</strong> country has led President Santos to put urgent action to<br />

improve <strong>the</strong> <strong>Aguablanca</strong> <strong>Dike</strong> protecting <strong>the</strong> city as top priority. The <strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong><br />

<strong>River</strong> in <strong>the</strong> municipality of <strong>Cali</strong> has a length of approximately 17 km. It is <strong>the</strong> only structural flood<br />

protection of <strong>the</strong> city of <strong>Cali</strong> against floods from <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>.<br />

Juanchito<br />

Figure 1<br />

Schematic situation of <strong>Aguablanca</strong> <strong>Dike</strong> toge<strong>the</strong>r with dike of Canal Interceptor<br />

The dike was originally built in <strong>the</strong> late 50’s and early 60´s in order to habilitate <strong>the</strong> <strong>Aguablanca</strong>´s low lands<br />

for agricultural purposes. However <strong>the</strong>se areas have witnessed significant urban development. During <strong>the</strong><br />

last four decades <strong>the</strong> city has spread towards <strong>the</strong> river. Dwellings have been built on <strong>the</strong> dike crest, as well<br />

as in <strong>the</strong> floodplain. Today almost 20% of <strong>the</strong> population of <strong>the</strong> city is settled in flood plain and around<br />

15.000 people live directly over <strong>the</strong> dike structure. The largest water treatment plant that supplies around<br />

60% of <strong>the</strong> city is also located in this area. The main pumping station of <strong>the</strong> city, Paso del Comercio, is<br />

located in <strong>the</strong> lowest part of <strong>the</strong> city at <strong>the</strong> end of <strong>the</strong> principal drain channel.<br />

A population of over 700.000 people in <strong>the</strong> District <strong>Aguablanca</strong> is currently at risk from flooding. Climate<br />

change and progressive anthropogenic impacts in <strong>the</strong> upper basin of <strong>the</strong> <strong>Cauca</strong> <strong>River</strong> will only fur<strong>the</strong>r<br />

increase <strong>the</strong>se risks.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 7 -


Royal HaskoningDHV<br />

1.2 Scope of work<br />

The scope of work has included <strong>the</strong> following activities:<br />

1. Assessment of <strong>the</strong> physical condition and structural stability of <strong>the</strong> current dike. This includes:<br />

● a field survey over a distance of 18 km;<br />

● application of geotechnical software;<br />

● review of previous surveys of <strong>the</strong> dike;<br />

● training of <strong>the</strong> <strong>Colombia</strong>n engineers of CVC during <strong>the</strong> process of dike inspection<br />

2. Calculations using a hydrodynamic model to model inundations of different<br />

frequencies (1:100 year 1:250 year, 1:500 year).<br />

3. Estimation of <strong>the</strong> optimum dike height in terms of <strong>the</strong> costs of dike improvement and <strong>the</strong> flood<br />

damage avoided.<br />

4. Development of action plan and strategies for short term an medium term measures<br />

5. Prioritization of sections of <strong>the</strong> dike that should be reinforced.<br />

6. Organisation of a workshop with presentations of dike management in <strong>the</strong> Ne<strong>the</strong>rlands, preliminary<br />

results of <strong>the</strong> inspection of <strong>the</strong> <strong>Aguablanca</strong> <strong>Dike</strong>, presentation of a dike inspection manual in Spanish.<br />

1.3 Project team<br />

The project team consisted of <strong>the</strong> following persons:<br />

Hans Leenen (Royal HaskoningDHV): team leader and senior expert in hydrology and risk management<br />

Michel Tonneijck (Royal HaskoningDHV): senior dike expert<br />

Marcela Busnelli (Royal HaskoningDHV): senior expert in hydrodynamic and morphological modelling<br />

Steven Sjenitzer (Royal HaskoningDHV): geotechnical expert<br />

Joop de Bijl (Waterboard Aa and Maas): senior dike expert. For this project Joop de Bijl of Waterboard Aa<br />

and Maas has participated to include expertise of a leading Dutch Waterboard.<br />

Royal HaskoningDHV has collaborated with <strong>Colombia</strong>n counterpart Corporación OSSO in <strong>Cali</strong>, whom we<br />

greatly thank for its professional and kind cooperation.<br />

Team members of OSSO were:<br />

Carlos Regalado, geotechnical engineer and outstanding help in translation issues<br />

Angela Cabal, specialist in hydraulic modelling<br />

Jorge Mendoza, civil engineer<br />

Henry Peralta, general coordinator<br />

Andres Velasquez, socio-economist<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 8 -


Royal HaskoningDHV<br />

2 HYDROLOGY AND HYDRODYNAMIC MODELLING<br />

2.1 Discharge of Rio <strong>Cauca</strong> under influence of Salvajina reservoir<br />

The discharge of <strong>the</strong> <strong>Cauca</strong> <strong>River</strong> <strong>along</strong> <strong>the</strong> <strong>Aguablanca</strong> dike is influenced by <strong>the</strong> operation of <strong>the</strong><br />

Salvajina Dam, 139 km upstream of <strong>the</strong> hydrometric station of Juanchito (Figure 2). Juanchito is <strong>the</strong> most<br />

important hydrometric station <strong>along</strong> <strong>the</strong> <strong>Aguablanca</strong> dike with water level data going back to 1934 and a<br />

continuous time series since 1945. The Salvajina reservoir was put into operation in 1985 and is a multipurpose<br />

reservoir with <strong>the</strong> objectives of energy production and attenuating flood peaks on <strong>the</strong> <strong>Cauca</strong><br />

<strong>River</strong>.<br />

Figure 2<br />

Location of Salvajina Reservoir<br />

The operation rules of Salvajina Reservoir are primarily on a monthly basis (but may be adjusted daily) and<br />

are controlled by <strong>the</strong> Committee of Operation. Decisions are agreed upon by CVC and EPSA (Empresa de<br />

energía del Pacífico S.A.). During <strong>the</strong> first days of each month <strong>the</strong> Committee defines <strong>the</strong> water release for<br />

<strong>the</strong> month based on a set of operation rules, which will not be treated here in detail [1]. The monthly<br />

strategy will be maintained as much as possible, but may be modified on a daily basis. One objective is to<br />

maintain <strong>the</strong> discharge at Juanchito station between 130 m 3 /s and 900 m 3 /s. The objective of <strong>the</strong> minimum<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 9 -


Royal HaskoningDHV<br />

flow is dilution of contamination. This flow can be regarded as an environmental flow. The envisaged<br />

maximum flow provides a safe level against inundations by overtopping of <strong>the</strong> <strong>Aguablanca</strong> dike. As<br />

observed in recent years, <strong>the</strong> applied operation of Salvajina has not been able to prevent much higher<br />

flows at Juanchito station (see Annex 1) of up to an estimated discharge of 1148 m 3 /s in 2011.<br />

The operation of Salvajina reservoir does not have strict optimization rules. We recommend a study to<br />

optimize <strong>the</strong> operation regime, by applying simulation modelling of <strong>the</strong> reservoir using stochastic methods,<br />

for instance with syn<strong>the</strong>tic flow generation based on a Thomas-Fiering model. Such a modelling effort<br />

should take into account <strong>the</strong> different conflicting objectives of <strong>the</strong> reservoir, i.e. generating energy on one<br />

side, reducing flood peaks on <strong>the</strong> o<strong>the</strong>r, and also allowing for a certain environmental flow.<br />

2.2 Analysis of extremes leads to lower expected maxima than previously calculated<br />

In order to evaluate dike safety on <strong>the</strong> long term, it is common practice to apply a statistical approach on<br />

existing data (Appendix 1) and determine return periods for different discharges, based on <strong>the</strong> best fit of a<br />

certain probability function. This has also been done in previous studies, a.o. by <strong>the</strong> Universidad del Valle<br />

[2]. To define return periods and discharges for <strong>the</strong> present conditions <strong>the</strong> data of water levels and related<br />

discharges at Juanchito before 1985 cannot be used because of <strong>the</strong> influence of Salvajina reservoir. So<br />

only <strong>the</strong> years since 1985 have been used in <strong>the</strong> analysis of return periods. The Universidad del Valle [2]<br />

has applied a Gumbel distribution to <strong>the</strong> data, resulting in higher discharge data for return periods of 25<br />

years and more, than what is calculated under <strong>the</strong> present study. The reason for <strong>the</strong> differences is that <strong>the</strong><br />

Gumbel distribution gives a ra<strong>the</strong>r poor fit to <strong>the</strong> data. Under <strong>the</strong> present study a number of probability<br />

distributions have been compared for quality of fitting <strong>the</strong> data. The Log Pearson 3 provided <strong>the</strong> best fit,<br />

based on statistical grounds (K-S statistic, see Table 2). A quick way to assess <strong>the</strong> applicability of various<br />

probability functions is <strong>the</strong> so-called Moment-Ratio diagram, which shows differences between statistical<br />

characteristics of <strong>the</strong> observed values and <strong>the</strong> <strong>the</strong>oretical distributions. (see Moment-Ratio diagram in<br />

Annex 1). From this diagram it is clear that <strong>the</strong> Gumbel distribution is not suitable in this particular case.<br />

Table 1 shows <strong>the</strong> differences that occur for return periods higher than 25 years. The difference between<br />

<strong>the</strong> discharges for <strong>the</strong> return period of 100 years leads to a difference in water level of 0.67 m according to<br />

<strong>the</strong> current calibration table for <strong>the</strong> level-discharge relationship (Annex 1). Our conclusion is that previous<br />

studies have overestimated <strong>the</strong> discharges related return periods above 25 years.<br />

As a basis for <strong>the</strong> hydrodynamic modelling <strong>the</strong> present study will apply <strong>the</strong> results from <strong>the</strong> Log Pearson 3<br />

distribution as presented in Table 1, graphically presented in Figure 3.<br />

Table 1<br />

Return period<br />

Comparison of estimated return periods (station Juanchito) with previous studies<br />

Ref. [2]: Gumbel distribution<br />

Discharge [m 3 /s]<br />

Present study: Log Pearson 3 distribution<br />

Discharge [m 3 /s]<br />

5 839 925<br />

10 961 1016<br />

25 1115 1107<br />

50 1229 1161<br />

100 1342 1206<br />

200 1244<br />

250 1255<br />

500 1286<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 10 -


Royal HaskoningDHV<br />

Return period estimates: Extreme discharges Juanchito-since 1985<br />

[m3/s]<br />

Observed Gumbel Weibull<br />

LP3 Normal LN2<br />

Gamma Logistic LN3<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

1 10 100 1000 10000<br />

Return period [time units]<br />

1250<br />

4000<br />

Figure 3<br />

Return period estimates for extreme discharges at Juanchito<br />

Table 2 Kolmogorov–Smirnov test statistic<br />

Probability function<br />

KS-Statistic<br />

KS-critic (0.10) 0.232<br />

LP3 0.093<br />

Weibull 0.099<br />

LN3 0.105<br />

Gumbel 0.128<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 11 -


Royal HaskoningDHV<br />

2.3 Identification of dike locations with critical elevation level<br />

The discharge data as extrapolated with <strong>the</strong> LP3 distribution (Table 1) have been used to estimate <strong>the</strong><br />

water levels <strong>along</strong> <strong>the</strong> <strong>Aguablanca</strong> dike for various return periods. The Universidad de Valle [2] applied a<br />

one dimensional model to estimate water levels for different return periods. In all modelling efforts, <strong>the</strong> right<br />

bank of <strong>the</strong> <strong>Cauca</strong> <strong>River</strong> has been modelled as an infinitely high wall without inundation possibility. These<br />

levels have been used as input for <strong>the</strong> estimation. In this estimation Juanchito station has been used as a<br />

reference to adjust all levels <strong>along</strong> <strong>the</strong> <strong>Aguablanca</strong> dike accordingly. The water levels associated with<br />

different return periods have been compared with <strong>the</strong> latest longitudinal dike profile, measured in 2012<br />

(Annex 2). In doing so, <strong>the</strong> critical points <strong>along</strong> <strong>the</strong> dike in terms of level, were identified:<br />

1 km 128+581<br />

2 km 134+581<br />

3 km 136+081<br />

4 km 140+781<br />

5 km 142+281<br />

6 km 143+281<br />

Based on <strong>the</strong>se critical points inundation simulations were carried out with <strong>the</strong> 2D-model CCHE2D of <strong>the</strong><br />

University of Mississippi to establish a basis for damage estimates (see Annex 2).<br />

2.4 Flood modelling results<br />

The 2D-model CCHE2D of <strong>the</strong> University of Mississippi of <strong>the</strong> river <strong>Cauca</strong> (between <strong>the</strong> Canal Interceptor<br />

Sur and <strong>the</strong> river <strong>Cali</strong>) has been applied in this study [3]. The model was recalibrated based on <strong>the</strong><br />

updated statistics of discharges and water levels. The hydrodynamic model provides insight in flood<br />

characteristics, such as water depth and flow velocity. Three scenarios were defined and simulated as<br />

input for <strong>the</strong> risk management assessment (Chapter 3): Flooding due to breaking by overtopping for a<br />

return period of 1:100, 1:250 and 1:500. The graphical results of <strong>the</strong> computations for a return period of<br />

1:100 are presented in Annex 2. Numerical results of <strong>the</strong> computations are presented in Table 3. These<br />

flooding characteristics have been applied in <strong>the</strong> risk-based analysis to obtain <strong>the</strong> damage costs<br />

corresponding to a certain flooding probability.<br />

Table 3 Characteristics flooding scenarios<br />

Return period Maximum inundated area [km 2 ]<br />

100 20.36<br />

250 22.83<br />

500 24.28<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 12 -


Royal HaskoningDHV<br />

3 FLOOD RISK MANAGEMENT: COST OPTIMIZATION<br />

Initial costs of relocation of dike dwellings play an important role in total costs<br />

In this study we apply <strong>the</strong> principles used in <strong>the</strong> Ne<strong>the</strong>rlands for risk-based design of flood protection<br />

systems to <strong>the</strong> <strong>Aguablanca</strong> area. In this economic optimization, <strong>the</strong> investments in more safety are<br />

balanced with <strong>the</strong> reduction of <strong>the</strong> risk to find an optimal level of flood protection.<br />

We have assumed that <strong>the</strong> dike will only fail because of overtopping. The strength of <strong>the</strong> dike is<br />

subsequently designed in such a way that <strong>the</strong> dike does not fail at water levels below <strong>the</strong> design water<br />

level, for all possible failure mechanisms such as piping and lack of stability. The assessment of <strong>the</strong><br />

physical conditions and structural stability of <strong>the</strong> dike is described in detail in Annex 5, and Chapters 4 and<br />

5. If <strong>the</strong> water level is above <strong>the</strong> design water level, <strong>the</strong> dike might fail and breach.<br />

The places where overtopping might occur in <strong>the</strong> river <strong>Cauca</strong> (between Canal del Sur and river <strong>Cali</strong>) for a<br />

given return period were obtained by plotting <strong>the</strong> crest height and <strong>the</strong> water levels corresponding to a<br />

given return period. The flooding scenario for a return period of 100 year was defined by comparing <strong>the</strong><br />

height of <strong>the</strong> dike with <strong>the</strong> water level for a return period of 100 year.<br />

The locations where defined from a preliminary longitudinal profile of <strong>the</strong> dike. The OSSO-team corrected<br />

this profile after reviewing it. The locations of possible breaching of <strong>the</strong> dike were determined by <strong>the</strong><br />

OSSO-team. The longitudinal profile of <strong>the</strong> dike at <strong>the</strong> left bank of <strong>the</strong> river <strong>Cauca</strong> shows sectors where <strong>the</strong><br />

height of <strong>the</strong> dike is close to or lower than <strong>the</strong> water level for a return period of 100 years. Five locations<br />

were defined. In <strong>the</strong>se locations <strong>the</strong> water level is higher than <strong>the</strong> dike or <strong>the</strong> free-board is less than 1 m. A<br />

free-board of 1 m is recommended by CVC.<br />

Table 4 shows <strong>the</strong> locations where overtopping might occur. The dimensions of breaching of <strong>the</strong> dike were<br />

obtained from <strong>the</strong> analyses of failures of dikes occurred in <strong>the</strong> past in <strong>Colombia</strong> [13].<br />

Table 4<br />

Location<br />

No.<br />

Locations where overtopping might occur<br />

Crest of<br />

<strong>the</strong> dike<br />

Abscisa [m]<br />

Water level [m]<br />

Tr 100 Tr 250 Tr 500<br />

1 K134+581 952.5 952.06 952.30 952.45<br />

2 K136+081 951.6 951.61 951.85 952.00<br />

3 K140+781 950.6 950.76 951.00 951.15<br />

4 K142+281 950.5 950.20 950.44 950.59<br />

5 K143+281 950 949.82 950.06 950.21<br />

The 2D hydrodynamic model has been applied to determine <strong>the</strong> flooding characteristics. These flow<br />

characteristics and <strong>the</strong> land use maps were combined in GIS with <strong>the</strong> stage-damage functions and<br />

maximum damage costs to determine <strong>the</strong> damage costs corresponding to a flooding probability.<br />

The current yearly risk (probability x damage) has been converted to a present value by dividing by <strong>the</strong> net<br />

discount rate. A real discount rate of 8% is calculated from <strong>the</strong> interest rate of 11% minus inflation 3%.<br />

The damage will increase because of economic growth. Neglecting economic growth would lead to an<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 13 -


Royal HaskoningDHV<br />

underestimation of <strong>the</strong> future risk. We have assumed a economic growth of 1% per year. This number is<br />

estimated on <strong>the</strong> basis of future expectations and is <strong>the</strong>refore uncertain.<br />

In a cost-benefit analysis also <strong>the</strong> costs of rising and reinforcing <strong>the</strong> dikes are important. The costs of<br />

relocating <strong>the</strong> families living on <strong>the</strong> dike are also taken into account in <strong>the</strong> investments. The results of <strong>the</strong><br />

analysis are presented in Figure 4. An important feature of this calculation is that <strong>the</strong> increase in<br />

investments costs as a function of <strong>the</strong> return period is relatively small. This is because <strong>the</strong> costs of<br />

relocation <strong>the</strong> families living on <strong>the</strong> dike are <strong>the</strong> highest investment costs. This aspect leads to <strong>the</strong><br />

consideration, that from <strong>the</strong> purely economic point of view of this method, it would be better to make a<br />

choice for <strong>the</strong> highest return period, leading to <strong>the</strong> lowest total expected costs. From a practical point of<br />

view, any choice above 500 years would seem sufficient. The background data of this calculation are<br />

presented in Annex 10.<br />

Figure 4<br />

Results of economic optimization for <strong>the</strong> <strong>Aguablanca</strong> dike<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 14 -


Royal HaskoningDHV<br />

4 IMPROVEMENT OF DIKE SAFETY, IMMEDIATE AND SHORT-TERM STRATEGY<br />

4.1 Analysis of present conditions<br />

The objective of <strong>the</strong> assessment of <strong>the</strong> present conditions of <strong>the</strong> dike is to investigate crest levels, stability,<br />

and all human or o<strong>the</strong>r impacts, that may reduce <strong>the</strong> safe level of <strong>the</strong> dike. Comparing <strong>the</strong>se conditions<br />

with required conditions leads to conclusions about possible strategies and necessary actions to take.<br />

4.1.1 <strong>Dike</strong> crest level of <strong>the</strong> main dike<br />

The original design crest level for <strong>the</strong> Jarillon de <strong>Aguablanca</strong> was based on T=100 + 1.50 m. This dike<br />

protected a predominantly agricultural area between <strong>Cali</strong> and <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>. The dike was constructed<br />

in an era (1950s) that T=100 could not be well calculated, but only be estimated [15]. The present crest<br />

level is presented in Figure 5 The estimation of <strong>the</strong> 1950's shows very good compliance with <strong>the</strong> now<br />

calculated T=100 in this report 3 .<br />

From <strong>the</strong> analysis we have <strong>the</strong> following observations:<br />

1. Crest level measurements show that <strong>the</strong> crest level could not be maintained all <strong>along</strong> <strong>the</strong> dike.<br />

2. The protected area has changed from agriculture into urban area and <strong>the</strong>refore requires a higher<br />

protection level (see paragraph 4.1.3).<br />

3. The original 1.50 m freeboard could well be reduced since <strong>the</strong> expected water levels can be<br />

calculated more accurately.<br />

Perfil Longitudinal del Jarillón del río <strong>Cauca</strong> y Nivel de agua para diferentes periodos de retorno<br />

Level [msnm] (Versión revisada con datos de campo, septiembre 20 de 2012)<br />

956<br />

water level T=10 water level T=25<br />

955<br />

water level T=100 water level T=250<br />

water level T=500<br />

dike crest level<br />

954<br />

T=100 + 0,50 m freeboard T=500 + 0,50 m freeboard<br />

T=250 + 0,50 m freeboard original design T=10 + 2,50<br />

953<br />

952<br />

951<br />

950<br />

949<br />

948<br />

Canal Sur<br />

km 127 + 724 m<br />

Juanchito<br />

km 139 + 259 m<br />

Rio <strong>Cali</strong><br />

km 146 + 300 m<br />

947<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

---> x -coordinate [km]<br />

Figure 5 <strong>Dike</strong> crest level (orange) and different water levels + freeboard (see also Annex 2)<br />

3 With <strong>the</strong> few data <strong>the</strong> engineers had in 1958, <strong>the</strong>y estimated <strong>the</strong> level corresponding to a return period of<br />

T=100 years + 1.5 m, to coincide approximately with a level corresponding to a return period of T=10 years<br />

+ 2.5 m<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 15 -


Royal HaskoningDHV<br />

Table 5<br />

possible<br />

protection<br />

levels<br />

<strong>Dike</strong> lengths to be raised for distinguished flood protection levels<br />

freeboard<br />

[m]<br />

T = 10 yrs 1.50<br />

dike length<br />

to be raised<br />

[m]<br />

almost<br />

total<br />

T = 100 yrs 0.50 4300<br />

T = 250 yrs 0.50 7200<br />

T = 500 yrs 0.50 9800<br />

cm to be<br />

raised<br />

generally<br />

< 20 cm<br />

generally<br />

< 35 cm<br />

generally<br />

< 40 cm<br />

remarks<br />

with <strong>the</strong> knowledge of today's water level<br />

calculations <strong>the</strong> dike doesn't meet <strong>the</strong><br />

originally set requirements;<br />

an extra check on <strong>the</strong> datum is required,<br />

since <strong>the</strong>re is no straightforward explanation<br />

for why <strong>the</strong> Jarillón <strong>Aguablanca</strong> has fallen so<br />

far below its original standard<br />

with today's more accurate water level<br />

calculations, flood protection level of T=100<br />

could be guaranteed with a freeboard of<br />

0.50 m<br />

with <strong>the</strong> change of <strong>the</strong> protected area from<br />

agriculture into urban area, a higher<br />

protection level needs to be considered and<br />

should be a result of an economic analysis<br />

idem<br />

From this it is clear that <strong>the</strong> discussion about <strong>the</strong> safety level is<br />

1. on one hand a matter of <strong>the</strong> establishment of an economical optimum return period, but<br />

2. on <strong>the</strong> o<strong>the</strong>r hand a technical freeboard discussion among engineers about <strong>the</strong> reliability of <strong>the</strong> water<br />

level calculations.<br />

Accurate dike levels and accurate water levels.<br />

In <strong>the</strong> course of <strong>the</strong> assignment it turned out to be very difficult to establish <strong>the</strong> correct dike level from <strong>the</strong> available data.<br />

Level data were ei<strong>the</strong>r outdated or, more important, taken from different periods in which <strong>the</strong> reference level (datum)<br />

had changed. CVC and OSSO have assured that <strong>the</strong> presently available dike level is correct.<br />

The hydraulic river model for water level calculations is by definition not exact, since not all riverbed data are available,<br />

nor can calibration and verification be done. Still <strong>the</strong> possibilities for establishing a more or less correct water level are<br />

way better than at <strong>the</strong> time of dike construction. A river model for <strong>the</strong> whole <strong>Cauca</strong> <strong>River</strong> should be made available. First<br />

of all, river behaviour downstream is very much affected by what happens more upstream. The acceptance of one base<br />

for transboundary decisions (between states, between municipalities depend very much on <strong>the</strong> acceptance of one base<br />

model as <strong>the</strong> true water level predictor.<br />

Still <strong>the</strong> reproduction of <strong>the</strong> original dike design (Figure 5) shows that <strong>the</strong> dike has dropped considerably below its<br />

original design value (water level T=10 + 2.50 m). This is not in line with <strong>the</strong> feeling and view of experienced local<br />

engineers. We recommend that this item will be investigated:<br />

1. re-evaluate datum changes in <strong>the</strong> course of years<br />

2. attribute each available measurement to <strong>the</strong> correct datum<br />

3. describe <strong>the</strong> history of datum levels and measurements in a separate report<br />

4. open archives to establish certainty about <strong>the</strong> really constructed dike level: T=10 + 2.50 m indeed?<br />

5. compare <strong>the</strong> starting point T=10 (1958) and T=10 (2012)<br />

6. investigate <strong>the</strong> possibility that <strong>the</strong> dike subsoil has consolidated so much.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 16 -


Royal HaskoningDHV<br />

4.1.2 <strong>Dike</strong> conditions of Canal Sur and Rio <strong>Cali</strong><br />

There are no records of failure of <strong>the</strong> dike <strong>along</strong> Canal Sur. Stability calculations for <strong>the</strong>se dikes have also<br />

indicated that <strong>the</strong>y comply with <strong>the</strong> minimum strength requirements [13]. Corporación OSSO has done field<br />

work for <strong>the</strong> dikes of <strong>the</strong> two tributaries Canal Sur and Rio <strong>Cali</strong> resulting in <strong>the</strong> longitudinal profiles<br />

presented in Annex 2.<br />

The field observations show a significant impact of human interventions <strong>along</strong> <strong>the</strong>se dikes in <strong>the</strong> form of<br />

waste and rubble deposits. In addition <strong>the</strong>re are nests of <strong>the</strong> ant species “arriera” in various locations,<br />

impacting <strong>the</strong> permeability and stability [13].<br />

From <strong>the</strong> profiles it follows that <strong>the</strong>re are some parts below <strong>the</strong> T=100 level that is defined at <strong>the</strong> point of<br />

inflow into Rio <strong>Cauca</strong>. The right embankment <strong>along</strong> Rio <strong>Cali</strong> seems everywhere, except a small part close<br />

to <strong>the</strong> Rio <strong>Cauca</strong>, well above <strong>the</strong> T=100 level as defined at <strong>the</strong> point of inflow into <strong>the</strong> Rio <strong>Cauca</strong>.<br />

4.1.3 Water levels and river bed management<br />

Because of <strong>the</strong> intense urbanization, <strong>the</strong> river bed and flood plains condition is very much under pressure<br />

of sand mining and dumping of construction debris. Uncontrolled erosion and upward trends in water levels<br />

are a result. Of course CVC and <strong>Cali</strong> municipality are fully aware of this problem. The solution of <strong>the</strong><br />

problem is not just a technical item, but is found in a much wider socio-economic and administrative<br />

approach.<br />

4.1.4 Freeboard discussion<br />

In <strong>the</strong> Ne<strong>the</strong>rlands river dikes require a minimum freeboard of 50 cm. This freeboard allows for<br />

● wave run-up,<br />

● river water level model uncertainty and<br />

● firm dry ground above <strong>the</strong> water level in extreme conditions for emergency measures.<br />

In <strong>the</strong> situation of <strong>the</strong> <strong>Cauca</strong> <strong>River</strong> and <strong>the</strong> Jarillón <strong>Aguablanca</strong>, wave run-up may be neglected. The width<br />

of <strong>the</strong> river is relatively small and <strong>the</strong>re are no big cargo ships. The model uncertainty however needs to be<br />

regarded more in detail. For <strong>the</strong> moment we assume that model uncertainties fit well within <strong>the</strong> 0.50 m<br />

allowance for <strong>the</strong> freeboard.<br />

4.1.5 <strong>Dike</strong> strength<br />

The crest level is <strong>the</strong> most important and direct factor for <strong>the</strong> flood level protection of <strong>Cali</strong>. However, a<br />

weak dike or weak points in <strong>the</strong> dike may result in failure, even if <strong>the</strong> water level is lower than <strong>the</strong> design<br />

water level.<br />

The dike inspection has resulted in 5 important observations.<br />

1. <strong>Dike</strong> crossing hydraulic constructions Water and Sewer Treatment Plants and Pumping Station do<br />

not fulfil safety requirements. Especially <strong>the</strong> pumping station at <strong>the</strong> downstream side of <strong>the</strong> dike is in<br />

an alarmingly bad condition. Failure of <strong>the</strong> pumping station in its flood defence function cannot be<br />

excluded and is estimated much worse than a failure probability of 1/100 per year (T=100). Also <strong>the</strong><br />

drinking water inlet and waste water treatment plant need upgrading. For a more elaborate<br />

description see Annex 5, Field assessment of <strong>the</strong> conditions of <strong>the</strong> <strong>Aguablanca</strong> dike.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 17 -


Royal HaskoningDHV<br />

2. At high water levels some water seepage near <strong>the</strong> pumping station of Paso del Comercio has been<br />

observed, most likely due to a construction error and not to slope instability. Signs of piping effects<br />

have not been observed.<br />

3. Ants have infested <strong>the</strong> dike and its environment (hormigas arrieras). They make <strong>the</strong>ir dwellings in <strong>the</strong><br />

dike, causing cavities and weakening <strong>the</strong> dike.<br />

4. Under <strong>the</strong> top clayey and silty layers <strong>the</strong>re are some locations with a layer of liquefiable sands.<br />

Earthquake induced liquefaction may put <strong>the</strong> dike as a water retaining function out of order for long<br />

time. However, <strong>the</strong> risk of a coincidence of a major earthquake and a flood is negligible compare to<br />

<strong>the</strong> risk of <strong>the</strong> event of ei<strong>the</strong>r a major earthquake or a major flood. Minor earthquakes in <strong>the</strong> past<br />

have not lead to liquefaction. Therefore liquefaction is not considered an issue.<br />

5. The dike is quite densely inhabited, predominantly at <strong>the</strong> nor<strong>the</strong>rn stretch. Housing, foundation and<br />

cellars and trees cut into essential minimum design profile. Living on a dike is almost <strong>the</strong> safest place<br />

in a flood prone area. The major problem is when housing or o<strong>the</strong>r human activities harm <strong>the</strong> integrity<br />

of <strong>the</strong> dike body: cut into <strong>the</strong> body itself, damage <strong>the</strong> revetment, thus reducing <strong>the</strong> water retaining<br />

capacity and creating initiation points for erosion.<br />

4.2 Immediate and short term strategy<br />

4.2.1 Immediate actions<br />

Low spots<br />

Where <strong>the</strong> dike crest level of <strong>the</strong> main dike is <strong>the</strong> most important parameter in flood protection, immediate<br />

action is recommended to raise <strong>the</strong> lowest points in <strong>the</strong> <strong>Aguablanca</strong> dike that are very local:<br />

1 km 128+581<br />

2 km 134+581<br />

3 km 136+081<br />

4 km 140+781<br />

5 km 142+281<br />

6 km 143+281<br />

In addition it is recommended to rehabilitate <strong>the</strong> low points of <strong>the</strong> dike of Canal Interceptor Sur, which have<br />

been identified in <strong>the</strong> longitudinal profile of Annex 2.<br />

Pumping station maintenance<br />

The condition of <strong>the</strong> pumping station is alarming. A number of <strong>the</strong> outer valves of <strong>the</strong> pumping station are<br />

not functioning. Although <strong>the</strong> pipes have inner valves, <strong>the</strong> defence against flooding should not just rely on<br />

<strong>the</strong>se inner valves. During a flood, <strong>the</strong>re will be unnecessary pressure inside <strong>the</strong> pipes, and increase <strong>the</strong><br />

risk of inundation. Immediate action is required to ensure flood protection 4 .<br />

4 In a letter to Dr. M. Guerrero, <strong>the</strong> Mayor of <strong>Cali</strong>, dated December 17, 2012, EMCALI has confirmed that<br />

it is envisaged to repair <strong>the</strong> damaged valves in January 2013.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 18 -


Royal HaskoningDHV<br />

4.2.2 Short-term strategy 0<br />

This short term strategy consists of 5 components:<br />

a. Maintaining dike level at T=100<br />

b. <strong>River</strong> bed and floodplain maintenance<br />

c. Hydraulic constructions<br />

d. <strong>Dike</strong> slope stability<br />

e. Harmful activities from humans and ants<br />

f. Institutional issues<br />

These will be elaborated below (Institutional issues are discussed separately in Chapter 6).<br />

The short term strategy should be considered as a base strategy (maintaining <strong>the</strong> status quo is not an<br />

option). This mix of components should be implemented in a coherent way. Only maintaining <strong>the</strong> dike level<br />

at T=100 will improve safety conditions but will not be effective in <strong>the</strong> long run if components b, c,d, and e<br />

are not taken care of at <strong>the</strong> same time.<br />

a. Maintaining dike levels at T=100<br />

For <strong>the</strong> short term strategy 0, <strong>the</strong> measures are aimed at realising <strong>the</strong> originally intended protection level of<br />

T=100. The measures respond to <strong>the</strong> findings of <strong>the</strong> dike inspection for <strong>the</strong> <strong>Aguablanca</strong> dike on 18/19<br />

September 2012 and 2 October 2012. As regards <strong>the</strong> dikes <strong>along</strong> Canal Sur and Rio <strong>Cali</strong>, we recommend<br />

<strong>the</strong> same immediate action, i.e. to bring <strong>the</strong> levels up to <strong>the</strong> corresponding T=100 level of <strong>the</strong> Rio <strong>Cauca</strong>.<br />

Considering that <strong>the</strong> intended flood protection level of <strong>the</strong> Jarillón <strong>Aguablanca</strong> was T=100 + freeboard we<br />

recommend for <strong>the</strong> short term to rehabilitate <strong>the</strong> dike to this flood protection level. Since <strong>the</strong> protected area<br />

has changed from agricultural land into urban area, this protection level should at least be maintained. This<br />

recommendation implies raising 4300 m of <strong>the</strong> dike. In doing so, we assume that with <strong>the</strong> present statistics<br />

and calculation methods a freeboard of 0.50 m is sufficient.<br />

NB. If it would be decided to raise <strong>the</strong> dike, <strong>the</strong> reinforcement could well be combined with <strong>the</strong> longer term<br />

recommendation at little extra costs.<br />

The T= 100 does not necessarily need to be motivated with an economical analysis. Ra<strong>the</strong>r, <strong>the</strong> situation<br />

of <strong>Cali</strong> is such that <strong>the</strong> opposite river bank is lower and in much worse condition than <strong>the</strong> <strong>Cali</strong> side. This is<br />

for <strong>Cali</strong> a preferential situation. There is so much retention on <strong>the</strong> opposite river side that <strong>Cali</strong> is virtually<br />

safe. In this situation <strong>Cali</strong> or CVC could buy time: as long as developments upstream and/or <strong>the</strong> opposite<br />

river bank do not go so far that Q or h near <strong>Cali</strong> will rise, <strong>the</strong> Jarillón <strong>Aguablanca</strong> will provide virtually<br />

unlimited flood protection (as long it is strong enough, mind e.g. <strong>the</strong> pumping station).<br />

b. <strong>River</strong> bed and flood plain maintenance and construction debris control<br />

Enforcement of river bed maintenance needs to be improved. This is on one hand predominantly a<br />

government issue, on <strong>the</strong> o<strong>the</strong>r hand economical incentives and technical possibilities can help. Especially<br />

<strong>the</strong> dumping of construction debris needs to be stopped. A strong recommendation is to invest in debris<br />

crusher systems to convert waste debris into raw construction materials, ready for re-use.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 19 -


Royal HaskoningDHV<br />

Figure 6<br />

Debris crusher system<br />

c. Hydraulic constructions<br />

From <strong>the</strong> safety assessment of <strong>the</strong> Pumping Station immediate action is required.<br />

In general we recommend a situation in which <strong>the</strong> owner of <strong>the</strong> construction (EMCALI) and <strong>the</strong> owner of<br />

<strong>the</strong> dike (CVC) are equally responsible for <strong>the</strong> construction part that crosses <strong>the</strong> flood defence line. This is<br />

predominantly a governance issue to enforce this kind of collaboration, but it is also an issue of behaviour<br />

of <strong>the</strong> engineers of both organisations (see also Chapter 6).<br />

Technically we recommend EMCALI and CVC to co-operate on <strong>the</strong> ongoing projects for improvement.<br />

From a flood defence perspective a number of design issues in <strong>the</strong> rehabilitation of <strong>the</strong> structures need to<br />

be standardised:<br />

1. construction level should be in conformity with – future – dike protection level; preferably far beyond<br />

<strong>the</strong> planning period (dike 50 yrs ahead, constructions – more expensive to adapt – 100 years ahead);<br />

2. overall stability of <strong>the</strong> construction must fulfil stability requirement as of <strong>the</strong> dike (water levels, piping);<br />

3. seepage screens next to and under <strong>the</strong> construction are required;<br />

4. integrity of <strong>the</strong> construction within <strong>the</strong> flood defence line must be guaranteed, preferably <strong>the</strong> parts of<br />

<strong>the</strong> construction in <strong>the</strong> flood defence line must be stronger than parts outside <strong>the</strong> defence line; e.g. a<br />

steel pipe crossing <strong>the</strong> dike must partly be stronger in <strong>the</strong> dike: if a pipe under pressure would fail,<br />

that would be ra<strong>the</strong>r outside <strong>the</strong> dike than inside;<br />

5. transition constructions from e.g. concrete to soil need to be well designed, monitored and<br />

maintained.<br />

EMCALI has projects running. From <strong>the</strong> dike perspective <strong>the</strong> hydraulic constructions need upgrading in <strong>the</strong><br />

short term strategy. Where total rehabilitation does not fit into <strong>the</strong> life cycle economics of <strong>the</strong> structure,<br />

measures should be taken to ensure <strong>the</strong> flood protection part of <strong>the</strong> structure. Assessment and design<br />

aspects have been mentioned above.<br />

d. <strong>Dike</strong> slope stability and liquefaction<br />

The Jarillón <strong>Aguablanca</strong> has geotechnically relatively steep slopes. During <strong>the</strong> – still relative low –<br />

2011 flood dike instabilities have been observed. In order to technically guarantee dike stability under<br />

design conditions <strong>the</strong> slopes should be more stable. I.e. <strong>the</strong> dike needs gentler slopes. Example<br />

geotechnical calculations show that a slope of 1:2½ to 1:3 will be required.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 20 -


Royal HaskoningDHV<br />

Secondly <strong>the</strong> presence of liquefiable sands adds earthquake risk to <strong>the</strong> dike construction. Soil investigation<br />

made available shows that <strong>the</strong> omnipresent sand layer is not always liquefiable.<br />

We recommend to do density tests and test on grain size distribution and water content to localise <strong>the</strong><br />

potential liquefaction areas.<br />

Given <strong>the</strong> <strong>Cali</strong> situation two options need to be investigated:<br />

● "adding cohesion" to <strong>the</strong> liquefiable soil<br />

● adjustment of <strong>the</strong> dike profile, so that deformation caused by liquefaction will not affect <strong>the</strong> water<br />

retaining integrity of <strong>the</strong> dike (PLAXIS-calculations).<br />

e. Harmful impacts from humans and ants<br />

Houses and trees cutting into essential parts of <strong>the</strong> dike profile should be ei<strong>the</strong>r removed or <strong>the</strong> dike profile<br />

needs adaptation. We recommend <strong>the</strong> establishment and registration of minimum essential water retaining<br />

dike profile for each section. This dike profile should have a legal status by which CVC is capable of<br />

enforcing measures to maintain <strong>the</strong> minimum profile.<br />

The cavities of ant nests (hormiga arriera) need to be filled. Regular inspection should be aimed at<br />

eradication of <strong>the</strong> ants. Ant nests should be dug out as soon as observed. Shallow nest cavities can easily<br />

be repaired by digging out and applying new clay filling. Deeper nests should be filled with preferably<br />

bentonite.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 21 -


Royal HaskoningDHV<br />

5 LONG-TERM APPROACH FOR FLOOD PROTECTION CALI<br />

The long term approach for flood protection depends strongly on future developments of natural causes<br />

and human activities. In this chapter developments are mentioned briefly. Essential for <strong>the</strong> developments<br />

is that <strong>the</strong>y are beyond control of <strong>the</strong> dike authority as well as local and regional authorities. Yet <strong>the</strong>y are<br />

an important factor that has implications for <strong>the</strong> way <strong>the</strong> flood protection in <strong>the</strong> future should be managed.<br />

5.1 Anticipate on impact of economic and regional developments and possible<br />

climate change effects<br />

We consider scenarios as developments beyond control of <strong>the</strong> dike authority and o<strong>the</strong>r authorities for <strong>the</strong><br />

region. Climate changes, effects of El Niño and La Niña, urban development population growth, economic<br />

developments are not within <strong>the</strong> immediate control of <strong>the</strong> dike authority and set boundary conditions for <strong>the</strong><br />

dike.<br />

5.1.1 Spatial developments<br />

Spatial development is an item that is not directly within <strong>the</strong> competence of a dike authority. This is ra<strong>the</strong>r<br />

<strong>the</strong> domain of <strong>the</strong> municipalities, “departamentos” and provinces. With respect to flood protection spatial<br />

development is an essential asset.<br />

1. Room for – natural – river inundations needs to be maintained to control river water levels. Not only<br />

in <strong>the</strong> area <strong>Aguablanca</strong>, but more important upstream of <strong>Cali</strong>.<br />

2. Where <strong>Cali</strong> is an important area to be protected, <strong>the</strong> opposite bank still has a lot of land of lower<br />

economic investment; <strong>the</strong> flood protection of <strong>Cali</strong> can well benefit from maintaining this situation:<br />

keep <strong>the</strong> protection level at <strong>the</strong> opposite bank lower than on <strong>the</strong> <strong>Cali</strong> side. In terms of spatial<br />

planning: make sure that <strong>the</strong> east side of <strong>the</strong> river can remain an emergency overflow basin.<br />

3. Upstream developments and climate effects will in <strong>the</strong> future cause higher river water levels near<br />

<strong>Cali</strong>, requiring higher and wider dikes. The dike authority CVC should be given authority to claim and<br />

free <strong>the</strong> land adjacent to <strong>the</strong> dike.<br />

Water safety should be a leading principle in an integral approach of land use planning by <strong>the</strong> municipality<br />

and regional authorities. It is <strong>the</strong>refore an important issue related to <strong>the</strong> institutional issues<br />

5.1.2 Economic development<br />

Figure 7<br />

Urbanization development<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 22 -


Royal HaskoningDHV<br />

Economic and spatial developments go hand in hand. Figure 7 shows <strong>the</strong> development of 50 years. More<br />

than climatic change, land use is a driver for an increased flood protection level. In Chapter 3 we have<br />

presented a method for economical analysis to define an optimum flood protection level. <strong>Dike</strong> construction<br />

and dike reinforcement require major investments and have major impact on <strong>the</strong> environment. It should<br />

also be considered that creation of a flood protected environment will attract more investments within <strong>the</strong><br />

protected area, thus causing a greater need for good flood protection.<br />

5.1.3 Climate change<br />

Data that were analyzed in <strong>the</strong> recent study of <strong>the</strong> inundations in la Mojana [16], have shown a positive<br />

correlation between <strong>the</strong> occurrence of La Niña and extreme discharges in <strong>the</strong> Rio <strong>Cauca</strong>, while it has also<br />

been shown that <strong>the</strong> <strong>the</strong>re is a trend in <strong>the</strong> ONI (Oceanic Niño Index), indicating an upward trend in <strong>the</strong><br />

occurrence of La Niña. The conclusion was that <strong>the</strong> statistical characteristics of <strong>the</strong> <strong>Cauca</strong> <strong>River</strong> are<br />

changing. We conclude that besides <strong>the</strong> change of land use <strong>the</strong> occurrence of floods in <strong>the</strong> <strong>Cauca</strong> Valley<br />

is also influenced by climatic effects, <strong>the</strong> extent and magnitude of which is yet unknown. We recommend<br />

fur<strong>the</strong>r research into <strong>the</strong> effects of <strong>the</strong> trend in <strong>the</strong> ONI on extremes of <strong>the</strong> <strong>Cauca</strong> river discharge.<br />

5.2 Ongoing and increased need for flood protection<br />

5.2.1 Risk based approach for flood protection for <strong>Cali</strong><br />

A flood is a major disaster in term of risk for loss of life, flood damage and setbacks in a long-term<br />

economic development.<br />

The Ne<strong>the</strong>rlands have adopted a risk based approach for flood protection. The basic philosophy is that <strong>the</strong><br />

authorities of <strong>the</strong> flood prone area have a responsibility in "insurance of economic development, life and<br />

flood protection". For a society as a whole it is <strong>the</strong>n economically attractive and feasible to invest in a<br />

sound flood protection. In <strong>the</strong> case of <strong>Cali</strong> it is <strong>the</strong>refore economically attractive to invest in river works and<br />

dikes.<br />

For <strong>the</strong> long term we <strong>the</strong>refore recommend <strong>the</strong> risk based approach. This comprises several actions:<br />

1. acquisition of knowledge on risk based approach in flood protection<br />

2. implementation in guidelines for dike design<br />

3. implementation in practical operation CVC<br />

4. thorough implementation of a risk based assessment for <strong>the</strong> <strong>Cali</strong> situation (project)<br />

5.2.2 Combination of flood risk and earthquake risk<br />

In an area exposed to major natural disasters <strong>the</strong> combined disaster risk is important. <strong>Cali</strong> is a disaster<br />

prone area regarding floods and earthquakes. The <strong>Colombia</strong> government has established a Construction<br />

Code requirement regarding earthquakes. A design earthquake of 7.8 on <strong>the</strong> Richter scale, resulting in<br />

0.25 g ground accelerations is an important design factor for constructions. For <strong>Cali</strong> this design earthquake<br />

has a design return period of T = 475 years. We have <strong>the</strong> following observations:<br />

1. living in <strong>Cali</strong>, exposure to an earthquake cannot be avoided;<br />

2. flood risk adds to <strong>the</strong> exposure for people to disasters;<br />

3. expected flood damage will add to <strong>the</strong> expected damage from disasters,<br />

4. earthquake damage remains dominant<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 23 -


Royal HaskoningDHV<br />

A severe earthquake may result in considerable damage to <strong>the</strong> dike, which – besides all o<strong>the</strong>r damage to<br />

<strong>the</strong> city - would require immediate attention. Since <strong>the</strong> time of construction of <strong>the</strong> dike, no damage has<br />

been observed due to earthquake. To evaluate <strong>the</strong> risk of liquefaction due to an earthquake, we<br />

recommend more research into liquefaction prone areas.<br />

Looking at <strong>the</strong> risk of exposure to a disaster, <strong>the</strong> combination of a T=100 years flood protection with a<br />

T=475 years earth quake risk, would result in probability of disaster, which is high relative to a person’s life<br />

expectancy. A person, living 80 years in a flood and earthquake prone area runs <strong>the</strong> risk of 68% to be hit<br />

by at least one of <strong>the</strong> two. Where <strong>the</strong> earthquake can hardly be avoided once living <strong>the</strong>re, reduction of this<br />

exposure is well possible by increasing <strong>the</strong> flood level protection. For instance, <strong>the</strong> combination of a T=500<br />

year flood risk with a T=475 year earth quake risk, would result in a probability of 28% of being hit by at<br />

least one of <strong>the</strong> two disasters in a period of 80 years.<br />

From <strong>the</strong> damage point of view <strong>the</strong> earthquake risk is quite high. Considering that a dike breach would not<br />

result in very high inundation depths in <strong>Cali</strong>, damage is severe, but would still be limited in comparison with<br />

a major earthquake. Economic optimisation will <strong>the</strong>refore decide on <strong>the</strong> optimum flood protection level.<br />

In Chapter 3 we have shown that, having done <strong>the</strong> initial investment for dike improvement (predominantly<br />

resettlement), a high flood protection level is economically attractive. The small differences in cm between<br />

<strong>the</strong> low frequency water levels (T=100 to T =2000 and higher) demand little extra cost for great value in<br />

avoided damage.<br />

5.3 Strategies for maintaining and improving flood protection<br />

From <strong>the</strong> above considerations two main strategies for <strong>the</strong> Jarillón <strong>Aguablanca</strong> can be formulated.<br />

1. The first strategy aims at "keeping <strong>the</strong> pressure on <strong>the</strong> dike low". Mitigation of rising river water levels<br />

is <strong>the</strong> guideline for this strategy. This involves sound spatial planning.<br />

2. The second strategy assumes that spatial development can hardly be controlled when it comes to<br />

flood protection. Retention capacity more upstream and opposite to <strong>Cali</strong> will gradually disappear for<br />

o<strong>the</strong>r developments, forcing <strong>Cali</strong> to rely more and more on <strong>the</strong> flood protection of <strong>the</strong> Jarillón<br />

<strong>Aguablanca</strong>.<br />

5.3.1 Flood protection level<br />

Based on <strong>the</strong> scenarios, <strong>the</strong> right margin of <strong>the</strong> <strong>Cauca</strong> <strong>River</strong> will probably become economically more<br />

valuable than at present. It is <strong>the</strong>refore expected that <strong>the</strong> right margin will also be better protected against<br />

floods. Socio-economic developments more upstream will lead to <strong>the</strong> construction of more upstream flood<br />

protection works. As a result <strong>the</strong> flood protection level of <strong>Cali</strong> that is provided by <strong>the</strong> dike at its present<br />

level will decrease. After all, reduction of room for inundation of river water will decrease <strong>the</strong> upstream<br />

retention capacity and <strong>the</strong>refore have an upward trend in river water levels at <strong>Cali</strong>. This goes <strong>along</strong> with an<br />

increased need for flood protection: economic development and growth of population and properties in <strong>Cali</strong><br />

will demand safety.<br />

From <strong>the</strong> economic analysis it is clear that an economic optimum can be found in raising <strong>the</strong> protection<br />

level of <strong>the</strong> Jarillón <strong>Aguablanca</strong> to at least T=500. Higher protection levels can be acquired at little extra<br />

costs.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 24 -


Royal HaskoningDHV<br />

5.3.2 Strategy 1: Controlled retention upstream of <strong>Cali</strong> and on east bank<br />

Based on <strong>the</strong> present behaviour of <strong>the</strong> river water levels <strong>the</strong>re is still sufficient room for retention of river<br />

water upstream of <strong>Cali</strong> and on <strong>the</strong> right bank. A good 2D river model would need to be developed to<br />

confirm this. In <strong>the</strong> calculation of river water levels at lower frequencies (T=250, 500, 2000 etc) <strong>the</strong> right<br />

margin has been modelled as a infinitely high dike and a statistically extrapolated inflow from upstream.<br />

Reality will be that Jarillón <strong>Aguablanca</strong> is <strong>the</strong> strongest point and that at lower frequencies, higher<br />

discharges water levels will show little rise because of inundations elsewhere.<br />

Water authorities in <strong>the</strong> States Valle de <strong>Cauca</strong> and <strong>Cauca</strong> might be able to maintain <strong>the</strong> upstream river<br />

retention capacity, although experience shows that spatial development is ra<strong>the</strong>r difficult to control.<br />

This strategy <strong>the</strong>refore comprises:<br />

1. upgrading of <strong>the</strong> Jarillón <strong>Aguablanca</strong> according to strategy 0<br />

2. fur<strong>the</strong>r upgrading of <strong>the</strong> Jarillón <strong>Aguablanca</strong> to a higher protection level T=500 up to T=2000; this<br />

fur<strong>the</strong>r upgrading needs to be done <strong>along</strong> with strategy 0 to avoid double initiation costs; it needs to<br />

be based on a good new 2D river model; relocation of all housing may even be avoided;<br />

3. CVC and <strong>the</strong>ir upstream colleagues will need to co-operate intensively, <strong>the</strong> same holds for <strong>the</strong> State<br />

authorities<br />

4. Enforcement of spatial management and assessment of spatial developments on consistency with<br />

<strong>the</strong> long-term flood approach needs to be implemented. Special areas – now being part of <strong>the</strong> river<br />

retention area already – need to be dedicated for controlled flooding at large scale.<br />

Figure 8<br />

The three strategies shown in <strong>the</strong> flood-frequency graph<br />

5.3.3 Strategy 2: Total reliance on Jarillón <strong>Aguablanca</strong><br />

The assumption for strategy 2 is that spatial management and maintaining retention areas available for<br />

flood protection fails. As a result <strong>Cali</strong> will face higher extreme water levels. <strong>Cali</strong> will need to raise <strong>the</strong><br />

Jarillón <strong>Aguablanca</strong> to maintain – and raise – its flood protection level. Also in this strategy <strong>Cali</strong>'s flood<br />

protection level depends on upstream developments and on its own way of operating <strong>the</strong> right margin of<br />

<strong>the</strong> Rio <strong>Cauca</strong> at <strong>Cali</strong>.<br />

This strategy comprises:<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 25 -


Royal HaskoningDHV<br />

1. upgrading of <strong>the</strong> Jarillón <strong>Aguablanca</strong> according to strategy 0<br />

2. fur<strong>the</strong>r upgrading of <strong>the</strong> Jarillón <strong>Aguablanca</strong> to a higher protection level of T=500 up to T=2000<br />

3. resettlement of all houses on <strong>the</strong> dike and in <strong>the</strong> berm of <strong>the</strong> dike cannot be avoided;<br />

4. considerable enlargement (widening) of <strong>the</strong> dike needs to be accounted for<br />

5.3.4 Choice of strategy<br />

The presented strategies were developed with an open mind not wanting to limit ourselves a priori, and<br />

without looking at financial or institutional implications. Taking a closer and more realistic look at <strong>the</strong><br />

possibilities, we recommend <strong>the</strong> choice for strategy 2. This strategy is included in <strong>the</strong> action plan. We<br />

recommend a safety level with a return period of T=500 years. The arguments are <strong>the</strong> following:<br />

1. Spatial development is a process which is very difficult to control and includes too many parties.<br />

The strategy which includes use of designated retention areas may <strong>the</strong>refore prove impossible to<br />

realize or be unreliable in <strong>the</strong> future.<br />

2. The extra costs involved in going from a protection level with T=100 year to T=500 years are<br />

marginal as compared to <strong>the</strong> overall costs<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 26 -


Royal HaskoningDHV<br />

6 GOVERNANCE AND WATER AUTHORITY<br />

The organisational framework for river and dike management for <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, its tributaries and <strong>the</strong><br />

dikes, is scattered. In 1993 river and dike management were divided <strong>along</strong> political and administrative<br />

boundaries. The Corporación Autónoma Regional del Valle del <strong>Cauca</strong> (CVC) was split in terms of both<br />

geographical authority and content wise. <strong>Cauca</strong> was separated from Valle del <strong>Cauca</strong> and environmental<br />

was separated from technical contents. This had very adverse effects on dike maintenance and<br />

management, resulting in deterioration of <strong>the</strong> dike. Part of this deterioration has been caused by illegal<br />

housing and o<strong>the</strong>r illegal activities on and around <strong>the</strong> dike.<br />

Officially CVC is owner of <strong>the</strong> dike body 5 and should still have responsibilities for maintenance and<br />

management. In practice this is not <strong>the</strong> case and at <strong>the</strong> same time CVC does not have sufficient technical<br />

staff to fulfil such a task. However, within <strong>the</strong> <strong>Colombia</strong>n setting of authorities, CVC comes closest to being<br />

a regional authority involved in water management, although its tasks related to management of <strong>the</strong> dike<br />

are not clearly described. Authorities like EMCALI are responsible for certain constructions in <strong>the</strong> dike<br />

body, such as <strong>the</strong> main pumping station, and <strong>the</strong> drinking water intake. However, <strong>the</strong>re is hardly any<br />

consultation with CVC about <strong>the</strong>ir activities for renovation and status of <strong>the</strong> construction works, whereas<br />

<strong>the</strong>se constructions are part of <strong>the</strong> defence of <strong>the</strong> dike.<br />

It follows that <strong>the</strong>re is no protocol for dike management and maintenance because obviously <strong>the</strong>re is no<br />

organization that holds complete responsibility. We recommend that maintenance and control of <strong>the</strong><br />

<strong>Aguablanca</strong> dike comes under one authority only that has <strong>the</strong> legal mandate to do so, respected by all<br />

o<strong>the</strong>r organisations. This authority should have <strong>the</strong> legal right to inspect, monitor, evaluate plans and grant<br />

permissions of any construction that is part of <strong>the</strong> dike and thus part of <strong>the</strong> defence against inundations.<br />

There is more to this issue than management of <strong>the</strong> dike near <strong>Cali</strong> alone. It is about management of <strong>the</strong><br />

whole <strong>Cauca</strong> <strong>River</strong> from <strong>the</strong> Salvajina Dam up to and beyond <strong>Cali</strong> that should be managed by one<br />

authority, and regulated by law. We recommend a dialogue between <strong>the</strong> parties concerned, led by <strong>the</strong><br />

mayor of <strong>Cali</strong>, or by <strong>the</strong> central government, to resolve this issue.<br />

As an example of a water authority framework Annex 8 presents an introduction of <strong>the</strong> Dutch organization<br />

of regional water authorities.<br />

5 At <strong>the</strong> time of writing <strong>the</strong> draft report in November, this still appeared to be <strong>the</strong> case, i.e. until November<br />

7, 2012; on December 6, 2012, we were informed that CVC has signed of its ownership to <strong>the</strong> municipality,<br />

but we have not seen <strong>the</strong> documents to confirm this.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 27 -


Royal HaskoningDHV<br />

7 REFERENCES<br />

[1] Caracterización y modelación matemática del Río <strong>Cauca</strong> - PMC FASE III; Evaluación y optimización<br />

de la regla de operación del embalse de Salvajina, VOLUMEN XVI, Universidad del Valle, Facultad de<br />

Ingeniería, Escuela de Ingeniería de Recursos Naturales y del Ambiente, Santiago de <strong>Cali</strong>, mayo de<br />

2007.<br />

[2] Modelación matemática del sistema Rio <strong>Cauca</strong>-Humedales; Universidad del Valle, Facultad de<br />

Ingeniería, Escuela de Ingeniería de Recursos Naturales y del Ambiente, Grupo Hidráulica Fluvial y<br />

Marítima – HIDROMAR, Santiago de <strong>Cali</strong>, Agosto de 2009; Convenio Interadministrativo 144 de 2008<br />

entre la CVC y la Universidad del Valle.<br />

[3] Lit 1. Modelación de amenaza por inundaciones en la ciudad de <strong>Cali</strong> por el Río <strong>Cauca</strong> y tributarios,<br />

incluye mapa de amenazas, batimetría y topografía en ambos costados. Informe final. Versión 01.<br />

Hidro-Occidente S.A.<br />

[4] Lit. 2. Modelación matemática del sistema Río <strong>Cauca</strong> – Humedades. Volumen 1. Universidad del<br />

Valle. Facultad de Ingeniería. Escuela de Ingeniería de Recursos Naturales y del Ambiente. Octubre<br />

2009.<br />

[5] Lit. 3. Proyecto Corredor del Río <strong>Cauca</strong> (CVC).<br />

[6] Lit. 4. Best Practise Guidelines for Flood Risk Management. The Flood Management and Mitigation<br />

Programme, Component 2: Structural Measures & Flood Proofing in <strong>the</strong> Lower Mekon Basin.<br />

Deltares, Royal Haskoning and UNESCO-IHE. Draft final report. May 2010.<br />

[7] Lit. 5. Penning-Rowsell, Chatterton, J.B. (1977). The benefits of flood alleviation – a manual of<br />

assessment techniques, Saxon House, ISBN 0566001908.<br />

[8] Lit. 6. Dutta, D., Herath S., Musiake K. (2003). A ma<strong>the</strong>matical flood loss estimation, Journal of<br />

Hydrology, 277:24-49.<br />

[9] Lit. 7. Kok M., Huizinga H.J., Vrouwenvelder A.C.W.M., Van den Braak W.E.W. (2005).<br />

Standaardmethode2005 schade en slachtoffers als gevolg van overstromingen, HKV report<br />

PR.999.10.<br />

[10] Lit 8. Jonkman S.N., Bockarjova M., Kok M., Bernardini P. (2008) Integrated Hydrodynamic and<br />

Economic Modelling of Flood Damage in <strong>the</strong> Ne<strong>the</strong>rlands, Ecological Economics 66, pp. 77-90.<br />

[11] Lit. 9. Metodología de Modelación Probabilista de Riesgos Naturales. Informe Técnico ERN-CAPRA-<br />

T1-5. Vulnerabilidad de edificaciones e infraestructura. ERN. Consorcio Evaluación de Riesgos<br />

Naturales – América Latina. Consultores en Riesgos y Desastres. Tomo I.<br />

[12] Rijkswaterstaat 2005. Standaardmethode2004. Schade en Slachtoffers als gevolg van<br />

overstromingen. Kok M., Huizinga H.J., Vrouwenvelder A.C.W.M., Barendregt A. DWW-2005-005<br />

[13] Informe de avance n° 2. Contrato de consultoría n° 101 de 2012 celebrado entre el fondo adaptación<br />

y corporación observatorio sismológico del sur occidente contrato de consultoría n° 101 de 2012<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 28 -


Royal HaskoningDHV<br />

celebrado entre el Fondo Adaptación y Corporación Observatorio Sismológico del Sur Occidente;<br />

Corporación OSSO, <strong>Cali</strong>, octubre 29 de 2012<br />

[14] Water governance, The Dutch regional water authority model; Unie van Waterschappen, 2011<br />

[15] <strong>Aguablanca</strong> Project 18 November 1958, Hadjikoulas, Kirpich, Corporación Autonoma Regional del<br />

<strong>Cauca</strong><br />

[16] Flood risk management for La Mojana; Deltares, Royal HaskoningDHV, HKV; august 2012; Agency<br />

NL<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 29 -


Royal HaskoningDHV<br />

ABBREVIATIONS<br />

Table 6 List of abbreviations<br />

Abbreviation Explanation<br />

CVC<br />

Corporación Autónoma Regional del Valle del <strong>Cauca</strong><br />

DAGMA Departamento Administrativo de Gestión del Medio Ambiente (del Municipio de <strong>Cali</strong>)<br />

EMCALI Empresas Municipales de <strong>Cali</strong><br />

EPSA<br />

Empresa de energía del Pacífico S.A.<br />

ONI<br />

Oceanic Niño Index<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 30 -


Royal HaskoningDHV<br />

8 COLOPHON<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

LW-AF20130064<br />

Client<br />

Project<br />

File<br />

Length of report<br />

Author<br />

Contributions<br />

Internal check<br />

: NL Agency<br />

: <strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

: BB2984<br />

: 31 pages<br />

: Hans Leenen<br />

: Marcella Busnelli, Michel Tonneijck, Steven Sjenitzer, Joop de Bijjl<br />

: Erik Arnold<br />

Project Manager<br />

: Martijn van Elswijk<br />

Project Director :<br />

Date : 31 January 2013<br />

Name/Initials :<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong><br />

31 January 2013, version final<br />

LW-AF20130064 - 31 -


HaskoningDHV B.V.<br />

Laan 1914 no. 35<br />

3818 EX Amersfoort<br />

P.O. Box 1132<br />

3800 BC Amersfoort<br />

The Ne<strong>the</strong>rlands<br />

T +31 33 468 2000<br />

F +31 33 468 2801<br />

www.royalhaskoningdhv.com


Royal HaskoningDHV<br />

ANNEX 1<br />

Hydrology<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 1<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

Table 7<br />

Juanchito hydrometric station: maximum annual level and discharge<br />

Year Maximum discharge (m3/s) Maximum level (m local reference) Reference level (m.s.l) Actual level (m.s.k)<br />

1945 674.0 5.08 943.63 948.71<br />

1946 684.0 5.08 943.63 948.71<br />

1947 715.0 5.20 943.63 948.83<br />

1948 676.0 4.95 943.63 948.58<br />

1949 798.0 5.54 943.63 949.17<br />

1950 1,044.0 6.40 943.63 950.03<br />

1951 676.0 4.74 943.63 948.37<br />

1952 710.0 4.88 943.63 948.51<br />

1953 870.0 5.67 943.63 949.30<br />

1954 822.0 5.36 943.63 948.99<br />

1955 822.0 5.30 943.63 948.93<br />

1956 878.0 5.59 943.63 949.22<br />

1957 823.0 5.20 943.63 948.83<br />

1958 647.0 4.55 943.63 948.18<br />

1959 621.0 4.41 943.16 947.57<br />

1960 839.0 5.67 943.16 948.83<br />

1961 622.0 4.40 943.16 947.56<br />

1962 692.0 4.79 943.16 947.95<br />

1963 711.0 4.87 943.16 948.03<br />

1964 688.0 4.64 943.16 947.80<br />

1965 736.0 5.06 943.16 948.22<br />

1966 1,059.0 6.47 943.16 949.63<br />

1967 817.0 5.40 943.16 948.56<br />

1968 749.0 5.06 943.16 948.22<br />

1969 766.0 5.10 943.21 948.31<br />

1970 936.0 5.93 943.21 949.14<br />

1971 1,074.0 6.48 943.21 949.69<br />

1972 792.0 5.11 943.18 948.29<br />

1973 912.0 6.42 942.45 948.87<br />

1974 996.0 6.85 942.45 949.30<br />

1975 950.0 7.01 942.45 949.46<br />

1976 876.0 6.55 942.45 949.00<br />

1977 637.0 5.00 942.45 947.45<br />

1978 770.0 5.74 942.45 948.19<br />

1979 859.0 6.24 942.45 948.69<br />

1980 463.0 3.84 942.45 946.29<br />

1981 791.0 5.86 942.45 948.31<br />

1982 868.0 6.29 942.45 948.74<br />

1983 770.0 5.74 942.45 948.19<br />

1984 1,026.0 7.12 942.45 949.57<br />

1985 619.0 4.69 942.45 947.14<br />

1986 619.0 4.81 942.45 947.26<br />

1987 506.4 3.94 942.45 946.39<br />

1988 943.0 6.40 942.45 948.85<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 1<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

Year Maximum discharge (m3/s) Maximum level (m local reference) Reference level (m.s.l) Actual level (m.s.k)<br />

1989 743.2 5.34 942.45 947.79<br />

1990 560.6 4.38 942.45 946.83<br />

1991 428.0 3.58 942.45 946.03<br />

1992 318.4 2.78 942.45 945.23<br />

1993 760.5 5.83 942.45 948.28<br />

1994 769.5 5.89 942.45 948.34<br />

1995 574.6 4.59 942.45 947.04<br />

1996 726.0 5.63 942.45 948.08<br />

1997 974.2 7.03 942.45 949.48<br />

1998 818.5 6.19 942.45 948.64<br />

1999 991.0 7.25 942.45 949.70<br />

2000 887.2 6.74 942.45 949.19<br />

2001 568.0 4.79 942.45 947.24<br />

2002 694.4 5.58 942.45 948.03<br />

2003 530.6 4.52 942.57 947.09<br />

2004 574.0 4.82 942.57 947.39<br />

2005 636.0 5.23 942.57 947.80<br />

2006 902.8 6.84 942.57 949.41<br />

2007 954.0 7.14 942.57 949.71<br />

2008 1,022.0 7.56 942.57 950.13<br />

2009 786.0 6.16 942.57 948.73<br />

2010 1,007.6 7.48 942.57 950.05<br />

2011 1,148.0 7.94 942.57 950.51<br />

[m3/s]<br />

1400<br />

Current water level - discharge relation<br />

(from table and fitted equation of third order)<br />

y = 0.008x 3 + 6.621x 2 + 83.775x + 15.511<br />

R 2 = 0.9998<br />

Table<br />

Formula<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

3 4 5 6 7 8 9<br />

---> water level [m local reference]<br />

Table 8<br />

Current water level – discharge relation from table and fitted equation of third order<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 1<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

Table 9 Juanchito: Current water level – discharge relation (provided by CVC, 14.09.2012)<br />

H Q 00 1 2 3 4 5 6 7 8 9<br />

0.10 53.00 53.10 53.20 53.30 53.40 53.50 53.60 53.70 53.80 53.90<br />

0.20 54.00 54.40 54.80 55.20 55.60 56.00 56.40 56.80 57.20 57.60<br />

0.30 58.00 58.68 59.36 60.04 60.72 61.40 62.08 62.76 63.44 64.12<br />

0.40 64.80 65.61 66.42 67.23 68.04 68.85 69.66 70.47 71.28 72.09<br />

0.50 72.90 73.81 74.72 75.63 76.54 77.45 78.36 79.27 80.18 81.09<br />

0.60 82.00 82.80 83.60 84.40 85.20 86.00 86.80 87.60 88.40 89.20<br />

0.70 90.00 90.80 91.60 92.40 93.20 94.00 94.80 95.60 96.40 97.20<br />

0.80 98.00 99.00 100.00 101.00 102.00 103.00 104.00 105.00 106.00 107.00<br />

0.90 108.00 109.00 110.00 111.00 112.00 113.00 114.00 115.00 116.00 117.00<br />

1.00 118.00 118.90 119.80 120.70 121.60 122.50 123.40 124.30 125.20 126.10<br />

1.10 127.00 127.90 128.80 129.70 130.60 131.50 132.40 133.30 134.20 135.10<br />

1.20 136.00 136.90 137.80 138.70 139.60 140.50 141.40 142.30 143.20 144.10<br />

1.30 145.00 145.90 146.80 147.70 148.60 149.50 150.40 151.30 152.20 153.10<br />

1.40 154.00 155.10 156.20 157.30 158.40 159.50 160.60 161.70 162.80 163.90<br />

1.50 165.00 165.90 166.80 167.70 168.60 169.50 170.40 171.30 172.20 173.10<br />

1.60 174.00 175.00 176.00 177.00 178.00 179.00 180.00 181.00 182.00 183.00<br />

1.70 184.00 185.00 186.00 187.00 188.00 189.00 190.00 191.00 192.00 193.00<br />

1.80 194.00 195.10 196.20 197.30 198.40 199.50 200.60 201.70 202.80 203.90<br />

1.90 205.00 206.00 207.00 208.00 209.00 210.00 211.00 212.00 213.00 214.00<br />

2.00 215.00 216.40 217.80 219.20 220.60 222.00 223.40 224.80 226.20 227.60<br />

2.10 229.00 230.00 231.00 232.00 233.00 234.00 235.00 236.00 237.00 238.00<br />

2.20 239.00 240.10 241.20 242.30 243.40 244.50 245.60 246.70 247.80 248.90<br />

2.30 250.00 251.00 252.00 253.00 254.00 255.00 256.00 257.00 258.00 259.00<br />

2.40 260.00 261.00 262.00 263.00 264.00 265.00 266.00 267.00 268.00 269.00<br />

2.50 270.00 271.30 272.60 273.90 275.20 276.50 277.80 279.10 280.40 281.70<br />

2.60 283.00 283.70 284.40 285.10 285.80 286.50 287.20 287.90 288.60 289.30<br />

2.70 290.00 291.50 293.00 294.50 296.00 297.50 299.00 300.50 302.00 303.50<br />

2.80 305.00 306.40 307.80 309.20 310.60 312.00 313.40 314.80 316.20 317.60<br />

2.90 319.00 320.10 321.20 322.30 323.40 324.50 325.60 326.70 327.80 328.90<br />

3.00 330.00 331.10 332.20 333.30 334.40 335.50 336.60 337.70 338.80 339.90<br />

3.10 341.00 342.10 343.20 344.30 345.40 346.50 347.60 348.70 349.80 350.90<br />

3.20 352.00 353.60 355.20 356.80 358.40 360.00 361.60 363.20 364.80 366.40<br />

3.30 368.00 369.00 370.00 371.00 372.00 373.00 374.00 375.00 376.00 377.00<br />

3.40 378.00 379.00 380.00 381.00 382.00 383.00 384.00 385.00 386.00 387.00<br />

3.50 388.00 389.40 390.80 392.20 393.60 395.00 396.40 397.80 399.20 400.60<br />

3.60 402.00 402.60 403.20 403.80 404.40 405.00 405.60 406.20 406.80 407.40<br />

3.70 408.00 410.00 412.00 414.00 416.00 418.00 420.00 422.00 424.00 426.00<br />

3.80 428.00 429.20 430.40 431.60 432.80 434.00 435.20 436.40 437.60 438.80<br />

3.90 440.00 441.80 443.60 445.40 447.20 449.00 450.80 452.60 454.40 456.20<br />

4.00 458.00 459.70 461.40 463.10 464.80 466.50 468.20 469.90 471.60 473.30<br />

4.10 475.00 476.00 477.00 478.00 479.00 480.00 481.00 482.00 483.00 484.00<br />

4.20 485.00 486.50 488.00 489.50 491.00 492.50 494.00 495.50 497.00 498.50<br />

4.30 500.00 501.00 502.00 503.00 504.00 505.00 506.00 507.00 508.00 509.00<br />

4.40 510.00 511.80 513.60 515.40 517.20 519.00 520.80 522.60 524.40 526.20<br />

4.50 528.00 529.30 530.60 531.90 533.20 534.50 535.80 537.10 538.40 539.70<br />

4.60 541.00 541.90 542.80 543.70 544.60 545.50 546.40 547.30 548.20 549.10<br />

4.70 550.00 552.00 554.00 556.00 558.00 560.00 562.00 564.00 566.00 568.00<br />

4.80 570.00 572.00 574.00 576.00 578.00 580.00 582.00 584.00 586.00 588.00<br />

4.90 590.00 591.40 592.80 594.20 595.60 597.00 598.40 599.80 601.20 602.60<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 1<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

H Q 00 1 2 3 4 5 6 7 8 9<br />

5.00 604.00 605.60 607.20 608.80 610.40 612.00 613.60 615.20 616.80 618.40<br />

5.10 620.00 621.00 622.00 623.00 624.00 625.00 626.00 627.00 628.00 629.00<br />

5.20 630.00 632.00 634.00 636.00 638.00 640.00 642.00 644.00 646.00 648.00<br />

5.30 650.00 650.90 651.80 652.70 653.60 654.50 655.40 656.30 657.20 658.10<br />

5.40 659.00 661.10 663.20 665.30 667.40 669.50 671.60 673.70 675.80 677.90<br />

5.50 680.00 681.80 683.60 685.40 687.20 689.00 690.80 692.60 694.40 696.20<br />

5.60 698.00 699.20 700.40 701.60 702.80 704.00 705.20 706.40 707.60 708.80<br />

5.70 710.00 712.00 714.00 716.00 718.00 720.00 722.00 724.00 726.00 728.00<br />

5.80 730.00 731.00 732.00 733.00 734.00 735.00 736.00 737.00 738.00 739.00<br />

5.90 740.00 741.90 743.80 745.70 747.60 749.50 751.40 753.30 755.20 757.10<br />

6.00 759.00 761.10 763.20 765.30 767.40 769.50 771.60 773.70 775.80 777.90<br />

6.10 780.00 781.00 782.00 783.00 784.00 785.00 786.00 787.00 788.00 789.00<br />

6.20 790.00 791.20 792.40 793.60 794.80 796.00 797.20 798.40 799.60 800.80<br />

6.30 802.00 804.30 806.60 808.90 811.20 813.50 815.80 818.10 820.40 822.70<br />

6.40 825.00 826.50 828.00 829.50 831.00 832.50 834.00 835.50 837.00 838.50<br />

6.50 840.00 841.80 843.60 845.40 847.20 849.00 850.80 852.60 854.40 856.20<br />

6.60 858.00 860.20 862.40 864.60 866.80 869.00 871.20 873.40 875.60 877.80<br />

6.70 880.00 881.80 883.60 885.40 887.20 889.00 890.80 892.60 894.40 896.20<br />

6.80 898.00 899.20 900.40 901.60 902.80 904.00 905.20 906.40 907.60 908.80<br />

6.90 910.00 912.00 914.00 916.00 918.00 920.00 922.00 924.00 926.00 928.00<br />

7.00 930.00 932.00 934.00 936.00 938.00 940.00 942.00 944.00 946.00 948.00<br />

7.10 950.00 951.00 952.00 953.00 954.00 955.00 956.00 957.00 958.00 959.00<br />

7.20 960.00 961.00 962.00 963.00 964.00 965.00 966.00 967.00 968.00 969.00<br />

7.30 970.00 972.80 975.60 978.40 981.20 984.00 986.80 989.60 992.40 995.20<br />

7.40 998.00 999.20 1000.00 1001.00 1002.00 1004.00 1005.00 1006.00 1007.00 1008.00<br />

7.50 1010.00 1012.00 1014.00 1016.00 1018.00 1020.00 1022.00 1024.00 1026.00 1028.00<br />

7.60 1030.00 1032.00 1035.00 1037.00 1040.00 1042.00 1045.00 1047.00 1050.00 1052.00<br />

7.70 1055.00 1057.00 1060.00 1062.00 1065.00 1067.00 1070.00 1072.00 1075.00 1077.00<br />

7.80 1080.00 1082.00 1085.00 1087.00 1090.00 1092.00 1095.00 1097.00 1100.00 1102.00<br />

7.90 1105.00 1107.00 1110.00 1112.00 1115.00 1117.00 1120.00 1122.00 1125.00 1127.00<br />

8.00 1130.00 1131.00 1132.00 1133.00 1134.00 1135.00 1136.00 1137.00 1138.00 1139.00<br />

8.10 1140.00 1141.00 1142.00 1143.00 1144.00 1145.00 1146.00 1147.00 1148.00 1149.00<br />

8.20 1150.00 1152.00 1154.00 1156.00 1158.00 1160.00 1162.00 1164.00 1166.00 1168.00<br />

8.30 1170.00 1172.00 1174.00 1176.00 1178.00 1180.00 1182.00 1184.00 1186.00 1188.00<br />

8.40 1190.00 1192.00 1194.00 1196.00 1198.00 1200.00 1202.00 1204.00 1206.00 1208.00<br />

8.50 1210.00 1212.00 1214.00 1216.00 1218.00 1220.00 1222.00 1224.00 1226.00 1228.00<br />

8.60 1230.00 1232.00 1234.00 1236.00 1238.00 1240.00 1242.00 1244.00 1246.00 1248.00<br />

8.70 1250.00 1252.00 1254.00 1256.00 1258.00 1260.00 1262.00 1264.00 1266.00 1268.00<br />

8.80 1270.00 1272.00 1274.00 1276.00 1278.00 1280.00 1282.00 1284.00 1286.00 1288.00<br />

8.90 1290.00 1292.00 1294.00 1296.00 1298.00 1300.00 1302.00 1304.00 1306.00 1308.00<br />

9.00 1310.00<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 1<br />

LW-AF20130064 - 5 -


Royal HaskoningDHV<br />

30<br />

Moment Ratio Diagram<br />

Gumbel<br />

Weibull<br />

LP3<br />

Observed<br />

LN2<br />

Normal<br />

Gamma<br />

Logistic<br />

25<br />

Ck (Kurtosis coefficient)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0<br />

Cs (Skewness coefficient)<br />

Figure 9<br />

Moment-ratio diagram of observed extremes and <strong>the</strong>oretical probability distributions<br />

Note: For a given distribution, conventional moments can be expressed as functions of <strong>the</strong> parameters of<br />

<strong>the</strong> distributions. It follows that <strong>the</strong> higher order moments can be expressed as functions of <strong>the</strong> lower order<br />

moments. Figure 9 presents <strong>the</strong> moment-ratio diagram of <strong>the</strong> Skewness coefficient en <strong>the</strong> Kurtosis<br />

coefficient for a number of well known distributions, as well as for <strong>the</strong> observed values of <strong>the</strong> maxima of<br />

<strong>the</strong> Rio <strong>Cauca</strong> at Juanchito (<strong>the</strong> blue dot). For some of <strong>the</strong> distribution functions <strong>the</strong> ratio follows a curve,<br />

for o<strong>the</strong>rs it is a distinct point in <strong>the</strong> graph. This merely is a characteristic of <strong>the</strong> particular distribution. The<br />

figure shows that <strong>the</strong> Skewness-Kurtosis ratio for <strong>the</strong> observed values practically coincides with <strong>the</strong><br />

<strong>the</strong>oretical value for <strong>the</strong> LP3 distribution. Fur<strong>the</strong>rmore it shows that <strong>the</strong> Skewness-Kurtosis ratio for <strong>the</strong><br />

Gumbel distribution is far off <strong>the</strong> ratio of <strong>the</strong> observed values. The conclusion is that <strong>the</strong> momentcharacteristics<br />

of <strong>the</strong> observed values correspond much better with <strong>the</strong> LP3 distribution than with <strong>the</strong><br />

Gumbel distribution.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 1<br />

LW-AF20130064 - 6 -


Royal HaskoningDHV<br />

ANNEX 2<br />

Longitudinal dike profiles and hydrodynamic modelling results<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 2<br />

LW-AF20130064 - 1 -


Crest level of Jarillón Agua Blanca and calculated water levels + required freeboard<br />

Perfil Longitudinal del Jarillón del río <strong>Cauca</strong> y Nivel de agua para diferentes periodos de retorno<br />

(Versión revisada con datos de campo, septiembre 20 de 2012)<br />

Level [msnm]<br />

956<br />

water level T=10 water level T=25<br />

955<br />

water level T=100 water level T=250<br />

water level T=500<br />

dike crest level<br />

954<br />

T=100 + 0,50 m freeboard T=500 + 0,50 m freeboard<br />

T=250 + 0,50 m freeboard original design T=10 + 2,50<br />

953<br />

952<br />

951<br />

950<br />

949<br />

948<br />

Canal Sur<br />

km 127 + 724 m<br />

Juanchito<br />

km 139 + 259 m<br />

Rio <strong>Cali</strong><br />

km 146 + 300 m<br />

947<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

---> x -coordinate [km]


Royal HaskoningDHV<br />

Figure 10<br />

Inundation modelling<br />

Location of breaching<br />

Scenarios return period 1/100 years<br />

Location No. 6<br />

Location No. 5<br />

Location No. 4<br />

Location No. 3<br />

Location No. 2<br />

Location No. 1<br />

Breaching in all <strong>the</strong> locations<br />

Location No.1<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 2<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

Location No. 2 Location No. 3<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 2<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

Location No. 4 Location No. 5<br />

Location No. 6<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 2<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

ANNEX 3<br />

Hydrodynamic modelling, methodology<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 3<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

<strong>Cali</strong>bration of <strong>the</strong> model<br />

The model was recalibrated to fit <strong>the</strong> water level at <strong>the</strong> station Juanchito for <strong>the</strong> different return periods.<br />

The roughness coefficient in <strong>the</strong> main channel was tuned. Fur<strong>the</strong>rmore <strong>the</strong> bathymetry at <strong>the</strong> right margin,<br />

where <strong>the</strong> data is less accurate, was adjusted. The water levels in <strong>the</strong> station Juanchito for <strong>the</strong> different<br />

return periods were reproduced with an error of approximately 10 cm. Besides <strong>the</strong> water levels at a<br />

location upstream of <strong>the</strong> station Juanchito were compared with <strong>the</strong> values obtained from <strong>the</strong> hydrological<br />

analysis of <strong>the</strong> data of <strong>the</strong> station Juanchito and <strong>the</strong> translation to locations upstream and downstream by<br />

applying <strong>the</strong> water slopes calculated with a 1D-model [4]. The maximum difference calculated is about 10<br />

cm.<br />

Modelling of <strong>the</strong> flooding scenario’s<br />

In order to simulate <strong>the</strong> flooding scenario’s <strong>the</strong> boundary conditions upstream and downstream were<br />

defined.<br />

Upstream <strong>the</strong> flood hydrograph was defined on <strong>the</strong> basis of <strong>the</strong> measured hydrograph in 2011. For every<br />

return period a flood hydrograph is obtained. These flood hydrographs are shown in Figure 11.<br />

Downstream <strong>the</strong> water levels were obtained from <strong>the</strong> Q-h relation in Juanchito and after that <strong>the</strong>y were<br />

extrapolated to <strong>the</strong> location downstream. These water levels are shown in Figure 12.<br />

The locations of overtopping were modelled as a change in <strong>the</strong> bathymetry. To our knowledge it is not<br />

possible to include in <strong>the</strong> CCHE2D model constructions such as weirs (sub-grid modelling of<br />

constructions). Due to that fact, <strong>the</strong> grid has been refined to reproduce <strong>the</strong> height of <strong>the</strong> dike.<br />

Figure 11<br />

Upstream boundary condition<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 3<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

Figure 12<br />

Downstream boundary condition<br />

Recommendations<br />

There are uncertainties in <strong>the</strong> numerical modelling but also in <strong>the</strong> data. Monitoring of water levels and<br />

discharges should be continued. We advise to include more measurement locations, upstream and<br />

downstream station Juanchito. Fur<strong>the</strong>rmore it is important to determine for which levels flooding have<br />

occurred upstream Juanchito because this flooding has influence on <strong>the</strong> water levels and discharges in<br />

station Juanchito.<br />

The following recommendations are given concerning <strong>the</strong> hydrodynamic model in order to improve <strong>the</strong><br />

accuracy of <strong>the</strong> modelling results:<br />

1. Update <strong>the</strong> digital elevation data to improve <strong>the</strong> model results. The bathymetry to <strong>the</strong> right margin<br />

should be included. Fur<strong>the</strong>rmore mainly due to human actions <strong>the</strong> bathymetry of <strong>the</strong> main channel and<br />

floodplains might have changed and needs to be updated.<br />

2. Develop an integrated hydrodynamic model of <strong>the</strong> river <strong>Cauca</strong> starting at Salvajina reservoir. In this<br />

model <strong>the</strong> overtopping and flooding should be included. The model should be calibrated in order to<br />

reproduce <strong>the</strong> last flooding events for instance by comparing <strong>the</strong> inundated area with aerial<br />

photographs. These simulations will give more insight in <strong>the</strong> discharges through <strong>the</strong> river <strong>Cauca</strong> since<br />

also overtopping and flooding would be included. We understand that this model will be constructed in<br />

ano<strong>the</strong>r project [5]. We advise <strong>the</strong> local team to participate in this study so that <strong>the</strong> experience gained<br />

in <strong>the</strong> modelling of <strong>the</strong> river <strong>Cauca</strong> <strong>along</strong> <strong>the</strong> city of <strong>Cali</strong> can be shared, in order to improve <strong>the</strong><br />

modelling system.<br />

3. In choosing <strong>the</strong> numerical model, we recommend that constructions such as weirs and roads be<br />

accurate schematized.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 3<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

Considerations concerning fluvial morphodynamics<br />

During <strong>the</strong> study and conversations with <strong>the</strong> local team some morphodynamic issues arose. Amongst<br />

<strong>the</strong>se issues we list <strong>the</strong> following:<br />

1. Local erosion: for instance in <strong>the</strong> location “Nuevo Amanecer” erosion in <strong>the</strong> left margin has occurred<br />

probably as result of a bank protection carried out at <strong>the</strong> right margin.<br />

2. Bank erosion related to natural meandering of <strong>the</strong> river may affect <strong>the</strong> stability of <strong>the</strong> dikes.<br />

3. Dredging activities (illegal) are carried out in this part of <strong>the</strong> river <strong>Cauca</strong>. These dredging activities may<br />

lead to erosion of <strong>the</strong> river bed. However <strong>the</strong>re is no clear indication of large scale erosion of<br />

sedimentation of <strong>the</strong> river <strong>Cauca</strong>.<br />

4. The construction of <strong>the</strong> Salvajina reservoir will have had an influence on <strong>the</strong> morphological<br />

developments of <strong>the</strong> river <strong>Cauca</strong> due to <strong>the</strong> changes in <strong>the</strong> discharges and sediment loads.<br />

5. There are indications of changes in discharges and sediment load in <strong>the</strong> Canal Interceptor del Sur due<br />

to human activities such as deforestation that may also have influence on <strong>the</strong> morphological<br />

developments of <strong>the</strong> river <strong>Cauca</strong>.<br />

6. The bed in some parts consists of a hard soil deposit (mixture of clay, silt and sand), which is in <strong>Cali</strong><br />

called “<strong>Cali</strong>che”. Due to this soil <strong>the</strong> bed level has remained ra<strong>the</strong>r stable. Between this hard soil, <strong>the</strong>re<br />

is sand that can be eroded. Local erosion occurs in those sections.<br />

We recommend that <strong>the</strong> fluvial morphodynamics of <strong>the</strong> river <strong>Cauca</strong> be studied in order to have a better<br />

understanding of its morphodynamics and <strong>the</strong> influence of <strong>the</strong> human activities on <strong>the</strong> morphological<br />

developments. We have <strong>the</strong> following recommendations:<br />

1. Monitoring <strong>the</strong> bed evolution of longitudinal profiles of <strong>the</strong> main river. Is <strong>the</strong>re a trend (erosion,<br />

sedimentation of stable) in <strong>the</strong> bed level?<br />

2. Monitoring bank erosion since it might influence <strong>the</strong> stability of <strong>the</strong> dikes and banks.<br />

3. Obtain information over <strong>the</strong> soil and subsoil of <strong>the</strong> main river. Critical locations are where a sand layer<br />

in <strong>the</strong> subsoil may be cut by ongoing erosion. Such locations ask for more extensive monitoring.<br />

4. Obtain information of <strong>the</strong> dredging activities: dredging site, dredged volumes, properties of <strong>the</strong> dredged<br />

material.<br />

5. Prepare a plan for managing <strong>the</strong> bed levels where also dredging activities are carried out in a control<br />

manner, by defining where it is possible to dredge and how much. Geotechnical stability of dikes and<br />

banks needs to be guaranteed, and <strong>the</strong>refore <strong>the</strong> riverbed should not incise too much. Such demands<br />

to <strong>the</strong> riverbed require that <strong>the</strong> river manager needs to assess <strong>the</strong> development of <strong>the</strong> bed and to<br />

intervene in <strong>the</strong> river system if necessary.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 3<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

ANNEX 4<br />

Flood risk management methodology<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 4<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

Concepts<br />

The word risk refers in general to <strong>the</strong> probability of loss or harm. In <strong>the</strong> context of flood risk management it<br />

denotes <strong>the</strong> combination of <strong>the</strong> probability of a flood and its consequences. In this context also <strong>the</strong> terms<br />

hazard and vulnerability are often used. Hazard refers to <strong>the</strong> source of danger, i.e. <strong>the</strong> probability of<br />

flooding. Vulnerability relates to potential consequences in case of an event [6].<br />

Integrated flood risk management is an approach to identify, analyze, evaluate, control and manage <strong>the</strong><br />

flood risks in a given system. Figure 13 presents a general scheme for flood risk management. The<br />

following steps are defined:<br />

● Definition of <strong>the</strong> system, <strong>the</strong> analyzed hazards and <strong>the</strong> scope of <strong>the</strong> analysis.<br />

● A quantitative analysis where <strong>the</strong> probabilities and consequences are assessed and<br />

combined/displayed into a risk number, a graph or a flood risk map.<br />

● Risk evaluation: with <strong>the</strong> results of <strong>the</strong> former analysis <strong>the</strong> risk is evaluated. In this phase <strong>the</strong> decision<br />

is made whe<strong>the</strong>r <strong>the</strong> risk is acceptable or not.<br />

● Risk reduction and control: dependent on <strong>the</strong> outcome of <strong>the</strong> risk evaluation, measures can be taken in<br />

order to reduce <strong>the</strong> risk. Measures could concern structural and non-structural measures. It should also<br />

be determined how <strong>the</strong> risks can be controlled and managed, for example by monitoring, inspection or<br />

maintenance.<br />

The scheme focuses on minimization of flood risks to an acceptable level. The approach could also be<br />

used to assess <strong>the</strong> overall hydrological performance of <strong>the</strong> system (e.g. minimization of drought,<br />

maximization of water quality and ecological quality). Then <strong>the</strong> approach will focus on multiple objectives:<br />

not only to minimize <strong>the</strong> risk, but also to maximize <strong>the</strong> performance.<br />

Figure 13<br />

General scheme for flood risk management<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 4<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

Approach for economic damage assessment<br />

Scope of <strong>the</strong> analysis<br />

The scope and level of detail of <strong>the</strong> damage evaluation has been defined on <strong>the</strong> basis of <strong>the</strong> spatial scale<br />

of <strong>the</strong> study and <strong>the</strong> availability of data. Due to <strong>the</strong> fact that very precise methods require more effort (i.e.<br />

time and money) than less detailed approaches and that <strong>the</strong> resource are usually limited, <strong>the</strong> most precise<br />

methods are often restricted to small areas under investigation, while studies with a research area of<br />

regional or even national size mostly have to rely on less detailed methods.<br />

The area of <strong>the</strong> study is <strong>the</strong> flood area of <strong>the</strong> city of <strong>Cali</strong>, at <strong>the</strong> left margin of <strong>the</strong> river <strong>Cauca</strong> between<br />

Canal Interceptor del Sur and <strong>the</strong> river <strong>Cali</strong>. At <strong>the</strong> right margin of <strong>the</strong> river <strong>Cauca</strong> lays <strong>the</strong> city of<br />

Calendaria, where <strong>the</strong>re is no bathymetric information available for <strong>the</strong> study.<br />

In this study we focus on <strong>the</strong> priced direct damages. This category of damage constitutes <strong>the</strong> largest part<br />

of <strong>the</strong> total damage. For example in <strong>the</strong> standardized damage method that is used in <strong>the</strong> Ne<strong>the</strong>rland <strong>the</strong><br />

following main damage categories are considered: land use, infrastructure, households, companies and<br />

o<strong>the</strong>r. Within each main categories, sub-categories are distinguished (e.g. agriculture, urban area, or<br />

recreation within <strong>the</strong> main category land-use).<br />

Direct damage assessment<br />

Methods for <strong>the</strong> estimation of <strong>the</strong> direct economic damage to objects, such as structures, houses are well<br />

established, and <strong>the</strong> use of so-called damage functions is widespread ([7], [8], [9], [10]).<br />

The procedure for <strong>the</strong> estimation of direct physical damages [12] is illustrated in Figure 13. The procedure<br />

comprises three main elements:<br />

- Determination of flood characteristics<br />

- Assembling information on land use data and maximum damage amounts<br />

- Application of stage-damage functions.<br />

We describe <strong>the</strong>se elements in more detail below.<br />

Determination of flood characteristics<br />

Flooding patterns are in general simulated with a two dimensional hydrodynamic model. The existent 2Dmodel<br />

of <strong>the</strong> University of Mississippi of <strong>the</strong> river <strong>Cauca</strong> between <strong>the</strong> Canal Interceptor Sur and <strong>the</strong> river<br />

<strong>Cali</strong> was applied for this study. This model was recalibrated since <strong>the</strong> statistics of discharges and water<br />

levels was updated in this study. The water levels in <strong>the</strong> station Juanchito for <strong>the</strong> different return periods<br />

were reproduced with an error of less than 10 cm. The model runs were carried out by Angela Cabal of <strong>the</strong><br />

corporation OSSO (local partners in <strong>Colombia</strong>). A complete description of <strong>the</strong> model is given in [3]. The<br />

model has some limitations but <strong>the</strong>re are also restrictions on <strong>the</strong> available data mainly in <strong>the</strong> flooding area.<br />

For instance <strong>the</strong>re is not information of <strong>the</strong> bathymetric on <strong>the</strong> right margin of <strong>the</strong> river <strong>Cauca</strong> and <strong>the</strong>refore<br />

<strong>the</strong> inundation of <strong>the</strong> city Candelaria is not included.<br />

In this study we applied <strong>the</strong> existent 2D-model and we made recommendations for a more accurate<br />

modelling system and for <strong>the</strong> required data collection for future studies.<br />

The hydrodynamic model provides insight in flood characteristics, such as water depth, flow velocity and<br />

<strong>the</strong> rate at which <strong>the</strong> water rises. All <strong>the</strong>se characteristics can be depicted on a map.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 4<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

Flood risk assessment<br />

Definition<br />

In <strong>the</strong> risk assessment <strong>the</strong> results of hazard and damage assessments are combined. Flood risk is<br />

generally defined as follows:<br />

Risk = Probability x Damage<br />

For example, if an area has a probability of flooding of 1% per year (or 1/100 per year) and <strong>the</strong> damage is<br />

100 million COP, <strong>the</strong> risk equals 1 million COP per year. As this risk number reflects <strong>the</strong> average expected<br />

economic damage per year, it is also referred to as yearly expected economic damage.<br />

The flood scenarios can be defined depending on <strong>the</strong>ir return period, i.e. <strong>the</strong> average recurrence interval<br />

between <strong>the</strong> occurrence of two floods with a certain flood level and corresponding damage value. It is also<br />

possible to determine <strong>the</strong> probability of exceedance of an event with certain damage. That is <strong>the</strong><br />

probability (per year) that a certain damage value will be exceeded so that:<br />

Probability of exceedance = 1 / return period<br />

This means that <strong>the</strong> event a 100 year return period has a probability of exceedance of 1/100 per year.<br />

Economic optimization<br />

The economic optimization approach is applicable to determine an optimal level of protection when<br />

investments in <strong>the</strong> protection and <strong>the</strong> risk are dependent on <strong>the</strong> level of protection. This is for example <strong>the</strong><br />

case for flood prone areas that are protected by dikes. In that case <strong>the</strong> decision problem becomes <strong>the</strong><br />

choice of <strong>the</strong> height of <strong>the</strong> dikes and thus <strong>the</strong> choice for <strong>the</strong> protection level that de dikes provide.<br />

According to <strong>the</strong> method of economic optimization, <strong>the</strong> total costs in a system are determined by <strong>the</strong> sum<br />

of <strong>the</strong> expenditure for a safer system and <strong>the</strong> expected value of <strong>the</strong> economic damage. In this economic<br />

optimization <strong>the</strong> incremental investments in more safety are balanced with <strong>the</strong> reduction of <strong>the</strong> risk. The<br />

investments consist of <strong>the</strong> costs to streng<strong>the</strong>n and raise <strong>the</strong> dikes. In a simple approach it is assumed that<br />

flooding could only occur due to overtopping of <strong>the</strong> flood defences. Thereby each dike height corresponds<br />

to a certain probability of flooding (<strong>the</strong> higher <strong>the</strong> dikes <strong>the</strong> smaller <strong>the</strong> probability of flooding) and an<br />

associated damage. By summing <strong>the</strong> costs and <strong>the</strong> expected damage or risk, <strong>the</strong> total costs are obtained<br />

as a function of <strong>the</strong> safety level. A point can be determined where <strong>the</strong> total costs are minimal, <strong>the</strong> so-called<br />

optimum (Figure 14). In <strong>the</strong> optimum <strong>the</strong> corresponding dike height is known. Because <strong>the</strong> statistics of <strong>the</strong><br />

water levels are also known, <strong>the</strong> corresponding protection level in terms of a probability can be defined.<br />

The economic optimization approach was applied to flood protection systems by <strong>the</strong> Delta Committee in<br />

<strong>the</strong> Ne<strong>the</strong>rlands. This Committee investigated possibilities for new safety standards after a major flooding<br />

caused enormous damage in <strong>the</strong> Ne<strong>the</strong>rlands in 1953. Eventually <strong>the</strong>se results have been used to derive<br />

safety standards for flood defences in <strong>the</strong> Ne<strong>the</strong>rland. For coastal areas protection has been chosen with<br />

exceedance probabilities of 1/4,000 per year and 1/10,000 per year. For <strong>the</strong> Dutch river areas <strong>the</strong> safety<br />

standards were set at 1/1,250 per year and 1/2,000 per year.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 4<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

Figure 14<br />

Principle of economic optimization<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 4<br />

LW-AF20130064 - 5 -


Royal HaskoningDHV<br />

ANNEX 5<br />

Field assessment of <strong>the</strong> conditions of <strong>the</strong> <strong>Aguablanca</strong> dike<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

Introduction<br />

Three dike visits were made. On Wednesday 19 th of September a boat visit was made followed by an dike<br />

visit by car on Thursday 20 th of September. On Tuesday 2 nd of October a final visit has been made to <strong>the</strong><br />

pumping station Paso del Comercio and <strong>the</strong> PTAR (drinking water treatment plant).<br />

The objective of <strong>the</strong>se visits was to have a visual inspection of <strong>the</strong> physical condition in general and of <strong>the</strong><br />

envisaged problems at two structures in particular. As a general observation we conclude that <strong>the</strong> dike is<br />

deteriorated by lack of maintenance, sewerage systems and roads that cross <strong>the</strong> dike, and ant invasions<br />

and tree roots. Later on <strong>the</strong> constructions through <strong>the</strong> dike were studied and geotechnical calculations<br />

done. The inspection is documented by photos and technical information. The main goal of <strong>the</strong> inspection<br />

was to locate <strong>the</strong> weakest spots and to make an inventory of <strong>the</strong> most needed and effective short term<br />

measures.<br />

Boat visit (Wednesday 19th of September) and dike visit (Thursday 20th of September)<br />

The inspections of <strong>the</strong> dike resulted in 8 points of attention<br />

1. Debris dumping<br />

There has been a lot of debris dumping on riverside of <strong>the</strong> dike. This dumping of debris becomes an<br />

obstacle for <strong>the</strong> river during a flood and will raise <strong>the</strong> water level. It is <strong>the</strong>refore important to stop illegal<br />

dumping of debris.<br />

<strong>Cali</strong> acknowledges <strong>the</strong> problem and has already started with <strong>the</strong> removal of <strong>the</strong> debris, but <strong>the</strong><br />

problem continues. It is recommended to search for alternative dumpingsites. Debris does not have to<br />

be a waste material, but can be used as base material. Therefore a debris crusher instalation is<br />

needed.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

2. Crest level<br />

Historic information by Hidro-Occidente (Guillermo Regalado) provides <strong>the</strong> following:<br />

When <strong>the</strong> <strong>Aguablanca</strong> dike was designed in 1957, <strong>the</strong> consultants only had 10 years of data available.<br />

With <strong>the</strong>se data <strong>the</strong>y estimated <strong>the</strong> maximum of those years to have a return period of 10 years. They<br />

also estimated that with a freeboard of 1.0 m, <strong>the</strong> crown of <strong>the</strong> dike could manage a water level<br />

corresponding with a return period of 100 years. An important issue, confirmed by Ingeniero Jorge<br />

Llanos, who participated in <strong>the</strong> studies, is that during construction of <strong>the</strong> dike, ano<strong>the</strong>r 1.5 m was<br />

added to <strong>the</strong> crown level, corresponding with a return period of 100 years. It thus follows that <strong>the</strong> dike<br />

was constructed with a freeboard of 2.50 m above <strong>the</strong> level of a return period of 10 years.<br />

(Original communication by Guillermo Regalado:<br />

Los consultores, con los pocos datos existentes (1946-1957) estimaron que la creciente de los años<br />

50 tenía un Tr de 1 en 10 años. Estimaron también que si se adoptaba un borde libre de 1.0 m el<br />

nivel del agua, coincidiendo con el nivel de la corona o cresta del dique, podría manejar una creciente<br />

de Tr= 1 en 100 años.<br />

Algo muy importante, confirmado con el ingeniero Jorge Llanos que estuvo en el proceso de estudios,<br />

es que para construcción se incrementó en 1.5 m el nivel del dique con relación al nivel del agua<br />

adoptado para una creciente de 1 en 100 años (ver punto C, página 4 del informe de los consultores<br />

Kirpich y Hadjiluokas). Ese incremento se realizó; es decir que con relación a los niveles de agua de<br />

1 en 10 años (creciente de los años 50), la corona o cresta del dique quedó construida con un borde<br />

libre (freeboard) de 2.50 m)<br />

Nivel_TR10 Nivel_TR25 Nivel_TR100<br />

Nivel_TR250 Nivel_TR500 <strong>Dike</strong> level<br />

Perfil Longitudinal del Jarillón del río <strong>Cauca</strong> y Nivel de agua para diferentes periodos de retorno<br />

Level [msnm] (Versión revisada con datos de campo, septiembre 20 de 2012)<br />

956<br />

955<br />

954<br />

953<br />

952<br />

951<br />

950<br />

949<br />

948<br />

Canal Sur<br />

km 127 + 724 m<br />

Juanchito<br />

km 139 + 259 m<br />

Rio <strong>Cali</strong><br />

km 146 + 300 m<br />

947<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

---> x -coordinate [km]<br />

Figure 15<br />

Longitudinal profile of <strong>the</strong> <strong>Aguablanca</strong> dike based on direct field monitoring, and<br />

water levels corresponding with different return periods<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

3. Hydraulic constructions<br />

During <strong>the</strong> dike inspection it was noticed that a few construction show damage and some o<strong>the</strong>r<br />

constructions can potentially cause damage in <strong>the</strong> future. The constructions are mostly owned by<br />

corporations or parties that are not primary responsible for <strong>the</strong> safety of <strong>the</strong> dike.<br />

The construction which shows <strong>the</strong> most damage is <strong>the</strong> pumping station Paso del Comercio. An extra<br />

visit was made at this construction on Tuesday 2 nd of October.<br />

4. Land side slope is steep<br />

The slope of <strong>the</strong> dike on <strong>the</strong> land side is mostly between 1:1.5 (66%) and 1:2 (50%). Considering<br />

safety requirements of T = 100 or better <strong>the</strong> slope is considered to be quite steep.<br />

It is recommended to create a gentler slope on <strong>the</strong> land side of <strong>the</strong> dike. For an optimum slope,<br />

geotechnical calculations have to be made. In <strong>the</strong> Ne<strong>the</strong>rlands often a minimum slope of 1:3 (33%) is<br />

used. This has a lot of positive effects:<br />

• maintenance of a 1:3 slope is better, damage of people, animals is less probable<br />

• a gentle slope will better resist overflowing or overtopping water (erosion control)<br />

• where a thin cohesive top layer and short distance to <strong>the</strong> river coincide, land side slope<br />

stability and piping is more of a problem. A more gentle slope will accomplish more safety<br />

on <strong>the</strong>se failure mechanisms<br />

• earthquake induced liquefaction will yield less damage for gentler slopes<br />

5. Animal activity<br />

During <strong>the</strong> dike inspection it has been noticed that <strong>the</strong>re is a lot of activity of ants. These ants cause a<br />

lot of damage by digging holes in <strong>the</strong> dike. These holes can cause water transportation through <strong>the</strong><br />

dike followed by erosion of <strong>the</strong> dike.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

It is recommended to exterminate ant activity as much as possible. Therefore <strong>the</strong> following activities<br />

are needed:<br />

• Implement consequent monitoring of ant activity and anthills (e.g. every month)<br />

• maximum intervention level of displaced soil, e.g. 50 to 100 liters<br />

• filling of anthill cavities, preference bentonite<br />

• consequent killing of ants<br />

6. Earthquake and flood<br />

It is not probable that an earthquake and a flood coincide. However, one may take into account that a<br />

flood might come within a year after a major earthquake. Considering that a major earthquake might<br />

induce liquefaction, resulting in serious dike deformation, it is recommended to identify potential<br />

liquefiable areas and limit <strong>the</strong> problem.<br />

7. Housing and trees on <strong>the</strong> dike<br />

It has been noticed that housing and trees cut into essential minimum design profile. This makes <strong>the</strong><br />

dike more vulnerable for stability and piping problems.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 5 -


Royal HaskoningDHV<br />

It is recommended to<br />

• work with <strong>the</strong>oretical minimum design profile (fulfilling height and stability requirements)<br />

• when dike is wider (over dimensioned), houses need to be outside <strong>the</strong>oretical minimum<br />

profile<br />

• dead trees should be removed, including <strong>the</strong> root system<br />

8. <strong>Dike</strong> inspection plan<br />

At <strong>the</strong> start of <strong>the</strong> project no coherent dike inspection plan was available. It is very important to make<br />

sure that <strong>the</strong> people who will be executing <strong>the</strong> inspections will have <strong>the</strong> same base and points of<br />

focus. A inspection plan has been written in Spanish which can be used to execute <strong>the</strong> inspection in<br />

<strong>the</strong> direct future. The inspection plan was presented during a work shop on September 27 and is<br />

attached in Annex 7.<br />

Visit dike constructions October 2nd<br />

After <strong>the</strong> first dike inspections it appeared <strong>the</strong>re were some concerns with <strong>the</strong> constructions in <strong>the</strong> dike.<br />

Therefore an extra visit was held to <strong>the</strong> pumping station Paso del Comercio and <strong>the</strong> drinking water<br />

treatment plant (PTAR).<br />

Pumping station Paso del Comercio<br />

The pumping station Paso del Comercio is <strong>the</strong> bigger one of <strong>the</strong> 2 pumping stations of <strong>Cali</strong>. It is situated in<br />

<strong>the</strong> lowest part of <strong>the</strong> city. This makes it a very important pumping station that is essential for controlling<br />

<strong>the</strong> water level in <strong>the</strong> city of <strong>Cali</strong>.<br />

The construction has 4 different units:<br />

• The most Nor<strong>the</strong>rn unit is a gravity outlet (G)<br />

• South of <strong>the</strong> gravity outlet is pumping unit 2 (2)<br />

• South of pumping unit 2 is an emergency pumping unit (E)<br />

• The most sou<strong>the</strong>rn is pumping unit 1 (1)<br />

G<br />

2 1<br />

E<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 6 -


Royal HaskoningDHV<br />

In 2010 and 2011 river levels were extremely high resulting in various damages that were observed. Wells<br />

with transportation of soil were observed on <strong>the</strong> water side of <strong>the</strong> pumping station. This means that <strong>the</strong>re is<br />

a hydraulic connection between <strong>the</strong> land side and <strong>the</strong> riverside of <strong>the</strong> dike. Not only is it possible that <strong>the</strong><br />

water flows from <strong>the</strong> land side to <strong>the</strong> riverside. The o<strong>the</strong>r way around is possible as well. Emergency<br />

measures were taken and <strong>the</strong> gravity outlet has been shut down by building a closing dike on <strong>the</strong> river side<br />

of <strong>the</strong> outlet. At <strong>the</strong> moment a floating pumping unit is in place to pump water from <strong>the</strong> gravity outlet tot <strong>the</strong><br />

riverside outlet of pumping unit 2. In our opinion, this supposedly temporary construction will be used for a<br />

longer time.<br />

During <strong>the</strong> floods major damage caused by erosion developed at <strong>the</strong> riverside outlet of pumping unit 2.<br />

The damage occurred 2 years ago and is worsening ever since and will keep on worsening in <strong>the</strong> future if<br />

no measures are taken.<br />

The<br />

emergency<br />

outlet has had<br />

some problems during <strong>the</strong> river flood as well. The water outlet pipe has no closing system on <strong>the</strong> river side.<br />

During <strong>the</strong> flood, <strong>the</strong> pipes were filled with water causing some leakage through <strong>the</strong> concrete construction<br />

on <strong>the</strong> landside of <strong>the</strong> dike.<br />

The most sou<strong>the</strong>rn pumping unit is pumping unit 1. This unit had <strong>the</strong> same kind of problems as pumping<br />

unit 2. Emergency measures were taken by putting a lot of soil in <strong>the</strong> water outlet of this unit. The problem<br />

of this measure is that <strong>the</strong> water has no free outflow. This can cause problem if maximum capacity is<br />

needed. Ano<strong>the</strong>r risk is formed by <strong>the</strong> broken valves on <strong>the</strong> river side of outlet pipe. At flood level on <strong>the</strong><br />

river this will cause unnecessary water pressure on <strong>the</strong> pipe and land side construction. At <strong>the</strong> moment<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 7 -


Royal HaskoningDHV<br />

EMCALI only relies on <strong>the</strong> valves on <strong>the</strong> inside of <strong>the</strong> pipes. This is a situation that poses an unnecessary<br />

risk. Immediate action is required to repair / replace <strong>the</strong>se broken valves<br />

Drink water treatment plant<br />

During <strong>the</strong> visit of <strong>the</strong> water treatment plan, it was explained that <strong>the</strong>re was no risk of inundation of <strong>the</strong> land<br />

behind <strong>the</strong> dike, but <strong>the</strong> top level of <strong>the</strong> treatment plan is lower than <strong>the</strong> level of <strong>the</strong> dike behind <strong>the</strong><br />

treatment plant. During <strong>the</strong> flood <strong>the</strong> water almost got into <strong>the</strong> pumping pit. This would have caused <strong>the</strong><br />

plant to stop working.<br />

Plans are made to make a concrete wall on top of <strong>the</strong> plant on <strong>the</strong> water side. On both side sheet pilings<br />

are planned to connect <strong>the</strong> structure to <strong>the</strong> dike. At <strong>the</strong> downstream side this will be on a distance of circa<br />

20 meters and will provide an gentle transition construction. This appears to be a good solution. On <strong>the</strong><br />

upstream side of <strong>the</strong> plant a sheet pile of circa 200 meters is planned. The reason for this, is an existing<br />

problem with erosion in <strong>the</strong> river bent. First impression of this solution is that this is an expensive solution.<br />

It is likely that less expensive solutions are available, for instance with enforcement of <strong>the</strong> rockfill with<br />

asphalt.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 5<br />

LW-AF20130064 - 8 -


Royal HaskoningDHV<br />

ANNEX 6<br />

Structural stability and analysis of failure mechanisms<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 6<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

Macro stability, micro stability and land side dike slopes<br />

The stability of <strong>the</strong> dike on <strong>the</strong> landside is most vulnerable during flood periods. This is caused by <strong>the</strong><br />

combination of high external water pressures on <strong>the</strong> dike that have to be resisted and high internal water<br />

pressures in <strong>the</strong> dike, that causes lower effective stresses and <strong>the</strong>refore lower shear stresses of <strong>the</strong> soil in<br />

<strong>the</strong> dike. This makes <strong>the</strong> dike more vulnerable for slope instability.<br />

To make a good stability analysis a thorough soil investigation is needed toge<strong>the</strong>r with monitoring of<br />

groundwater levels. Although soil investigation was done, <strong>the</strong> number of strength parameters test was<br />

insufficient for a thorough stability analysis. To come to a judgment of <strong>the</strong> slope stability a quick analysis<br />

was made with <strong>the</strong> slope stability software D-GeoStability.<br />

We recommend to do more triaxial tests on undisturbed clay samples of <strong>the</strong> dike body to gain a better<br />

insight into <strong>the</strong> strength parameters <strong>along</strong> <strong>the</strong> profile of <strong>the</strong> <strong>Aguablanca</strong> dike. We suggest to do at least<br />

one boring per kilometre.<br />

Stability analyses preformed<br />

In <strong>the</strong> analyses <strong>the</strong> impact of variations in <strong>the</strong> strength parameters, width of <strong>the</strong> outer berm and thickness<br />

of <strong>the</strong> top-layer on <strong>the</strong> land side of <strong>the</strong> dike are examined. For <strong>the</strong> calculation <strong>the</strong> parameters below have<br />

been applied.<br />

Strength parameters<br />

̊<br />

Strength parameter based on limited number (6) of provided triaxial tests<br />

Material cohesion phi<br />

Sand, medium dense coarse grain 0 kPa 33.7<br />

̊<br />

̊<br />

̊<br />

̊<br />

̊<br />

Sand, medium dense coarse grain 0 kPa 33.7<br />

Sand, fine grain 0 kPa 35.5<br />

Clay, high void ratio, high plasticity 0.2 kPa 21<br />

Sand, fine grain (bit loamy) 0 kPa 29<br />

Sand, medium dense coarse grain 0 kPa 33.7<br />

̊<br />

̊<br />

Assumptions strength parameter based on Dutch standards (NEN6740)<br />

Material cohesion phi<br />

Sand hard dense, coarse grain 0 kPa 35<br />

Sand, loose dense, fine grain 0 kPa 30<br />

̊<br />

̊<br />

Clay (soft) 2 kPa 17.5<br />

Clay (medium) 10 kPa 17.5<br />

Strength parameters used in calculations<br />

Material cohesion phi<br />

̊<br />

̊<br />

̊<br />

Sand, medium dense, coarse grain 0 kPa 35<br />

Sand, fine grain 0 kPa 30<br />

Clay 2 kPa 21<br />

Hydraulic loads<br />

Water level river: dike crest level<br />

Water level landside 0.50 meter below ground level<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 6<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

Water level sand layer: crest level dike on outside riverside of <strong>the</strong> dike decreasing with a slope of 1:20 in<br />

<strong>the</strong> direction of <strong>the</strong> landside of <strong>the</strong> dike with a minimum of 0.5 meter below ground level<br />

Geometry<br />

Geometry of <strong>the</strong> dike: based on a drawing without date or identification (provided by <strong>the</strong> local authorities)<br />

Calculation results<br />

̊<br />

Description Parameters Result<br />

Most conservative situation:<br />

Thickness of <strong>the</strong> top clay layer = 2 meter SF=0.7<br />

weight top clay layer = 14 kN/m 3<br />

Strength top clay layer = c=2 ; phi=17.5<br />

wideness river side bank = 8 meter<br />

Stability sufficient with thick top layer Thickness of <strong>the</strong> top clay layer = 6 meter SF=1.0<br />

Stability sufficient with strong top layer Cohesion clay = 6<br />

Weight clay = 16<br />

Stability sufficient with wide river side Wideness river side bank = 38 meter<br />

bank<br />

SF=1.0<br />

SF=1.0<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 6<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

Figure 16<br />

Schematic representation of calculation<br />

Conclusions:<br />

There are 3 parameters that have a big influence on <strong>the</strong> dike stability.<br />

• Thickness of <strong>the</strong> top clay layer on <strong>the</strong> landside of <strong>the</strong> dike<br />

• Strength parameters of <strong>the</strong> top clay layer on <strong>the</strong> landside of <strong>the</strong> dike<br />

• Length of <strong>the</strong> wideness of <strong>the</strong> river side bank<br />

Heave, sand boil and piping and seepage<br />

The safety of <strong>the</strong> dike on <strong>the</strong> fail mechanism piping (backward erosion) is influenced by mostly 2 important<br />

parameters.<br />

1. Width of <strong>the</strong> outer bank<br />

2. Thickness of <strong>the</strong> top clay layer on <strong>the</strong> landside of <strong>the</strong> dike<br />

If <strong>the</strong> outer bank is wide, <strong>the</strong> length of <strong>the</strong> potential pipe will be too long and no backwards erosion can<br />

develop. For <strong>the</strong> conditions <strong>along</strong> <strong>the</strong> <strong>River</strong> <strong>Cauca</strong> this mean that if <strong>the</strong> outer bank is 45 meter wide no<br />

piping can develop.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 6<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

If <strong>the</strong> top clay layer is thick <strong>the</strong> pipe is not able to break through <strong>the</strong> top layer and no backward erosion<br />

can develop ei<strong>the</strong>r. For <strong>the</strong> situation <strong>along</strong> <strong>the</strong> <strong>River</strong> <strong>Cauca</strong> no piping can develop if <strong>the</strong> top layer has a<br />

minimum thickness of 4.0 meter.<br />

Piping analysis<br />

Use <strong>the</strong> formula of Bligh (Dutch method)<br />

Width outer bank variable meter 8-60 meter<br />

Width outer slope<br />

8 meter<br />

Width crest<br />

6 meter<br />

Width inner slope<br />

6.5 meter<br />

Total piping length (L)<br />

20.5 meter<br />

Thickness clay layer landside of <strong>the</strong> dike (d) variable meter 2-6 meter<br />

Mass of clay layer 14 kN/m 3<br />

Creep-factor ( C )<br />

18 (see tabel above)<br />

Ground level landside of <strong>the</strong> dike<br />

0 meter<br />

Maximum water level river 4 meter (crest level)<br />

Water level difference (∆H)<br />

4 meter<br />

Width outer bank<br />

Thickness clay layer landside<br />

2 3 4 5 6<br />

8 Fail Fail Good Good Good<br />

10 Fail Fail Good Good Good<br />

15 Fail Fail Good Good Good<br />

20 Fail Fail Good Good Good<br />

25 Fail Fail Good Good Good<br />

30 Fail Fail Good Good Good<br />

35 Fail Fail Good Good Good<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 6<br />

LW-AF20130064 - 5 -


Royal HaskoningDHV<br />

40 Fail Good Good Good Good<br />

45 Good Good Good Good Good<br />

50 Good Good Good Good Good<br />

55 Good Good Good Good Good<br />

60 Good Good Good Good Good<br />

Liquefaction and deformations<br />

No calculations on this failure mechanism were made. Although failure of <strong>the</strong> dike due to liquefaction is<br />

possible when an major earthquake occurs, <strong>the</strong> probability of a major earthquake coinciding with an<br />

extreme flood event is negligible as compared to <strong>the</strong> probability of occurrence of a major earthquake<br />

alone.<br />

Erosion control and slope revetment<br />

During conversations with local authorities <strong>the</strong> erosion of <strong>the</strong> rockfill has been mentioned. Although locally<br />

this may be a problem, in general <strong>the</strong> river has a good protection against erosion. This conclusion is based<br />

on <strong>the</strong> dike visits that were made. If enforcement of <strong>the</strong> rockfill is necessary, this can be done by applying<br />

asphalt to <strong>the</strong> rockfill.<br />

Macro stability river side slope<br />

No analyses were done on <strong>the</strong> stability of <strong>the</strong> riverside slope. The reason is that <strong>the</strong> stability of <strong>the</strong><br />

riverside slope is only a problem during a quick drop of <strong>the</strong> water level on <strong>the</strong> river. If this is <strong>the</strong> case, <strong>the</strong>re<br />

is no danger for inundations.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 6<br />

LW-AF20130064 - 6 -


Royal HaskoningDHV<br />

ANNEX 7<br />

Inspection plan<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 7<br />

LW-AF20130064 - 1 -


PLAN DE INSPECCIÓN DE DIQUES<br />

Una guía para:<br />

• mantenimiento<br />

• vigilancia<br />

• prueba de inundaciones<br />

• evaluación a los requisitos de ley<br />

• inspección durante un nivel extremo<br />

Joop de Bijl<br />

Michel Tonneijck<br />

Hans Leenen<br />

Waterschap Aa en Maas<br />

Royal HaskoningDHV<br />

Royal HaskoningDHV<br />

Version 27 septiembre 2012


1. INTRODUCCCION Y PROPOSITO<br />

El Plan de Inspección del Dique describe el proceso de inspección, la aplicación de todas las etapas<br />

del mismo la planeación del mantenimiento y medidas de rehabilitación sugeridas durante el proceso<br />

de diagnostico.<br />

El marco para el plan de inspección son las leyes, reglamentos, políticas e instrumentos<br />

Las inspecciones tienen su fundamento en la Ley del Agua de Holanda, en reglamentos y en políticas<br />

establecidas. Directrices tanto nacionales como locales están disponibles para la implementación de<br />

las inspecciones.<br />

Las siguientes herramientas son necesarias para la implementación de las tareas de inspección.<br />

• Ley de Aguas, establece el marco legal para la entidad que ejerce autoridad sobre el dique<br />

• Reglamento (decreto),determina las reglas aplicables por la autoridad del agua, (Anexo 1)<br />

• Mapa base. Establece las características espaciales y funcionales del dique. En conjunto con<br />

el reglamento representa la base legal para las tareas ejecutadas por la autoridad del agua o<br />

del dique (Anexo 1)<br />

• Plan de manejo del dique. Este plan traduce las políticas nacionales y regionales, las leyes y<br />

regulaciones para el área de gestión. Es la base de todas las actividades de manejo:<br />

inspección, concesión de licencias, mantenimiento, mejoras y ensayos;<br />

• Plan de manejo de inundaciones. Este plan describe el monitoreo de las inundaciones, las<br />

etapas de escalamiento del monitoreo del dique (situación de inundación) y las actividades de<br />

inspección del dique y de la organización asociada. (Anexo 1)<br />

OBJETIVO DE LAS INSPECCIONES<br />

El plan de inspecciones multipropósito<br />

1. Mantenimiento del dique<br />

2. Vigilancia de la integridad del dique: garantizar el cumplimiento del reglamento y del mapa<br />

base, incluido el cumplimiento de las condiciones asociadas a permisos emitidos.<br />

3. Dique a prueba de inundaciones: controlar si el dique, incluyendo las estructuras que lo<br />

cruzan (considerando procedimientos de cierre de válvulas y compuertas) se encuentran en<br />

condiciones aptas para la temporada de inundaciones.<br />

4. Evaluación del dique requerida por ley. Determinación de la altura y resistencia actual de<br />

las estructuras de defensa contra inundaciones, con respecto a condiciones hidráulicas de<br />

frontera actualizadas cada 6 años<br />

5. Inspección del carillón durante inundaciones y medidas de emergencia asociadas.<br />

Figura 1 Falla de estabilidad<br />

2


2. LAS OPCIONES DE INSPECCIÓN<br />

1. INSPECCION DE MANTENIMIENTO<br />

Mantenimiento reducido tiene el objetivo de extender la vida útil del dique y la prevención de<br />

nuevos daños. Información sobre todas las categorías de dique se establecen para<br />

determinar las medidas de mantenimiento. En particular se trata del registro de la condición<br />

de resistencia a la erosión del revestimiento en grama del dique, de cualquier daño del dique<br />

y de las condiciones operacionales de los mecanismos de cierre de estructuras hidráulicas.<br />

Esta inspección usualmente se realiza después de la temporada de invierno.<br />

El plan de mantenimiento puede ser elaborado con base en la información obtenida en esta<br />

etapa. El monitoreo de la ejecución del mantenimiento hace parte de esta inspección.<br />

2. INSPECCIÓN SOBRE EL CUMPLIMIENTO DE LAS REGLAS<br />

Situaciones ilegales se determinan durante una “inspección de cumplimiento”. La información<br />

requerida es un inventario de acciones ilegales en contra del reglamento estatutario y el<br />

incumplimiento de obligaciones de mantenimiento. El requisito de información se define en<br />

estrecha colaboración con el Departamento de Cumplimiento.<br />

La frecuencia de inspección depende en parte de la intensidad de las violaciones. Al menos<br />

se debe llevar a cabo una vez al mes, de lo contrario se generan derechos adquiridos debido<br />

a la tolerancia demasiado duradera.<br />

A partir de la aplicación del cumplimiento de las reglas se pueden requerir medidas<br />

necesarias para restaurar la condición original del dique.<br />

Figura 2<br />

¿¿¿Cumplimiento de las reglas???<br />

3. INSPECCIÓN ANTES DE LA EPOCA INVERNAL<br />

Se debe inspeccionar la capacidad de retención de agua de los diques antes de las temporadas<br />

de invierno. El desempeño de los mecanismos de cierre de las estructuras en los diques son<br />

probados mediante ensayos de cierre. En los Países Bajos hay una temporada de inundaciones<br />

al año, en <strong>Cali</strong> dos.<br />

3


Figura 3 Daño de hormigas<br />

4. EVALUACIÓN DEL DIQUE TENIENDO EN CUENTA TODOS LOS MODOS DE FALLA<br />

Los perfiles hidráulicos utilizados para el diseño del dique deben ser actualizados cada 10 años.<br />

Todos los factores que generan modificaciones deben ser incluidos en la evaluación:<br />

• Cambios en el río y en las planicies de inundación que afecten los niveles de agua<br />

• Efectos del cambio climático<br />

• Mayor demanda de protección contra inundación a causa de rápido desarrollo espacial y<br />

económico en el área protegida<br />

En este proceso todos los modos de falla son reconsiderados. Esta evaluación puede llevar a<br />

concluir que el carillón necesita refuerzo, en ese caso se haría necesario un programa de<br />

reconstrucción del dique.<br />

4


5. INSPECCIÓN DURANTE INUNDACIONES<br />

El dique debe ser inspeccionado durante eventos de nivel alto del río.<br />

El dique debe ser reparado o reforzado inmediatamente en caso de identificarse una<br />

condición de colapso inminente.<br />

Figura 4 Inundación<br />

5


3. INSPECCIÓN<br />

Observaciones durante la inspección tienen por objetivo capturar ciertas características de un<br />

dique relacionadas con su estado de mantenimiento y el estado de la seguridad del mismo<br />

(integridad).<br />

3.1 PROPÓSITO<br />

El propósito de la observación es la detección, identificación y registro de ciertas características<br />

del dique.<br />

3.2 MÉTODODEOBSERVACIÓN<br />

Identificarlas técnicas de inspección y observación a ser utilizadas, por ejemplo:<br />

Inspección visual<br />

La observación visual es la esencia de las inspecciones. Un inspector experto puede juzgar las<br />

características importantes del dique de un vistazo. Es difícil que los resultados de esta<br />

inspección sean los mismos que los de un colega. Las observaciones visuales se basan en gran<br />

parte en el conocimiento y la experiencia personal y por lo tanto tienen un carácter subjetivo.<br />

Para garantizar que las inspecciones visuales sean tan objetivas como sea posible, es importante<br />

asegurarse que los inspectores sean entrenados para reconocer y clasificar los elementos<br />

observados.<br />

Técnicas instrumentales de inspección<br />

Las inspecciones no se limitan a observaciones visuales. Las mediciones son cada vez<br />

importantes en las inspecciones. Esto se refiere no sólo a mediciones de la altura de la cresta del<br />

dique(GPS, nivelaciones, altimetría láser, monitoreo remota), sino también a la medición de los<br />

parámetros en los diques.<br />

Figura 5<br />

Fuente de arena, indicación del inicio de tubificación<br />

6


3.3 HOJA DE RUTA PARA LA INSPECCIÓN DEL DIQUE<br />

PASO 1:<br />

DETERMINAR QUE SECCIÓN DE DIQUE SE VA A INSPECIONAR Y DEFINIR EL MÉTODO DE<br />

INSPECCIÓN<br />

En este caso, la elección debe hacerse a partir de las siguientes categorías:<br />

• Inspección de mantenimiento<br />

• Inspección sobre el cumplimiento de las reglas<br />

• Inspección de capacidad de resistencia a inundaciones<br />

• Evaluación global del dique<br />

• Monitoreo y reparación de emergencia durante inundaciones<br />

PASO 2:<br />

DETERMINAR LA CALIDAD Y CLASIFICACIÓN DE URGENCIA DE LAS OBSERVACIONES<br />

(Cuadros 3.1 y 3.2)<br />

CUADRO 3.1 CLASIFICACION DE CALIDAD<br />

Grado<br />

Bueno<br />

Raonablemente<br />

suficiente<br />

Pobre<br />

Malo<br />

Descripción<br />

El elemento cumple a cabalidad con los requerimientos<br />

estructurales y de funcionalidad<br />

El elemento cumple con los requerimientos estructurales y de<br />

funcionalidad<br />

El elemento no cumple con suficiencia con los requerimientos<br />

estructurales y de funcionalidad<br />

El elemento no satisface ninguno de los requerimientos<br />

estructurales y de funcionalidad<br />

TABLE 3.2 CLASIFICACIONDE DAÑOS<br />

Urgency Class Description<br />

1 Recuperación de Se considera que la resistencia y/o estabilidad del dique<br />

emergencia<br />

representa un peligro inminente. Recuperación debe ser<br />

llevada a cabo urgentemente (1-2 días)<br />

2 Recuperación<br />

urgente<br />

3 Restaurar antes<br />

de la temporada<br />

invernal<br />

4 El estado del<br />

dique no se<br />

encuentra en peligro<br />

inminente<br />

Se considera que la resistencia y/o estabilidad del dique no<br />

representa un peligro inminente. Recuperación debe ser<br />

llevada a cabo con cierto grado de urgencia (1-2 meses)<br />

Se considera que la resistencia y/o estabilidad del dique no<br />

representa un peligro inminente y no tiene potencial de<br />

empeorarse en un corto plazo. Recuperación debe ser llevada<br />

a cabo antes del comienzo de la temporada invernal.<br />

Se considera que la resistencia y/o estabilidad del dique no no<br />

se encuentran comprometidas bajo normas de operación<br />

establecidas y no tiene potencial de empeorarse en un corto<br />

plazo. Recuperación debe ser llevada a cabo en un plazo más<br />

largo.<br />

PASO 3: PREPARAR INFORMES DETALLADOS DE LA INSPECCIÓN<br />

PASO 4: TOMAR FOTOS<br />

PASO 5: PREPARAR UN CRONOGRAMA PARA LA RECUPERACIÓN<br />

7


4. DIAGNOSTICO<br />

PROPOSITO<br />

El objetivo del diagnóstico es reducir los datos de modo que pueda conocer el estado o condición<br />

actual del carillón para poder determinar la urgencia de las medidas de recuperación y las acciones<br />

de aseguramiento del cumplimiento de normas correctamente.<br />

DEFINICIÓN<br />

Para el diagnóstico, los valores observados o resultados de mediciones se comparan con los<br />

umbrales predeterminados o niveles determinados que ameriten intervención (por ejemplo, altura,<br />

volumen de material removido por hormigas, perfil de evaluación).<br />

MÉTODO<br />

Los siguientes métodos se deben implementar:<br />

• Mapa base y reglamento<br />

• Resultados de observaciones<br />

• Guías técnicas de diseño y umbrales de intervención<br />

CLASIFICACIÓN DE URGENCIA<br />

Los cuadros 3.1y 3.2 determinan los niveles de modificación del dique y la clasificación de urgencia<br />

de reparación. Un programa de reparación/restauración puede ser preparado con base en esta<br />

clasificación.<br />

8


5. PLANEACION E IMPLEMENTACION<br />

Los resultados de la inspección, incluyendo la planificación de las medidas de reparación necesarias,<br />

se informan en este subproceso.<br />

PROPÓSITO<br />

El propósito de la fase de Planificación y Ejecuciónes definir, priorizar y realizar las acciones<br />

necesarias a fin de que la modificación del carillón sea reparada.<br />

PLANIFICACIÓN<br />

En esta etapa las medidas requeridas son definidas, priorizadas e incorporadas en un programa. El<br />

informe debe determinar los recursos que son necesarios para las medidas de recuperación del<br />

dique.<br />

IMPLEMENTACIÓN<br />

Mantenimiento<br />

Operaciones de emergencia.<br />

La realización de las operaciones de emergencias lleva a cabo durante todo el año. El daño debe ser<br />

restaurado inmediatamente después de descubrimiento;<br />

Mantenimiento menor. Realizar reparaciones menores, todo el año. Las reparaciones de deben<br />

realizar hasta un máximo de 3 meses después de la observación. Incluir control de las hormigas<br />

simultáneamente con la realización de trabajos secundarios de mantenimiento.<br />

Mantenimiento mayor. Se necesita establecer un programa multianual. La duración del programa<br />

depende de los recursos disponibles y la urgencia de reparación.<br />

Cumplimiento de las regulaciones<br />

Urgente. Los asuntos que requieren atención urgente son inmediatamente transmitidos;<br />

No es urgente. Observaciones que determinen condiciones que no son urgentes deben comunicarse<br />

dentro de un plazo no mayor que seis meses<br />

Invocación de entidades en deuda. Las entidades con atrasos en cumplimiento de sus compromisos<br />

recibirán una carta con observaciones sobre la cartera de compromisos, las acciones requeridas y los<br />

períodos de ejecución.<br />

Refuerzo<br />

Si un nivel mayor de estándar de seguridad es requerido entonces se debe proponer una acción de<br />

mitigación.<br />

En esta fase de un programa de recuperación debe ser preparados.<br />

9


ANEXO 1 REGLAMENTO, MAPA BASE Y PLAN DE PROTECCION DE INUNDACIONES<br />

Reglamento<br />

La autoridad del agua (o del dique) trabajan con leyes y regulaciones. Por ley se les permite hacer<br />

establecer ciertas reglas y regulaciones para apoyar las tareas asignadas.<br />

Estas regulaciones salvaguardan la función del dique y protegen los diques de las actividades ilegales<br />

tales como la excavación y la construcción en lugares no aptos. Por lo tanto, las autoridades protegen<br />

las zonas adyacentes y deben reservar el espacio para obras futuras para refuerzo del dique.<br />

Estas zonas protegidas se identifican como tales en el Mapa Base del dique. El mapa base es por lo<br />

tanto importante para el ámbito de aseguramiento de cumplimiento de normas relacionadas al dique.<br />

Mapa Base del dique<br />

La Ley del Agua obliga a las autoridades a tener Mapa Base del dique<br />

- La autoridad del agua es responsable de la generación de un Mapa Base, en el que se describe<br />

cómo se debe comportar el dique y como son diseñados: localización, geometría, tamaño y<br />

construcción.<br />

- En este mapa también se establecen las entidades en deuda y las obligaciones de mantenimiento<br />

- La ubicación del dique, las zonas adyacentes de protección y zonas reservadas para el futuro deben<br />

indicarse en mapas de localización<br />

Plan de protección de inundación<br />

Este plan de control maneja las calamidades que puedan surgir en períodos de inundación.<br />

El control adecuado tiene como base un modelo de escalada. Cada fase responde a los progresos de<br />

la inundación y el estado de las estructuras de protección de inundación en conjunto con el avance<br />

del despliegue de los cuerpos de emergencia.<br />

Se distinguen las siguientes fases:<br />

Fase 0 actividades anuales,<br />

Fase 1 Mayor vigilancia (en particular, el cierre de estructuras que cruzan el dique),<br />

Fase 2 Vigilancia del dique y reparación menor<br />

Fase 3 Vigilancia permanente del diquey trabajos de reparación mayor para prevenir daños o<br />

rompimiento del dique<br />

Control de las defensas contra inundación por lo general se llevará a cabo mediante el despliegue de<br />

personal y recursos de la autoridad del agua. En situaciones extremas, las autoridades del agua<br />

inicialmente deberán trabajar con contratistas. Además, para acciones específicas con las organismos<br />

de socorro, tanto a nivel local como regional, tales como el cuerpo de bomberos. En casos extremos,<br />

el despliegue de unidades de emergencia nacionales podría ser necesario.<br />

La colaboración con otras autoridades y contratistas debe ser planeada y simulada con mucha<br />

antelación. Esta organización y el simulacro forman parte del plan de protección contra inundaciones.<br />

10


ANEXO 2 INSTRUCCIONES DE TRABAJO<br />

Este anexo contiene un ejemplo de trabajo.<br />

PREPARACIÓN<br />

Cada inspector debe tener:<br />

1. Mapas<br />

2. Lista de los carillones que indican abscisado y longitudes<br />

3. Esta Observación de Instrucción<br />

4. Planificación del trabajo concreto<br />

5. Cámara<br />

6. Indicador de escala<br />

7. Computador de campo<br />

8. GPS<br />

9. Dotación de vestido adecuada<br />

Cada inspector debe tener la siguiente información:<br />

1. Vestimenta adecuada, identificación apropiada<br />

2Nuevos desarrollos en la política, regulación<br />

3 Manual de operaciones de computador y equipo GPS<br />

REQUISITOS DE DESEMPEÑO<br />

1 Implementación de las observaciones es realizada por lo menos por 2personas.<br />

2 Que al menos una de las personas cumpla con los siguientes requisitos:<br />

2.1 Educación mínima:<br />

2.1.1 Educación secundaria a nivel técnico, orientada a ingeniería civil o ingeniería agrícola;<br />

2.1.2 Ser calificado como inspector de diques, dos cursos (incluyendo la patrulla del dique);<br />

2.1.3 Curso de actualización anual<br />

2.1.4 Curso sobre cómo atender quejas<br />

2.2 Nivel de experiencia: experiencia como interventor, evaluador de trabajos.<br />

2.3 Área de conocimiento: Los encargados de la inspección deben tener conocimiento local de la<br />

zona inspeccionada<br />

2.4 No tener limitaciones físicas<br />

2.5 Medios de transporte para acceder áreas remotas<br />

3 La segunda persona debe tener las siguientes cualidades:<br />

3.1 No tener limitaciones físicas<br />

3.2 Ser calificado como inspector de diques, un curso<br />

4 Las inspecciones se realizan a pie. El inspector va sobre la corona mientras el acompañante<br />

camina a lo largo de la zona húmeda.<br />

OBSERVACIÓN<br />

Requisitos de los informes de observación<br />

5 Fotografías deberán cumplir los siguientes requisitos:<br />

5.1 Uso del indicador de la escala<br />

5.2 Hacer una toma en la que toda la imagen comprenda el daño<br />

5.3 Crear una visión global<br />

5.4 Evaluar si son necesarias más fotografías<br />

6 Observaciones de los daños para capturar imágenes en centímetros.<br />

7 Una rareza no es necesariamente un tipo de daño. Cuando exista la duda, capturar la<br />

imagen.<br />

8 Cuando este lloviendo es lógico que se vean zonas húmedas en el campo. Registre la<br />

localización y vuelva más tarde para ver si las zonas húmedas persisten después de un<br />

período seco y registre las condiciones climáticas en el informe de inspección.<br />

11


Empresa<br />

Dirección<br />

Waterschap Aa en Maas Pettelaarpark 70, Den Bosch 5201 GA, Holanda; T +31.73.6156905<br />

Royal HaskoningDHV Laan 1914, No. 35, Amersfoort 3818 EX, Holanda T +31.88.3483383<br />

12


Royal HaskoningDHV<br />

ANNEX 8<br />

Water governance and regional water authorities in <strong>the</strong><br />

Ne<strong>the</strong>rlands (partially derived from [14])<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 8<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

The regional water authorities are <strong>the</strong> oldest form of democratic government in <strong>the</strong> Ne<strong>the</strong>rlands. The first<br />

regional water authorities date back to <strong>the</strong> 13th century, which is all to do with <strong>the</strong> geographic situation of<br />

<strong>the</strong> country. More than half <strong>the</strong> country would be flooded but for <strong>the</strong> dunes and dams that protect human<br />

beings, livestock and properties against storm floods coming from <strong>the</strong> sea and torrential rivers. Extreme<br />

rain, too, can cause great inconvenience. The many dikes, locks, pumping stations, weirs, canals and<br />

ditches keep <strong>the</strong> Ne<strong>the</strong>rlands habitable.<br />

The regional water authorities are responsible for <strong>the</strong> water management on a regional and local level. The<br />

concept of ‘water governance’ can be described as that part of public care that relates to flood protection,<br />

<strong>the</strong> water regime (surface water and groundwater in both <strong>the</strong> quantitative and qualitative sense) and <strong>the</strong><br />

waterways. It focuses on <strong>the</strong> habitability and usability of <strong>the</strong> land and <strong>the</strong> protection and improvement of<br />

<strong>the</strong> living environment. From this description it is also apparent that, in <strong>the</strong> execution of <strong>the</strong>ir tasks, <strong>the</strong><br />

regional water authorities fulfil <strong>the</strong> provisions of Article 21 of <strong>the</strong> Dutch Constitution: ‘Government care is<br />

aimed at <strong>the</strong> habitability of <strong>the</strong> country and <strong>the</strong> protection and improvement of <strong>the</strong> environment.<br />

The importance of good water governance is growing as a result of <strong>the</strong> rising sea level, climate change,<br />

land subsidence and urbanisation. Six regional water authorities are also charged with road management.<br />

Although strictly speaking this duty is not related to water management, it falls within <strong>the</strong> somewhat<br />

broader concept of ‘Public Works and Water Management ’.<br />

Water governance is realised by means of infrastructural works: water control works such as rivers, lakes,<br />

canals, ditches, dikes, pumping stations, locks, weirs, culverts, bridges and sewerage treatment plants.<br />

These works are crucial for keeping <strong>the</strong> Ne<strong>the</strong>rlands habitable. The regional water authorities draw up byelaws<br />

(Keur) to safeguard <strong>the</strong> correct maintenance and functioning of <strong>the</strong>se structures. For example, it is<br />

generally prohibited to carry out activities such as building, excavating or planting greenery, on, in, over or<br />

under water control works without <strong>the</strong> permission of <strong>the</strong> regional water authority. The crucial importance of<br />

<strong>the</strong>se infrastructural works is also clear from <strong>the</strong> Dutch Criminal Code, which makes deliberately damaging<br />

such works punishable.<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 8<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

APPENDIX 9<br />

Ownership of <strong>the</strong> <strong>Aguablanca</strong> dike<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 9<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

Figure 17<br />

Page 1 of <strong>the</strong> Act of Sales of <strong>Aguablanca</strong><br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 9<br />

LW-AF20130064 - 2 -


Royal HaskoningDHV<br />

Figure 18<br />

Page 2 of <strong>the</strong> Act of Sales of <strong>Aguablanca</strong><br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 9<br />

LW-AF20130064 - 3 -


Royal HaskoningDHV<br />

Figure 19<br />

Rio <strong>Cauca</strong><br />

Page 13 of <strong>the</strong> Act of Sales of <strong>Aguablanca</strong>: CVC stays owner of <strong>the</strong> left bank of <strong>the</strong><br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 9<br />

LW-AF20130064 - 4 -


Royal HaskoningDHV<br />

APPENDIX 10<br />

Table of damage and investment costs<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 10<br />

LW-AF20130064 - 1 -


Royal HaskoningDHV<br />

NL Agency/<strong>Aguablanca</strong> <strong>Dike</strong> <strong>along</strong> <strong>the</strong> <strong>Cauca</strong> <strong>River</strong>, <strong>Cali</strong>, <strong>Colombia</strong> appendix 10<br />

LW-AF20130064 - 2 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!